101
|
Urrea L, Segura-Feliu M, Masuda-Suzukake M, Hervera A, Pedraz L, García Aznar JM, Vila M, Samitier J, Torrents E, Ferrer I, Gavín R, Hagesawa M, Del Río JA. Involvement of Cellular Prion Protein in α-Synuclein Transport in Neurons. Mol Neurobiol 2017; 55:1847-1860. [PMID: 28229331 PMCID: PMC5840251 DOI: 10.1007/s12035-017-0451-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/07/2017] [Indexed: 11/30/2022]
Abstract
The cellular prion protein, encoded by the gene Prnp, has been reported to be a receptor of β-amyloid. Their interaction is mandatory for neurotoxic effects of β-amyloid oligomers. In this study, we aimed to explore whether the cellular prion protein participates in the spreading of α-synuclein. Results demonstrate that Prnp expression is not mandatory for α-synuclein spreading. However, although the pathological spreading of α-synuclein can take place in the absence of Prnp, α-synuclein expanded faster in PrPC-overexpressing mice. In addition, α-synuclein binds strongly on PrPC-expressing cells, suggesting a role in modulating the effect of α-synuclein fibrils.
Collapse
Affiliation(s)
- Laura Urrea
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Baldiri Reixac 15-21, E-08028, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Miriam Segura-Feliu
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Baldiri Reixac 15-21, E-08028, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Masami Masuda-Suzukake
- Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Arnau Hervera
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Baldiri Reixac 15-21, E-08028, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Lucas Pedraz
- Bacterial infections: antimicrobial therapies. Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Barcelona, Spain
| | - José Manuel García Aznar
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research, Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - Miquel Vila
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute-Center for Networked Biomedical Research on Neurodegenerative Diseases, Autonomous University of Barcelona, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Josep Samitier
- Nanobioengineering Group, Institute for Bioengineering of Catalonia, (IBEC), Parc Científic de Barcelona, Barcelona, Spain
- Department of Electronics, University of Barcelona, Martí i Franquès 1, E-08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029, Madrid, Spain
| | - Eduard Torrents
- Bacterial infections: antimicrobial therapies. Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Barcelona, Spain
| | - Isidro Ferrer
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
- Institut de Neuropatologia, IDIBELL-Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Spain
- Departamento de Patologia y Terapeutica Experimental, Facultad de Medicina, Universidad de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Rosalina Gavín
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Baldiri Reixac 15-21, E-08028, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Masato Hagesawa
- Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, 156-8506, Japan
| | - José Antonio Del Río
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Baldiri Reixac 15-21, E-08028, Barcelona, Spain.
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain.
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain.
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
102
|
Braak H, Del Tredici K. Neuropathological Staging of Brain Pathology in Sporadic Parkinson's disease: Separating the Wheat from the Chaff. JOURNAL OF PARKINSON'S DISEASE 2017; 7:S71-S85. [PMID: 28282810 PMCID: PMC5345633 DOI: 10.3233/jpd-179001] [Citation(s) in RCA: 231] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A relatively small number of especially susceptible nerve cell types within multiple neurotransmitter systems of the human central, peripheral, and enteric nervous systems (CNS, PNS, ENS) become involved in the degenerative process underlying sporadic Parkinson's disease (sPD). The six-stage model we proposed for brain pathology related to sPD (Neurobiol Aging 2003) was a retrospective study of incidental and clinically diagnosed cases performed on unconventionally thick tissue sections (100 μm) from a large number of brain regions.The staging model emphasized what we perceived to be a sequential development of increasing degrees of Lewy pathology in anatomically interconnected regions together with the loss of aminergic projection neurons in, but not limited to, the locus coeruleus and substantia nigra. The same weight was assigned to axonal and somatodendritic Lewy pathology, and the olfactory bulb was included for the first time in a sPD staging system. After years of research, it now appears that the earliest lesions could develop at nonnigral (dopamine agonist nonresponsive) sites, where the surrounding environment is potentially hostile: the olfactory bulb and, possibly, the ENS. The current lack of knowledge regarding the development of Lewy pathology within the peripheral autonomic nervous system, however, means that alternative extra-CNS sites of origin cannot be disregarded as possible candidates. The PD staging system not only caused controversy but contributed a framework for (1) assessing pathology in the spinal cord, ENS, and PNS in relationship to that evolving in the brain, (2) defining prodromal disease and cohorts of at-risk individuals, (3) developing potential prognostic biomarkers for very early disease, (4) testing novel hypotheses and experimental models of α-synuclein propagation and disease progression, and (5) finding causally-oriented therapies that intervene before the substantia nigra becomes involved. The identification of new disease mechanisms at the molecular and cellular levels indicates that physical contacts (transsynaptic) and transneuronal transmission between vulnerable nerve cells are somehow crucial to the pathogenesis of sPD.
Collapse
Affiliation(s)
- Heiko Braak
- Correspondence to: Prof. Heiko Braak, M.D., Center for Biomedical Research, University of Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany. Tel.: +49 731 500 63111; Fax: +49 731 500 63133; E-mail:
| | | |
Collapse
|
103
|
Kirik D, Cederfjäll E, Halliday G, Petersén Å. Gene therapy for Parkinson's disease: Disease modification by GDNF family of ligands. Neurobiol Dis 2017; 97:179-188. [DOI: 10.1016/j.nbd.2016.09.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 08/24/2016] [Accepted: 09/06/2016] [Indexed: 10/21/2022] Open
|
104
|
Jansen AHP, Batenburg KL, Pecho-Vrieseling E, Reits EA. Visualization of prion-like transfer in Huntington's disease models. Biochim Biophys Acta Mol Basis Dis 2016; 1863:793-800. [PMID: 28040507 DOI: 10.1016/j.bbadis.2016.12.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/08/2016] [Accepted: 12/26/2016] [Indexed: 02/06/2023]
Abstract
Most neurodegenerative diseases such as Alzheimer's, Parkinson's and Huntington's disease are hallmarked by aggregate formation of disease-related proteins. In various of these diseases transfer of aggregation-prone proteins between neurons and between neurons and glial cells has been shown, thereby initiating aggregation in neighboring cells and so propagating the disease phenotype. Whereas this prion-like transfer is well studied in Alzheimer's and Parkinson's disease, only a few studies have addressed this potential mechanism in Huntington's disease. Here, we present an overview of in vitro and in vivo methodologies to study release, intercellular transfer and uptake of aggregation-prone protein fragments in Huntington's disease models.
Collapse
Affiliation(s)
- Anne H P Jansen
- Department of Cell Biology & Histology, Academic Medical Center, Amsterdam, The Netherlands
| | - Kevin L Batenburg
- Department of Cell Biology & Histology, Academic Medical Center, Amsterdam, The Netherlands
| | - Eline Pecho-Vrieseling
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Eric A Reits
- Department of Cell Biology & Histology, Academic Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
105
|
Eraña H, Venegas V, Moreno J, Castilla J. Prion-like disorders and Transmissible Spongiform Encephalopathies: An overview of the mechanistic features that are shared by the various disease-related misfolded proteins. Biochem Biophys Res Commun 2016; 483:1125-1136. [PMID: 27590581 DOI: 10.1016/j.bbrc.2016.08.166] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/04/2016] [Accepted: 08/29/2016] [Indexed: 02/06/2023]
Abstract
Prion diseases or Transmissible Spongiform Encephalopathies (TSEs) are a group of fatal neurodegenerative disorders affecting several mammalian species. Its causative agent, disease-associated prion protein (PrPd), is a self-propagating β-sheet rich aberrant conformation of the cellular prion protein (PrPC) with neurotoxic and aggregation-prone properties, capable of inducing misfolding of PrPC molecules. PrPd is the major constituent of prions and, most importantly, is the first known example of a protein with infectious attributes. It has been suggested that similar molecular mechanisms could be shared by other proteins implicated in diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis or systemic amyloidoses. Accordingly, several terms have been proposed to collectively group all these disorders. Through the stringent evaluation of those aspects that characterise TSE-causing prions, in particular propagation and spread, strain variability or transmissibility, we will discuss whether terms such as "prion", "prion-like", "prionoid" or "propagon" can be used when referring to the aetiological agents of the above other disorders. Moreover, it will also be discussed whether the term "infectious", which defines a prion essential trait, is currently misused when referring to the other misfolded proteins.
Collapse
Affiliation(s)
- Hasier Eraña
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160, Derio, Spain
| | - Vanesa Venegas
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160, Derio, Spain
| | - Jorge Moreno
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160, Derio, Spain
| | - Joaquín Castilla
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160, Derio, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, 48011, Bizkaia, Spain.
| |
Collapse
|
106
|
Abounit S, Bousset L, Loria F, Zhu S, de Chaumont F, Pieri L, Olivo-Marin JC, Melki R, Zurzolo C. Tunneling nanotubes spread fibrillar α-synuclein by intercellular trafficking of lysosomes. EMBO J 2016; 35:2120-2138. [PMID: 27550960 DOI: 10.15252/embj.201593411] [Citation(s) in RCA: 282] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 07/22/2016] [Indexed: 12/25/2022] Open
Abstract
Synucleinopathies such as Parkinson's disease are characterized by the pathological deposition of misfolded α-synuclein aggregates into inclusions throughout the central and peripheral nervous system. Mounting evidence suggests that intercellular propagation of α-synuclein aggregates may contribute to the neuropathology; however, the mechanism by which spread occurs is not fully understood. By using quantitative fluorescence microscopy with co-cultured neurons, here we show that α-synuclein fibrils efficiently transfer from donor to acceptor cells through tunneling nanotubes (TNTs) inside lysosomal vesicles. Following transfer through TNTs, α-synuclein fibrils are able to seed soluble α-synuclein aggregation in the cytosol of acceptor cells. We propose that donor cells overloaded with α-synuclein aggregates in lysosomes dispose of this material by hijacking TNT-mediated intercellular trafficking. Our findings thus reveal a possible novel role of TNTs and lysosomes in the progression of synucleinopathies.
Collapse
Affiliation(s)
- Saïda Abounit
- Institut Pasteur, Unité Trafic Membranaire et Pathogénèse, Paris Cedex 15, France
| | - Luc Bousset
- Paris-Saclay Institute of Neuroscience, CNRS, Gif-sur-Yvette, France
| | - Frida Loria
- Institut Pasteur, Unité Trafic Membranaire et Pathogénèse, Paris Cedex 15, France
| | - Seng Zhu
- Institut Pasteur, Unité Trafic Membranaire et Pathogénèse, Paris Cedex 15, France
| | - Fabrice de Chaumont
- Laboratoire d'Analyse d'Images Quantitative, Institut Pasteur, Paris Cedex 15, France
| | - Laura Pieri
- Paris-Saclay Institute of Neuroscience, CNRS, Gif-sur-Yvette, France
| | | | - Ronald Melki
- Paris-Saclay Institute of Neuroscience, CNRS, Gif-sur-Yvette, France
| | - Chiara Zurzolo
- Institut Pasteur, Unité Trafic Membranaire et Pathogénèse, Paris Cedex 15, France
| |
Collapse
|
107
|
Abstract
PURPOSE OF REVIEW We describe evidence supporting the hypothesis that α-synuclein has a prion-like role in Parkinson's disease and related α-synucleinopathies, and discuss how this novel thinking impacts the development of diagnostics and disease-modifying therapies. RECENT FINDINGS Observations that immature dopamine neurons grafted to Parkinson's disease patients can develop Lewy bodies triggered a surge of interest in the putative prion-like properties of α-synuclein. We recount results from experiments which confirm that misfolded α-synuclein can exhibit disease-propagating properties, and describe how they relate to the spreading of α-synuclein aggregates in α-synucleinopathies. We share insights into the underlying molecular mechanisms and their relevance to novel therapeutic targets. Finally, we discuss what the initial triggers of α-synuclein misfolding might be, where in the body the misfolding events might take place, and how this can instruct development of novel diagnostic tools. We speculate that differences in anatomical trigger sites and variability in α-synuclein fibril structure can contribute to clinical differences between α-synucleinopathies. SUMMARY The realization that α-synuclein pathology can propagate between brain regions in neurodegenerative diseases has deepened and expanded our understanding of potential pathogenic processes which can lead to the development of novel diagnostic tools as well as the identification of new therapeutic targets.
Collapse
Affiliation(s)
- Patrik Brundin
- Translational Parkinson’s Disease Research, Van Andel Research Institute, 333 Bostwick Avenue N.E, Grand Rapids, MI 49503, USA
| | - Jiyan Ma
- Prion Mechanisms in Neurodegenerative Disease, Van Andel Research Institute, 333 Bostwick Avenue N.E, Grand Rapids, MI 49503, USA
| | - Jeffrey H Kordower
- Parkinson’s Disease: Pathogenesis and Experimental Therapeutics; Center for Neurodegenerative Science, Van Andel Research Institute, 333 Bostwick Avenue N.E, Grand Rapids, MI 49503, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
108
|
Tarutani A, Suzuki G, Shimozawa A, Nonaka T, Akiyama H, Hisanaga SI, Hasegawa M. The Effect of Fragmented Pathogenic α-Synuclein Seeds on Prion-like Propagation. J Biol Chem 2016; 291:18675-88. [PMID: 27382062 DOI: 10.1074/jbc.m116.734707] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Indexed: 11/06/2022] Open
Abstract
Aggregates of abnormal proteins are widely observed in neuronal and glial cells of patients with various neurodegenerative diseases, and it has been proposed that prion-like behavior of these proteins can account for not only the onset but also the progression of these diseases. However, it is not yet clear which abnormal protein structures function most efficiently as seeds for prion-like propagation. In this study, we aimed to identify the most pathogenic species of α-synuclein (α-syn), the main component of the Lewy bodies and Lewy neurites that are observed in α-synucleinopathies. We prepared various forms of α-syn protein and examined their seeding properties in vitro in cells and in mouse experimental models. We also characterized these α-syn species by means of electron microscopy and thioflavin fluorescence assays and found that fragmented β sheet-rich fibrous structures of α-syn with a length of 50 nm or less are the most efficient promoters of accumulation of phosphorylated α-syn, which is the hallmark of α-synucleinopathies. These results indicate that fragmented amyloid-like aggregates of short α-syn fibrils are the key pathogenic seeds that trigger prion-like conversion.
Collapse
Affiliation(s)
- Airi Tarutani
- From the Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan and the Department of Biological Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Genjiro Suzuki
- From the Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan and
| | - Aki Shimozawa
- From the Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan and the Department of Biological Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Takashi Nonaka
- From the Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan and
| | - Haruhiko Akiyama
- From the Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan and
| | - Shin-Ichi Hisanaga
- the Department of Biological Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Masato Hasegawa
- From the Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan and
| |
Collapse
|
109
|
Structural and functional properties of prefibrillar α-synuclein oligomers. Sci Rep 2016; 6:24526. [PMID: 27075649 PMCID: PMC4830946 DOI: 10.1038/srep24526] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/30/2016] [Indexed: 01/02/2023] Open
Abstract
The deposition of fibrillar alpha-synuclein (α-syn) within inclusions (Lewy bodies and Lewy neurites) in neurons and glial cells is a hallmark of synucleinopathies. α-syn populates a variety of assemblies ranging from prefibrillar oligomeric species to fibrils whose specific contribution to neurodegeneration is still unclear. Here, we compare the specific structural and biological properties of distinct soluble prefibrillar α-syn oligomers formed either spontaneously or in the presence of dopamine and glutaraldehyde. We show that both on-fibrillar assembly pathway and distinct dopamine-mediated and glutaraldehyde-cross-linked α-syn oligomers are only slightly effective in perturbing cell membrane integrity and inducing cytotoxicity, while mature fibrils exhibit the highest toxicity. In contrast to low-molecular weight and unstable oligomers, large stable α-syn oligomers seed the aggregation of soluble α-syn within reporter cells although to a lesser extent than mature α-syn fibrils. These oligomers appear elongated in shape. Our findings suggest that α-syn oligomers represent a continuum of species ranging from unstable low molecular weight particles to mature fibrils via stable elongated oligomers composed of more than 15 α-syn monomers that possess seeding capacity.
Collapse
|