101
|
Shokri R, Amjadi M. Boron and nitrogen co-doped carbon dots as a chemiluminescence probe for sensitive assay of rifampicin. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
102
|
Giroux M, Zahra Z, Salawu OA, Burgess RM, Ho KT, Adeleye AS. Assessing the Environmental Effects Related to Quantum Dot Structure, Function, Synthesis and Exposure. ENVIRONMENTAL SCIENCE. NANO 2022; 9:867-910. [PMID: 35401985 PMCID: PMC8992011 DOI: 10.1039/d1en00712b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Quantum dots (QDs) are engineered semiconductor nanocrystals with unique fluorescent, quantum confinement, and quantum yield properties, making them valuable in a range of commercial and consumer imaging, display, and lighting technologies. Production and usage of QDs are increasing, which increases the probability of these nanoparticles entering the environment at various phases of their life cycle. This review discusses the major types and applications of QDs, their potential environmental exposures, fates, and adverse effects on organisms. For most applications, release to the environment is mainly expected to occur during QD synthesis and end-product manufacturing since encapsulation of QDs in these devices prevents release during normal use or landfilling. In natural waters, the fate of QDs is controlled by water chemistry, light intensity, and the physicochemical properties of QDs. Research on the adverse effects of QDs primarily focuses on sublethal endpoints rather than acute toxicity, and the differences in toxicity between pristine and weathered nanoparticles are highlighted. A proposed oxidative stress adverse outcome pathway framework demonstrates the similarities among metallic and carbon-based QDs that induce reactive oxygen species formation leading to DNA damage, reduced growth, and impaired reproduction in several organisms. To accurately evaluate environmental risk, this review identifies critical data gaps in QD exposure and ecological effects, and provides recommendations for future research. Future QD regulation should emphasize exposure and sublethal effects of metal ions released as the nanoparticles weather under environmental conditions. To date, human exposure to QDs from the environment and resulting adverse effects has not been reported.
Collapse
Affiliation(s)
- Marissa Giroux
- U.S. Environmental Protection Agency, ORD/CEMM Atlantic Coastal Environmental Sciences Division, Narragansett, Rhode Island, USA
| | - Zahra Zahra
- Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA 92697-2175, USA
| | - Omobayo A. Salawu
- Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA 92697-2175, USA
| | - Robert M Burgess
- U.S. Environmental Protection Agency, ORD/CEMM Atlantic Coastal Environmental Sciences Division, Narragansett, Rhode Island, USA
| | - Kay T Ho
- U.S. Environmental Protection Agency, ORD/CEMM Atlantic Coastal Environmental Sciences Division, Narragansett, Rhode Island, USA
| | - Adeyemi S Adeleye
- Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA 92697-2175, USA
| |
Collapse
|
103
|
Long-Term Fluorescence Behavior of CdSe/ZnS Quantum Dots on Various Planar Chromatographic Stationary Phases. NANOMATERIALS 2022; 12:nano12050745. [PMID: 35269234 PMCID: PMC8911965 DOI: 10.3390/nano12050745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/07/2022] [Accepted: 02/18/2022] [Indexed: 12/03/2022]
Abstract
Nanoparticles, particularly quantum dots (QDs), are commonly used for the sensitive detection of various objects. A number of target molecules may be determined using QDs sensing systems. Depending on their chemical nature, physicochemical properties, and spatial arrangement, QDs can selectively interact with given molecules of interest. This can be performed in complex systems, including microorganisms or tissues. Efficient fluorescence enables low exposure of QDs and high sensitivity for detection. One disadvantage of quantum dots fluorophores is fluorescence decay. However, for given applications, this property may be an advantage, e.g., for highly sensitive detection based on correlation images in the time domain. This experimental work deals with the measurement of fluorescence decay of Lumidot TMCdSe/ZnS (530 nm) quantum dots. These nanoparticles were transferred to the surface of various planar chromatographic stationary phases. Fluorescence of formed spots was recorded at room temperature over a long period of time, namely 15.7824 × 105 min (three years). The resulting signal profiles in the time domain were analyzed using classical approach (luminescence model comparison involving different mathematical models).Moreover, fluorescence behavior on different TLC/HPTLC supports was investigated using multivariate statistics (principal component analysis, PCA). Eight planar chromatographic stationary phases were investigated, including cellulose, octadecylsilane, polyamide, silica gel and aluminium oxide in different forms (TLC and HPTLC types). The presented research revealed significantly different and non-linear long-term QDs behavior on these solids. Two different fluorescence signal trajectories were recorded, including typical signal decay after QDs application to the plates and long-term intensity increase. This was particularly visible for given planar chromatographic adsorbents, e.g., cellulose or octadecylsilane. To the author’s knowledge, these findings were not reported before using the stationary chromatographic phases, and enable the design of future experiments toward sensing of low molecular mass chemicals using, e.g., advanced quantification approaches. This may include signal processing computations based on correlation images in the time domain. Additionally, the reported preliminary data indicates that the investigated nanoparticles can be applied as efficient and selective fluorophores. This was demonstrated on micro-TLC plates where separated bioactive organic substances quenching from cyanobacteria extracts were sensitively detected. The described detection protocol can be directly applied for different planar chromatographic systems, including paper-based microfluidic devices, planar electrophoresis and/or miniaturized microfluidic chip devices.
Collapse
|
104
|
Sofin RGS, Issac A, Al-Naabi MRS, Zar Myint MT, Htet Kyaw H, Abou-Zied OK. Emission characteristics of carbon films in comparison with solvatochromic effects of carbon nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 266:120442. [PMID: 34601368 DOI: 10.1016/j.saa.2021.120442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Carbon nanoparticles (CNPs) are getting wide attention due to their fluorescence and low level of toxicity compared to other semiconducting photoluminescent materials. CNPs show strong 'solvatochromism', and the emission mechanism is still under discussion. Florescent carbon in the form of films would tremendously increase its potential for applications. In this work, we report for the first time the fluorescent emission characteristics of carbon films formed by aggregation of CNPs. Films of carbon were grown on glass substrates by using a novelCold Vapour Deposition System. We have performed a detailed comparative study of the emission spectra of film and CNPs (prepared using the microwave synthesis method) in various solvents. A qualitative model based on solvatochromism of CNPs is used to understand the emission pathways in the film.
Collapse
Affiliation(s)
- R G S Sofin
- Department of Physics, College of Science, Sultan Qaboos University, Al Khoud, Muscat, Oman.
| | - Abey Issac
- Department of Physics, College of Science, Sultan Qaboos University, Al Khoud, Muscat, Oman
| | - M R S Al-Naabi
- Department of Physics, College of Science, Sultan Qaboos University, Al Khoud, Muscat, Oman
| | - M T Zar Myint
- Department of Physics, College of Science, Sultan Qaboos University, Al Khoud, Muscat, Oman
| | - H Htet Kyaw
- Nanotechnology Research Center, Sultan Qaboos University, Al Khoud, Muscat, Oman
| | - Osama K Abou-Zied
- Department of Chemistry, College of Science, Sultan Qaboos University, Al Khoud, Muscat, Oman
| |
Collapse
|
105
|
Affinity-mediated photoluminescence quenching between metallic ions and surface functional groups of carbon nanodots. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
106
|
Jahani G, Malmir M, Heravi MM. Catalytic Oxidation of Alcohols over a Nitrogen- and Sulfur-Doped Graphitic Carbon Dot-Modified Magnetic Nanocomposite. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ghazaleh Jahani
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, P.O. Box 1993891176 Vanak, Tehran, Iran
| | - Masoume Malmir
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, P.O. Box 1993891176 Vanak, Tehran, Iran
| | - Majid M. Heravi
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, P.O. Box 1993891176 Vanak, Tehran, Iran
| |
Collapse
|
107
|
John BK, Abraham T, Mathew B. A Review on Characterization Techniques for Carbon Quantum Dots and Their Applications in Agrochemical Residue Detection. J Fluoresc 2022; 32:449-471. [DOI: 10.1007/s10895-021-02852-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/22/2021] [Indexed: 01/20/2023]
|
108
|
Tabaraki R, Nazari F. Comparison of Carbon Dots Prepared in Deep Eutectic Solvent and Water/Deep Eutectic Solvent: Study of Fluorescent Detection of Fe 3+ and Cetirizine and their Photocatalytic Antibacterial Activity. J Fluoresc 2022; 32:549-558. [PMID: 34989925 DOI: 10.1007/s10895-021-02875-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 12/17/2021] [Indexed: 01/01/2023]
Abstract
In this study, two solvents (deep eutectic and water/deep eutectic solvents) were used for N-doped carbon dots (N-CDs) preparation by microwave irradiation. The solvent can influence surface chemical composition, quantum yield, morphology, and fluorescence of CDs. N-CDs synthesized in water/deep eutectic solvent (DES) had better quantum yield (24.5%) with respect to N-CDs synthesized in deep eutectic solvent (17.4%). These carbon dots were used as a rapid and high sensitive "off-on" fluorescent probe for the determination of Fe3+ ion and cetirizine. Morphology and structure of the N-CDs were characterized by FT-IR, UV-Vis, XRD and TEM. Linear range and detection limit for N-CDs synthesis in deep eutectic solvent for cetirizine were 0.08-48 µM and 15 nM, respectively and for N-CDs synthesis in water/deep eutectic solvent were 0.03-50 µM and 10 nM, respectively. Applicability of this nanoprobe was tested in cetirizine determination in serum sample. Antibacterial activities of the two synthesized N-CDs were also investigated using agar disk diffusion method.
Collapse
Affiliation(s)
- Reza Tabaraki
- Department of Chemistry, Faculty of Science, Ilam University, Ilam, Iran.
| | - Fereshteh Nazari
- Department of Chemistry, Faculty of Science, Ilam University, Ilam, Iran
| |
Collapse
|
109
|
Kainth S, Goel N, Basu S, Maity B. Surfactant-derived water-soluble carbon dots for quantitative determination of fluoride via a turn-off–on strategy. NEW J CHEM 2022. [DOI: 10.1039/d1nj04838d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Surfactants play a vital role as precursors for achieving carbon cores, heteroatom π-systems, and stability in carbon dots (CDs).
Collapse
Affiliation(s)
- Shagun Kainth
- School of Chemistry and Biochemistry, Affiliate Faculty-TIET-Virginia Tech Center of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala-147004, India
| | - Neha Goel
- School of Chemistry and Biochemistry, Affiliate Faculty-TIET-Virginia Tech Center of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala-147004, India
| | - Soumen Basu
- School of Chemistry and Biochemistry, Affiliate Faculty-TIET-Virginia Tech Center of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala-147004, India
| | - Banibrata Maity
- School of Chemistry and Biochemistry, Affiliate Faculty-TIET-Virginia Tech Center of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala-147004, India
| |
Collapse
|
110
|
Liu X, Yang Z, Yang Y, Li H. Carbon quantum dots sensitized 2D/2D carbon nitride nanosheets/bismuth tungstate for visible light photocatalytic degradation norfloxacin. CHEMOSPHERE 2022; 287:132126. [PMID: 34492407 DOI: 10.1016/j.chemosphere.2021.132126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
A novel carbon quantum dots (CQDs) sensitized 2D/2D carbon nitride nanosheets and bismuth tungstate composite (CQD-CNs/BWO) was successfully prepared via the facile hydrothermal method and used for the photocatalytic degradation of norfloxacin (NOR). During 120 min irradiation test, CQD-CNs/BWO exhibited 9 and 1.76 times higher photocatalytic activity than CNs and BWO, respectively. CQDs and constructed 2D/2D structure could not only improve the light harvesting but also promote the generation and separation of electron-holes. The existing inorganic ions in solution (e.g. bicarbonate ions, chlorine ions, and sulfate ions) could inhibit NOR degradation. Based on the electron spin resonance and free radicals inhibition tests, the holes and superoxide radicals rather than hydroxyl radicals were the main reactive species. The intermediates and possible pathways were proposed, and the antibacterial activity of the treated solution after the reaction was evaluated via bacteriostatic tests. The prepared composite material with high photocatalytic activity and stability is potentially effective for the degradation of antibiotics in wastewater.
Collapse
Affiliation(s)
- Xinghao Liu
- Center for Environment and Water Resource, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, PR China
| | - Zhaoguang Yang
- Center for Environment and Water Resource, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, PR China
| | - Ying Yang
- Center for Environment and Water Resource, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, PR China.
| | - Haipu Li
- Center for Environment and Water Resource, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, PR China.
| |
Collapse
|
111
|
Wang P, Ji H, Guo S, Zhang Y, Yan Y, Wang K, Xing J, Dong Y. One-pot synthesis of nuclear targeting carbon dots with high photoluminescence. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.05.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
112
|
Verma C, Alfantazi A, Quraishi M. Quantum dots as ecofriendly and aqueous phase substitutes of carbon family for traditional corrosion inhibitors: A perspective. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
113
|
Carbon dots-peroxyoxalate micelle as a highly luminous chemiluminescence system under physiological conditions. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.05.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
114
|
Xiao D, Qi H, Teng Y, Pierre D, Kutoka PT, Liu D. Advances and Challenges of Fluorescent Nanomaterials for Synthesis and Biomedical Applications. NANOSCALE RESEARCH LETTERS 2021; 16:167. [PMID: 34837561 PMCID: PMC8626755 DOI: 10.1186/s11671-021-03613-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/28/2021] [Indexed: 05/18/2023]
Abstract
With the rapid development of nanotechnology, new types of fluorescent nanomaterials (FNMs) have been springing up in the past two decades. The nanometer scale endows FNMs with unique optical properties which play a critical role in their applications in bioimaging and fluorescence-dependent detections. However, since low selectivity as well as low photoluminescence efficiency of fluorescent nanomaterials hinders their applications in imaging and detection to some extent, scientists are still in search of synthesizing new FNMs with better properties. In this review, a variety of fluorescent nanoparticles are summarized including semiconductor quantum dots, carbon dots, carbon nanoparticles, carbon nanotubes, graphene-based nanomaterials, noble metal nanoparticles, silica nanoparticles, phosphors and organic frameworks. We highlight the recent advances of the latest developments in the synthesis of FNMs and their applications in the biomedical field in recent years. Furthermore, the main theories, methods, and limitations of the synthesis and applications of FNMs have been reviewed and discussed. In addition, challenges in synthesis and biomedical applications are systematically summarized as well. The future directions and perspectives of FNMs in clinical applications are also presented.
Collapse
Affiliation(s)
- Deli Xiao
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China
- Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing, 210009, China
| | - Haixiang Qi
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Yan Teng
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Dramou Pierre
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | | | - Dong Liu
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, School of Biological and Pharmaceutical Engineering, West Anhui University, West of Yunlu Bridge, Moon Island, Lu'an, 237012, Anhui, China.
| |
Collapse
|
115
|
Quasi-solid, bio-renewable supercapacitor with high specific capacitance and energy density based on rice electrolytes and rice straw-derived carbon dots as novel electrolyte additives. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127239] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
116
|
Wareing TC, Gentile P, Phan AN. Biomass-Based Carbon Dots: Current Development and Future Perspectives. ACS NANO 2021; 15:15471-15501. [PMID: 34559522 DOI: 10.1021/acsnano.1c03886] [Citation(s) in RCA: 210] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Carbon dots have been considered as a solution to the challenges that semiconductor quantum dots have encountered because they are more biocompatible and can be synthesized from abundant and nontoxic materials such as biomass. This review will highlight the advantages of these biomass-based carbon dots in terms of synthesis, properties, and applications in the biomedical field. Furthermore, future applications especially in the biomedical field of biomass-based carbon dots as well as the challenges of semiconductor quantum dots such as biocompatibility, photobleaching, environmental challenges, toxicity, and poor solubility will be discussed in detail. Biomass-derived quantum dots, a subsection of carbon dots that are the most desirable for future research, will be focused upon including from synthesis to applications. Finally, the future development of biomass derived quantum dots in the biomedical field will be discussed and evaluated to unlock the potential for their applications.
Collapse
Affiliation(s)
- Thomas C Wareing
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Piergiorgio Gentile
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Anh N Phan
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| |
Collapse
|
117
|
Liang L, Veksha A, Mohamed Amrad MZB, Snyder SA, Lisak G. Upcycling of exhausted reverse osmosis membranes into value-added pyrolysis products and carbon dots. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126472. [PMID: 34186428 DOI: 10.1016/j.jhazmat.2021.126472] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Polymeric reverse osmosis (RO) membranes are widely used worldwide for production of fresh water from various sources, primarily ocean desalination. However, with limited service life, exhausted RO membrane modules often end up as plastic wastes disposed of predominantly by landfilling. It is imperative to find a feasible way to upcycle end-of-life RO membrane modules into valuable products. In this paper, the feasibility of RO membrane recycling via pyrolysis and subsequent conversion of resulting char into carbon dots (CDs) through H2O2-assisted hydrothermal method was investigated. RO membrane module pyrolysis at 600 °C produced oil (28 wt%), non-condensable gas (17 wt%), and char (22 wt%). While oil and gas can serve as fuel and chemical feedstock due to rich hydrocarbon content, char was found a suitable precursor for the synthesis of functional CDs. The resulting CDs doped with N (4.8%) and S (1.8%) exhibited excellent water dispersibility, narrow size distribution of 1.3-6.8 nm, high stability, and strong blue fluorescence with a quantum yield of 6.24%. CDs demonstrated high selectivity and sensitivity towards Fe3+ in the range of 0-100 μM with the limit of detection of 2.97 μM and were capable of determining Fe3+ in real water samples (tap water and pond water).
Collapse
Affiliation(s)
- Lili Liang
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798; Interdisciplinary Graduate Program, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore 637141; Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore 637141
| | - Andrei Veksha
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore 637141
| | | | - Shane Allen Snyder
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798; Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore 637141
| | - Grzegorz Lisak
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798; Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore 637141.
| |
Collapse
|
118
|
Choppadandi M, Guduru AT, Gondaliya P, Arya N, Kalia K, Kumar H, Kapusetti G. Structural features regulated photoluminescence intensity and cell internalization of carbon and graphene quantum dots for bioimaging. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 129:112366. [PMID: 34579885 DOI: 10.1016/j.msec.2021.112366] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/28/2021] [Accepted: 08/09/2021] [Indexed: 11/17/2022]
Abstract
Carbon-based nanostructures with nanometer dimensions have been identified as potential photoluminescence probes for bioimaging due to their biocompatibility, tunable bandgap, and resistance to photobleaching. However, the influence of structural features of carbon quantum dots (CQDs) and graphene quantum dots (GQDs) in bioimaging has not been explored previously. In the present investigation, we elucidated the mechanism of higher PL in GQDs as compared to CQDs as a function of their structural features. TEM and AFM studies revealed that CQDs were spherical (size ~5 nm), while GQDs showed zigzag edges (size ~3 nm). Further, XRD and NMR studies confirmed that CQDs and GQDs show amorphous and crystalline structures with greater sp2 clusters, respectively. While both the QDs demonstrated multicolor fluorescence against variable excitations with similar lifetime, GQDs showed 7-fold higher QY than CQDs. Bioimaging studies in 2D cell culture, 3D tumoroids, and in vivo suggested a greater intensity of fluorescence in GQDs than CQDs. Additionally, rapid cell internalization was observed in GQDs owing to their positive surface potential by heterogeneous atomic (N and S) doping. Moreover, both CQDs and GQDs have demonstrated better time dependent stability for fluorescence properties. Taken together, the proposed mechanism elucidates the greater PL intensity in GQDs due to quantum confinement effect, crystallinity, and surface edge effects and is a better candidate for bioimaging amongst the carbon family.
Collapse
Affiliation(s)
- Mounika Choppadandi
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Aditya Teja Guduru
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Piyush Gondaliya
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Neha Arya
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Kiran Kalia
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Govinda Kapusetti
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India.
| |
Collapse
|
119
|
Mansuriya BD, Altintas Z. Carbon Dots: Classification, Properties, Synthesis, Characterization, and Applications in Health Care-An Updated Review (2018-2021). NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2525. [PMID: 34684966 PMCID: PMC8541690 DOI: 10.3390/nano11102525] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
Carbon dots (CDs) are usually smaller than 10 nm in size, and are meticulously formulated and recently introduced nanomaterials, among the other types of carbon-based nanomaterials. They have gained significant attention and an incredible interest in the field of nanotechnology and biomedical science, which is merely due to their considerable and exclusive attributes; including their enhanced electron transferability, photobleaching and photo-blinking effects, high photoluminescent quantum yield, fluorescence property, resistance to photo-decomposition, increased electrocatalytic activity, good aqueous solubility, excellent biocompatibility, long-term chemical stability, cost-effectiveness, negligible toxicity, and acquaintance of large effective surface area-to-volume ratio. CDs can be readily functionalized owing to the abundant functional groups on their surfaces, and they also exhibit remarkable sensing features such as specific, selective, and multiplex detectability. In addition, the physico-chemical characteristics of CDs can be easily tunable based on their intended usage or application. In this comprehensive review article, we mainly discuss the classification of CDs, their ideal properties, their general synthesis approaches, and primary characterization techniques. More importantly, we update the readers about the recent trends of CDs in health care applications (viz., their substantial and prominent role in the area of electrochemical and optical biosensing, bioimaging, drug/gene delivery, as well as in photodynamic/photothermal therapy).
Collapse
Affiliation(s)
| | - Zeynep Altintas
- Institute of Chemistry, Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany;
| |
Collapse
|
120
|
Khayal A, Dawane V, Amin MA, Tirth V, Yadav VK, Algahtani A, Khan SH, Islam S, Yadav KK, Jeon BH. Advances in the Methods for the Synthesis of Carbon Dots and Their Emerging Applications. Polymers (Basel) 2021; 13:3190. [PMID: 34578091 PMCID: PMC8469539 DOI: 10.3390/polym13183190] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 01/11/2023] Open
Abstract
Cutting-edge technologies are making inroads into new areas and this remarkable progress has been successfully influenced by the tiny level engineering of carbon dots technology, their synthesis advancement and impressive applications in the field of allied sciences. The advances of science and its conjugation with interdisciplinary fields emerged in carbon dots making, their controlled characterization and applications into faster, cheaper as well as more reliable products in various scientific domains. Thus, a new era in nanotechnology has developed into carbon dots technology. The understanding of the generation process, control on making processes and selected applications of carbon dots such as energy storage, environmental monitoring, catalysis, contaminates detections and complex environmental forensics, drug delivery, drug targeting and other biomedical applications, etc., are among the most promising applications of carbon dots and thus it is a prominent area of research today. In this regard, various types of carbon dot nanomaterials such as oxides, their composites and conjugations, etc., have been garnering significant attention due to their remarkable potential in this prominent area of energy, the environment and technology. Thus, the present paper highlights the role and importance of carbon dots, recent advancements in their synthesis methods, properties and emerging applications.
Collapse
Affiliation(s)
- Areeba Khayal
- Industrial Chemistry Section, Aligarh Muslim University, Aligarh 202002, India;
| | - Vinars Dawane
- School of Environment and Sustainable Development, Central University of Gujarat, Gandhinagar 382030, India;
| | - Mohammed A. Amin
- Department of Chemistry, College of Science, Taif University, Taif 21944, Saudi Arabia;
| | - Vineet Tirth
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha 61411, Saudi Arabia or (V.T.); (A.A.)
- Research Center for Advanced Materials Science (RCAMS), King Khalid University Guraiger, Abha 61413, Saudi Arabia
| | | | - Ali Algahtani
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha 61411, Saudi Arabia or (V.T.); (A.A.)
- Research Center for Advanced Materials Science (RCAMS), King Khalid University Guraiger, Abha 61413, Saudi Arabia
| | - Samreen Heena Khan
- Centre of Research and Development, YNC ENVIS PRIVATE LIMITED, New Delhi 110059, India;
| | - Saiful Islam
- Civil Engineering Department, College of Engineering, King Khalid University, Abha 61413, Saudi Arabia;
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad 462044, India;
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
121
|
Gunjal DB, Walekar LS, Pawar SP, Anbhule PV, Mali MG, Dhulap VP, Sohn D, Mahajan PG, Lee KH, Shejwal RV, Kolekar GB. Sawmill waste derived carbon dots as a fluorescent probe for synthetic dyes in soft drinks. Sci Rep 2021; 11:17996. [PMID: 34504276 PMCID: PMC8429643 DOI: 10.1038/s41598-021-97552-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/07/2021] [Indexed: 12/03/2022] Open
Abstract
Herein, for the first time the carbon dots (CDs) were synthesized by reflux method from sawmill waste material. We also represent a novel strategy based on fluorescent CDs for determination of ponceau 4R and allura red dyes in soft drinks. Interestingly, both the dyes were sensitive and showed effective fluorescence quenching of the CDs owing to the interaction between them. The analytical applicability of CDs were evaluated for detection of both the dyes with a good linear relationship between the concentration range of 0.0 to 3.0 µg mL-1 and having detection limit 0.45 and 0.47 µg mL-1 for allura red and ponceau 4R dyes respectively. Meanwhile, the potential application of this novel fluorescent probe for dyes determination in real samples was validated in different soft drink samples with good accuracy and precision. Thus, these findings provides new insights for the potential risk assessment of both the dyes. Moreover, CDs acted as an excellent fluorescent material in cellular imaging owing to their cellular uptake and localization.
Collapse
Affiliation(s)
- Datta B Gunjal
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur, Maharashtra, 416004, India
- Department of Chemistry, Lal Bahadur Shastri College of Arts, Science and Commerce, Satara, Maharashtra, 415002, India
| | - Laxman S Walekar
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur, Maharashtra, 416004, India
| | - Samadhan P Pawar
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur, Maharashtra, 416004, India
| | - Prashant V Anbhule
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur, Maharashtra, 416004, India
| | - Mukund G Mali
- School of Chemical Sciences, Punyashlok Ahilyadevi Holkar, Solapur University, Solapur, Maharashtra, 413255, India
| | - Vinayak P Dhulap
- School of Earth Sciences, Punyashlok Ahilyadevi Holkar, Solapur University, Solapur, Maharashtra, 413255, India
| | - Daewon Sohn
- Department of Chemistry and the Research Institute for Convergence of Basic Science, Hanyang University, Seoul, 04763, Republic of Korea
| | - Prasad G Mahajan
- Vidya Prathisthan's Arts, Commerce and Science College, Vidyanagari, Baramati, Maharashtra, 413133, India
| | - Ki Hwan Lee
- Department of Chemistry, Kongju National University, Gongju, Chungnam, 32588, Republic of Korea
| | - Rajendra V Shejwal
- Department of Chemistry, Lal Bahadur Shastri College of Arts, Science and Commerce, Satara, Maharashtra, 415002, India.
| | - Govind B Kolekar
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur, Maharashtra, 416004, India.
| |
Collapse
|
122
|
Out-of-Phase Imaging after Optical Modulation (OPIOM) for Multiplexed Fluorescence Imaging Under Adverse Optical Conditions. Methods Mol Biol 2021; 2350:191-227. [PMID: 34331287 DOI: 10.1007/978-1-0716-1593-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fluorescence imaging has become a powerful tool for observations in biology. Yet it has also encountered limitations to overcome optical interferences of ambient light, autofluorescence, and spectrally interfering fluorophores. In this account, we first examine the current approaches which address these limitations. Then we more specifically report on Out-of-Phase Imaging after Optical Modulation (OPIOM), which has proved attractive for highly selective multiplexed fluorescence imaging even under adverse optical conditions. After exposing the OPIOM principle, we detail the protocols for successful OPIOM implementation.
Collapse
|
123
|
Ultrasensitive and label-free electrochemical aptasensor based on carbon dots-black phosphorus nanohybrid for the detection of Ochratoxins A. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106378] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
124
|
Chauvin A, Sergievskaya A, Fucikova A, Corrêa CA, Vesely J, Cornil J, Cornil D, Dopita M, Konstantinidis S. Insights into the growth of nanoparticles in liquid polyol by thermal annealing. NANOSCALE ADVANCES 2021; 3:4780-4789. [PMID: 36134317 PMCID: PMC9418955 DOI: 10.1039/d1na00222h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/28/2021] [Indexed: 05/20/2023]
Abstract
We report on the growth of metal- and metal-oxide based nanoparticles (NPs) in heated polyol solutions. For this purpose, NPs are produced by the sputtering of a silver, gold, or a copper target to produce either silver, gold, or copper oxide NPs in pentaerythritol ethoxylate (PEEL) which has been annealed up to 200 °C. The objective of the annealing step is the fine modulation of their size. Thus, the evolution of the NP size and shape after thermal annealing is explained according to collision/coalescence kinetics and the affinity between the metal-/metal-oxide and PEEL molecule. Moreover, highlights of few phenomena arising from the annealing step are described such as (i) the reduction of copper oxide into copper by the polyol process and (ii) the effective formation of carbon dots after annealing at 200 °C.
Collapse
Affiliation(s)
- Adrien Chauvin
- Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University Ke Karlovu 5 121 16 Praha 2 Czech Republic
- Chimie des Interactions Plasma-Surface (ChIPS), University of Mons Place du Parc 20 7000 Mons Belgium
| | - Anastasiya Sergievskaya
- Chimie des Interactions Plasma-Surface (ChIPS), University of Mons Place du Parc 20 7000 Mons Belgium
| | - Anna Fucikova
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University Ke Karlovu 5 121 16 Praha 2 Czech Republic
| | - Cinthia Antunes Corrêa
- Institute of Physics of the Czech Academy of Sciences Cukrovarnická 10/112 162 00 Prague 6 Czech Republic
- Department of Physics of Materials, Faculty of Mathematics and Physics, Charles University Ke Karlovu 5 121 16 Praha 2 Czech Republic
| | - Jozef Vesely
- Department of Physics of Materials, Faculty of Mathematics and Physics, Charles University Ke Karlovu 5 121 16 Praha 2 Czech Republic
| | - Jérôme Cornil
- Laboratory for Chemistry of Novel Materials (CMN), University of Mons Place du Parc 20 Mons 7000 Belgium
| | - David Cornil
- Laboratory for Chemistry of Novel Materials (CMN), University of Mons Place du Parc 20 Mons 7000 Belgium
| | - Milan Dopita
- Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University Ke Karlovu 5 121 16 Praha 2 Czech Republic
| | - Stephanos Konstantinidis
- Chimie des Interactions Plasma-Surface (ChIPS), University of Mons Place du Parc 20 7000 Mons Belgium
| |
Collapse
|
125
|
Ramoğlu B, Gümrükçüoğlu A, Çekirge E, Ocak M, Ocak Ü. One Spot Microwave Synthesis and Characterization of Nitrogen-Doped Carbon Dots with High Oxygen Content for Fluorometric Determination of Banned Sudan II Dye in Spice Samples. J Fluoresc 2021; 31:1587-1598. [PMID: 34342798 DOI: 10.1007/s10895-021-02795-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
A simple microwave-assisted synthesis of nitrogen-doped carbon dots with high oxygen content (O-N-CDs) was carried out with citric acid as a carbon source and 2,4-diamino-6-methyl-1,3,5-triazine as a nitrogen source in triethylene glycol (TEG) media. It was determined by SEM analysis that O-N-CDs consisted of particles of different sizes and shapes. Transmission electron microscopy (TEM), Raman spectroscopy, and X-ray diffraction (XRD) analysis confirmed that O-N-CDs have a graphitic structure. Moreover, they showed a high fluorescence property based on the excitation wavelength. Therefore, a new fluorometric method was developed for the determination of banned food dye Sudan II by using the O-N-CDs. The proposed method was used in the determination of Sudan II in spiked spice samples. The detection limit was 0.6 mg L-1 and the linear range was 0-8 mg L-1.
Collapse
Affiliation(s)
- Bahtışen Ramoğlu
- Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Abidin Gümrükçüoğlu
- Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Ender Çekirge
- Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Miraç Ocak
- Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Ümmühan Ocak
- Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, 61080, Trabzon, Turkey.
| |
Collapse
|
126
|
Yue J, Li L, Jiang C, Mei Q, Dong WF, Yan R. Riboflavin-based carbon dots with high singlet oxygen generation for photodynamic therapy. J Mater Chem B 2021; 9:7972-7978. [PMID: 34338706 DOI: 10.1039/d1tb01291f] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Photodynamic therapy, as an effective treatment for superficial tumors, has attracted more and more attention. The development of safe, biocompatible and in vivo photosensitive materials is helpful to promote photodynamic therapy. Here we report green fluorescent carbon quantum dots prepared from a natural vitamin, riboflavin (VB2), as a photosensitizer. The VB2-based carbon dots have excellent water solubility and biocompatibility, and their singlet oxygen generation ability is much stronger than that of riboflavin itself. Through endocytosis, the carbon dots can easily enter the cells and show bright green fluorescence. In vivo experiments show that after photodynamic therapy the carbon dots can significantly inhibit the growth of tumors, and will not have toxic and side effects on other organs.
Collapse
Affiliation(s)
- Juan Yue
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, P. R. China and The Affiliated Suzhou Science & Technology Town Hospital of Nanjing Medical University, Suzhou 215153, P. R. China. and CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), 88 Keling Road, Suzhou 215163, P. R. China.
| | - Li Li
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), 88 Keling Road, Suzhou 215163, P. R. China.
| | - Chenyu Jiang
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), 88 Keling Road, Suzhou 215163, P. R. China. and Jinan Guokeyigong Science and Technology Development Co., Ltd, Jinan 250103, P. R. China.
| | - Qian Mei
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), 88 Keling Road, Suzhou 215163, P. R. China.
| | - Wen-Fei Dong
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), 88 Keling Road, Suzhou 215163, P. R. China. and Jinan Guokeyigong Science and Technology Development Co., Ltd, Jinan 250103, P. R. China.
| | - Ruhong Yan
- The Affiliated Suzhou Science & Technology Town Hospital of Nanjing Medical University, Suzhou 215153, P. R. China. and CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), 88 Keling Road, Suzhou 215163, P. R. China.
| |
Collapse
|
127
|
Mohandoss S, Palanisamy S, Priya VV, Mohan SK, Shim JJ, Yelithao K, You S, Lee YR. Excitation-dependent multiple luminescence emission of nitrogen and sulfur co-doped carbon dots for cysteine sensing, bioimaging, and photoluminescent ink applications. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106280] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
128
|
Khaledian S, Noroozi-Aghideh A, Kahrizi D, Moradi S, Abdoli M, Ghasemalian AH, Heidari MF. Rapid detection of diazinon as an organophosphorus poison in real samples using fluorescence carbon dots. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108676] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
129
|
Ge G, Li L, Wang D, Chen M, Zeng Z, Xiong W, Wu X, Guo C. Carbon dots: synthesis, properties and biomedical applications. J Mater Chem B 2021; 9:6553-6575. [PMID: 34328147 DOI: 10.1039/d1tb01077h] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Carbon dots (CDs) are a new type of carbon nanomaterial that have unique physical and chemical properties, good biocompatibility, low toxicity, and easy surface functionalization, making them widely used in biological imaging, environmental monitoring, chemical analysis, targeted drug delivery, disease diagnosis, therapy, etc. In this review, our content is mainly divided into four parts. In the first part, we focused on the preparation methods of CDs, including arc discharge, laser ablation, electrochemical oxidation, chemical oxidation, combustion, hydrothermal/solvent thermal, microwave, template, method etc. Next, we summarized methods of CD modification, including heteroatom doping and surface functionalization. Then, we discussed the optical properties of CDs (ultraviolet absorption, photoluminescence, up-conversion fluorescence, etc.). Lastly, we reviewed the common applications of CDs in biomedicine from the aspects of in vivo and in vitro imaging, sensors, drug delivery, cancer theranostics, etc. Furthermore, we also discussed the existing problems and the future development direction of CDs.
Collapse
Affiliation(s)
- Guili Ge
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410008, China.
| | | | | | | | | | | | | | | |
Collapse
|
130
|
Lu Z, Giles LW, Tabor RF, Teo BM. Norepinephrine derived carbon dots for live-cell imaging and effective hemoglobin determination. SOFT MATTER 2021; 17:6765-6772. [PMID: 34196338 DOI: 10.1039/d1sm00791b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Recently, carbon dots (CDs) have attracted wide attention for their potential use as fluorescence probes in biological and analytical chemistry due to their great stability and high fluorescence quantum yields. In our work, norepinephrine (NE)-derived CDs with green luminescence and an average size of 10 nm were fabricated using a one-step hydrothermal route. As-prepared CDs show a strong emission at a wavelength of 520 nm when excited at 420 nm, and demonstrate pH and concentration dependent fluorescence behaviour. Multiple functional groups on the CDs allow their protonation/deprotonation and thus alter fluorescence intensity and peak position in different pH conditions. Prepared CDs show significant potential to be used as a live-cell imaging agent with long-term photostability. Furthermore, a simple but effective method to determine the concentration of hemoglobin (Hb) in diluted human blood samples was also developed based on the inner filter effect (IFE). The method demonstrates good linearity from 0.01-10 μM, with a limit of determination (LOD) of 52 nM.
Collapse
Affiliation(s)
- Zhenzhen Lu
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia.
| | - Luke W Giles
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia.
| | - Rico F Tabor
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia.
| | - Boon Mian Teo
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
131
|
Xu J, Tao J, Su L, Wang J, Jiao T. A Critical Review of Carbon Quantum Dots: From Synthesis toward Applications in Electrochemical Biosensors for the Determination of a Depression-Related Neurotransmitter. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3987. [PMID: 34300909 PMCID: PMC8307216 DOI: 10.3390/ma14143987] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/08/2021] [Accepted: 07/14/2021] [Indexed: 01/03/2023]
Abstract
Depression has become the leading cause of disability worldwide and is a global health burden. Quantitative assessment of depression-related neurotransmitter concentrations in human fluids is highly desirable for diagnosis, monitoring disease, and therapeutic interventions of depression. In this review, we focused on the latest strategies of CD-based electrochemical biosensors for detecting a depression-related neurotransmitter. We began this review with an overview of the microstructure, optical properties and cytotoxicity of CDs. Next, we introduced the development of synthetic methods of CDs, including the "Top-down" route and "Bottom-up" route. Finally, we highlighted detecting an application of CD-based electrochemical sensors in a depression-related neurotransmitter. Moreover, challenges and future perspectives on the recent progress of CD-based electrochemical sensors in depression-related neurotransmitter detection were discussed.
Collapse
Affiliation(s)
- Jingying Xu
- Mental Health Service Center and College of Marxism, Yanshan University, Qinhuangdao 066004, China; (J.X.); (J.T.)
| | - Jiangang Tao
- Mental Health Service Center and College of Marxism, Yanshan University, Qinhuangdao 066004, China; (J.X.); (J.T.)
| | - Lili Su
- Li Ren College, Yanshan University, Qinhuangdao 066004, China;
| | - Jidong Wang
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Tifeng Jiao
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
132
|
Wang FT, Wang LN, Xu J, Huang KJ, Wu X. Synthesis and modification of carbon dots for advanced biosensing application. Analyst 2021; 146:4418-4435. [PMID: 34195700 DOI: 10.1039/d1an00466b] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There has been an explosion of interest in the use of nanomaterials for biosensing applications, and carbonaceous nanomaterials in particular are at the forefront of this explosion. Carbon dots (CDs), a new type of carbon material, have attracted extensive attention due to their fascinating properties, such as small particle size, tunable optical properties, good conductivity, low cytotoxicity, and good biocompatibility. These properties have enabled them to be highly promising candidates for the fabrication of various high-performance biosensors. In this review, we summarize the top-down and bottom-up synthesis routes of CDs, highlight their modification strategies, and discuss their applications in the fields of photoluminescence biosensors, electrochemiluminescence biosensors, chemiluminescence biosensors, electrochemical biosensors and fluorescence biosensors. In addition, the challenges and future prospects of the application of CDs for biosensors are also proposed.
Collapse
Affiliation(s)
- Fu-Ting Wang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China.
| | - Li-Na Wang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China.
| | - Jing Xu
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China.
| | - Ke-Jing Huang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China.
| | - Xu Wu
- College of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|
133
|
Chen X, Sui X, Lu S, Qu Y, Liu T, Wang T. Preparation of carbon dots-based nanoparticles and their research of bioimaging and targeted antitumor therapy. J Biomed Mater Res B Appl Biomater 2021; 110:220-228. [PMID: 34231969 DOI: 10.1002/jbm.b.34905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/23/2021] [Accepted: 06/27/2021] [Indexed: 11/08/2022]
Abstract
Carbon dots (CDs) are nanomaterials with excellent photoluminescence property, usually used in the field of bioimaging tumor cells. However, its practical applicability in cancer therapeutics is limited by CDs' insensitive surface properties to complicated tumor microenvironment in vivo. Herein, a new type of innovative biomimetic nanoparticles has been formed with HeLa cell membranes (CM) and multifunctional CDs containing antitumor and bioimaging activities. The CDs are prepared by a facile one-step microwave-assisted procedure. Gallic acid is used as carbon resource and antitumor active molecule. Gelatin is treated as the nitrogen resource. Citric acid monohydrate is used as the auxiliary carbon source and the Hela CM is used for tumor targeting. A series of fluorescence analyses has proved its homotypic targeting and ability of diagnosis. Besides, in vitro and in vivo antitumor experiments further indicate their better antitumor efficiency. The findings show the totally new nanoparticles' feasibilities of dealing with the clinical therapy problems as well as applying for the integration of diagnosis and targeting therapy.
Collapse
Affiliation(s)
- Xuan Chen
- College of Chemistry, Chemical Engineering and Resources Utilization, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Xiaoyu Sui
- College of Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Shuting Lu
- College of Chemistry, Chemical Engineering and Resources Utilization, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Yanmei Qu
- College of Chemistry, Chemical Engineering and Resources Utilization, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Tingting Liu
- College of Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Ting Wang
- College of Chemistry, Chemical Engineering and Resources Utilization, Northeast Forestry University, Harbin, Heilongjiang, China
| |
Collapse
|
134
|
Hagiwara K, Horikoshi S, Serpone N. Photoluminescent Carbon Quantum Dots: Synthetic Approaches and Photophysical Properties. Chemistry 2021; 27:9466-9481. [PMID: 33877732 DOI: 10.1002/chem.202100823] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Indexed: 12/22/2022]
Abstract
A number of synthetic methodologies and applications of carbon quantum dots (CQDs) have been reported since they were first discovered nearly two decades ago. Unlike metal-based or semiconductor-based (e. g., metal chalcogenides) quantum dots (MSQDs), CQDs have the unique feature of being prepared through a variety of synthetic protocols, which are typically understood from considerations of reaction models and photoluminescence mechanisms. Consequently, this brief review article describes quantum dots, in general, and CQDs, in particular, from various viewpoints: (i) their definition, (ii) their photophysical properties, and (iii) the superiority of CQDs over MSQDs. Where possible, comparisons are made between CQDs and MSQDs. First, however, the review begins with a general brief description of quantum dots (QDs) as nanomaterials (sizes≤10 nm), followed by a short description of MSQDs and CQDs. Described subsequently are the various top-down and bottom-up approaches to synthesize CQDs followed by their distinctive photophysical properties (emission spectra; quantum yields, Φs).
Collapse
Affiliation(s)
- Kenta Hagiwara
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyodaku, Tokyo, 102-8552, Japan
| | - Satoshi Horikoshi
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyodaku, Tokyo, 102-8552, Japan
| | - Nick Serpone
- PhotoGreen Laboratory, Dipartimento di Chimica, Università degli Studi di Pavia, via Taramelli 12, Pavia, 27100, Italy
| |
Collapse
|
135
|
Cao X, Pan X, Couvillion SP, Zhang T, Tamez C, Bramer LM, White JC, Qian WJ, Thrall BD, Ng KW, Hu X, Demokritou P. Fate, cytotoxicity and cellular metabolomic impact of ingested nanoscale carbon dots using simulated digestion and a triculture small intestinal epithelial model. NANOIMPACT 2021; 23:100349. [PMID: 34514184 PMCID: PMC8428805 DOI: 10.1016/j.impact.2021.100349] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 05/15/2023]
Abstract
Carbon dots (CDs) are a promising material currently being explored in many industrial applications in the biomedical and agri-food areas; however, studies supporting the environmental health risk assessment of CDs are needed. This study focuses on various CD forms including iron (FeCD) and copper (CuCD) doped CDs synthesized using hydrothermal method, their fate in gastrointestinal tract, and their cytotoxicity and potential changes to cellular metabolome in a triculture small intestinal epithelial model. Physicochemical characterization revealed that 75% of Fe in FeCD and 95% of Cu in CuCD were dissolved during digestion. No significant toxic effects were observed for pristine CDs and FeCDs. However, CuCD induced significant dose-dependent toxic effects including decreases in TEER and cell viability, increases in cytotoxicity and ROS production, and alterations in important metabolites, including D-glucose, L-cysteine, uridine, citric acid and multiple fatty acids. These results support the current understanding that pristine CDs are relatively non-toxic and the cytotoxicity is dependent on the doping molecules.
Collapse
Affiliation(s)
- Xiaoqiong Cao
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard School of Public Health, 655 Huntington Ave Boston, MA 02115, USA
| | - Xiaoyong Pan
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Sneha P. Couvillion
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Tong Zhang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Carlos Tamez
- Department of Analytical Chemistry, Connecticut Agricultural Experiment Station, New Haven, CT 06504, USA
| | - Lisa M. Bramer
- National Security Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jason C. White
- Department of Analytical Chemistry, Connecticut Agricultural Experiment Station, New Haven, CT 06504, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Brian D. Thrall
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Kee Woei Ng
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard School of Public Health, 655 Huntington Ave Boston, MA 02115, USA
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
- Environmental Chemistry and Materials Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore 637141
| | - Xiao Hu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
- Environmental Chemistry and Materials Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore 637141
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard School of Public Health, 655 Huntington Ave Boston, MA 02115, USA
| |
Collapse
|
136
|
Synthesis, Characterization and Ecotoxicity Evaluation of Biochar-Derived Carbon Dots from Spruce Tree, Purple Moor-Grass and African Oil Palm. Processes (Basel) 2021. [DOI: 10.3390/pr9071095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Biochar-derived C-Dots from Picea, Molinia caerulea and Elaeis guineensis were synthesized through a hydrothermal process, and their physicochemical and optical characteristics and environmental effects were compared. These C-Dots were characterized by techniques such as Attenuated Total Reflection–Fourier Transform Infrared (ATR-FTIR), UV-Vis spectrophotometry, fluorescence spectroscopy, dynamic light scattering (DLS), Z potential, and High-Resolution Transmission Electronical Microscopy (HR-TEM). The ecotoxicity tests were performed using the Microtox™ test, making this study one of the few that use this method. The C-Dots from Molinia caerulea showed the best quantum yield (QY) of 8.39% and moderate ecotoxicity, while Elaeis guineensis has the lowest QY (2.31%) but with zero toxicity. Furthermore, the C-Dots from Picea presents good optical properties but showed high toxicity and limits its use. Finally, all C-Dots showed functional groups that could be biofunctionalized with biomolecules, especially C-Dots from Molinia caerulea and Elaeis guineensis show potential for use in the development of optical biosensors.
Collapse
|
137
|
Färkkilä SMA, Kiers ET, Jaaniso R, Mäeorg U, Leblanc RM, Treseder KK, Kang Z, Tedersoo L. Fluorescent nanoparticles as tools in ecology and physiology. Biol Rev Camb Philos Soc 2021; 96:2392-2424. [PMID: 34142416 DOI: 10.1111/brv.12758] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/21/2022]
Abstract
Fluorescent nanoparticles (FNPs) have been widely used in chemistry and medicine for decades, but their employment in biology is relatively recent. Past reviews on FNPs have focused on chemical, physical or medical uses, making the extrapolation to biological applications difficult. In biology, FNPs have largely been used for biosensing and molecular tracking. However, concerns over toxicity in early types of FNPs, such as cadmium-containing quantum dots (QDs), may have prevented wide adoption. Recent developments, especially in non-Cd-containing FNPs, have alleviated toxicity problems, facilitating the use of FNPs for addressing ecological, physiological and molecule-level processes in biological research. Standardised protocols from synthesis to application and interdisciplinary approaches are critical for establishing FNPs in the biologists' tool kit. Here, we present an introduction to FNPs, summarise their use in biological applications, and discuss technical issues such as data reliability and biocompatibility. We assess whether biological research can benefit from FNPs and suggest ways in which FNPs can be applied to answer questions in biology. We conclude that FNPs have a great potential for studying various biological processes, especially tracking, sensing and imaging in physiology and ecology.
Collapse
Affiliation(s)
- Sanni M A Färkkilä
- Institute of Ecology and Earth Sciences, University of Tartu, Ravila 14a, 50411, Tartu, Estonia
| | - E Toby Kiers
- Department of Ecological Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, NL-1081 HV, Amsterdam, Noord-Holland, The Netherlands
| | - Raivo Jaaniso
- Institute of Physics, University of Tartu, W. Ostwaldi Str 1, 50411, Tartu, Tartumaa, Estonia
| | - Uno Mäeorg
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411, Tartu, Estonia
| | - Roger M Leblanc
- Department of Chemistry, Cox Science Center, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33124, U.S.A
| | - Kathleen K Treseder
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California, Irvine, 3106 Biological Sciences III, Mail Code: 2525, 92697, Irvine, CA, U.S.A
| | - Zhenhui Kang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Leho Tedersoo
- Institute of Ecology and Earth Sciences, University of Tartu, Ravila 14a, 50411, Tartu, Estonia
| |
Collapse
|
138
|
An Overview of the Recent Developments in Carbon Quantum Dots—Promising Nanomaterials for Metal Ion Detection and (Bio)Molecule Sensing. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9060138] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The fluorescent carbon quantum dots (CQDs) represent an emerging subset of carbonaceous nanomaterials, recently becoming a powerful tool for biosensing, bioimaging, and drug and gene delivery. In general, carbon dots are defined as zero-dimensional (0D), spherical-like nanoparticles with <10 nm in size. Their unique chemical, optical, and electronic properties make CQDs versatile materials for a wide spectrum of applications, mainly for the sensing and biomedical purposes. Due to their good biocompatibility, water solubility, and relatively facile modification, these novel materials have attracted tremendous interest in recent years, which is especially important for nanotechnology and nanoscience expertise. The preparation of the biomass-derived CQDs has attracted growing interest recently due to their low-cost, renewable, and green biomass resources, presenting also the variability of possible modification for the enhancement of CQDs’ properties. This review is primarily focused on the recent developments in carbon dots and their application in the sensing of different chemical species within the last five years. Furthermore, special emphasis has been made regarding the green approaches for obtaining CQDs and nanomaterial characterization toward better understanding the mechanisms of photoluminescent behavior and sensing performance. In addition, some of the challenges and future outlooks in CQDs research have been briefly outlined.
Collapse
|
139
|
Sethuraman V, Janakiraman K, Krishnaswami V, Kandasamy R. Recent Progress in Stimuli-Responsive Intelligent Nano Scale Drug Delivery Systems: A Special Focus Towards pH-Sensitive Systems. Curr Drug Targets 2021; 22:947-966. [PMID: 33511953 DOI: 10.2174/1389450122999210128180058] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/12/2020] [Accepted: 11/24/2020] [Indexed: 11/22/2022]
Abstract
Stimuli-responsive nanocarriers are gaining much attention due to their versatile multifunctional activities, including disease diagnosis and treatment. Recently, clinical applications of nano-drug delivery systems for cancer treatment pose a challenge due to their limited cellular uptake, low bioavailability, poor targetability, stability issues, and unfavourable pharmacokinetics. To overcome these issues, researchers are focussing on stimuli-responsive systems. Nanocarriers elicit their role through endogenous (pH, temperature, enzyme, and redox) or exogenous (temperature, light, magnetic field, ultrasound) stimulus. These systems were designed to overcome the shortcomings such as non-specificity and toxicity associated with the conventional drug delivery systems. The pH variation between healthy cells and tumor microenvironment creates a platform for the generation of pH-sensitive nano delivery systems. Herein, we propose to present an overview of various internal and external stimuli-responsive behavior-based drug delivery systems. Herein, the present review will focus specifically on the significance of various pH-responsive nanomaterials such as polymeric nanoparticles, nano micelles, inorganic-based pH-sensitive drug delivery carriers such as calcium phosphate nanoparticles, and carbon dots in cancer treatment. Moreover, this review elaborates the recent findings on pH-based stimuli-responsive drug delivery systems with special emphasis on our reported stimuli-responsive systems for cancer treatment.
Collapse
Affiliation(s)
- Vaidevi Sethuraman
- Centre for Excellence in Nanobio Translational Research (CENTRE), Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli, Tamil Nadu, India
| | - Kumar Janakiraman
- Centre for Excellence in Nanobio Translational Research (CENTRE), Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli, Tamil Nadu, India
| | - Venkateshwaran Krishnaswami
- Department of Allied Health Sciences, Noorul Islam Center for Higher Education (Deemed University), Kumaracoil, Kanyakumari, Tamil Nadu, India
| | - Ruckmani Kandasamy
- Centre for Excellence in Nanobio Translational Research (CENTRE), Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli, Tamil Nadu, India
| |
Collapse
|
140
|
Nannuri SH, Nikam AN, Pandey A, Mutalik S, George SD. Subcellular imaging and diagnosis of cancer using engineered nanoparticles. Curr Pharm Des 2021; 28:690-710. [PMID: 34036909 DOI: 10.2174/1381612827666210525154131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/13/2021] [Indexed: 11/22/2022]
Abstract
The advances in the synthesis of nanoparticles with engineered properties are reported to have profound applications in oncological disease detection via optical and multimodal imaging and therapy. Among various nanoparticle-assisted imaging techniques, engineered fluorescent nanoparticles show great promise from high contrast images and localized therapeutic applications. Of all the fluorescent nanoparticles available, the gold nanoparticles, carbon dots, and upconversion nanoparticles are emerging recently as the most promising candidates for diagnosis, treatment, and cancer monitoring. This review addresses the recent progress in engineering the properties of these emerging nanoparticles and their application for cancer diagnosis and therapy. In addition, the potential of these particles for subcellular imaging is also reviewed here.
Collapse
Affiliation(s)
- Shivanand H Nannuri
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Ajinkya N Nikam
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Abhijeet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Sajan D George
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
141
|
Chen L, Liu D, Zheng L, Yi S, He H. A structure-dependent ratiometric fluorescence sensor based on metal-organic framework for detection of 2,6-pyridinedicarboxylic acid. Anal Bioanal Chem 2021; 413:4227-4236. [PMID: 34009443 DOI: 10.1007/s00216-021-03369-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 01/15/2023]
Abstract
In the present work, a structure-dependent ratiometric fluorescence (RF) sensor constructed with boric acid-modified carbon quantum dots (B-CQDs) and Tb-MOF(MOF-76) was developed for sensing 2,6-pyridinedicarboxylic acid (DPA). Based on the distinct fluorescent responses of B-CQDs and MOF-76 to DPA, MOF-76/B-CQDs can be developed as a RF sensor for DPA detection. In this RF sensor, the reticulated cross-linked structure of MOF-76/B-CQDs can be destroyed by DPA due to a strong coordination effect between DPA and the Tb of MOF-76, resulting in the quenching of the fluorescence of B-CQD and the restoration of the fluorescence of MOF-76 after the addition of DPA. Benefiting from the confinement effect of the special structure change, the presented sensor showed high sensitivity toward DPA with a detection limit of 3.05 μM and excellent selectivity over the monochromatic fluorescence sensor.
Collapse
Affiliation(s)
- Li Chen
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 211198, China
| | - Donghao Liu
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 211198, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 211198, China
| | - Limin Zheng
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 211198, China
| | - Simin Yi
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 211198, China
| | - Hua He
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 211198, China. .,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 211198, China. .,Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
142
|
Ray P, Moitra P, Pan D. Emerging theranostic applications of carbon dots and its variants. VIEW 2021. [DOI: 10.1002/viw.20200089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Priyanka Ray
- Department of Chemical Biochemical, and Environmental Engineering University of Maryland Baltimore County Baltimore Maryland USA
- Department of Diagnostic Radiology and Nuclear Medicine University of Maryland Baltimore Baltimore Maryland USA
| | - Parikshit Moitra
- Department of Chemical Biochemical, and Environmental Engineering University of Maryland Baltimore County Baltimore Maryland USA
- Department of Pediatrics Center for Blood Oxygen Transport and Hemostasis University of Maryland Baltimore School of Medicine Baltimore Maryland USA
| | - Dipanjan Pan
- Department of Chemical Biochemical, and Environmental Engineering University of Maryland Baltimore County Baltimore Maryland USA
- Department of Pediatrics Center for Blood Oxygen Transport and Hemostasis University of Maryland Baltimore School of Medicine Baltimore Maryland USA
- Department of Diagnostic Radiology and Nuclear Medicine University of Maryland Baltimore Baltimore Maryland USA
| |
Collapse
|
143
|
Mauro N, Utzeri MA, Drago SE, Nicosia A, Costa S, Cavallaro G, Giammona G. Hyaluronic acid dressing of hydrophobic carbon nanodots: A self-assembling strategy of hybrid nanocomposites with theranostic potential. Carbohydr Polym 2021; 267:118213. [PMID: 34119168 DOI: 10.1016/j.carbpol.2021.118213] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/05/2021] [Accepted: 05/13/2021] [Indexed: 12/20/2022]
Abstract
We propose a rational design of hyaluronic acid-dressed red-emissive carbon dots (CDs), with a well-structured hydrophobic core capable of locally delivering high amount doxorubicin (Doxo) (> 9% w/w) and heat (hyperthermia) in a light stimuli sensitive fashion. We combined in a unique micelle-like superstructure the peculiar optical properties of CDs (NIR photothermal conversion and red fluorescence) with the ability of hyaluronic acid (HA) shell of stabilizing nanomedicines in aqueous environment and recognizing cancer cells overexpressing CD44 receptors on their membranes, thus giving rise to smart theranostic agents useful in cancer imaging and NIR-triggered chemo-phototherapy of solid tumors. Hydrophobic CDs, named HCDs, were used as functional beads to self-assemble amphiphilic HA derivatives carrying polylactic acid side chains (HA-g-PLA), yielding to light-sensitive and biodegradable core-shell superstructures. We explored the biocompatibility and synergistic effects of chemo-phototherapy combination, together with fluorescence imaging, showing the huge potential of the proposed engineering strategy in improving efficacy. CHEMICAL COMPOUNDS.
Collapse
Affiliation(s)
- Nicolò Mauro
- Lab of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy.
| | - Mara Andrea Utzeri
- Lab of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy
| | - Salvatore Emanuele Drago
- Lab of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy
| | - Aldo Nicosia
- Institute for Biomedical Research and Innovation-National Research Council (IRIB-CNR), 90146 Palermo, Italy
| | - Salvatore Costa
- Department of "Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche" (STEBICEF), University of Palermo, 90128 Palermo, Italy
| | - Gennara Cavallaro
- Lab of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy
| | - Gaetano Giammona
- Lab of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy; Institute of Biophysics at Palermo, Italian National Research Council, Via Ugo La Malfa 153, 90146 Palermo, Italy
| |
Collapse
|
144
|
Cao S, Liu D, Wang T, Ma A, Liu C, Zhuang X, Ding H, Mamba BB, Gui J. Nitrogen-doped carbon dots as high-effective inhibitors for carbon steel in acidic medium. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126280] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
145
|
Maruthapandi M, Saravanan A, Manohar P, Luong JHT, Gedanken A. Photocatalytic Degradation of Organic Dyes and Antimicrobial Activities by Polyaniline-Nitrogen-Doped Carbon Dot Nanocomposite. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1128. [PMID: 33925378 PMCID: PMC8145885 DOI: 10.3390/nano11051128] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 01/29/2023]
Abstract
Nitrogen-doped carbon nanodots (N@CDs) were prepared by hydrothermal processing of bovine serum albumin (Mw: 69,324 with 607 amino acids). A polyaniline (PANI-N@CDs) nanocomposite was then synthesized by ultrasonication and used to degrade Congo red (CR), methylene blue (MB), Rhodamine B (RhB), and crystal violet (CV) four common organic dyes. The PANI-N@CD nanocomposite simultaneously adsorbed and concentrated the dye from the bulk solution and degraded the adsorbed dye, resulting in a high rate of dye degradation. The combination of holes (h+), hydroxyl (OH•), and O2•- was involved in the N@CD-mediated photocatalytic degradation of the dyes. Under visible light illumination at neutral pH, the PANI-N@CDs were proven as an efficient adsorbent and photocatalyst for the complete degradation of CR within 20 min. MB and RhB were also degraded but required longer treatment times. These findings supported the design of remediation processes for such dyes and predicted their fate in the environment. The nanocomposite also exhibited antimicrobial activities against Gram-negative bacterium E. coli and Gram-positive bacterium S. aureus.
Collapse
Affiliation(s)
- Moorthy Maruthapandi
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel; (M.M.); (A.S.)
| | - Arumugam Saravanan
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel; (M.M.); (A.S.)
| | - Priyanka Manohar
- Department of Chemistry, School of Chemical and Biotechnology, Sastra University, Thanjavur 612001, India;
| | - John H. T. Luong
- School of Chemistry, University College Cork, T12 YN60 Cork, Ireland;
| | - Aharon Gedanken
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel; (M.M.); (A.S.)
| |
Collapse
|
146
|
Lu C, Ding H, Wang Y, Xiong C, Wang X. Colorimetric and turn-on fluorescence determination of mercury (II) by using carbon dots and gold nanoparticles. NANOTECHNOLOGY 2021; 32:155501. [PMID: 33412520 DOI: 10.1088/1361-6528/abd977] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A colorimetric and turn-on fluorometric assay with high sensitivity and selectivity is described for the optical detection of mercury (II) ions (Hg2+), based on carbon dots with -SH (SN-CDs) and gold nanoparticles (AuNPs). On addition of Hg2+, the color of the system (SN-CDs/AuNPs) changes from red to blue. A new absorption peak appears at 700 nm, and its absorbance increases with the concentration of Hg2+, while at 530 nm, the absorbance of AuNPs decreases. Taking the ratio of absorbance at 700 and 530 nm as a signal, a colorimetric method with linear detection range of 0.5-4.0 μM was established for the determination of Hg2+. Meanwhile, citrate ions on the surface of AuNPs can reduce Hg2+ to Hg0, and through the strong affinity of Hg0 and gold, gold-mercury alloys were formed to occupy the surface of AuNPs, so that the SN-CDs were re-free and the fluorescence of SN-CDs was restored. Consequently, a fluorometric method was founded in the linear detection range from 0.5 to 15.0 μM of mercury (II). This dual-mode (colorimetric and turn-on fluorometric) method was applied successfully for determination of Hg2+ in real water samples.
Collapse
Affiliation(s)
- Changfang Lu
- College of Science, Sichuan Agricultural University, Chengdu 611130, Sichuan, People's Republic of China
| | - Hao Ding
- College of Science, Sichuan Agricultural University, Chengdu 611130, Sichuan, People's Republic of China
| | - Yutong Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, People's Republic of China
| | - Chaoying Xiong
- College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, People's Republic of China
| | - Xianxiang Wang
- College of Science, Sichuan Agricultural University, Chengdu 611130, Sichuan, People's Republic of China
| |
Collapse
|
147
|
Li J, Wang Q, Wang Z, Cao Y, Zhu J, Lou Y, Zhao Y, Shi L, Yuan S. Evaporation and in-situ gelation induced porous hybrid film without template enhancing the performance of lithium ion battery separator. J Colloid Interface Sci 2021; 595:142-150. [PMID: 33819689 DOI: 10.1016/j.jcis.2021.03.099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 10/21/2022]
Abstract
The current commercialized polyethylene (PE) separator has poor wettability and thermal stability which will seriously restrict the electrochemical performance and affect the safety of lithium ion battery. Herein, a porous hybrid layer coated separator with high thermal stability, good electrochemical performance and improved wettability was prepared by a template-free method via the synergistic effect between tetraethoxysilane (TEOS) and aramid nano fibers (ANFs) during the evaporation of solvent and the in-situ gelation of TEOS. The results show that the porous hybrid coating layers can enhance the thermal stability, wettability and electrolyte uptake of the separators. Moreover, the lithium ion transference number is also increased. As a result, the battery assembled with the composite separator exhibits enhanced electrochemical performance in terms of cycle stability and rate performance. When coupled with LiCoO2cathode, the capacity retention rate is as high as 96.0% after 100 cycles at 0.2C.
Collapse
Affiliation(s)
- Jia Li
- Laboratory for Microstructures, Shanghai University, 99 Shangda Road, Shanghai 200444, China; Research Centre of Nanoscience and Nanotechnology, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Qingtong Wang
- Research Centre of Nanoscience and Nanotechnology, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Zhuyi Wang
- Research Centre of Nanoscience and Nanotechnology, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| | - Yutong Cao
- Jiangsu Ruisheng Advanced Material Technology Co., Ltd, 10 Central Avenue, Qingshan Town, Yizheng 211417, China
| | - Junqiang Zhu
- Jiangsu Ruisheng Advanced Material Technology Co., Ltd, 10 Central Avenue, Qingshan Town, Yizheng 211417, China
| | - Yanyan Lou
- Laboratory for Microstructures, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Yin Zhao
- Research Centre of Nanoscience and Nanotechnology, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Liyi Shi
- Research Centre of Nanoscience and Nanotechnology, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Shuai Yuan
- Research Centre of Nanoscience and Nanotechnology, Shanghai University, 99 Shangda Road, Shanghai 200444, China; Emerging Industries Institute, Shanghai University, Jiaxing, Zhejiang 314006, China.
| |
Collapse
|
148
|
Gong L, Zhao L, Tan M, Pan T, He H, Wang Y, He X, Li W, Tang L, Nie L. Two-Photon Fluorescent Nanomaterials and Their Applications in Biomedicine. J Biomed Nanotechnol 2021; 17:509-528. [PMID: 35057882 DOI: 10.1166/jbn.2021.3052] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In recent years, two-photon excited (TPE) materials have attracted great attentions because of their excellent advantages over conventional one-photon excited (OPE) materials, such as deep tissue penetration, three-dimensional spatial selectivity and low phototoxicity. Also, they have
been widely applied in lots of field, such as biosensing, imaging, photo-catalysis, photoelectric conversion, and therapy. In this article, we review recent advances in vibrant topic of two-photon fluorescent nanomaterials, including organic molecules, quantum dots (QDs), carbon dots (CDs)
and metal nanoclus-ters (MNCs). The optical properties, synthetic methods and important applications of TPE nanomaterials in biomedical field, such as biosensing, imaging and therapy are introduced. Also, the probable challenges and perspectives in the forthcoming development of two-photon
fluorescent nanomaterials are addressed.
Collapse
Affiliation(s)
- Liang Gong
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology Zhuzhou 412007, P. R. China
| | - Lan Zhao
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology Zhuzhou 412007, P. R. China
| | - Miduo Tan
- Zhuzhou Central Hospital, Zhuzhou 412007, P. R. China
| | - Ting Pan
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology Zhuzhou 412007, P. R. China
| | - Huai He
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology Zhuzhou 412007, P. R. China
| | - Yulin Wang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology Zhuzhou 412007, P. R. China
| | - Xuliang He
- Zhuzhou People’s Hospital, Zhuzhou 412007, P. R. China
| | - Wenjun Li
- Zhuzhou People’s Hospital, Zhuzhou 412007, P. R. China
| | - Li Tang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology Zhuzhou 412007, P. R. China
| | - Libo Nie
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology Zhuzhou 412007, P. R. China
| |
Collapse
|
149
|
Makhongoana A, Matsoso BJ, Mongwe TH, Coville NJ, Wamwangi D, Maubane-Nkadimeng MS. The role of oxygen in a carbon source (castor oil versus paraffin oil) in the synthesis of carbon nano-onions. NANOTECHNOLOGY 2021; 32:135603. [PMID: 33276354 DOI: 10.1088/1361-6528/abd0b1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The role of a carbon source containing oxygen groups on the physicochemical properties of carbon nano-onions (CNOs) was investigated. Two oils, castor oil (with O groups) and paraffin oil (without O groups) were converted to CNOs in gram-scale yields using an open flame pyrolysis procedure. The products were heated under argon at 900 °C for varying times (1 h, 2 h, 3 h), to investigate the temperature dependence on their structural properties. TGA studies indicated different decomposition behaviour for the different samples with the annealed paraffinic CNOs (CNOP) having a higher decomposition temperature (>600 °C) than the castor oil derived CNOs (CNOC) (<600 °C). TEM images revealed formation of typical chain-like quasi-spherical nanostructures with particles size distributions for the CNOP (22-32 ± 7.8 nm) and the CNOC (44-51 ± 9.9 nm) materials. A detailed Raman analysis of the CNOs revealed that the graphicity of the CNOs varied with both the carbon oil source and the annealing time. Deconvolution of the first order Raman spectra revealed changes in the parameters of the major Raman bands that were then correlated with defect density ratios. Finally, bandwidth analysis depicted the dependence of the graphicity of the CNOs with heat treatment. The data thus indicate that the presence of oxygen in the carbon source provides a method for producing different CNOs and that simple procedures can be used to produce these different CNOs.
Collapse
Affiliation(s)
- Annah Makhongoana
- DSI-NRF Centre of Excellence in Strong Materials, University of the Witwatersrand, 2050, Johannesburg, South Africa
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, 2050, Johannesburg, South Africa
| | - Boitumelo J Matsoso
- DSI-NRF Centre of Excellence in Strong Materials, University of the Witwatersrand, 2050, Johannesburg, South Africa
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, 2050, Johannesburg, South Africa
- Laboratoires des Multimatériaux et Interfaces, UMR 5615 CNRS, Université Claude Bernard Lyon 1, F-69622 Villeurbanne Cedex, France
| | - Thomas H Mongwe
- DSI-NRF Centre of Excellence in Strong Materials, University of the Witwatersrand, 2050, Johannesburg, South Africa
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, 2050, Johannesburg, South Africa
| | - Neil J Coville
- DSI-NRF Centre of Excellence in Strong Materials, University of the Witwatersrand, 2050, Johannesburg, South Africa
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, 2050, Johannesburg, South Africa
| | - Daniel Wamwangi
- DSI-NRF Centre of Excellence in Strong Materials, University of the Witwatersrand, 2050, Johannesburg, South Africa
- Material Physics Research Institute (MPRI) and the School of Physics, University of the Witwatersrand, Johannesburg, 2050, South Africa
| | - Manoko S Maubane-Nkadimeng
- DSI-NRF Centre of Excellence in Strong Materials, University of the Witwatersrand, 2050, Johannesburg, South Africa
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, 2050, Johannesburg, South Africa
- Microscopy and Microanalysis Unit, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
150
|
Shu Y, Ye Q, Dai T, Xu Q, Hu X. Encapsulation of Luminescent Guests to Construct Luminescent Metal-Organic Frameworks for Chemical Sensing. ACS Sens 2021; 6:641-658. [PMID: 33571406 DOI: 10.1021/acssensors.0c02562] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Metal-organic frameworks (MOFs), which are a class of coordination polymers constructed by metal ions or clusters with organic ligands, have emerged as exciting inorganic-organic hybrid materials with the superiorities of inherent crystallinity, adjustable pore size, clear structure, and high degree of functionalization. The MOFs have attracted much attention to develop good luminescent functional materials due to their inherent luminescent centers of both inorganic and organic photonic units. Furthermore, the pores within MOFs can also be used to encapsulate a large number of luminescent guest species, which provides a broader luminescent property for MOF materials. MOFs possess the incomparable multifunctional advantages of inorganic and organic luminescent materials. A large number of luminescent MOFs (LMOFs) have been synthesized for applications in sensing, white-light-emitting diodes (LED), photocatalysis, biomedicine, etc. This paper reviews the encapsulation of various luminescent guests such as lanthanide ions, dyes, quantum dots, and luminescent complexes in metal-organic frameworks to construct luminous sensors with single- or double-emission centers, as well as the research progress of these sensors in chemical sensing. Finally, the challenges in these fields were outlined and the prospects for future development were put forward.
Collapse
Affiliation(s)
- Yun Shu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Qiuyu Ye
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Tao Dai
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Qin Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Xiaoya Hu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| |
Collapse
|