101
|
Midbrain tectal stem cells display diverse regenerative capacities in zebrafish. Sci Rep 2019; 9:4420. [PMID: 30872640 PMCID: PMC6418144 DOI: 10.1038/s41598-019-40734-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 02/20/2019] [Indexed: 12/18/2022] Open
Abstract
How diverse adult stem and progenitor populations regenerate tissue following damage to the brain is poorly understood. In highly regenerative vertebrates, such as zebrafish, radial-glia (RG) and neuro-epithelial-like (NE) stem/progenitor cells contribute to neuronal repair after injury. However, not all RG act as neural stem/progenitor cells during homeostasis in the zebrafish brain, questioning the role of quiescent RG (qRG) post-injury. To understand the function of qRG during regeneration, we performed a stab lesion in the adult midbrain tectum to target a population of homeostatic qRG, and investigated their proliferative behaviour, differentiation potential, and Wnt/β-catenin signalling. EdU-labelling showed a small number of proliferating qRG after injury (pRG) but that progeny are restricted to RG. However, injury promoted proliferation of NE progenitors in the internal tectal marginal zone (TMZi) resulting in amplified regenerative neurogenesis. Increased Wnt/β-catenin signalling was detected in TMZi after injury whereas homeostatic levels of Wnt/β-catenin signalling persisted in qRG/pRG. Attenuation of Wnt signalling suggested that the proliferative response post-injury was Wnt/β-catenin-independent. Our results demonstrate that qRG in the tectum have restricted capability in neuronal repair, highlighting that RG have diverse functions in the zebrafish brain. Furthermore, these findings suggest that endogenous stem cell compartments compensate lost tissue by amplifying homeostatic growth.
Collapse
|
102
|
Fujioka T, Kaneko N, Sawamoto K. Blood vessels as a scaffold for neuronal migration. Neurochem Int 2019; 126:69-73. [PMID: 30851365 DOI: 10.1016/j.neuint.2019.03.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/27/2019] [Accepted: 03/02/2019] [Indexed: 12/19/2022]
Abstract
Neurogenesis and angiogenesis share regulatory factors that contribute to the formation of vascular networks and neuronal circuits in the brain. While crosstalk mechanisms between neural stem cells (NSCs) and the vasculature have been extensively investigated, recent studies have provided evidence that blood vessels also play an essential role in neuronal migration in the brain during development and regeneration. The mechanisms of the neuronal migration along blood vessels, referred to as "vascular-guided migration," are now being elucidated. The vascular endothelial cells secrete soluble factors that attract and promote neuronal migration in collaboration with astrocytes that enwrap the blood vessels. In addition, especially in the adult brain, the blood vessels serve as a migration scaffold for adult-born immature neurons generated in the ventricular-subventricular zone (V-SVZ), a germinal zone surrounding the lateral ventricles. The V-SVZ-derived immature neurons use the vascular scaffold to assist their migration toward an injured area after ischemic stroke, and contribute to neuronal regeneration. Here we review the current knowledge about the role of vasculature in neuronal migration and the molecular mechanisms controlling this process. While most of this research has been done in rodents, a comprehensive understanding of vasculature-guided neuronal migration could contribute to new therapeutic approaches for increasing new neurons in the brain after injury.
Collapse
Affiliation(s)
- Teppei Fujioka
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan; Department of Neurology and Neuroscience, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| | - Naoko Kaneko
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| | - Kazunobu Sawamoto
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan; Division of Neural Development and Regeneration, National Institute for Physiological Sciences, Okazaki, Aichi, 444-8585, Japan.
| |
Collapse
|
103
|
Obernier K, Alvarez-Buylla A. Neural stem cells: origin, heterogeneity and regulation in the adult mammalian brain. Development 2019; 146:146/4/dev156059. [PMID: 30777863 DOI: 10.1242/dev.156059] [Citation(s) in RCA: 351] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the adult rodent brain, neural stem cells (NSCs) persist in the ventricular-subventricular zone (V-SVZ) and the subgranular zone (SGZ), which are specialized niches in which young neurons for the olfactory bulb (OB) and hippocampus, respectively, are generated. Recent studies have significantly modified earlier views on the mechanisms of NSC self-renewal and neurogenesis in the adult brain. Here, we discuss the molecular control, heterogeneity, regional specification and cell division modes of V-SVZ NSCs, and draw comparisons with NSCs in the SGZ. We highlight how V-SVZ NSCs are regulated by local signals from their immediate neighbors, as well as by neurotransmitters and factors that are secreted by distant neurons, the choroid plexus and vasculature. We also review recent advances in single cell RNA analyses that reveal the complexity of adult neurogenesis. These findings set the stage for a better understanding of adult neurogenesis, a process that one day may inspire new approaches to brain repair.
Collapse
Affiliation(s)
- Kirsten Obernier
- Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, CA 94143, USA.,Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - Arturo Alvarez-Buylla
- Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, CA 94143, USA .,Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
104
|
Sirerol-Piquer MS, Belenguer G, Morante-Redolat JM, Duart-Abadia P, Perez-Villalba A, Fariñas I. Physiological Interactions between Microglia and Neural Stem Cells in the Adult Subependymal Niche. Neuroscience 2019; 405:77-91. [PMID: 30677487 DOI: 10.1016/j.neuroscience.2019.01.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/07/2019] [Accepted: 01/10/2019] [Indexed: 12/31/2022]
Abstract
Microglia are the prototypical innate immune cells of the central nervous system. They constitute a unique type of tissue-resident mononuclear phagocytes which act as glial cells. Elegant experiments in the last few years have revealed the origin, extraordinary molecular diversity, and phenotypic plasticity of these cells and how their potential relates to both immune and non-immune actions in the normal and diseased brain. Microglial cells originate in the yolk sac and colonize the brain during embryogenesis, playing a role in neural development and later in adult brain function. Neurogenesis continues after birth in discrete areas of the mammalian brain sustained by the postnatal persistence of neural stem cells in specific neurogenic niches. Recent data indicate that microglial cells are distinct cellular elements of these neurogenic niches where they regulate different aspects of stem cell biology. Interestingly, microglial and neural stem cells are specified very early in fetal development and persist as self-renewing populations throughout life, suggesting potential life-long interactions between them. We aim at reviewing these interactions in one neurogenic niche, the subependymal zone.
Collapse
Affiliation(s)
- Mª Salomé Sirerol-Piquer
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Departamento de Biología Celular, Biología Funcional y Antropología Física and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain
| | - Germán Belenguer
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Departamento de Biología Celular, Biología Funcional y Antropología Física and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain
| | - José Manuel Morante-Redolat
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Departamento de Biología Celular, Biología Funcional y Antropología Física and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain
| | - Pere Duart-Abadia
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Departamento de Biología Celular, Biología Funcional y Antropología Física and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain
| | - Ana Perez-Villalba
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Departamento de Biología Celular, Biología Funcional y Antropología Física and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain
| | - Isabel Fariñas
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Departamento de Biología Celular, Biología Funcional y Antropología Física and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain.
| |
Collapse
|
105
|
Rushing GV, Bollig MK, Ihrie RA. Heterogeneity of Neural Stem Cells in the Ventricular-Subventricular Zone. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1169:1-30. [PMID: 31487016 DOI: 10.1007/978-3-030-24108-7_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this chapter, heterogeneity is explored in the context of the ventricular-subventricular zone, the largest stem cell niche in the mammalian brain. This niche generates up to 10,000 new neurons daily in adult mice and extends over a large spatial area with dorso-ventral and medio-lateral subdivisions. The stem cells of the ventricular-subventricular zone can be subdivided by their anatomical position and transcriptional profile, and the stem cell lineage can also be further subdivided into stages of pre- and post-natal quiescence and activation. Beyond the stem cells proper, additional differences exist in their interactions with other cellular constituents of the niche, including neurons, vasculature, and cerebrospinal fluid. These variations in stem cell potential and local interactions are discussed, as well as unanswered questions within this system.
Collapse
Affiliation(s)
- Gabrielle V Rushing
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Neuroscience Program, Vanderbilt University, Nashville, TN, USA
| | - Madelyn K Bollig
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Neuroscience Program, Vanderbilt University, Nashville, TN, USA
| | - Rebecca A Ihrie
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA. .,Neuroscience Program, Vanderbilt University, Nashville, TN, USA. .,Department of Neurological Surgery, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
106
|
Katsimpardi L, Lledo PM. Regulation of neurogenesis in the adult and aging brain. Curr Opin Neurobiol 2018; 53:131-138. [DOI: 10.1016/j.conb.2018.07.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/12/2018] [Accepted: 07/16/2018] [Indexed: 12/29/2022]
|
107
|
Patel R, Muir M, Cvetkovic C, Krencik R. Concepts toward directing human astroplasticity to promote neuroregeneration. Dev Dyn 2018; 248:21-33. [DOI: 10.1002/dvdy.24655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/19/2018] [Accepted: 06/19/2018] [Indexed: 12/20/2022] Open
Affiliation(s)
| | | | - Caroline Cvetkovic
- Center for Neuroregeneration, Department of Neurosurgery; Houston Methodist Research Institute; Houston Texas
| | - Robert Krencik
- Center for Neuroregeneration, Department of Neurosurgery; Houston Methodist Research Institute; Houston Texas
| |
Collapse
|
108
|
Nadadhur AG, Leferink PS, Holmes D, Hinz L, Cornelissen-Steijger P, Gasparotto L, Heine VM. Patterning factors during neural progenitor induction determine regional identity and differentiation potential in vitro. Stem Cell Res 2018; 32:25-34. [PMID: 30172094 DOI: 10.1016/j.scr.2018.08.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 08/13/2018] [Accepted: 08/22/2018] [Indexed: 12/20/2022] Open
Abstract
The neural tube consists of neural progenitors (NPs) that acquire different characteristics during gestation due to patterning factors. However, the influence of such patterning factors on human pluripotent stem cells (hPSCs) during in vitro neural differentiation is often unclear. This study compared neural induction protocols involving in vitro patterning with single SMAD inhibition (SSI), retinoic acid (RA) administration and dual SMAD inhibition (DSI). While the derived NP cells expressed known NP markers, they differed in their NP expression profile and differentiation potential. Cortical neuronal cells generated from 1) SSI NPs exhibited less mature neuronal phenotypes, 2) RA NPs exhibited an increased GABAergic phenotype, and 3) DSI NPs exhibited greater expression of glutamatergic lineage markers. Further, although all NPs generated astrocytes, astrocytes derived from the RA-induced NPs had the highest GFAP expression. Differences between NP populations included differential expression of regional identity markers HOXB4, LBX1, OTX1 and GSX2, which persisted into mature neural cell stages. This study suggests that patterning factors regulate how potential NPs may differentiate into specific neuronal and glial cell types in vitro. This challenges the utility of generic neural induction procedures, while highlighting the importance of carefully selecting specific NP protocols.
Collapse
Affiliation(s)
- Aishwarya G Nadadhur
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, the Netherlands
| | - Prisca S Leferink
- Pediatric Neurology, Emma Children's Hospital, Amsterdam UMC, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, the Netherlands
| | - Dwayne Holmes
- Pediatric Neurology, Emma Children's Hospital, Amsterdam UMC, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, the Netherlands
| | - Lisa Hinz
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, the Netherlands
| | - Paulien Cornelissen-Steijger
- Pediatric Neurology, Emma Children's Hospital, Amsterdam UMC, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, the Netherlands
| | - Lisa Gasparotto
- Pediatric Neurology, Emma Children's Hospital, Amsterdam UMC, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, the Netherlands
| | - Vivi M Heine
- Pediatric Neurology, Emma Children's Hospital, Amsterdam UMC, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, the Netherlands; Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, the Netherlands.
| |
Collapse
|
109
|
Bayin NS, Wojcinski A, Mourton A, Saito H, Suzuki N, Joyner AL. Age-dependent dormant resident progenitors are stimulated by injury to regenerate Purkinje neurons. eLife 2018; 7:39879. [PMID: 30091706 PMCID: PMC6115187 DOI: 10.7554/elife.39879] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 07/30/2018] [Indexed: 01/19/2023] Open
Abstract
Outside of the neurogenic niches of the brain, postmitotic neurons have not been found to undergo efficient regeneration. We demonstrate that mouse Purkinje cells (PCs), which are born at midgestation and are crucial for development and function of cerebellar circuits, are rapidly and fully regenerated following their ablation at birth. New PCs are produced from immature FOXP2+ Purkinje cell precursors (iPCs) that are able to enter the cell cycle and support normal cerebellum development. The number of iPCs and their regenerative capacity, however, diminish soon after birth and consequently PCs are poorly replenished when ablated at postnatal day five. Nevertheless, the PC-depleted cerebella reach a normal size by increasing cell size, but scaling of neuron types is disrupted and cerebellar function is impaired. Our findings provide a new paradigm in the field of neuron regeneration by identifying a population of immature neurons that buffers against perinatal brain injury in a stage-dependent process.
Collapse
Affiliation(s)
- N Sumru Bayin
- Developmental Biology Program, Sloan Kettering Institute, New York, United States
| | - Alexandre Wojcinski
- Developmental Biology Program, Sloan Kettering Institute, New York, United States
| | - Aurelien Mourton
- Developmental Biology Program, Sloan Kettering Institute, New York, United States
| | - Hiromitsu Saito
- Department of Animal Functional Genomics of Advanced Science Research Promotion Center, Organization for the Promotion of Regional Innovation, Mie University, Tsu, JAPAN
| | - Noboru Suzuki
- Department of Animal Functional Genomics of Advanced Science Research Promotion Center, Organization for the Promotion of Regional Innovation, Mie University, Tsu, JAPAN
| | - Alexandra L Joyner
- Developmental Biology Program, Sloan Kettering Institute, New York, United States.,Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, United States
| |
Collapse
|
110
|
Distinct Molecular Signatures of Quiescent and Activated Adult Neural Stem Cells Reveal Specific Interactions with Their Microenvironment. Stem Cell Reports 2018; 11:565-577. [PMID: 29983386 PMCID: PMC6092681 DOI: 10.1016/j.stemcr.2018.06.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 06/06/2018] [Accepted: 06/06/2018] [Indexed: 12/31/2022] Open
Abstract
Deciphering the mechanisms that regulate the quiescence of adult neural stem cells (NSCs) is crucial for the development of therapeutic strategies based on the stimulation of their endogenous regenerative potential in the damaged brain. We show that LeXbright cells sorted from the adult mouse subventricular zone exhibit all the characteristic features of quiescent NSCs. Indeed, they constitute a subpopulation of slowly dividing cells that is able to enter the cell cycle to regenerate the irradiated niche. Comparative transcriptomic analyses showed that they express hallmarks of NSCs but display a distinct molecular signature from activated NSCs (LeX+EGFR+ cells). Particularly, numerous membrane receptors are expressed on quiescent NSCs. We further revealed a different expression pattern of Syndecan-1 between quiescent and activated NSCs and demonstrated its role in the proliferation of activated NSCs. Our data highlight the central role of the stem cell microenvironment in the regulation of quiescence in adult neurogenic niches. Transcriptome analysis reveals molecular hallmarks of activated and quiescent NSCs Data resource of putative markers and/or regulators of NSC quiescence Quiescent NSCs integrate various signals from the microenvironment Syndecan-1 is involved in proliferation of NSCs
Collapse
|
111
|
Choi CI, Yoon H, Drucker KL, Langley MR, Kleppe L, Scarisbrick IA. The Thrombin Receptor Restricts Subventricular Zone Neural Stem Cell Expansion and Differentiation. Sci Rep 2018; 8:9360. [PMID: 29921916 PMCID: PMC6008392 DOI: 10.1038/s41598-018-27613-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/06/2018] [Indexed: 01/05/2023] Open
Abstract
Thrombin is frequently increased in the CNS after injury yet little is known regarding its effects on neural stem cells. Here we show that the subventricular zone (SVZ) of adult mice lacking the high affinity receptor for thrombin, proteinase activated receptor 1 (PAR1), show increased numbers of Sox2+ and Ki-67+ self-renewing neural stem cells (NSCs) and Olig2+ oligodendrocyte progenitors. SVZ NSCs derived from PAR1-knockout mice, or treated with a PAR1 small molecule inhibitor (SCH79797), exhibited enhanced capacity for self-renewal in vitro, including increases in neurosphere formation and BrdU incorporation. PAR1-knockout SVZ monolayer cultures contained more Nestin, NG2+ and Olig2+ cells indicative of enhancements in expansion and differentiation towards the oligodendrocyte lineage. Cultures of NSCs lacking PAR1 also expressed higher levels of myelin basic protein, proteolipid protein and glial fibrillary acidic protein upon differentiation. Complementing these findings, the corpus callosum and anterior commissure of adult PAR1-knockout mice contained greater numbers of Olig2+ progenitors and CC1+ mature oligodendrocytes. Together these findings highlight PAR1 inhibition as a means to expand adult SVZ NSCs and to promote an increased number of mature myelinating oligodendrocytes in vivo that may be of particular benefit in the context of neural injury where PAR1 agonists such as thrombin are deregulated.
Collapse
Affiliation(s)
- Chan-Il Choi
- Department of Physical Medicine and Rehabilitation Mayo Clinic, Rochester, MN, 55905, USA.,Rehabilitation Medicine Research Center Mayo Clinic, Rochester, MN, 55905, USA.,Department of Physiology Mayo Clinic, Rochester, MN, 55905, USA
| | - Hyesook Yoon
- Department of Physical Medicine and Rehabilitation Mayo Clinic, Rochester, MN, 55905, USA.,Rehabilitation Medicine Research Center Mayo Clinic, Rochester, MN, 55905, USA.,Department of Physiology Mayo Clinic, Rochester, MN, 55905, USA
| | - Kristen L Drucker
- Department of Physical Medicine and Rehabilitation Mayo Clinic, Rochester, MN, 55905, USA.,Rehabilitation Medicine Research Center Mayo Clinic, Rochester, MN, 55905, USA
| | - Monica R Langley
- Department of Physical Medicine and Rehabilitation Mayo Clinic, Rochester, MN, 55905, USA.,Rehabilitation Medicine Research Center Mayo Clinic, Rochester, MN, 55905, USA
| | - Laurel Kleppe
- Department of Physical Medicine and Rehabilitation Mayo Clinic, Rochester, MN, 55905, USA.,Rehabilitation Medicine Research Center Mayo Clinic, Rochester, MN, 55905, USA
| | - Isobel A Scarisbrick
- Department of Physical Medicine and Rehabilitation Mayo Clinic, Rochester, MN, 55905, USA. .,Rehabilitation Medicine Research Center Mayo Clinic, Rochester, MN, 55905, USA. .,Department of Physiology Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
112
|
Adams KV, Morshead CM. Neural stem cell heterogeneity in the mammalian forebrain. Prog Neurobiol 2018; 170:2-36. [PMID: 29902499 DOI: 10.1016/j.pneurobio.2018.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 05/23/2018] [Accepted: 06/07/2018] [Indexed: 12/21/2022]
Abstract
The brain was long considered an organ that underwent very little change after development. It is now well established that the mammalian central nervous system contains neural stem cells that generate progeny that are capable of making new neurons, astrocytes, and oligodendrocytes throughout life. The field has advanced rapidly as it strives to understand the basic biology of these precursor cells, and explore their potential to promote brain repair. The purpose of this review is to present current knowledge about the diversity of neural stem cells in vitro and in vivo, and highlight distinctions between neural stem cell populations, throughout development, and within the niche. A comprehensive understanding of neural stem cell heterogeneity will provide insights into the cellular and molecular regulation of neural development and lifelong neurogenesis, and will guide the development of novel strategies to promote regeneration and neural repair.
Collapse
Affiliation(s)
- Kelsey V Adams
- Institute of Medical Science, Terrence Donnelly Centre, University of Toronto, Toronto ON, M5S 3E2, Canada.
| | - Cindi M Morshead
- Institute of Medical Science, Terrence Donnelly Centre, University of Toronto, Toronto ON, M5S 3E2, Canada; Department of Surgery, Division of Anatomy, Canada; Institute of Biomaterials and Biomedical Engineering, Canada; Rehabilitation Science Institute, University of Toronto, Canada.
| |
Collapse
|
113
|
Draijer S, Chaves I, Hoekman MFM. The circadian clock in adult neural stem cell maintenance. Prog Neurobiol 2018; 173:41-53. [PMID: 29886147 DOI: 10.1016/j.pneurobio.2018.05.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/14/2018] [Accepted: 05/29/2018] [Indexed: 12/25/2022]
Abstract
Neural stem cells persist in the adult central nervous system as a continuing source of astrocytes, oligodendrocytes and neurons. Various signalling pathways and transcription factors actively maintain this population by regulating cell cycle entry and exit. Similarly, the circadian clock is interconnected with the cell cycle and actively maintains stem cell populations in various tissues. Here, we discuss emerging evidence for an important role of the circadian clock in neural stem cell maintenance. We propose that the NAD+-dependent deacetylase SIRT1 exerts control over the circadian clock in adult neural stem cell function to limit exhaustion of their population. Conversely, disruption of the circadian clock may compromise neural stem cell quiescence resulting in a premature decline of the neural stem cell population. As such, energy metabolism and the circadian clock converge in adult neural stem cell maintenance.
Collapse
Affiliation(s)
- Swip Draijer
- Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Inês Chaves
- Department of Molecular Genetics, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Marco F M Hoekman
- Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands.
| |
Collapse
|
114
|
Prevot V, Dehouck B, Sharif A, Ciofi P, Giacobini P, Clasadonte J. The Versatile Tanycyte: A Hypothalamic Integrator of Reproduction and Energy Metabolism. Endocr Rev 2018; 39:333-368. [PMID: 29351662 DOI: 10.1210/er.2017-00235] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/12/2018] [Indexed: 12/16/2022]
Abstract
The fertility and survival of an individual rely on the ability of the periphery to promptly, effectively, and reproducibly communicate with brain neural networks that control reproduction, food intake, and energy homeostasis. Tanycytes, a specialized glial cell type lining the wall of the third ventricle in the median eminence of the hypothalamus, appear to act as the linchpin of these processes by dynamically controlling the secretion of neuropeptides into the portal vasculature by hypothalamic neurons and regulating blood-brain and blood-cerebrospinal fluid exchanges, both processes that depend on the ability of these cells to adapt their morphology to the physiological state of the individual. In addition to their barrier properties, tanycytes possess the ability to sense blood glucose levels, and play a fundamental and active role in shuttling circulating metabolic signals to hypothalamic neurons that control food intake. Moreover, accumulating data suggest that, in keeping with their putative descent from radial glial cells, tanycytes are endowed with neural stem cell properties and may respond to dietary or reproductive cues by modulating hypothalamic neurogenesis. Tanycytes could thus constitute the missing link in the loop connecting behavior, hormonal changes, signal transduction, central neuronal activation and, finally, behavior again. In this article, we will examine these recent advances in the understanding of tanycytic plasticity and function in the hypothalamus and the underlying molecular mechanisms. We will also discuss the putative involvement and therapeutic potential of hypothalamic tanycytes in metabolic and fertility disorders.
Collapse
Affiliation(s)
- Vincent Prevot
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Center, Lille, France.,University of Lille, FHU 1000 Days for Health, School of Medicine, Lille, France
| | - Bénédicte Dehouck
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Center, Lille, France.,University of Lille, FHU 1000 Days for Health, School of Medicine, Lille, France
| | - Ariane Sharif
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Center, Lille, France.,University of Lille, FHU 1000 Days for Health, School of Medicine, Lille, France
| | - Philippe Ciofi
- Inserm, Neurocentre Magendie, Bordeaux, France.,Université de Bordeaux, Bordeaux, France
| | - Paolo Giacobini
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Center, Lille, France.,University of Lille, FHU 1000 Days for Health, School of Medicine, Lille, France
| | - Jerome Clasadonte
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Center, Lille, France.,University of Lille, FHU 1000 Days for Health, School of Medicine, Lille, France
| |
Collapse
|
115
|
Glutathione Conjugation at the Blood-CSF Barrier Efficiently Prevents Exposure of the Developing Brain Fluid Environment to Blood-Borne Reactive Electrophilic Substances. J Neurosci 2018; 38:3466-3479. [PMID: 29507144 DOI: 10.1523/jneurosci.2967-17.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 02/01/2018] [Accepted: 02/17/2018] [Indexed: 02/06/2023] Open
Abstract
Exposure of the developing brain to toxins, drugs, or deleterious endogenous compounds during the perinatal period can trigger alterations in cell division, migration, differentiation, and synaptogenesis, leading to lifelong neurological impairment. The brain is protected by cellular barriers acting through multiple mechanisms, some of which are still poorly explored. We used a combination of enzymatic assays, live tissue fluorescence microscopy, and an in vitro cellular model of the blood-CSF barrier to investigate an enzymatic detoxification pathway in the developing male and female rat brain. We show that during the early postnatal period the choroid plexus epithelium forming the blood-CSF barrier and the ependymal cell layer bordering the ventricles harbor a high detoxifying capacity that involves glutathione S-transferases. Using a functional knock-down rat model for choroidal glutathione conjugation, we demonstrate that already in neonates, this metabolic pathway efficiently prevents the penetration of blood-borne reactive compounds into CSF. The versatility of the protective mechanism results from the multiplicity of the glutathione S-transferase isoenzymes, which are differently expressed between the choroidal epithelium and the ependyma. The various isoenzymes display differential substrate specificities, which greatly widen the spectrum of molecules that can be inactivated by this pathway. In conclusion, the blood-CSF barrier and the ependyma are identified as key cellular structures in the CNS to protect the brain fluid environment from different chemical classes of potentially toxic compounds during the postnatal period. This metabolic neuroprotective function of brain interfaces ought to compensate for the liver postnatal immaturity.SIGNIFICANCE STATEMENT Brain homeostasis requires a stable and controlled internal environment. Defective brain protection during the perinatal period can lead to lifelong neurological impairment. We demonstrate that the choroid plexus forming the blood-CSF barrier is a key player in the protection of the developing brain. Glutathione-dependent enzymatic metabolism in the choroidal epithelium inactivates a broad spectrum of noxious compounds, efficiently preventing their penetration into the CSF. A second line of detoxification is located in the ependyma separating the CSF from brain tissue. Our study reveals a novel facet of the mechanisms by which the brain is protected at a period of high vulnerability, at a time when the astrocytic network is still immature and liver xenobiotic metabolism is limited.
Collapse
|
116
|
Ghersi-Egea JF, Strazielle N, Catala M, Silva-Vargas V, Doetsch F, Engelhardt B. Molecular anatomy and functions of the choroidal blood-cerebrospinal fluid barrier in health and disease. Acta Neuropathol 2018; 135:337-361. [PMID: 29368213 DOI: 10.1007/s00401-018-1807-1] [Citation(s) in RCA: 277] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/07/2018] [Accepted: 01/13/2018] [Indexed: 02/07/2023]
Abstract
The barrier between the blood and the ventricular cerebrospinal fluid (CSF) is located at the choroid plexuses. At the interface between two circulating fluids, these richly vascularized veil-like structures display a peculiar morphology explained by their developmental origin, and fulfill several functions essential for CNS homeostasis. They form a neuroprotective barrier preventing the accumulation of noxious compounds into the CSF and brain, and secrete CSF, which participates in the maintenance of a stable CNS internal environment. The CSF circulation plays an important role in volume transmission within the developing and adult brain, and CSF compartments are key to the immune surveillance of the CNS. In these contexts, the choroid plexuses are an important source of biologically active molecules involved in brain development, stem cell proliferation and differentiation, and brain repair. By sensing both physiological changes in brain homeostasis and peripheral or central insults such as inflammation, they also act as sentinels for the CNS. Finally, their role in the control of immune cell traffic between the blood and the CSF confers on the choroid plexuses a function in neuroimmune regulation and implicates them in neuroinflammation. The choroid plexuses, therefore, deserve more attention while investigating the pathophysiology of CNS diseases and related comorbidities.
Collapse
Affiliation(s)
- Jean-François Ghersi-Egea
- Fluid Team, Lyon Neurosciences Research Center, INSERM U1028, CNRS, UMR5292, University Lyon-1, Lyon, France.
| | - Nathalie Strazielle
- Fluid Team, Lyon Neurosciences Research Center, INSERM U1028, CNRS, UMR5292, University Lyon-1, Lyon, France
- Brain-i, Lyon, France
| | | | | | | | | |
Collapse
|
117
|
Shao F, Liu C. Revisit the Candidacy of Brain Cell Types as the Cell(s) of Origin for Human High-Grade Glioma. Front Mol Neurosci 2018. [PMID: 29515370 PMCID: PMC5826356 DOI: 10.3389/fnmol.2018.00048] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
High-grade glioma, particularly, glioblastoma, is the most aggressive cancer of the central nervous system (CNS) in adults. Due to its heterogeneous nature, glioblastoma almost inevitably relapses after surgical resection and radio-/chemotherapy, and is thus highly lethal and associated with a dismal prognosis. Identifying the cell of origin has been considered an important aspect in understanding tumor heterogeneity, thereby holding great promise in designing novel therapeutic strategies for glioblastoma. Taking advantage of genetic lineage-tracing techniques, performed mainly on genetically engineered mouse models (GEMMs), multiple cell types in the CNS have been suggested as potential cells of origin for glioblastoma, among which adult neural stem cells (NSCs) and oligodendrocyte precursor cells (OPCs) are the major candidates. However, it remains highly debated whether these cell types are equally capable of transforming in patients, given that in the human brain, some cell types divide so slowly, therefore may never have a chance to transform. With the recent advances in studying adult NSCs and OPCs, particularly from the perspective of comparative biology, we now realize that notable differences exist among mammalian species. These differences have critical impacts on shaping our understanding of the cell of origin of glioma in humans. In this perspective, we update the current progress in this field and clarify some misconceptions with inputs from important findings about the biology of adult NSCs and OPCs. We propose to re-evaluate the cellular origin candidacy of these cells, with an emphasis on comparative studies between animal models and humans.
Collapse
Affiliation(s)
- Fangjie Shao
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Chong Liu
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
118
|
Pilz GA, Bottes S, Betizeau M, Jörg DJ, Carta S, Simons BD, Helmchen F, Jessberger S. Live imaging of neurogenesis in the adult mouse hippocampus. Science 2018; 359:658-662. [PMID: 29439238 PMCID: PMC6986926 DOI: 10.1126/science.aao5056] [Citation(s) in RCA: 228] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 12/13/2017] [Indexed: 12/16/2022]
Abstract
Neural stem and progenitor cells (NSPCs) generate neurons throughout life in the mammalian hippocampus. We used chronic in vivo imaging and followed genetically labeled individual NSPCs and their progeny in the mouse hippocampus for up to 2 months. We show that NSPCs targeted by the endogenous Achaete-scute homolog 1 (Ascl1) promoter undergo limited rounds of symmetric and asymmetric divisions, eliciting a burst of neurogenic activity, after which they are lost. Further, our data reveal unexpected asymmetric divisions of nonradial glia-like NSPCs. Cell fates of Ascl1-labeled lineages suggest a developmental-like program involving a sequential transition from a proliferative to a neurogenic phase. By providing a comprehensive description of lineage relationships, from dividing NSPCs to newborn neurons integrating into the hippocampal circuitry, our data offer insight into how NSPCs support life-long hippocampal neurogenesis.
Collapse
Affiliation(s)
- Gregor-Alexander Pilz
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
| | - Sara Bottes
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
| | - Marion Betizeau
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland,Institute of Neuroinformatics, University of Zurich and Swiss Federal Institute of Technology (ETH) Zurich, 8057 Zurich, Switzerland
| | - David J. Jörg
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK; Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK; Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK
| | - Stefano Carta
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland,Laboratory of Neural Circuit Dynamics, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
| | - Benjamin D. Simons
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK; Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK; Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK
| | - Fritjof Helmchen
- Laboratory of Neural Circuit Dynamics, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
| | - Sebastian Jessberger
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
119
|
Meares GP, Rajbhandari R, Gerigk M, Tien CL, Chang C, Fehling SC, Rowse A, Mulhern KC, Nair S, Gray GK, Berbari NF, Bredel M, Benveniste EN, Nozell SE. MicroRNA-31 is required for astrocyte specification. Glia 2018; 66:987-998. [PMID: 29380422 DOI: 10.1002/glia.23296] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/30/2017] [Accepted: 01/08/2018] [Indexed: 12/21/2022]
Abstract
Previously, we determined microRNA-31 (miR-31) is a noncoding tumor suppressive gene frequently deleted in glioblastoma (GBM); miR-31 suppresses tumor growth, in part, by limiting the activity of NF-κB. Herein, we expand our previous studies by characterizing the role of miR-31 during neural precursor cell (NPC) to astrocyte differentiation. We demonstrate that miR-31 expression and activity is suppressed in NPCs by stem cell factors such as Lin28, c-Myc, SOX2 and Oct4. However, during astrocytogenesis, miR-31 is induced by STAT3 and SMAD1/5/8, which mediate astrocyte differentiation. We determined miR-31 is required for terminal astrocyte differentiation, and that the loss of miR-31 impairs this process and/or prevents astrocyte maturation. We demonstrate that miR-31 promotes astrocyte development, in part, by reducing the levels of Lin28, a stem cell factor implicated in NPC renewal. These data suggest that miR-31 deletions may disrupt astrocyte development and/or homeostasis.
Collapse
Affiliation(s)
- Gordon P Meares
- Departments of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, West Virginia, 26506
| | - Rajani Rajbhandari
- Departments of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Magda Gerigk
- Departments of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Chih-Liang Tien
- Departments of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Chenbei Chang
- Departments of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Samuel C Fehling
- Departments of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Amber Rowse
- Departments of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Kayln C Mulhern
- Departments of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Sindhu Nair
- Departments of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - G Kenneth Gray
- Departments of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Nicolas F Berbari
- Departments of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, 46202
| | - Markus Bredel
- Departments of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Etty N Benveniste
- Departments of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Susan E Nozell
- Departments of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| |
Collapse
|
120
|
Fanibunda SE, Desouza LA, Kapoor R, Vaidya RA, Vaidya VA. Thyroid Hormone Regulation of Adult Neurogenesis. VITAMINS AND HORMONES 2018; 106:211-251. [DOI: 10.1016/bs.vh.2017.04.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
121
|
Synaptic Regulator α-Synuclein in Dopaminergic Fibers Is Essentially Required for the Maintenance of Subependymal Neural Stem Cells. J Neurosci 2017; 38:814-825. [PMID: 29217686 DOI: 10.1523/jneurosci.2276-17.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/10/2017] [Accepted: 11/28/2017] [Indexed: 01/11/2023] Open
Abstract
Synaptic protein α-synuclein (α-SYN) modulates neurotransmission in a complex and poorly understood manner and aggregates in the cytoplasm of degenerating neurons in Parkinson's disease. Here, we report that α-SYN present in dopaminergic nigral afferents is essential for the normal cycling and maintenance of neural stem cells (NSCs) in the brain subependymal zone of adult male and female mice. We also show that premature senescence of adult NSCs into non-neurogenic astrocytes in mice lacking α-SYN resembles the effects of dopaminergic fiber degeneration resulting from chronic exposure to 1-methyl-4-phenyl-1,2,3,6-tetra-hydropyridine or intranigral inoculation of aggregated toxic α-SYN. Interestingly, NSC loss in α-SYN-deficient mice can be prevented by viral delivery of human α-SYN into their sustantia nigra or by treatment with l-DOPA, suggesting that α-SYN regulates dopamine availability to NSCs. Our data indicate that α-SYN, present in dopaminergic nerve terminals supplying the subependymal zone, acts as a niche component to sustain the neurogenic potential of adult NSCs and identify α-SYN and DA as potential targets to ameliorate neurogenic defects in the aging and diseased brain.SIGNIFICANCE STATEMENT We report an essential role for the protein α-synuclein present in dopaminergic nigral afferents in the regulation of adult neural stem cell maintenance, identifying the first synaptic regulator with an implication in stem cell niche biology. Although the exact role of α-synuclein in neural transmission is not completely clear, our results indicate that it is required for stemness and the preservation of neurogenic potential in concert with dopamine.
Collapse
|
122
|
Azevedo PO, Lousado L, Paiva AE, Andreotti JP, Santos GSP, Sena IFG, Prazeres PHDM, Filev R, Mintz A, Birbrair A. Endothelial cells maintain neural stem cells quiescent in their niche. Neuroscience 2017; 363:62-65. [PMID: 28893649 PMCID: PMC6089873 DOI: 10.1016/j.neuroscience.2017.08.059] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 08/24/2017] [Accepted: 08/31/2017] [Indexed: 01/02/2023]
Abstract
Niches are specialized microenvironments that regulate stem cells' activity. The neural stem cell (NSC) niche defines a zone in which NSCs are retained and produce new cells of the nervous system throughout life. Understanding the signaling mechanisms by which the niche controls the NSC fate is crucial for the success of clinical applications. In a recent study, Sato and colleagues, by using state-of-the-art techniques, including sophisticated in vivo lineage-tracing technologies, provide evidence that endothelial amyloid precursor protein (APP) is an important component of the NSC niche. Strikingly, depletion of APP increased NSC proliferation in the subventricular zone, indicating that endothelial cells negatively regulate NSCs' growth. The emerging knowledge from this research will be important for the treatment of several neurological diseases.
Collapse
Affiliation(s)
- Patrick O Azevedo
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luiza Lousado
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana E Paiva
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Julia P Andreotti
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gabryella S P Santos
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Isadora F G Sena
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Pedro H D M Prazeres
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Renato Filev
- Laboratory of Neurobiology, Federal University of São Paulo, SP, Brazil
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
123
|
Area-Specific Regulation of Quiescent Neural Stem Cells by Notch3 in the Adult Mouse Subependymal Zone. J Neurosci 2017; 37:11867-11880. [PMID: 29101245 DOI: 10.1523/jneurosci.0001-17.2017] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 10/17/2017] [Accepted: 10/20/2017] [Indexed: 12/15/2022] Open
Abstract
In the adult mammalian brain, neural stem cells (NSCs) generate new neurons throughout the mammal's lifetime. The balance between quiescence and active cell division among NSCs is crucial in producing appropriate numbers of neurons while maintaining the stem cell pool for a long period. The Notch signaling pathway plays a central role in both maintaining quiescent NSCs (qNSCs) and promoting cell division of active NSCs (aNSCs), although no one knows how this pathway regulates these apparently opposite functions. Notch1 has been shown to promote proliferation of aNSCs without affecting qNSCs in the adult mouse subependymal zone (SEZ). In this study, we found that Notch3 is expressed to a higher extent in qNSCs than in aNSCs while Notch1 is preferentially expressed in aNSCs and transit-amplifying progenitors in the adult mouse SEZ. Furthermore, Notch3 is selectively expressed in the lateral and ventral walls of the SEZ. Knockdown of Notch3 in the lateral wall of the adult SEZ increased the division of NSCs. Moreover, deletion of the Notch3 gene resulted in significant reduction of qNSCs specifically in the lateral and ventral walls, compared with the medial and dorsal walls, of the lateral ventricles. Notch3 deletion also reduced the number of qNSCs activated after antimitotic cytosine β-D-arabinofuranoside (Ara-C) treatment. Importantly, Notch3 deletion preferentially reduced specific subtypes of newborn neurons in the olfactory bulb derived from the lateral walls of the SEZ. These results indicate that Notch isoforms differentially control the quiescent and proliferative steps of adult SEZ NSCs in a domain-specific manner.SIGNIFICANCE STATEMENT In the adult mammalian brain, the subependymal zone (SEZ) of the lateral ventricles is the largest neurogenic niche, where neural stem cells (NSCs) generate neurons. In this study, we found that Notch3 plays an important role in the maintenance of quiescent NSCs (qNSCs), while Notch1 has been reported to act as a regulator of actively cycling NSCs. Furthermore, we found that Notch3 is specifically expressed in qNSCs located in the lateral and ventral walls of the lateral ventricles and regulates neuronal production of NSCs in a region-specific manner. Our results indicate that Notch3, by maintaining the quiescence of a subpopulation of NSCs, confers a region-specific heterogeneity among NSCs in the adult SEZ.
Collapse
|
124
|
Wang J, Li J, Yang J, Zhang L, Gao S, Jiao F, Yi M, Xu J. MicroRNA‑138‑5p regulates neural stem cell proliferation and differentiation in vitro by targeting TRIP6 expression. Mol Med Rep 2017; 16:7261-7266. [PMID: 28944841 PMCID: PMC5865854 DOI: 10.3892/mmr.2017.7504] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 07/05/2017] [Indexed: 12/13/2022] Open
Abstract
Research on neural stem cells (NSCs) has recently focused on microRNAs (miRNAs), a class of small non-coding RNAs that have crucial roles in regulating NSC proliferation and differentiation. In the present study, a quantitative-polymerase chain reaction assay revealed that the expression of miRNA (miR)-138-5p was significantly decreased during neural differentiation of NSCs in vitro. Overexpression of miR-138-5p reduced NSC proliferation and increased NSC differentiation. Furthermore, suppression of miR-138-5p via transfection with a miRNA inhibitor enhanced NSC proliferation and attenuated NSC differentiation. Additionally, expression of thyroid hormone receptor interacting protein 6 (TRIP6), a critical regulator of NSCs, was negatively correlated with the miR-138-5p level. A luciferase assay demonstrated that miR-138-5p regulate TRIP6 by directly binding the 3′-untranslated region of the mRNA. Additionally, upregulation of TRIP6 rescued the NSC proliferation deficiency induced by miR-138-5p and abolished miR-138-5p-promoted NSCs differentiation. By contrast, downregulation of TRIP6 produced the opposite effect on proliferation and differentiation of NSCs transfected with anti-miR-138-5p. Taken together, the data suggest that miR-138-5p regulates NSCs proliferation and differentiation, and may be useful in developing novel treatments for neurological disorders via manipulation of miR-138-5p in NSCs.
Collapse
Affiliation(s)
- Juan Wang
- Stem Cell Center, East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Jixia Li
- Clinical Laboratory, Yantaishan Hospital, Yantai, Shandong 264000, P.R. China
| | - Jian Yang
- Administration Office, Yantai Blood Station, Yantai, Shandong 264000, P.R. China
| | - Lianguo Zhang
- Department of Thoracic Surgery, Affiliated Hospital of Binzhou Medical College, Binzhou, Shandong 256603, P.R. China
| | - Shane Gao
- Stem Cell Center, East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Fei Jiao
- Department of Biotechnology and Molecular, Binzhou Medical College, Yantai, Shandong 264003, P.R. China
| | - Maoli Yi
- Laboratory of Yantai Yuhuangding Hospital, Yantai, Shandong 264003, P.R. China
| | - Jun Xu
- Stem Cell Center, East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| |
Collapse
|
125
|
Chirivella L, Kirstein M, Ferrón SR, Domingo-Muelas A, Durupt FC, Acosta-Umanzor C, Cano-Jaimez M, Pérez-Sánchez F, Barbacid M, Ortega S, Burks DJ, Fariñas I. Cyclin-Dependent Kinase 4 Regulates Adult Neural Stem Cell Proliferation and Differentiation in Response to Insulin. Stem Cells 2017; 35:2403-2416. [DOI: 10.1002/stem.2694] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 06/25/2017] [Accepted: 07/11/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Laura Chirivella
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Spain
- Departamento de Biología Celular; Biología Funcional y Antropología Física and Estructura de Recerca Interdisciplinar en Biotecnología i Biomedicina (ERI BIOTECMED), Universidad de Valencia; Burjassot Spain
| | - Martina Kirstein
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Spain
- Departamento de Biología Celular; Biología Funcional y Antropología Física and Estructura de Recerca Interdisciplinar en Biotecnología i Biomedicina (ERI BIOTECMED), Universidad de Valencia; Burjassot Spain
| | - Sacri R. Ferrón
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Spain
- Departamento de Biología Celular; Biología Funcional y Antropología Física and Estructura de Recerca Interdisciplinar en Biotecnología i Biomedicina (ERI BIOTECMED), Universidad de Valencia; Burjassot Spain
| | - Ana Domingo-Muelas
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Spain
- Departamento de Biología Celular; Biología Funcional y Antropología Física and Estructura de Recerca Interdisciplinar en Biotecnología i Biomedicina (ERI BIOTECMED), Universidad de Valencia; Burjassot Spain
| | - Fabrice C. Durupt
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Spain
- Departamento de Biología Celular; Biología Funcional y Antropología Física and Estructura de Recerca Interdisciplinar en Biotecnología i Biomedicina (ERI BIOTECMED), Universidad de Valencia; Burjassot Spain
| | - Carlos Acosta-Umanzor
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM), Centro de Investigación Príncipe Felipe; Valencia Spain
| | - Marifé Cano-Jaimez
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM), Centro de Investigación Príncipe Felipe; Valencia Spain
| | - Francisco Pérez-Sánchez
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Spain
- Departamento de Biología Celular; Biología Funcional y Antropología Física and Estructura de Recerca Interdisciplinar en Biotecnología i Biomedicina (ERI BIOTECMED), Universidad de Valencia; Burjassot Spain
| | - Mariano Barbacid
- Centro Nacional de Investigaciones Oncológicas (CNIO); Madrid Spain
| | - Sagrario Ortega
- Centro Nacional de Investigaciones Oncológicas (CNIO); Madrid Spain
| | - Deborah J. Burks
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM), Centro de Investigación Príncipe Felipe; Valencia Spain
| | - Isabel Fariñas
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Spain
- Departamento de Biología Celular; Biología Funcional y Antropología Física and Estructura de Recerca Interdisciplinar en Biotecnología i Biomedicina (ERI BIOTECMED), Universidad de Valencia; Burjassot Spain
| |
Collapse
|
126
|
Vincent PH, Benedikz E, Uhlén P, Hovatta O, Sundström E. Expression of Pluripotency Markers in Nonpluripotent Human Neural Stem and Progenitor Cells. Stem Cells Dev 2017; 26:876-887. [DOI: 10.1089/scd.2016.0346] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Per Henrik Vincent
- Division of Neurodegeneration, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Eirikur Benedikz
- Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Per Uhlén
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Outi Hovatta
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Erik Sundström
- Division of Neurodegeneration, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Stockholms Sjukhem, Stockholm, Sweden
| |
Collapse
|
127
|
Paul A, Chaker Z, Doetsch F. Hypothalamic regulation of regionally distinct adult neural stem cells and neurogenesis. Science 2017; 356:1383-1386. [PMID: 28619719 DOI: 10.1126/science.aal3839] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 06/01/2017] [Indexed: 12/17/2022]
Abstract
Neural stem cells (NSCs) in specialized niches in the adult mammalian brain generate neurons throughout life. NSCs in the adult mouse ventricular-subventricular zone (V-SVZ) exhibit a regional identity and, depending on their location, generate distinct olfactory bulb interneuron subtypes. Here, we show that the hypothalamus, a brain area regulating physiological states, provides long-range regionalized input to the V-SVZ niche and can regulate specific NSC subpopulations. Hypothalamic proopiomelanocortin neurons selectively innervate the anterior ventral V-SVZ and promote the proliferation of Nkx2.1+ NSCs and the generation of deep granule neurons. Accordingly, hunger and satiety regulate adult neurogenesis by modulating the activity of this hypothalamic-V-SVZ connection. Our findings reveal that neural circuitry, via mosaic innervation of the V-SVZ, can recruit distinct NSC pools, allowing on-demand neurogenesis in response to physiology and environmental signals.
Collapse
Affiliation(s)
- Alex Paul
- Department of Genetics and Development, Columbia University, New York, NY 10032, USA.,Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Zayna Chaker
- Biozentrum, University of Basel, CH 4056 Basel, Switzerland
| | - Fiona Doetsch
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA. .,Biozentrum, University of Basel, CH 4056 Basel, Switzerland
| |
Collapse
|
128
|
Campos AC, Fogaça MV, Scarante FF, Joca SRL, Sales AJ, Gomes FV, Sonego AB, Rodrigues NS, Galve-Roperh I, Guimarães FS. Plastic and Neuroprotective Mechanisms Involved in the Therapeutic Effects of Cannabidiol in Psychiatric Disorders. Front Pharmacol 2017; 8:269. [PMID: 28588483 PMCID: PMC5441138 DOI: 10.3389/fphar.2017.00269] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 05/01/2017] [Indexed: 12/25/2022] Open
Abstract
Beneficial effects of cannabidiol (CBD) have been described for a wide range of psychiatric disorders, including anxiety, psychosis, and depression. The mechanisms responsible for these effects, however, are still poorly understood. Similar to clinical antidepressant or atypical antipsychotic drugs, recent findings clearly indicate that CBD, either acutely or repeatedly administered, induces plastic changes. For example, CBD attenuates the decrease in hippocampal neurogenesis and dendrite spines density induced by chronic stress and prevents microglia activation and the decrease in the number of parvalbumin-positive GABA neurons in a pharmacological model of schizophrenia. More recently, it was found that CBD modulates cell fate regulatory pathways such as autophagy and others critical pathways for neuronal survival in neurodegenerative experimental models, suggesting the potential benefit of CBD treatment for psychiatric/cognitive symptoms associated with neurodegeneration. These changes and their possible association with CBD beneficial effects in psychiatric disorders are reviewed here.
Collapse
Affiliation(s)
- Alline C Campos
- Department of Pharmacology, Centre for Interdisciplinary Research on Applied Neurosciences (NAPNA), School of Medicine of Ribeirão Preto, University of São PauloRibeirão Preto, Brazil
| | - Manoela V Fogaça
- Department of Pharmacology, Centre for Interdisciplinary Research on Applied Neurosciences (NAPNA), School of Medicine of Ribeirão Preto, University of São PauloRibeirão Preto, Brazil
| | - Franciele F Scarante
- Department of Pharmacology, Centre for Interdisciplinary Research on Applied Neurosciences (NAPNA), School of Medicine of Ribeirão Preto, University of São PauloRibeirão Preto, Brazil
| | - Sâmia R L Joca
- Department of Physical and Chemical, School of Pharmaceutical Science of Ribeirão Preto, University of São PauloRibeirão Preto, Brazil
| | - Amanda J Sales
- Department of Physical and Chemical, School of Pharmaceutical Science of Ribeirão Preto, University of São PauloRibeirão Preto, Brazil
| | - Felipe V Gomes
- Department of Neuroscience, University of PittsburghPittsburgh, PA, United States
| | - Andreza B Sonego
- Department of Pharmacology, Centre for Interdisciplinary Research on Applied Neurosciences (NAPNA), School of Medicine of Ribeirão Preto, University of São PauloRibeirão Preto, Brazil
| | - Naielly S Rodrigues
- Department of Pharmacology, Centre for Interdisciplinary Research on Applied Neurosciences (NAPNA), School of Medicine of Ribeirão Preto, University of São PauloRibeirão Preto, Brazil
| | - Ismael Galve-Roperh
- Department of Biochemistry and Molecular Biology I, School of Biology, Complutense UniversityMadrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Universitario de Investigación en Neuroquímica and Instituto Ramón y Cajal de Investigación SanitariaMadrid, Spain
| | - Francisco S Guimarães
- Department of Pharmacology, Centre for Interdisciplinary Research on Applied Neurosciences (NAPNA), School of Medicine of Ribeirão Preto, University of São PauloRibeirão Preto, Brazil
| |
Collapse
|
129
|
Ottoboni L, Merlini A, Martino G. Neural Stem Cell Plasticity: Advantages in Therapy for the Injured Central Nervous System. Front Cell Dev Biol 2017; 5:52. [PMID: 28553634 PMCID: PMC5427132 DOI: 10.3389/fcell.2017.00052] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/25/2017] [Indexed: 12/14/2022] Open
Abstract
The physiological and pathological properties of the neural germinal stem cell niche have been well-studied in the past 30 years, mainly in animals and within given limits in humans, and knowledge is available for the cyto-architectonic structure, the cellular components, the timing of development and the energetic maintenance of the niche, as well as for the therapeutic potential and the cross talk between neural and immune cells. In recent years we have gained detailed understanding of the potentiality of neural stem cells (NSCs), although we are only beginning to understand their molecular, metabolic, and epigenetic profile in physiopathology and, further, more can be invested to measure quantitatively the activity of those cells, to model in vitro their therapeutic responses or to predict interactions in silico. Information in this direction has been put forward for other organs but is still limited in the complex and very less accessible context of the brain. A comprehensive understanding of the behavior of endogenous NSCs will help to tune or model them toward a desired response in order to treat complex neurodegenerative diseases. NSCs have the ability to modulate multiple cellular functions and exploiting their plasticity might make them into potent and versatile cellular drugs.
Collapse
Affiliation(s)
- Linda Ottoboni
- Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific InstituteMilan, Italy
| | - Arianna Merlini
- Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific InstituteMilan, Italy
| | - Gianvito Martino
- Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific InstituteMilan, Italy
| |
Collapse
|
130
|
Choubey L, Collette JC, Smith KM. Quantitative assessment of fibroblast growth factor receptor 1 expression in neurons and glia. PeerJ 2017; 5:e3173. [PMID: 28439461 PMCID: PMC5398288 DOI: 10.7717/peerj.3173] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 03/13/2017] [Indexed: 01/23/2023] Open
Abstract
Background Fibroblast growth factors (FGFs) and their receptors (FGFRs) have numerous functions in the developing and adult central nervous system (CNS). For example, the FGFR1 receptor is important for proliferation and fate specification of radial glial cells in the cortex and hippocampus, oligodendrocyte proliferation and regeneration, midline glia morphology and soma translocation, Bergmann glia morphology, and cerebellar morphogenesis. In addition, FGFR1 signaling in astrocytes is required for postnatal maturation of interneurons expressing parvalbumin (PV). FGFR1 is implicated in synapse formation in the hippocampus, and alterations in the expression of Fgfr1 and its ligand, Fgf2 accompany major depression. Understanding which cell types express Fgfr1 during development may elucidate its roles in normal development of the brain as well as illuminate possible causes of certain neuropsychiatric disorders. Methods Here, we used a BAC transgenic reporter line to trace Fgfr1 expression in the developing postnatal murine CNS. The specific transgenic line employed was created by the GENSAT project, tgFGFR1-EGFPGP338Gsat, and includes a gene encoding enhanced green fluorescent protein (EGFP) under the regulation of the Fgfr1 promoter, to trace Fgfr1 expression in the developing CNS. Unbiased stereological counts were performed for several cell types in the cortex and hippocampus. Results This model reveals that Fgfr1 is primarily expressed in glial cells, in both astrocytes and oligodendrocytes, along with some neurons. Dual labeling experiments indicate that the proportion of GFP+ (Fgfr1+) cells that are also GFAP+ increases from postnatal day 7 (P7) to 1 month, illuminating dynamic changes in Fgfr1 expression during postnatal development of the cortex. In postnatal neurogenic areas, GFP expression was also observed in SOX2, doublecortin (DCX), and brain lipid-binding protein (BLBP) expressing cells. Fgfr1 is also highly expressed in DCX positive cells of the dentate gyrus (DG), but not in the rostral migratory stream. Fgfr1 driven GFP was also observed in tanycytes and GFAP+ cells of the hypothalamus, as well as in Bergmann glia and astrocytes of the cerebellum. Conclusions The tgFGFR1-EGFPGP338Gsat mouse model expresses GFP that is congruent with known functions of FGFR1, including hippocampal development, glial cell development, and stem cell proliferation. Understanding which cell types express Fgfr1 may elucidate its role in neuropsychiatric disorders and brain development.
Collapse
Affiliation(s)
- Lisha Choubey
- Department of Biology, University of Louisiana at Lafayette, United States of America
| | - Jantzen C Collette
- Department of Biology, University of Louisiana at Lafayette, United States of America
| | - Karen Müller Smith
- Department of Biology, University of Louisiana at Lafayette, United States of America
| |
Collapse
|
131
|
Kaneko N, Sawada M, Sawamoto K. Mechanisms of neuronal migration in the adult brain. J Neurochem 2017; 141:835-847. [DOI: 10.1111/jnc.14002] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/06/2017] [Accepted: 02/21/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Naoko Kaneko
- Department of Developmental and Regenerative Biology; Nagoya City University Graduate School of Medial Sciences; Nagoya Aichi Japan
| | - Masato Sawada
- Department of Developmental and Regenerative Biology; Nagoya City University Graduate School of Medial Sciences; Nagoya Aichi Japan
| | - Kazunobu Sawamoto
- Department of Developmental and Regenerative Biology; Nagoya City University Graduate School of Medial Sciences; Nagoya Aichi Japan
- Division of Neural Development and Regeneration; National Institute for Physiological Sciences; Okazaki Aichi Japan
| |
Collapse
|
132
|
The therapeutic contribution of nanomedicine to treat neurodegenerative diseases via neural stem cell differentiation. Biomaterials 2017; 123:77-91. [PMID: 28161683 DOI: 10.1016/j.biomaterials.2017.01.032] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/22/2016] [Accepted: 01/27/2017] [Indexed: 12/13/2022]
Abstract
The discovery of adult neurogenesis drastically changed the therapeutic approaches of central nervous system regenerative medicine. The stimulation of this physiologic process can increase memory and motor performances in patients affected by neurodegenerative diseases. Neural stem cells contribute to the neurogenesis process through their differentiation into specialized neuronal cells. In this review, we describe the most important methods developed to restore neurological functions via neural stem cell differentiation. In particular, we focused on the role of nanomedicine. The application of nanostructured scaffolds, nanoparticulate drug delivery systems, and nanotechnology-based real-time imaging has significantly improved the safety and the efficacy of neural stem cell-based treatments. This review provides a comprehensive background on the contribution of nanomedicine to the modulation of neurogenesis via neural stem cell differentiation.
Collapse
|
133
|
The vasculature as a neural stem cell niche. Neurobiol Dis 2017; 107:4-14. [PMID: 28132930 DOI: 10.1016/j.nbd.2017.01.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 01/06/2017] [Accepted: 01/25/2017] [Indexed: 12/31/2022] Open
Abstract
Neural stem cells (NSCs) are multipotent, self-renewing progenitors that generate progeny that differentiate into neurons and glia. NSCs in the adult mammalian brain are generally quiescent. Environmental stimuli such as learning or exercise can activate quiescent NSCs, inducing them to proliferate and produce new neurons and glia. How are these behaviours coordinated? The neurovasculature, the circulatory system of the brain, is a key component of the NSC microenvironment, or 'niche'. Instructive signals from the neurovasculature direct NSC quiescence, proliferation, self-renewal and differentiation. During ageing, a breakdown in the niche accompanies NSC dysfunction and cognitive decline. There is much interest in reversing these changes and enhancing NSC activity by targeting the neurovasculature therapeutically. Here we discuss principles of neurovasculature-NSC crosstalk, and the implications for the design of NSC-based therapies. We also consider the emerging contributions to this field of the model organism Drosophila melanogaster.
Collapse
|