101
|
Ma J, Nossa CW, Alvarez PJJ. Groundwater ecosystem resilience to organic contaminations: microbial and geochemical dynamics throughout the 5-year life cycle of a surrogate ethanol blend fuel plume. WATER RESEARCH 2015; 80:119-129. [PMID: 25996759 DOI: 10.1016/j.watres.2015.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/31/2015] [Accepted: 05/04/2015] [Indexed: 06/04/2023]
Abstract
The capacity of groundwater ecosystem to recover from contamination by organic chemicals is a vital concern for environmental scientists. A pilot-scale aquifer system was used to investigate the long-term dynamics of contaminants, groundwater geochemistry, and microbial community structure (by 16S rRNA gene pyrosequencing and quantitative real-time PCR) throughout the 5-year life cycle of a surrogate ethanol blend fuel plume (10% ethanol + 50 mg/L benzene + 50 mg/L toluene). Two-year continuous ethanol-blended release significantly changed the groundwater geochemistry (resulted in anaerobic, low pH, and organotrophic conditions) and increased bacterial and archaeal populations by 82- and 314-fold respectively. Various anaerobic heterotrophs (fermenters, acetogens, methanogens, and hydrocarbon degraders) were enriched. Two years after the release was shut off, all contaminants and their degradation byproducts disappeared and groundwater geochemistry completely restored to the pre-release states (aerobic, neutral pH, and oligotrophic). Bacterial and archaeal populations declined by 18- and 45-fold respectively (relative to the time of shut off). Microbial community structure reverted towards the pre-release states and alpha diversity indices rebounded, suggesting the resilience of microbial community to ethanol blend releases. We also found shifts from O2-sensitive methanogens (e.g., Methanobacterium) to methanogens that are not so sensitive to O2 (e.g., Methanosarcina and Methanocella), which is likely to contribute to the persistence of methanogens and methane generation following the source removal. Overall, the rapid disappearance of contaminants and their metabolites, rebound of geochemical footprints, and resilience of microbial community unequivocally document the natural capacity of groundwater ecosystem to attenuate and recover from a large volume of catastrophic spill of ethanol-based biofuel.
Collapse
Affiliation(s)
- Jie Ma
- State Key Laboratory of Heavy Oil Processing, Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum-Beijing, Beijing 102249, China; Department of Civil and Environmental Engineering, Rice University, Houston, TX 77005, USA.
| | | | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, TX 77005, USA
| |
Collapse
|
102
|
Shetty AR, de Gannes V, Obi CC, Lucas S, Lapidus A, Cheng JF, Goodwin LA, Pitluck S, Peters L, Mikhailova N, Teshima H, Han C, Tapia R, Land M, Hauser LJ, Kyrpides N, Ivanova N, Pagani I, Chain PSG, Denef VJ, Woyke T, Hickey WJ. Complete genome sequence of the phenanthrene-degrading soil bacterium Delftia acidovorans Cs1-4. Stand Genomic Sci 2015; 10:55. [PMID: 26380642 PMCID: PMC4572682 DOI: 10.1186/s40793-015-0041-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 07/15/2015] [Indexed: 11/23/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAH) are ubiquitous environmental pollutants and microbial biodegradation is an important means of remediation of PAH-contaminated soil. Delftia acidovorans Cs1-4 (formerly Delftia sp. Cs1-4) was isolated by using phenanthrene as the sole carbon source from PAH contaminated soil in Wisconsin. Its full genome sequence was determined to gain insights into a mechanisms underlying biodegradation of PAH. Three genomic libraries were constructed and sequenced: an Illumina GAii shotgun library (916,416,493 reads), a 454 Titanium standard library (770,171 reads) and one paired-end 454 library (average insert size of 8 kb, 508,092 reads). The initial assembly contained 40 contigs in two scaffolds. The 454 Titanium standard data and the 454 paired end data were assembled together and the consensus sequences were computationally shredded into 2 kb overlapping shreds. Illumina sequencing data was assembled, and the consensus sequence was computationally shredded into 1.5 kb overlapping shreds. Gaps between contigs were closed by editing in Consed, by PCR and by Bubble PCR primer walks. A total of 182 additional reactions were needed to close gaps and to raise the quality of the finished sequence. The final assembly is based on 253.3 Mb of 454 draft data (averaging 38.4 X coverage) and 590.2 Mb of Illumina draft data (averaging 89.4 X coverage). The genome of strain Cs1-4 consists of a single circular chromosome of 6,685,842 bp (66.7 %G+C) containing 6,028 predicted genes; 5,931 of these genes were protein-encoding and 4,425 gene products were assigned to a putative function. Genes encoding phenanthrene degradation were localized to a 232 kb genomic island (termed the phn island), which contained near its 3' end a bacteriophage P4-like integrase, an enzyme often associated with chromosomal integration of mobile genetic elements. Other biodegradation pathways reconstructed from the genome sequence included: benzoate (by the acetyl-CoA pathway), styrene, nicotinic acid (by the maleamate pathway) and the pesticides Dicamba and Fenitrothion. Determination of the complete genome sequence of D. acidovorans Cs1-4 has provided new insights the microbial mechanisms of PAH biodegradation that may shape the process in the environment.
Collapse
Affiliation(s)
- Ameesha R. Shetty
- />O.N. Allen Laboratory for Soil Microbiology, Department of Soil Science, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Vidya de Gannes
- />Department of Food Production, University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Chioma C. Obi
- />Department of Microbiology, University of Lagos, Lagos, Nigeria
| | - Susan Lucas
- />DOE Joint Genome Institute, Walnut Creek, CA USA
| | - Alla Lapidus
- />Algorithmic Biology Lab, St. Petersburg Academic University, St.Petersburg, Russia
| | | | - Lynne A. Goodwin
- />Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM USA
| | | | - Linda Peters
- />DOE Joint Genome Institute, Walnut Creek, CA USA
| | | | - Hazuki Teshima
- />Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM USA
| | - Cliff Han
- />Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM USA
| | - Roxanne Tapia
- />Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM USA
| | - Miriam Land
- />Oak Ridge National Laboratory, Oak Ridge, TN USA
| | | | | | | | | | | | - Vincent J Denef
- />Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI USA
| | - Tanya Woyke
- />DOE Joint Genome Institute, Walnut Creek, CA USA
| | - William J. Hickey
- />O.N. Allen Laboratory for Soil Microbiology, Department of Soil Science, University of Wisconsin-Madison, Madison, WI 53706 USA
| |
Collapse
|
103
|
Xia X, Xia N, Lai Y, Dong J, Zhao P, Zhu B, Li Z, Ye W, Yuan Y, Huang J. Response of PAH-degrading genes to PAH bioavailability in the overlying water, suspended sediment, and deposited sediment of the Yangtze River. CHEMOSPHERE 2015; 128:236-244. [PMID: 25723716 DOI: 10.1016/j.chemosphere.2015.02.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/02/2015] [Accepted: 02/03/2015] [Indexed: 06/04/2023]
Abstract
The degrading genes of hydrophobic organic compounds (HOCs) serve as indicators of in situ HOC degradation potential, and the existing forms and bioavailability of HOCs might influence the distribution of HOC-degrading genes in natural waters. However, little research has been conducted to study the relationship between them. In the present study, nahAc and nidA genes, which act as biomarkers for naphthalene- and pyrene-degrading bacteria, were selected as model genotypes to investigate the response of polycyclic aromatic hydrocarbon (PAH)-degrading genes to PAH bioavailability in the overlying water, suspended sediment (SPS), and deposited sediment of the Yangtze River. The freely dissolved concentration, typically used to reflect HOC bioavailability, and total dissolved, as well as sorbed concentrations of PAHs were determined. Phylogenetic analysis showed that all the PAH-ring hydroxylating dioxygenase gene sequences of Gram-negative bacteria (PAH-RHD[GN]) were closely related to nahAc, nagAc, nidA, and uncultured PAH-RHD genes. The PAH-RHD[GN] gene diversity as well as nahAc and nidA gene copy numbers decreased in the following order: deposited sediment>SPS>overlying water. The nahAc and nidA gene abundance was not significantly correlated with environmental parameters but was significantly correlated with the bioavailable existing forms of naphthalene and pyrene in the three phases. The nahAc gene copy numbers in the overlying water and deposited sediment were positively correlated with freely dissolved naphthalene concentrations in the overlying and pore water phases, respectively, and so were nidA gene copy numbers. This study suggests that the distribution and abundance of HOC-degrading bacterial population depend on the HOC bioavailability in aquatic environments.
Collapse
Affiliation(s)
- Xinghui Xia
- School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation, Beijing 100875, China.
| | - Na Xia
- School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation, Beijing 100875, China
| | - Yunjia Lai
- Agricultural and Environmental Chemistry Graduate Group, University of California, Davis, One Shields Avenue, Davis 95616, CA, United States
| | - Jianwei Dong
- School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation, Beijing 100875, China
| | - Pujun Zhao
- School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation, Beijing 100875, China
| | - Baotong Zhu
- School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation, Beijing 100875, China
| | - Zhihuang Li
- School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation, Beijing 100875, China
| | - Wan Ye
- School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation, Beijing 100875, China
| | - Yue Yuan
- School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation, Beijing 100875, China
| | - Junxiong Huang
- School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation, Beijing 100875, China
| |
Collapse
|
104
|
Bacterial PAH degradation in marine and terrestrial habitats. Curr Opin Biotechnol 2015; 33:95-102. [DOI: 10.1016/j.copbio.2015.01.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 12/15/2014] [Accepted: 01/14/2015] [Indexed: 11/22/2022]
|
105
|
Maeda AH, Kunihiro M, Ozeki Y, Nogi Y, Kanaly RA. Sphingobium barthaii sp. nov., a high molecular weight polycyclic aromatic hydrocarbon-degrading bacterium isolated from cattle pasture soil. Int J Syst Evol Microbiol 2015; 65:2919-2924. [PMID: 26012583 DOI: 10.1099/ijs.0.000356] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, yellow, rod-shaped bacterium, designated strain KK22(T), was isolated from a microbial consortium that grew on diesel fuel originally recovered from cattle pasture soil. Strain KK22(T) has been studied for its ability to biotransform high molecular weight polycyclic aromatic hydrocarbons. On the basis of 16S rRNA gene sequence phylogeny, strain KK22(T) was affiliated with the genus Sphingobium in the phylum Proteobacteria and was most closely related to Sphingobium fuliginis TKP(T) (99.8%) and less closely related to Sphingobium quisquiliarum P25(T) (97.5%). Results of DNA-DNA hybridization (DDH) revealed relatedness values between strain KK22(T) and strain TKP(T) and between strain KK22(T) and strain P25(T) of 21 ± 4% (reciprocal hybridization, 27 ± 2%) and 15 ± 2% (reciprocal hybridization, 17 ± 1%), respectively. Chemotaxonomic analyses of strain KK22(T) showed that the major respiratory quinone was ubiquinone Q-10, that the polar lipid profile consisted of phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, phosphatidyl-N-methylethylethanolamine and sphingoglycolipid, and that C18 : 1ω7c and C14 : 0 2-OH were the main fatty acid and hydroxylated fatty acids, respectively. This strain was unable to reduce nitrate and the genomic DNA G+C content was 64.7 mol%. Based upon the results of the DDH analyses, the fact that strain KK22(T) was motile, and its biochemical and physiological characteristics, strain KK22(T) could be separated from recognized species of the genus Sphingobium. We conclude that strain KK22(T) represents a novel species of this genus for which the name Sphingobium barthaii sp. nov. is proposed; the type strain is KK22(T) ( = DSM 29313(T) = JCM 30309(T)).
Collapse
Affiliation(s)
- Allyn H Maeda
- Department of Life and Environmental System Science, Graduate School of Nanobiosciences, Yokohama City University, 22-2 Seto, Kanazawa, Kanagawa, Yokohama 236-0027, Japan
| | - Marie Kunihiro
- Department of Life and Environmental System Science, Graduate School of Nanobiosciences, Yokohama City University, 22-2 Seto, Kanazawa, Kanagawa, Yokohama 236-0027, Japan
| | - Yasuhiro Ozeki
- Department of Life and Environmental System Science, Graduate School of Nanobiosciences, Yokohama City University, 22-2 Seto, Kanazawa, Kanagawa, Yokohama 236-0027, Japan
| | - Yuichi Nogi
- Institute of Biogeosciences (Biogeos), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Robert A Kanaly
- Department of Life and Environmental System Science, Graduate School of Nanobiosciences, Yokohama City University, 22-2 Seto, Kanazawa, Kanagawa, Yokohama 236-0027, Japan
| |
Collapse
|
106
|
Francez-Charlot A, Kaczmarczyk A, Vorholt JA. The branched CcsA/CckA-ChpT-CtrA phosphorelay of Sphingomonas melonis controls motility and biofilm formation. Mol Microbiol 2015; 97:47-63. [PMID: 25825287 DOI: 10.1111/mmi.13011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2015] [Indexed: 11/29/2022]
Abstract
The CckA-ChpT-CtrA phosphorelay is central to the regulation of the cell cycle in Caulobacter crescentus. The three proteins are conserved in Alphaproteobacteria, but little is known about their roles in most members of this class. Here, we characterized the system in Sphingomonas melonis. We found that the transcription factor CtrA is the master regulator of flagella synthesis genes, the hierarchical transcriptional organization of which is herein described. CtrA also regulates genes involved in exopolysaccharide synthesis and cyclic-di-GMP signaling, and is important for biofilm formation. In addition, the ctrA mutant exhibits an aberrant morphology, suggesting a role for CtrA in cell division. An analysis of the regulation of CtrA indicates that the phosphorelay composed of CckA and ChpT is conserved and that the absence of the bifunctional kinase/phosphatase CckA apparently results in overactivation of CtrA through ChpT. Suppressors of this phenotype identified the hybrid histidine kinase CcsA. Phosphorelays initiated by CckA or CcsA were reconstituted in vitro, suggesting that in S. melonis, CtrA phosphorylation is controlled by a branched pathway upstream of ChpT. This study thus suggests that signals can directly converge at the level of ChpT phosphorylation through multiple hybrid kinases to coordinate a number of important physiological processes.
Collapse
Affiliation(s)
| | | | - Julia A Vorholt
- Institute of Microbiology, ETH Zurich, 8093, Zurich, Switzerland
| |
Collapse
|
107
|
Draft Genome Sequence of MCPA-Degrading Sphingomonas sp. Strain ERG5, Isolated from a Groundwater Aquifer in Denmark. GENOME ANNOUNCEMENTS 2015; 3:3/1/e01529-14. [PMID: 25676756 PMCID: PMC4333656 DOI: 10.1128/genomea.01529-14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sphingomonas sp. strain ERG5 was isolated from a bacterial community, originating from a groundwater aquifer polluted with low pesticide concentrations. This bacterium degrades 2-methyl-4-chlorophenoxyacetic acid (MCPA) in a wide spectrum of concentrations and has been shown to function in bioaugmented sand filters. Genes associated with MCPA degradation are situated on a putative conjugative plasmid.
Collapse
|
108
|
Gan HM, Gan HY, Ahmad NH, Aziz NA, Hudson AO, Savka MA. Whole genome sequencing and analysis reveal insights into the genetic structure, diversity and evolutionary relatedness of luxI and luxR homologs in bacteria belonging to the Sphingomonadaceae family. Front Cell Infect Microbiol 2015; 4:188. [PMID: 25621282 PMCID: PMC4288048 DOI: 10.3389/fcimb.2014.00188] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 12/16/2014] [Indexed: 12/18/2022] Open
Abstract
Here we report the draft genomes and annotation of four N-acyl homoserine lactone (AHL)-producing members from the family Sphingomonadaceae. Comparative genomic analyses of 62 Sphingomonadaceae genomes were performed to gain insights into the distribution of the canonical luxI/R-type quorum sensing (QS) network within this family. Forty genomes contained at least one luxR homolog while the genome of Sphingobium yanoikuyae B1 contained seven Open Reading Frames (ORFs) that have significant homology to that of luxR. Thirty-three genomes contained at least one luxI homolog while the genomes of Sphingobium sp. SYK6, Sphingobium japonicum, and Sphingobium lactosutens contained four luxI. Using phylogenetic analysis, the sphingomonad LuxR homologs formed five distinct clades with two minor clades located near the plant associated bacteria (PAB) LuxR solo clade. This work for the first time shows that 13 Sphingobium and one Sphingomonas genome(s) contain three convergently oriented genes composed of two tandem luxR genes proximal to one luxI (luxR-luxR-luxI). Interestingly, luxI solos were identified in two Sphingobium species and may represent species that contribute to AHL-based QS system by contributing AHL molecules but are unable to perceive AHLs as signals. This work provides the most comprehensive description of the luxI/R circuitry and genome-based taxonomical description of the available sphingomonad genomes to date indicating that the presence of luxR solos and luxI solos are not an uncommon feature in members of the Sphingomonadaceae family.
Collapse
Affiliation(s)
- Han Ming Gan
- School of Science, Monash University Malaysia Petaling Jaya, Malaysia ; Genomics Facility, Monash University Malaysia Petaling Jaya, Malaysia
| | - Huan You Gan
- School of Science, Monash University Malaysia Petaling Jaya, Malaysia ; Genomics Facility, Monash University Malaysia Petaling Jaya, Malaysia
| | - Nurul H Ahmad
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology Rochester NY, USA
| | - Nazrin A Aziz
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology Rochester NY, USA
| | - André O Hudson
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology Rochester NY, USA
| | - Michael A Savka
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology Rochester NY, USA
| |
Collapse
|
109
|
Campos CR, Mesquita VA, Silva CF, Schwan RF. Efficiency of physicochemical and biological treatments of vinasse and their influence on indigenous microbiota for disposal into the environment. WASTE MANAGEMENT (NEW YORK, N.Y.) 2014; 34:2036-2046. [PMID: 25022548 DOI: 10.1016/j.wasman.2014.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 06/09/2014] [Accepted: 06/10/2014] [Indexed: 06/03/2023]
Abstract
Molasses-based distilleries are one of the most polluting industries generating large volumes of high strength wastewater called vinasse. Different processes covering anaerobic, aerobic as well as physicochemical methods have been employed to treat this effluent. This study evaluated the microbial communities present in the vinasse during different stages of its treatment by traditional and molecular methods. The analysis of the efficiency of each treatment was performed by physicochemical parameters and toxicity analysis. The treatment of vinasse was performed in the following steps: high flow fermentation; filtration; chemical flakes; low-flow fermentation; filtration; and neutralization. The physicochemical analysis in different stages of the vinasse treatment demonstrated that phases of treatment influenced the performance of the evaluated parameters. Among the 37 parameters, 9 were within the limits established by the Commission for Environmental Policy of Minas Gerais, Brazil (COPAM), especially BOD (96.7% of pollution reduction), suspended solids (99.9%), pH, copper (88%), iron (92.9%), and manganese (88%). Some parameters, even after treatment, did not fit the maximum allowed by legislation. The microbial population decreased reaching 3 log CFU/ml present in the steps of the flakes chemical and disinfection treatment of vinasse. Lactobacillus brevis and Pichia kudriavzevii were present in all stages of the treatments, showing that these microorganisms were resistant and demonstrated that they might be important in the treatment of vinasse. The vinasse showed a significant reduction of pollution load after the disinfection treatment however still should not be discarded into water bodies because the high values of tannins and sediment solids, but suggest the use of the effluent in the cooling coil during the distillation process of the beverage.
Collapse
|
110
|
Sphingomonas aeria sp. nov. from indoor air of a pharmaceutical environment. Antonie van Leeuwenhoek 2014; 107:47-53. [DOI: 10.1007/s10482-014-0302-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 10/07/2014] [Indexed: 10/24/2022]
|
111
|
Le Digabel Y, Demanèche S, Benoit Y, Fayolle-Guichard F, Vogel TM. Ethyl tert-butyl ether (ETBE)-degrading microbial communities in enrichments from polluted environments. JOURNAL OF HAZARDOUS MATERIALS 2014; 279:502-510. [PMID: 25108826 DOI: 10.1016/j.jhazmat.2014.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 06/06/2014] [Accepted: 07/03/2014] [Indexed: 06/03/2023]
Abstract
The ethyl tert-butyl ether (ETBE) degradation capacity and phylogenetic composition of five aerobic enrichment cultures with ETBE as the sole carbon and energy source were studied. In all cases, ETBE was entirely degraded to biomass and CO2. Clone libraries of the 16S rRNA gene were prepared from each enrichment. The analyses of the DNA sequences obtained showed different taxonomic compositions with a majority of Proteobacteria in three cases. The two other enrichments have different microbiota with an abundance of Acidobacteria in one case, whereas the microbiota in the second was more diverse (majority of Actinobacteria, Chlorobi and Gemmatimonadetes). Actinobacteria were detected in all five enrichments. Several bacterial strains were isolated from the enrichments and five were capable of degrading ETBE and/or tert-butyl alcohol (TBA), a degradation intermediate. The five included three Rhodococcus sp. (IFP 2040, IFP 2041, IFP 2043), one Betaproteobacteria (IFP 2047) belonging to the Rubrivivax/Leptothrix/Ideonella branch, and one Pseudonocardia sp. (IFP 2050). Quantification of these five strains and two other strains, Rhodococcus sp. IFP 2042 and Bradyrhizobium sp. IFP2049, which had been previously isolated from one of the enrichments was carried out on the different enrichments based on quantitative PCR with specific 16S rRNA gene primers and the results were consistent with the hypothesized role of Actinobacteria and Betaproteobacteria in the degradation of ETBE and the possible role of Bradyrhizobium strains in the degradation of TBA.
Collapse
Affiliation(s)
- Yoann Le Digabel
- Environmental Microbial Genomics, CNRS UMR 5005, Laboratoire Ampère, École Centrale de Lyon, Université de Lyon, 36 avenue Guy de Collongue, 69134 Ecully, France; Institut Français du Pétrole Energies Nouvelles (IFPEN), Biotechnology Departement, 1-4 avenue de Bois-Préau, 92852 Rueil-Malmaison, France
| | - Sandrine Demanèche
- Environmental Microbial Genomics, CNRS UMR 5005, Laboratoire Ampère, École Centrale de Lyon, Université de Lyon, 36 avenue Guy de Collongue, 69134 Ecully, France
| | - Yves Benoit
- Institut Français du Pétrole Energies Nouvelles (IFPEN), Biotechnology Departement, 1-4 avenue de Bois-Préau, 92852 Rueil-Malmaison, France
| | - Françoise Fayolle-Guichard
- Institut Français du Pétrole Energies Nouvelles (IFPEN), Biotechnology Departement, 1-4 avenue de Bois-Préau, 92852 Rueil-Malmaison, France.
| | - Timothy M Vogel
- Environmental Microbial Genomics, CNRS UMR 5005, Laboratoire Ampère, École Centrale de Lyon, Université de Lyon, 36 avenue Guy de Collongue, 69134 Ecully, France
| |
Collapse
|
112
|
Biodegradation ability and catabolic genes of petroleum-degrading Sphingomonas koreensis strain ASU-06 isolated from Egyptian oily soil. BIOMED RESEARCH INTERNATIONAL 2014; 2014:127674. [PMID: 25177681 PMCID: PMC4142378 DOI: 10.1155/2014/127674] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 07/07/2014] [Accepted: 07/14/2014] [Indexed: 11/23/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are serious pollutants and health hazards. In this study, 15 PAHs-degrading bacteria were isolated from Egyptian oily soil. Among them, one Gram-negative strain (ASU-06) was selected and biodegradation ability and initial catabolic genes of petroleum compounds were investigated. Comparison of 16S rRNA gene sequence of strain ASU-06 to published sequences in GenBank database as well as phylogenetic analysis identified ASU-06 as Sphingomonas koreensis. Strain ASU-06 degraded 100, 99, 98, and 92.7% of 100 mg/L naphthalene, phenanthrene, anthracene, and pyrene within 15 days, respectively. When these PAHs present in a mixed form, the enhancement phenomenon appeared, particularly in the degradation of pyrene, whereas the degradation rate was 98.6% within the period. This is the first report showing the degradation of different PAHs by this species. PCR experiments with specific primers for catabolic genes alkB, alkB1, nahAc, C12O, and C23O suggested that ASU-06 might possess genes for aliphatic and PAHs degradation, while PAH-RHDαGP gene was not detected. Production of biosurfactants and increasing cell-surface hydrophobicity were investigated. GC/MS analysis of intermediate metabolites of studied PAHs concluded that this strain utilized these compounds via two main pathways, and phthalate was the major constant product that appeared in each day of the degradation period.
Collapse
|
113
|
Mukherjee S, Juottonen H, Siivonen P, Lloret Quesada C, Tuomi P, Pulkkinen P, Yrjälä K. Spatial patterns of microbial diversity and activity in an aged creosote-contaminated site. ISME JOURNAL 2014; 8:2131-42. [PMID: 25105905 DOI: 10.1038/ismej.2014.151] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 05/16/2014] [Accepted: 05/21/2014] [Indexed: 11/09/2022]
Abstract
Restoration of polluted sites via in situ bioremediation relies heavily on the indigenous microbes and their activities. Spatial heterogeneity of microbial populations, contaminants and soil chemical parameters on such sites is a major hurdle in optimizing and implementing an appropriate bioremediation regime. We performed a grid-based sampling of an aged creosote-contaminated site followed by geostatistical modelling to illustrate the spatial patterns of microbial diversity and activity and to relate these patterns to the distribution of pollutants. Spatial distribution of bacterial groups unveiled patterns of niche differentiation regulated by patchy distribution of pollutants and an east-to-west pH gradient at the studied site. Proteobacteria clearly dominated in the hot spots of creosote pollution, whereas the abundance of Actinobacteria, TM7 and Planctomycetes was considerably reduced from the hot spots. The pH preferences of proteobacterial groups dominating in pollution could be recognized by examining the order and family-level responses. Acidobacterial classes came across as generalists in hydrocarbon pollution whose spatial distribution seemed to be regulated solely by the pH gradient. Although the community evenness decreased in the heavily polluted zones, basal respiration and fluorescein diacetate hydrolysis rates were higher, indicating the adaptation of specific indigenous microbial populations to hydrocarbon pollution. Combining the information from the kriged maps of microbial and soil chemistry data provided a comprehensive understanding of the long-term impacts of creosote pollution on the subsurface microbial communities. This study also highlighted the prospect of interpreting taxa-specific spatial patterns and applying them as indicators or proxies for monitoring polluted sites.
Collapse
Affiliation(s)
- Shinjini Mukherjee
- Department of Biosciences, MEM Group, University of Helsinki, Helsinki, Finland
| | - Heli Juottonen
- Department of Biosciences, MEM Group, University of Helsinki, Helsinki, Finland
| | - Pauli Siivonen
- Department of Biosciences, MEM Group, University of Helsinki, Helsinki, Finland
| | | | | | | | - Kim Yrjälä
- Department of Biosciences, MEM Group, University of Helsinki, Helsinki, Finland
| |
Collapse
|
114
|
Maki T, Puspitasari F, Hara K, Yamada M, Kobayashi F, Hasegawa H, Iwasaka Y. Variations in the structure of airborne bacterial communities in a downwind area during an Asian dust (Kosa) event. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 488-489:75-84. [PMID: 24815557 DOI: 10.1016/j.scitotenv.2014.04.044] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/08/2014] [Accepted: 04/12/2014] [Indexed: 05/10/2023]
Abstract
Asian dust (Kosa) events transport airborne microorganisms that significantly impact biological ecosystems, human health, and ice-cloud formation in downwind areas. However, the composition and population dynamics of airborne bacteria have rarely been investigated in downwind areas during Kosa events. In this study, air samplings were sequentially performed at the top of a 10-m high building within the Kosa event arrival area (Kanazawa City, Japan) from May 1 to May 7, 2011, during a Kosa event. The particle concentrations of bacterial cells and mineral particles were ten-fold higher during the Kosa event than on non-Kosa event days. A 16S ribosomal DNA clone library prepared from the air samples primarily contained sequences from three phyla: Cyanobacteria, Firmicutes, and Alphaproteobacteria. The clones from Cyanobacteria were mainly from a marine type of Synechococcus species that was dominant during the first phase of the Kosa event and was continuously detected throughout the Kosa event. The clones from Alphaproteobacteria were mainly detected at the initial and final periods of the Kosa event, and phylogenetic analysis showed that their sequences clustered with those from a marine bacterial clade (the SAR clade) and Sphingomonas spp. During the middle of the Kosa event, the Firmicutes species Bacillus subtilis and Bacillus pumilus were predominant; these species are known to be predominant in the atmosphere above the Chinese desert, which is the source of the dust during Kosa events. The clones obtained after the Kosa event had finished were mainly from Bacillus megaterium, which is thought to originate from local terrestrial areas. Our results suggest that airborne bacterial communities at the ground level in areas affected by Kosa events change their species compositions during a Kosa event toward those containing terrestrial and pelagic bacteria transported from the Sea of Japan and the continental area of China by the Kosa event.
Collapse
Affiliation(s)
- Teruya Maki
- College of Science and Engineering, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan.
| | - Findya Puspitasari
- College of Science and Engineering, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan
| | - Kazutaka Hara
- Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Maromu Yamada
- National Institute of Occupational Safety and Health, 6-21-1, Nagao, Tama-ku, Kawasaki, Tokyo, 214-8585, Japan
| | - Fumihisa Kobayashi
- College of Science and Engineering, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan
| | - Hiroshi Hasegawa
- College of Science and Engineering, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan
| | - Yasunobu Iwasaka
- Community Research Service Group, University of Shiga Prefecture, 2500, Yasakamachi, Hikoneshi, Shiga, 522-8533, Japan
| |
Collapse
|
115
|
Characterization of a Cryptic Plasmid, pSM103mini, from Polyethylene-Glycol DegradingSphingopyxis macrogoltabidaStrain 103. Biosci Biotechnol Biochem 2014; 75:295-8. [DOI: 10.1271/bbb.100650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
116
|
Zhang L, Gao G, Tang X, Shao K. Impacts of different salinities on bacterial biofilm communities in fresh water. Can J Microbiol 2014; 60:319-26. [DOI: 10.1139/cjm-2013-0808] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Natural and anthropogenic salinization continuously impacts inland aquatic ecosystems. Associated bacterial biofilms respond rapidly to environmental conditions and are potential bioindicators for changes in water quality. This study evaluates the effects of different salinity concentrations (0.3‰–10‰) on bacterial biofilms communities grown in fresh water from Lake Bosten. Bacterial communities associated with biofilms were analyzed using terminal restriction fragment length polymorphism and clone library analyses of 16S rRNA genes. Results indicated that the attached bacterial community composition (ABCC) changed over several weeks of biofilm growth, but all followed similar bacterial successional trends in the different salinity groups. Detailed analysis showed the following. (i) ABCC did not differ (P > 0.05) in the low-salinity groups (0.3‰–3.5‰), which may be related to the lower osmotic pressure and the shorter time scale (weeks) of their present habitats. (ii) There were significant differences between the oligosaline (3.5‰) and saline (10‰) groups (P < 0.05). In particular, genus Flavobacterium became dominant in attached bacterial communities in the saline groups. The higher abundance of genus Flavobacterium was possibly due to the biological and metabolic characteristics of the bacteria. (iii) Some bacterial taxa can maintain the higher abundance within attached bacteria in the entire process of biofilms growth, such as the genera Hydrogenophaga and Methyloversatilis in Betaproteobacteria and the family Sphingomonadaceae in Alphaproteobacteria. These data suggested that the bacterial successional trends within biofilms seem almost unaffected by salinity (0.3‰–10‰), but ABCC in saline groups (10‰) are notably changed.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Guang Gao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, People’s Republic of China
| | - Xiangming Tang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, People’s Republic of China
| | - Keqiang Shao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, People’s Republic of China
| |
Collapse
|
117
|
Khara P, Roy M, Chakraborty J, Ghosal D, Dutta TK. Functional characterization of diverse ring-hydroxylating oxygenases and induction of complex aromatic catabolic gene clusters in Sphingobium sp. PNB. FEBS Open Bio 2014; 4:290-300. [PMID: 24918041 PMCID: PMC4048848 DOI: 10.1016/j.fob.2014.03.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 03/03/2014] [Accepted: 03/03/2014] [Indexed: 11/27/2022] Open
Abstract
Sphingobium sp. PNB, like other sphingomonads, has multiple ring-hydroxylating oxygenase (RHO) genes. Three different fosmid clones have been sequenced to identify the putative genes responsible for the degradation of various aromatics in this bacterial strain. Comparison of the map of the catabolic genes with that of different sphingomonads revealed a similar arrangement of gene clusters that harbors seven sets of RHO terminal components and a sole set of electron transport (ET) proteins. The presence of distinctly conserved amino acid residues in ferredoxin and in silico molecular docking analyses of ferredoxin with the well characterized terminal oxygenase components indicated the structural uniqueness of the ET component in sphingomonads. The predicted substrate specificities, derived from the phylogenetic relationship of each of the RHOs, were examined based on transformation of putative substrates and their structural homologs by the recombinant strains expressing each of the oxygenases and the sole set of available ET proteins. The RHO AhdA1bA2b was functionally characterized for the first time and was found to be capable of transforming ethylbenzene, propylbenzene, cumene, p-cymene and biphenyl, in addition to a number of polycyclic aromatic hydrocarbons. Overexpression of aromatic catabolic genes in strain PNB, revealed by real-time PCR analyses, is a way forward to understand the complex regulation of degradative genes in sphingomonads.
Collapse
Affiliation(s)
| | | | | | | | - Tapan K. Dutta
- Department of Microbiology, Bose Institute, P-1/12 C.I.T. Scheme VII M, Kolkata 700054, India
| |
Collapse
|
118
|
Vaz-Moreira I, Nunes OC, Manaia CM. Bacterial diversity and antibiotic resistance in water habitats: searching the links with the human microbiome. FEMS Microbiol Rev 2014; 38:761-78. [PMID: 24484530 DOI: 10.1111/1574-6976.12062] [Citation(s) in RCA: 210] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 12/31/2013] [Accepted: 01/10/2014] [Indexed: 12/14/2022] Open
Abstract
Water is one of the most important bacterial habitats on Earth. As such, water represents also a major way of dissemination of bacteria between different environmental compartments. Human activities led to the creation of the so-called urban water cycle, comprising different sectors (waste, surface, drinking water), among which bacteria can hypothetically be exchanged. Therefore, bacteria can be mobilized between unclean water habitats (e.g. wastewater) and clean or pristine water environments (e.g. disinfected and spring drinking water) and eventually reach humans. In addition, bacteria can also transfer mobile genetic elements between different water types, other environments (e.g. soil) and humans. These processes may involve antibiotic resistant bacteria and antibiotic resistance genes. In this review, the hypothesis that some bacteria may share different water compartments and be also hosted by humans is discussed based on the comparison of the bacterial diversity in different types of water and with the human-associated microbiome. The role of such bacteria as potential disseminators of antibiotic resistance and the inference that currently only a small fraction of the clinically relevant antibiotic resistome may be known is discussed.
Collapse
Affiliation(s)
- Ivone Vaz-Moreira
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Dr. António Bernardino Almeida, Porto, Portugal
| | | | | |
Collapse
|
119
|
Narciso-da-Rocha C, Vaz-Moreira I, Manaia CM. Genotypic diversity and antibiotic resistance in Sphingomonadaceae isolated from hospital tap water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 466-467:127-135. [PMID: 23892027 DOI: 10.1016/j.scitotenv.2013.06.109] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 06/26/2013] [Accepted: 06/26/2013] [Indexed: 06/02/2023]
Abstract
The aim of this study was to infer about the modes and extent of dispersion of Sphingomonadaceae via tap water. Sphingomonadaceae isolated from tap water samples in different places of a hospital were compared, based on intra-species genetic variability and antibiotic resistance phenotypes. These isolates were also compared with others isolated before from houses and dental chairs, served by the same municipal water supply system. Sphingomonadaceae from hospital tap water comprised members of the genera Sphingomonas, Sphingobium, Novosphingobium and Blastomonas. In general, distinct genotypes of Sphingomonadaceae were detected in different hospital areas and in tap water outside the hospital, suggesting these bacteria are not persistent or widespread in the urban water distribution system. Possible intrinsic antibiotic resistance, observed in most or all members of the family or of a genus, was observed for colistin in Sphingomonadaceae, aminoglycosides in the genus Blastomonas and beta-lactams in the genus Sphingobium. Possible acquired resistance phenotypes, not common to all members of a given species, comprised fluoroquinolones, cephalosporins and sulphonamides. Although the potential of Sphingomonadaceae as opportunistic pathogens may be low, the capacity of these bacteria to thrive in water supply systems, combined with the intrinsic or acquired antibiotic resistance, may raise the risk associated with their occurrence in hospital tap water.
Collapse
Affiliation(s)
- Carlos Narciso-da-Rocha
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Dr. António Bernardino Almeida, Porto 4200-072, Portugal
| | | | | |
Collapse
|
120
|
Nielsen TK, Xu Z, Gözdereliler E, Aamand J, Hansen LH, Sørensen SR. Novel insight into the genetic context of the cadAB genes from a 4-chloro-2-methylphenoxyacetic acid-degrading Sphingomonas. PLoS One 2013; 8:e83346. [PMID: 24391756 PMCID: PMC3877037 DOI: 10.1371/journal.pone.0083346] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 11/01/2013] [Indexed: 11/19/2022] Open
Abstract
The 2-methyl-4-chlorophenoxyacetic (MCPA) acid-degrader Sphingomonas sp. ERG5 has recently been isolated from MCPA-degrading bacterial communities. Using Illumina-sequencing, the 5.7 Mb genome of this isolate was sequenced in this study, revealing the 138 kbp plasmid pCADAB1 harboring the 32.5 kbp composite transposon Tn6228 which contains genes encoding proteins for the removal of 2,4-dichlorophenoxyacetic acid (2,4-D) and MCPA, as well as the regulation of this pathway. Transposon Tn6228 was confirmed by PCR to be situated on the plasmid and also exist in a circular intermediate state - typical of IS3 elements. The canonical tfdAα-gene of group III 2,4-D degraders, encoding the first step in degradation of 2,4-D and related compounds, was not present in the chromosomal contigs. However, the alternative cadAB genes, also providing the initial degradation step, were found in Tn6228, along with the 2,4-D-degradation-associated genes tfdBCDEFKR and cadR. Putative reductase and ferredoxin genes cadCD of Rieske non-heme iron oxygenases were also present in close proximity to cadAB, suggesting that these might have an unknown role in the initial degradation reaction. Parts of the composite transposon contain sequence displaying high similarity to previously analyzed 2,4-D degradation genes, suggesting rapid dissemination and high conservation of the chlorinated-phenoxyacetic acid (PAA)-degradation genotype among the sphingomonads.
Collapse
Affiliation(s)
- Tue Kjærgaard Nielsen
- Department of Geochemistry, Geological Survey of Denmark and Greenland, Copenhagen, Denmark
- Section for Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Zhuofei Xu
- Section for Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Erkin Gözdereliler
- Department of Geochemistry, Geological Survey of Denmark and Greenland, Copenhagen, Denmark
| | - Jens Aamand
- Department of Geochemistry, Geological Survey of Denmark and Greenland, Copenhagen, Denmark
| | | | - Sebastian R. Sørensen
- Department of Geochemistry, Geological Survey of Denmark and Greenland, Copenhagen, Denmark
| |
Collapse
|
121
|
Maeda AH, Nishi S, Ozeki Y, Ohta Y, Hatada Y, Kanaly RA. Draft Genome Sequence of Sphingobium sp. Strain KK22, a High-Molecular-Weight Polycyclic Aromatic Hydrocarbon-Degrading Bacterium Isolated from Cattle Pasture Soil. GENOME ANNOUNCEMENTS 2013; 1:e00911-13. [PMID: 24201196 PMCID: PMC3820777 DOI: 10.1128/genomea.00911-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 10/02/2013] [Indexed: 11/20/2022]
Abstract
Sphingobium sp. strain KK22 was isolated from a bacterial consortium that originated from cattle pasture soil from Texas. Strain KK22 grows on phenanthrene and has been shown to biotransform the high-molecular-weight (HMW) polycyclic aromatic hydrocarbon (PAH) benz[a]anthracene. The genome of strain KK22 was sequenced to investigate the genes involved in aromatic pollutant biotransformation.
Collapse
Affiliation(s)
- Allyn H. Maeda
- Department of Life and Environmental System Science, Graduate School of Nanobiosciences, Yokohama City University, Kanazawa-ku, Yokohama, Japan
| | - Shinro Nishi
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Yasuhiro Ozeki
- Department of Life and Environmental System Science, Graduate School of Nanobiosciences, Yokohama City University, Kanazawa-ku, Yokohama, Japan
| | - Yukari Ohta
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Yuji Hatada
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Robert A. Kanaly
- Department of Life and Environmental System Science, Graduate School of Nanobiosciences, Yokohama City University, Kanazawa-ku, Yokohama, Japan
| |
Collapse
|
122
|
Huang Y, Zeng Y, Yu Z, Zhang J, Feng H, Lin X. In silico and experimental methods revealed highly diverse bacteria with quorum sensing and aromatics biodegradation systems--a potential broad application on bioremediation. BIORESOURCE TECHNOLOGY 2013; 148:311-316. [PMID: 24055974 DOI: 10.1016/j.biortech.2013.08.155] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 08/24/2013] [Accepted: 08/27/2013] [Indexed: 06/02/2023]
Abstract
Phylogenetic overlaps between aromatics-degrading bacteria and acyl-homoserine-lactone (AHL) or autoinducer (AI) based quorum-sensing (QS) bacteria were evident in literatures; however, the diversity of bacteria with both activities had never been finely described. In-silico searching in NCBI genome database revealed that more than 11% of investigated population harbored both aromatic ring-hydroxylating-dioxygenase (RHD) gene and AHL/AI-synthetase gene. These bacteria were distributed in 10 orders, 15 families, 42 genus and 78 species. Horizontal transfers of both genes were common among them. Using enrichment and culture dependent method, 6 Sphingomonadales and 4 Rhizobiales with phenanthrene- or pyrene-degrading ability and AHL-production were isolated from marine, wetland and soil samples. Thin-layer-chromatography and gas-chromatography-mass-spectrum revealed that these Sphingomonads produced various AHL molecules. This is the first report of highly diverse bacteria that harbored both aromatics-degrading and QS systems. QS regulation may have broad impacts on aromatics biodegradation, and would be a new angle for developing bioremediation technology.
Collapse
Affiliation(s)
- Yili Huang
- Department of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| | | | | | | | | | | |
Collapse
|
123
|
Stolz A. Degradative plasmids from sphingomonads. FEMS Microbiol Lett 2013; 350:9-19. [DOI: 10.1111/1574-6968.12283] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/05/2013] [Accepted: 09/09/2013] [Indexed: 12/15/2022] Open
Affiliation(s)
- Andreas Stolz
- Institut für Mikrobiologie; Universität Stuttgart; Stuttgart Germany
| |
Collapse
|
124
|
Hartmann EM, Armengaud J. Shotgun proteomics suggests involvement of additional enzymes in dioxin degradation by Sphingomonas wittichii RW1. Environ Microbiol 2013; 16:162-76. [PMID: 24118890 DOI: 10.1111/1462-2920.12264] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/06/2013] [Accepted: 08/24/2013] [Indexed: 12/01/2022]
Abstract
Chlorinated congeners of dibenzo-p-dioxin and dibenzofuran are widely dispersed pollutants that can be treated using microorganisms, such as the Sphingomonas wittichii RW1 bacterium, able to transform some of them into non-toxic substances. The enzymes of the upper pathway for dibenzo-p-dioxin degradation in S. wittichii RW1 have been biochemically and genetically characterized, but its genome sequence indicated the existence of a tremendous potential for aromatic compound transformation, with 56 ring-hydroxylating dioxygenase subunits, 34 extradiol dioxygenases and 40 hydrolases. To further characterize this enzymatic arsenal, new methodological approaches should be employed. Here, a large shotgun proteomic survey was performed on cells grown on dibenzofuran, dibenzo-p-dioxin and 2-chlorodibenzo-p-dioxin, and compared with growth on acetate. Changes in the proteome were monitored over time. In total, 502 proteins were observed and quantified using a label-free mass spectrometry-based approach; all data were deposited to the ProteomeXchange (PXD000403). Our results confirmed the roles of the dioxin dioxygenase DxnA1A2, trihydroxybiphenyl dioxygenase DbfB, meta-cleavage product hydrolase DxnB and reductase RedA2, and corroborated the proposed involvement of the Swit_3046 dioxygenase and DxnB2 hydrolase. Trends across substrates and over the course of growth do not support concerted pathway regulation and suggest the involvement of an additional hydrolase and several TonB-dependent receptors.
Collapse
Affiliation(s)
- Erica M Hartmann
- CEA, DSV, IBEB, Lab Biochim System Perturb, Bagnols-sur-Cèze, F-30207, France
| | | |
Collapse
|
125
|
Wongwongsee W, Chareanpat P, Pinyakong O. Abilities and genes for PAH biodegradation of bacteria isolated from mangrove sediments from the central of Thailand. MARINE POLLUTION BULLETIN 2013; 74:95-104. [PMID: 23928000 DOI: 10.1016/j.marpolbul.2013.07.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 07/11/2013] [Accepted: 07/12/2013] [Indexed: 06/02/2023]
Abstract
PAH-degrading bacteria, including Novosphingobium sp. PCY, Microbacterium sp. BPW, Ralstonia sp. BPH, Alcaligenes sp. SSK1B, and Achromobacter sp. SSK4, were isolated from mangrove sediments. These isolates degraded 50-76% of 100 mg/l phenanthrene within 2 weeks. Strains PCY and BPW also degraded pyrene at 98% and 71%, respectively. Furthermore, all of them probably produced biosurfactants in the presence of hydrocarbons. Interestingly, PCY has a versatility to degrade various PAHs. Molecular techniques and plasmid curing remarkably revealed the presence of the alpha subunit of pyrene dioxygenase gene (nidA), involving in its pyrene/phenanthrene degrading ability, located on megaplasmid of PCY which has never before been reported in sphingomonads. Moreover, genes encoding ferredoxin, reductase, extradiol dioxygenase (bphA3A4C) and exopolysaccharide biosynthetase, which may be involved in PAH degradation and biosurfactant production, were also found in PCY. Therefore, we conclude that these isolates, especially PCY, can be the candidates for use as inoculums in the bioremediation.
Collapse
Affiliation(s)
- Wanwasan Wongwongsee
- Microbiology Program in Science, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand.
| | | | | |
Collapse
|
126
|
Changes in soil microbial community structure with planting years and cultivars of tree peony (Paeonia suffruticosa). World J Microbiol Biotechnol 2013; 30:389-97. [PMID: 23933807 DOI: 10.1007/s11274-013-1457-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Accepted: 08/06/2013] [Indexed: 10/26/2022]
Abstract
To understand the effects of planting tree peony (Paeonia suffruticosa) on soil microbial community structure, soil samples were collected from the tree peony gardens with three peony cultivars and three planting years, and adjacent wasteland at Luoyang, Henan Province of China. Soil microbial communities were analyzed by the polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) of partial 16S rDNA and sequencing methods. With the succeeding development of tree peony garden ecosystems, soil pH, organic C, total P, and available P increased. Soil total N, the cell numbers of bacteria, fungi, and actinomycetes, the Shannon's diversity index (H), richness (S), and Evenness (E(H)) first showed an increasing trend after wasteland was reclaimed and then a decreasing trend became apparent after 5 years of planting. Principal component analysis based on DGGE banding patterns showed that the microbial community structures were influenced by tree peony cultivars and planting years, and the influences of planting years were greater than those of tree peony cultivars. Sequence analysis of the DGGE bands revealed that the dominant bacteria in tree peony garden soils belonged to Proteobacteria, Bacteroidetes, Actinobacteria, Firmicutes, Acidobacteria, Planctomycetes, Euryarchaeota, and Unclassified-bacteria. Moreover, some bacteria closely related to Bradyrhizobium, Sphingopyxis, Novosphingobium, and Sphingomonas, which have been associated with nitrogen fixation and recalcitrant compounds degradation, disappeared with the increasing planting years of tree peony. The bacteria had similarity of 100% compared with Pseudomonas mandelii which was a denitrifying bacteria, and increased gradually with increasing planting years of tree peony.
Collapse
|
127
|
Pehrsson EC, Forsberg KJ, Gibson MK, Ahmadi S, Dantas G. Novel resistance functions uncovered using functional metagenomic investigations of resistance reservoirs. Front Microbiol 2013; 4:145. [PMID: 23760651 PMCID: PMC3675766 DOI: 10.3389/fmicb.2013.00145] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 05/21/2013] [Indexed: 12/04/2022] Open
Abstract
Rates of infection with antibiotic-resistant bacteria have increased precipitously over the past several decades, with far-reaching healthcare and societal costs. Recent evidence has established a link between antibiotic resistance genes in human pathogens and those found in non-pathogenic, commensal, and environmental organisms, prompting deeper investigation of natural and human-associated reservoirs of antibiotic resistance. Functional metagenomic selections, in which shotgun-cloned DNA fragments are selected for their ability to confer survival to an indicator host, have been increasingly applied to the characterization of many antibiotic resistance reservoirs. These experiments have demonstrated that antibiotic resistance genes are highly diverse and widely distributed, many times bearing little to no similarity to known sequences. Through unbiased selections for survival to antibiotic exposure, functional metagenomics can improve annotations by reducing the discovery of false-positive resistance and by allowing for the identification of previously unrecognizable resistance genes. In this review, we summarize the novel resistance functions uncovered using functional metagenomic investigations of natural and human-impacted resistance reservoirs. Examples of novel antibiotic resistance genes include those highly divergent from known sequences, those for which sequence is entirely unable to predict resistance function, bifunctional resistance genes, and those with unconventional, atypical resistance mechanisms. Overcoming antibiotic resistance in the clinic will require a better understanding of existing resistance reservoirs and the dissemination networks that govern horizontal gene exchange, informing best practices to limit the spread of resistance-conferring genes to human pathogens.
Collapse
Affiliation(s)
- Erica C Pehrsson
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine St. Louis, MO, USA
| | | | | | | | | |
Collapse
|
128
|
Danzer C, Mattner J. Impact of microbes on autoimmune diseases. Arch Immunol Ther Exp (Warsz) 2013; 61:175-186. [PMID: 23417246 PMCID: PMC4134873 DOI: 10.1007/s00005-013-0216-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 02/01/2013] [Indexed: 12/15/2022]
Abstract
Autoimmune and autoinflammatory diseases arise as a consequence of complex interactions of environmental factors with genetic traits. Although specific allelic variations cluster in predisposed individuals and promote the generation and/or expansion of autoreactive T and B lymphocytes, autoimmunity appears in various disease phenotypes and localizes to diverging tissues. Furthermore, the discovery that allelic variations within genes encoding components of the innate immune system drive self-reactive immune responses as well, led to the distinction of immune responses against host tissues into autoimmune and autoinflammatory diseases. In both categories of disorders, different pathogenic mechanisms and/or subsequent orders of tissue assaults may underlie the target cell specificity of the respective autoimmune attack. Furthermore, the transition from the initial tissue assault to the development of full-blown disease is likely driven by several factors. Thus, the development of specific forms of autoimmunity and autoinflammation reflects a multi-factorial process. The delineation of the specific factors involved in the pathogenic process is hampered by the fact that certain symptoms are assembled under the umbrella of a specific disease, although they might originate from diverging pathogenic pathways. These multi-factorial triggers and pathogenic pathways may also explain the inter-individual divergent courses and outcomes of diseases among humans. Here, we will discuss the impact of different environmental factors in general and microbial pathogens in particular on the regulation/expression of genes encoded within susceptibility alleles, and its consequences on subsequent autoimmune and/or autoinflammatory tissue damage utilizing primarily the chronic cholestatic liver disease primary biliary cirrhosis as model.
Collapse
Affiliation(s)
- Claudia Danzer
- Mikrobiologisches Institut, Klinische Mikrobiologie, Immunologie Und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, Wasserturmstr. 3/5, 91054 Erlangen, Germany
| | - Jochen Mattner
- Mikrobiologisches Institut, Klinische Mikrobiologie, Immunologie Und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, Wasserturmstr. 3/5, 91054 Erlangen, Germany. Division of Cellular and Molecular Immunology, Cincinnati Children’s Hospital, Cincinnati, OH 45229, USA
| |
Collapse
|
129
|
Comparison of 26 sphingomonad genomes reveals diverse environmental adaptations and biodegradative capabilities. Appl Environ Microbiol 2013; 79:3724-33. [PMID: 23563954 DOI: 10.1128/aem.00518-13] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sphingomonads comprise a physiologically versatile group within the Alphaproteobacteria that includes strains of interest for biotechnology, human health, and environmental nutrient cycling. In this study, we compared 26 sphingomonad genome sequences to gain insight into their ecology, metabolic versatility, and environmental adaptations. Our multilocus phylogenetic and average amino acid identity (AAI) analyses confirm that Sphingomonas, Sphingobium, Sphingopyxis, and Novosphingobium are well-resolved monophyletic groups with the exception of Sphingomonas sp. strain SKA58, which we propose belongs to the genus Sphingobium. Our pan-genomic analysis of sphingomonads reveals numerous species-specific open reading frames (ORFs) but few signatures of genus-specific cores. The organization and coding potential of the sphingomonad genomes appear to be highly variable, and plasmid-mediated gene transfer and chromosome-plasmid recombination, together with prophage- and transposon-mediated rearrangements, appear to play prominent roles in the genome evolution of this group. We find that many of the sphingomonad genomes encode numerous oxygenases and glycoside hydrolases, which are likely responsible for their ability to degrade various recalcitrant aromatic compounds and polysaccharides, respectively. Many of these enzymes are encoded on megaplasmids, suggesting that they may be readily transferred between species. We also identified enzymes putatively used for the catabolism of sulfonate and nitroaromatic compounds in many of the genomes, suggesting that plant-based compounds or chemical contaminants may be sources of nitrogen and sulfur. Many of these sphingomonads appear to be adapted to oligotrophic environments, but several contain genomic features indicative of host associations. Our work provides a basis for understanding the ecological strategies employed by sphingomonads and their role in environmental nutrient cycling.
Collapse
|
130
|
Cultivation and characterization of bacterial isolates capable of degrading pharmaceutical and personal care products for improved removal in activated sludge wastewater treatment. Biodegradation 2013; 24:813-27. [DOI: 10.1007/s10532-013-9630-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Accepted: 02/19/2013] [Indexed: 10/27/2022]
|
131
|
Petersen J, Frank O, Göker M, Pradella S. Extrachromosomal, extraordinary and essential--the plasmids of the Roseobacter clade. Appl Microbiol Biotechnol 2013; 97:2805-15. [PMID: 23435940 DOI: 10.1007/s00253-013-4746-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 01/29/2013] [Accepted: 01/30/2013] [Indexed: 01/23/2023]
Abstract
The alphaproteobacterial Roseobacter clade (Rhodobacterales) is one of the most important global players in carbon and sulfur cycles of marine ecosystems. The remarkable metabolic versatility of this bacterial lineage provides access to diverse habitats and correlates with a multitude of extrachromosomal elements. Four non-homologous replication systems and additional subsets of individual compatibility groups ensure the stable maintenance of up to a dozen replicons representing up to one third of the bacterial genome. This complexity presents the challenge of successful partitioning of all low copy number replicons. Based on the phenomenon of plasmid incompatibility, we developed molecular tools for target-oriented plasmid curing and could generate customized mutants lacking hundreds of genes. This approach allows one to analyze the relevance of specific replicons including so-called chromids that are known as lifestyle determinants of bacteria. Chromids are extrachromosomal elements with a chromosome-like genetic imprint (codon usage, GC content) that are essential for competitive survival in the natural habitat, whereas classical dispensable plasmids exhibit a deviating codon usage and typically contain type IV secretion systems for conjugation. The impact of horizontal plasmid transfer is exemplified by the scattered occurrence of the characteristic aerobic anoxygenic photosynthesis among the Roseobacter clade and the recently reported transfer of the 45-kb photosynthesis gene cluster to extrachromosomal elements. Conjugative transmission may be the crucial driving force for rapid adaptations and hence the ecological prosperousness of this lineage of pink bacteria.
Collapse
Affiliation(s)
- Jörn Petersen
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstraße 7 B, D-38124, Braunschweig, Germany.
| | | | | | | |
Collapse
|
132
|
Baxi NN. Influence of ε-caprolactam on growth and physiology of environmental bacteria. ANN MICROBIOL 2013. [DOI: 10.1007/s13213-013-0610-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
133
|
Bučková M, Puškarová A, Chovanová K, Kraková L, Ferianc P, Pangallo D. A simple strategy for investigating the diversity and hydrocarbon degradation abilities of cultivable bacteria from contaminated soil. World J Microbiol Biotechnol 2013; 29:1085-98. [DOI: 10.1007/s11274-013-1277-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 01/30/2013] [Indexed: 10/27/2022]
|
134
|
Muangchinda C, Pansri R, Wongwongsee W, Pinyakong O. Assessment of polycyclic aromatic hydrocarbon biodegradation potential in mangrove sediment from Don Hoi Lot, Samut Songkram Province, Thailand. J Appl Microbiol 2013; 114:1311-24. [DOI: 10.1111/jam.12128] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 01/01/2013] [Accepted: 01/02/2013] [Indexed: 11/27/2022]
Affiliation(s)
- C. Muangchinda
- Bioremediation Research Unit, Department of Microbiology, Faculty of Science; Chulalongkorn University; Bangkok Thailand
| | - R. Pansri
- Bioremediation Research Unit, Department of Microbiology, Faculty of Science; Chulalongkorn University; Bangkok Thailand
| | - W. Wongwongsee
- Bioremediation Research Unit, Department of Microbiology, Faculty of Science; Chulalongkorn University; Bangkok Thailand
- Microbiology Program in Science; Graduate School, Chulalongkorn University; Bangkok Thailand
| | - O. Pinyakong
- Bioremediation Research Unit, Department of Microbiology, Faculty of Science; Chulalongkorn University; Bangkok Thailand
- Center of Excellence for Environmental and Hazardous Waste Management (EHWM); Bangkok Thailand
| |
Collapse
|
135
|
Genome Sequence of Sphingomonas xenophaga QYY, an Anthraquinone-Degrading Strain. GENOME ANNOUNCEMENTS 2013; 1:genomeA00031-12. [PMID: 23405319 PMCID: PMC3569308 DOI: 10.1128/genomea.00031-12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 10/25/2012] [Indexed: 11/20/2022]
Abstract
Sphingomonas xenophaga QYY is an efficient anthraquinone-degrading strain. Here, we present a 4.2-Mb assembly of the first genome sequence of S. xenophaga. We have annotated 36 coding sequences (CDSs) encoding aromatic catabolism and 216 CDSs responsible for toxic resistance and stress response, which may provide insights into the degradation of complex aromatics.
Collapse
|
136
|
Talà A, Lenucci M, Gaballo A, Durante M, Tredici SM, Debowles DA, Pizzolante G, Marcuccio C, Carata E, Piro G, Carpita NC, Mita G, Alifano P. Sphingomonas cynarae sp. nov., a proteobacterium that produces an unusual type of sphingan. Int J Syst Evol Microbiol 2013; 63:72-79. [DOI: 10.1099/ijs.0.032060-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Strain SPC-1T was isolated from the phyllosphere of Cynara cardunculus L. var. sylvestris (Lamk) Fiori (wild cardoon), a Mediterranean native plant considered to be the wild ancestor of the globe artichoke and cultivated cardoon. This Gram-stain-negative, catalase-positive, oxidase-negative, non-spore-forming, rod-shaped and non-motile strain secreted copious amounts of an exopolysaccharide, formed slimy, viscous, orange-pigmented colonies and grew optimally at around pH 6.0–6.5 and 26–30 °C in the presence of 0–0.5 % NaCl. Phylogenetic analysis based on comparisons of 16S rRNA gene sequences demonstrated that SPC-1T clustered together with species of the genus
Sphingomonas
sensu stricto. The G+C content of the DNA (66.1 mol%), the presence of Q-10 as the predominant ubiquinone, sym-homospermidine as the predominant polyamine, 2-hydroxymyristic acid (C14 : 0 2-OH) as the major hydroxylated fatty acid, the absence of 3-hydroxy fatty acids and the presence of sphingoglycolipid supported this taxonomic position. 16S rRNA gene sequence analysis showed that SPC-1T was most closely related to
Sphingomonas hankookensis
ODN7T,
Sphingomonas insulae
DS-28T and
Sphingomonas panni
C52T (98.19, 97.91 and 97.11 % sequence similarities, respectively). However, DNA–DNA hybridization analysis did not reveal any relatedness at the species level. Further differences were apparent in biochemical traits, and fatty acid, quinone and polyamine profiles leading us to conclude that strain SPC-1T represents a novel species of the genus
Sphingomonas
, for which the name Sphingomonas cynarae sp. nov. is proposed; the type strain is SPC-1T ( = JCM 17498T = ITEM 13494T). A component analysis of the exopolysaccharide suggested that it represents a novel type of sphingan containing glucose, rhamnose, mannose and galactose, while glucuronic acid, which is commonly found in sphingans, was not detected.
Collapse
Affiliation(s)
- Adelfia Talà
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Via Monteroni, 73100 Lecce, Italy
| | - Marcello Lenucci
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Via Monteroni, 73100 Lecce, Italy
| | - Antonio Gaballo
- CNR – Institute of Biomembranes and Bioenergetics (IBBE), Via G. Amendola, 165/A, 70126 Bari, Italy
| | - Miriana Durante
- CNR – Institute of Sciences of Food Production (ISPA), Operative Unit of Lecce, via Provinciale Lecce-Monteroni, 73100 Lecce, Italy
| | - Salvatore M. Tredici
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Via Monteroni, 73100 Lecce, Italy
| | - Danisha A. Debowles
- Department of Botany and Plant Pathology, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054, USA
| | - Graziano Pizzolante
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Via Monteroni, 73100 Lecce, Italy
| | - Carlo Marcuccio
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Via Monteroni, 73100 Lecce, Italy
| | - Elisabetta Carata
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Via Monteroni, 73100 Lecce, Italy
| | - Gabriella Piro
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Via Monteroni, 73100 Lecce, Italy
| | - Nicholas C. Carpita
- Department of Botany and Plant Pathology, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054, USA
| | - Giovanni Mita
- CNR – Institute of Sciences of Food Production (ISPA), Operative Unit of Lecce, via Provinciale Lecce-Monteroni, 73100 Lecce, Italy
| | - Pietro Alifano
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
137
|
Lee DG, Zhao F, Rezenom YH, Russell DH, Chu KH. Biodegradation of triclosan by a wastewater microorganism. WATER RESEARCH 2012; 46:4226-4234. [PMID: 22673343 DOI: 10.1016/j.watres.2012.05.025] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 03/13/2012] [Accepted: 05/13/2012] [Indexed: 06/01/2023]
Abstract
Triclosan, a synthetic antimicrobial agent, has been considered as an emerging environmental contaminant. Here we reported a triclosan-degrading wastewater bacterial isolate, Sphingopyxis strain KCY1, capable of dechlorinating triclosan with a stoichiometric release of chloride. The stain can degrade diphenyl ether but not 2,4,4'-tribromodiphenyl ether and 2,2',4,4'-tetrabromodiphenyl ether, despite all these three compounds are structurally similar to triclosan. While strain KCY1 was unable to grow on triclosan and catechol, it could grow with glucose, sodium succinate, sodium acetate, and phenol. When grown with complex nutrient medium containing a trace amount of triclosan (as low as 5 μg/L), the strain could retain its degradation ability toward triclosan. The maximum-specific triclosan degradation rate (q(m)) and the half-velocity constant (K(m)) are 0.13 mg-triclosan/mg-protein/day and 2.8 mg-triclosan/L, respectively. As triclosan degradation progressed, five metabolites were identified and these metabolites continue to transform into non-chlorinated end products, which was supported by a sharp drop in androgenic potential. The activity of catechol 2,3-dioxygenase in the cell extract was detected. No triclosan degradation was observed in the presence of 3-fluorocatechol, an inhibitor of meta-cleavage enzyme, suggesting that triclosan degradation proceed via meta-cleavage pathway. Based on all the observations, a degradation pathway for triclosan by strain KCY1 was proposed.
Collapse
Affiliation(s)
- Do Gyun Lee
- Department of Civil Engineering, Texas A&M University, 205G WERC, 3136 TAMU College Station, TX 77843-3136, USA
| | | | | | | | | |
Collapse
|
138
|
Genome sequence of Sphingomonas wittichii DP58, the first reported phenazine-1-carboxylic acid-degrading strain. J Bacteriol 2012; 194:3535-6. [PMID: 22689229 DOI: 10.1128/jb.00330-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sphingomonas wittichii DP58 (CCTCC M 2012027), the first reported phenazine-1-carboxylic acid (PCA)-degrading strain, was isolated from pimiento rhizosphere soils. Here we present a 5.6-Mb assembly of its genome. This sequence would contribute to the elucidation of the molecular mechanism of PCA degradation to improve the antifungal's effectiveness or remove superfluous PCA.
Collapse
|
139
|
Takeo M, Maeda Y, Maeda J, Nishiyama N, Kitamura C, Kato DI, Negoro S. Two identical nonylphenol monooxygenase genes linked to IS6100 and some putative insertion sequence elements in Sphingomonas sp. NP5. Microbiology (Reading) 2012; 158:1796-1807. [DOI: 10.1099/mic.0.055335-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Masahiro Takeo
- Department of Materials Science and Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| | - Yoshihiro Maeda
- Department of Materials Science and Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| | - Junko Maeda
- Department of Materials Science and Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| | - Naoki Nishiyama
- Department of Materials Science and Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| | - Chitoshi Kitamura
- Department of Materials Science and Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| | - Dai-ichiro Kato
- Department of Materials Science and Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| | - Seiji Negoro
- Department of Materials Science and Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| |
Collapse
|
140
|
Chakraborty J, Ghosal D, Dutta A, Dutta TK. An insight into the origin and functional evolution of bacterial aromatic ring-hydroxylating oxygenases. J Biomol Struct Dyn 2012; 30:419-36. [PMID: 22694139 DOI: 10.1080/07391102.2012.682208] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Bacterial aromatic ring-hydroxylating oxygenases (RHOs) are multicomponent enzyme systems which have potential utility in bioremediation of aromatic compounds in the environment. To cope with the enormous diversity of aromatic compounds in the environment, this enzyme family has evolved remarkably exhibiting broad substrate specificity. RHOs are multicomponent enzymes comprising of a homo- or hetero-multimeric terminal oxygenase and one or more electron transport (ET) protein(s). The present study attempts in depicting the evolutionary scenarios that might have occurred during the evolution of RHOs, by analyzing a set of available sequences including those obtained from complete genomes. A modified classification scheme identifying four new RHO types has been suggested on the basis of their evolutionary and functional behaviours, in relation to structural configuration of substrates and preferred oxygenation site(s). The present scheme emphasizes on the fact that the phylogenetic affiliation of RHOs is distributed among four distinct 'Similarity classes', independent of the constituent ET components. Similar combination of RHO components that was previously considered to be equivalent and classified together [Kweon et al., BMC Biochemistry 9, 11 (2008)] were found here in distinct similarity classes indicating the role of substrate-binding terminal oxygenase in guiding the evolution of RHOs irrespective of the nature of constituent ET components. Finally, a model for evolution of the multicomponent RHO enzyme system has been proposed, beginning from genesis of the terminal oxygenase components followed by recruitment of constituent ET components, finally evolving into various 'extant' RHO types.
Collapse
|
141
|
Ragon M, Fontaine MC, Moreira D, López-García P. Different biogeographic patterns of prokaryotes and microbial eukaryotes in epilithic biofilms. Mol Ecol 2012; 21:3852-68. [PMID: 22686398 DOI: 10.1111/j.1365-294x.2012.05659.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Microbial biogeography studies expend much effort in determining whether environmental selection or stochastic processes related to dispersal are more important in shaping community composition. While both types of factors are possibly influential, it is tacitly assumed that protists, or microbial eukaryotes in general, behave biogeographically as prokaryotes because of their small physical size. However, direct evidence for this in exactly the same environment and at the same phylogenetic depth is lacking. In this study, we compared the structure of both prokaryotic and eukaryotic components of microbial communities forming biofilms on mineral substrates in different geographic locations at the level of small-subunit (SSU) rRNA-based operational taxonomic units (OTUs). These microbial communities are subjected to strong environmental selection and contain significant proportions of extremophilic microorganisms adapted to desiccation and UV radiation. We find that the nature of the substrate as well as climatic variables and geography influences microbial community structure. However, constrained correspondence analyses and distance-decay curves showed that, whereas the substrate type was the most significant factor structuring bacterial communities, geographic location was the most influential factor for microbial eukaryote communities. Biological explanations implying a higher dispersal success for bacteria combined with more mobile lifestyles for predatory protists may underlie these different prokaryote versus microbial eukaryote biogeographic patterns.
Collapse
Affiliation(s)
- Marie Ragon
- Unité d'Ecologie, Systématique et Evolution, CNRS UMR 8079, Université Paris-Sud, Orsay, France
| | | | | | | |
Collapse
|
142
|
Luo YR, Tian Y, Huang X, Kwon K, Yang SH, Seo HS, Kim SJ, Zheng TL. Sphingomonas polyaromaticivorans sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium from an oil port water sample. Int J Syst Evol Microbiol 2012; 62:1223-1227. [DOI: 10.1099/ijs.0.033530-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A bacterial strain (B2-7T) capable of degrading a wide range of polycyclic aromatic hydrocarbon compounds (2–4 rings) was isolated from a water sample taken from Botan Oil Port in Xiamen, China. The isolate was Gram-negative, short-rod-shaped, aerobic, non-motile and formed yellow-pigmented colonies on LB medium. Cells of strain B2-7T were catalase-positive and oxidase-negative. Optimal growth of strain B2-7T was observed at pH 7.0, at 26 °C and in 0.5 % NaCl. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain B2-7T grouped with members of the genus
Sphingomonas
and it showed 16S rRNA gene sequence similarity of 95.40 % to
Sphingomonas yunnanensis
YIM 003T. The major polar lipids were phosphatidylethanolamine, phosphatidylcholine and sphingoglycolipid. Q-10 and sym-homospermidine were the predominant ubiquinone and polyamine components, respectively. The major fatty acids were C18 : 1ω7c (67.2 %), C14 : 0 2-OH (10.0 %) and C16 : 0 (9.6 %). The G+C content of the genomic DNA was 61.8 mol%. Based on phenotypic properties, and phylogenetic and genomic data, strain B2-7T represents a novel species of the genus
Sphingomonas
within the class
Alphaproteobacteria
, for which the name Sphingomonas polyaromaticivorans sp. nov. is proposed. The type strain is B2-7T ( = KCCM 42951T = JCM 16711T).
Collapse
Affiliation(s)
- Yuan-Rong Luo
- Marine Biotechnology Research Center, Korea Ocean Research and Development Institute, Ansan 426-744, Republic of Korea
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361005, PR China
| | - Yun Tian
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361005, PR China
| | - Xu Huang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361005, PR China
| | - Kaekyoung Kwon
- Marine Biotechnology Research Center, Korea Ocean Research and Development Institute, Ansan 426-744, Republic of Korea
| | - Sung-Hyun Yang
- Marine Biotechnology Research Center, Korea Ocean Research and Development Institute, Ansan 426-744, Republic of Korea
| | - Hyun-Seok Seo
- Marine Biotechnology Research Center, Korea Ocean Research and Development Institute, Ansan 426-744, Republic of Korea
| | - Sang-Jin Kim
- Marine Biotechnology Research Center, Korea Ocean Research and Development Institute, Ansan 426-744, Republic of Korea
| | - Tian-Ling Zheng
- State Key Laboratory of Marine Environmental Sciences, Xiamen University, Xiamen 361005, PR China
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361005, PR China
| |
Collapse
|
143
|
Quantitative PCR for tracking the megaplasmid-borne biodegradation potential of a model sphingomonad. Appl Environ Microbiol 2012; 78:4493-6. [PMID: 22492441 DOI: 10.1128/aem.00715-12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We developed a quantitative PCR method for tracking the dxnA1 gene, the initial, megaplasmid-borne gene in Sphingomonas wittichii RW1's dibenzo-p-dioxin degradation pathway. We used this method on complex environmental samples and report on growth of S. wittichii RW1 in landfill leachate, thus furnishing a novel tool for monitoring megaplasmid-borne, dioxygenase-encoding genes.
Collapse
|
144
|
Hickey WJ, Chen S, Zhao J. The phn Island: A New Genomic Island Encoding Catabolism of Polynuclear Aromatic Hydrocarbons. Front Microbiol 2012; 3:125. [PMID: 22493593 PMCID: PMC3318190 DOI: 10.3389/fmicb.2012.00125] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 03/16/2012] [Indexed: 11/18/2022] Open
Abstract
Bacteria are key in the biodegradation of polycyclic aromatic hydrocarbons (PAH), which are widespread environmental pollutants. At least six genotypes of PAH degraders are distinguishable via phylogenies of the ring-hydroxylating dioxygenase (RHD) that initiates bacterial PAH metabolism. A given RHD genotype can be possessed by a variety of bacterial genera, suggesting horizontal gene transfer (HGT) is an important process for dissemination of PAH-degrading genes. But, mechanisms of HGT for most RHD genotypes are unknown. Here, we report in silico and functional analyses of the phenanthrene-degrading bacterium Delftia sp. Cs1-4, a representative of the phnAFK2 RHD group. The phnAFK2 genotype predominates PAH degrader communities in some soils and sediments, but, until now, their genomic biology has not been explored. In the present study, genes for the entire phenanthrene catabolic pathway were discovered on a novel ca. 232 kb genomic island (GEI), now termed the phn island. This GEI had characteristics of an integrative and conjugative element with a mobilization/stabilization system similar to that of SXT/R391-type GEI. But, it could not be grouped with any known GEI, and was the first member of a new GEI class. The island also carried genes predicted to encode: synthesis of quorum sensing signal molecules, fatty acid/polyhydroxyalkanoate biosynthesis, a type IV secretory system, a PRTRC system, DNA mobilization functions and >50 hypothetical proteins. The 50% G + C content of the phn gene cluster differed significantly from the 66.7% G + C level of the island as a whole and the strain Cs1-4 chromosome, indicating a divergent phylogenetic origin for the phn genes. Collectively, these studies added new insights into the genetic elements affecting the PAH biodegradation capacity of microbial communities specifically, and the potential vehicles of HGT in general.
Collapse
Affiliation(s)
- William J Hickey
- O.N. Allen Laboratory for Soil Microbiology, Department of Soil Science, University of Wisconsin Madison, WI, USA
| | | | | |
Collapse
|
145
|
Roy M, Khara P, Dutta TK. meta-Cleavage of hydroxynaphthoic acids in the degradation of phenanthrene by Sphingobium sp. strain PNB. MICROBIOLOGY-SGM 2011; 158:685-695. [PMID: 22194350 DOI: 10.1099/mic.0.053363-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) comprise a group of priority organic pollutants that are toxic and/or carcinogenic. Phenanthrene, the simplest PAH among recognized priority pollutants, is commonly used as a model compound for the study of PAH biodegradation. Sphingobium sp. strain PNB, capable of degrading phenanthrene as a sole carbon and energy source, was isolated from a municipal waste-contaminated soil sample. A combination of chromatographic and spectrometric analyses, together with oxygen uptake and enzyme activity studies, suggested the presence of phenanthrene degradation pathways in this strain. Identification of metabolites suggested that initial dioxygenation of phenanthrene took place at both 3,4- and 1,2-carbon positions; meta-cleavage of resultant diols led to the formation of 1-hydroxy-2-naphthoic acid and 2-hydroxy-1-naphthoic acid, respectively. The hydroxynaphthoic acids, in turn, were metabolized by a meta-cleavage pathway(s), leading to the formation of 2,2-dicarboxychromene and 2-hydroxychromene-2-glyoxylic acid, respectively. These metabolites were subsequently transformed to catechol via salicylic acid, which further proceeds towards the tricarboxylic acid cycle leading to complete mineralization of the compound phenanthrene. The present study establishes the metabolism of hydroxynaphthoic acids by a meta-cleavage pathway in the degradation of phenanthrene, expanding our current understanding of microbial degradation of PAHs.
Collapse
Affiliation(s)
- Madhumita Roy
- Department of Microbiology, Bose Institute, P-1/12 C.I.T. Scheme VII M, Kolkata, West Bengal, India
| | - Pratick Khara
- Department of Microbiology, Bose Institute, P-1/12 C.I.T. Scheme VII M, Kolkata, West Bengal, India
| | - Tapan K Dutta
- Department of Microbiology, Bose Institute, P-1/12 C.I.T. Scheme VII M, Kolkata, West Bengal, India
| |
Collapse
|
146
|
Nagata Y, Natsui S, Endo R, Ohtsubo Y, Ichikawa N, Ankai A, Oguchi A, Fukui S, Fujita N, Tsuda M. Genomic organization and genomic structural rearrangements of Sphingobium japonicum UT26, an archetypal γ-hexachlorocyclohexane-degrading bacterium. Enzyme Microb Technol 2011; 49:499-508. [DOI: 10.1016/j.enzmictec.2011.10.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 10/28/2011] [Accepted: 10/28/2011] [Indexed: 11/27/2022]
|
147
|
de los Cobos-Vasconcelos D, Ruiz-Ordaz N, Galíndez-Mayer J, Poggi-Varaldo H, Juàrez-Ramírez C, Aarón LM. Aerobic biodegradation of a mixture of sulfonated azo dyes by a bacterial consortium immobilized in a two-stage sparged packed-bed biofilm reactor. Eng Life Sci 2011. [DOI: 10.1002/elsc.201000227] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
148
|
Singleton DR, Richardson SD, Aitken MD. Pyrosequence analysis of bacterial communities in aerobic bioreactors treating polycyclic aromatic hydrocarbon-contaminated soil. Biodegradation 2011; 22:1061-73. [PMID: 21369833 PMCID: PMC3227512 DOI: 10.1007/s10532-011-9463-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 02/21/2011] [Indexed: 10/18/2022]
Abstract
Two aerobic, lab-scale, slurry-phase bioreactors were used to examine the biodegradation of polycyclic aromatic hydrocarbons (PAHs) in contaminated soil and the associated bacterial communities. The two bioreactors were operated under semi-continuous (draw-and-fill) conditions at a residence time of 35 days, but one was fed weekly and the other monthly. Most of the quantified PAHs, including high-molecular-weight compounds, were removed to a greater extent in the weekly-fed bioreactor, which achieved total PAH removal of 76%. Molecular analyses, including pyrosequencing of 16S rRNA genes, revealed significant shifts in the soil bacterial communities after introduction to the bioreactors and differences in the abundance and types of bacteria in each of the bioreactors. The weekly-fed bioreactor displayed a more stable bacterial community with gradual changes over time, whereas the monthly-fed bioreactor community was less consistent and may have been more strongly influenced by the influx of untreated soil during feeding. Phylogenetic groups containing known PAH-degrading bacteria previously identified through stable-isotope probing of the untreated soil were differentially affected by bioreactor conditions. Sequences from members of the Acidovorax and Sphingomonas genera, as well as the uncultivated "Pyrene Group 2" were abundant in the bioreactors. However, the relative abundances of sequences from the Pseudomonas, Sphingobium, and Pseudoxanthomonas genera, as well as from a group of unclassified anthracene degraders, were much lower in the bioreactors compared to the untreated soil.
Collapse
Affiliation(s)
- David R Singleton
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599-7431, USA.
| | | | | |
Collapse
|
149
|
Machonkin TE, Doerner AE. Substrate Specificity of Sphingobium chlorophenolicum 2,6-Dichlorohydroquinone 1,2-Dioxygenase. Biochemistry 2011; 50:8899-913. [DOI: 10.1021/bi200855m] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Timothy E. Machonkin
- Department of Chemistry, Whitman College, 345 Boyer Avenue, Walla Walla, Washington
99362, United States
| | - Amy E. Doerner
- Department of Chemistry, Whitman College, 345 Boyer Avenue, Walla Walla, Washington
99362, United States
| |
Collapse
|
150
|
Murakami Y, Otsuka S, Senoo K. Abundance and community structure of sphingomonads in leaf residues and nearby bulk soil. Microbes Environ 2011; 25:183-9. [PMID: 21576871 DOI: 10.1264/jsme2.me10114] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We examined the abundance and community structure of sphingomonads in the decaying leaf residues of eight plant species as well as the nearby soil, by 16S rRNA gene-based real-time PCR and denaturing gradient gel electrophoresis. In the leaf residues, the sphingomonads generally accumulated to high levels, comprising approximately 15% of the total bacteria, and formed a community structure related to sampling locations. At least within the time period studied, their abundance in leaf residues changed, but their community structure was basically maintained. In soil, sphingomonads made up only 1.7% of total bacteria on average. The community structure of sphingomonads differed between the leaf residues and bulk soil, among plant plots, and among samples collected at different times. The results show that particular sphingomonad populations accumulate in leaf residues compared to the surrounding bulk soil under field conditions.
Collapse
Affiliation(s)
- Yuta Murakami
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1–1–1 Yayoi, Bunkyo-ku, Tokyo 113–8657, Japan
| | | | | |
Collapse
|