101
|
Ndikuryayo F, Moosavi B, Yang WC, Yang GF. 4-Hydroxyphenylpyruvate Dioxygenase Inhibitors: From Chemical Biology to Agrochemicals. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:8523-8537. [PMID: 28903556 DOI: 10.1021/acs.jafc.7b03851] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The development of new herbicides is receiving considerable attention to control weed biotypes resistant to current herbicides. Consequently, new enzymes are always desired as targets for herbicide discovery. 4-Hydroxyphenylpyruvate dioxygenase (HPPD, EC 1.13.11.27) is an enzyme engaged in photosynthetic activity and catalyzes the transformation of 4-hydroxyphenylpyruvic acid (HPPA) into homogentisic acid (HGA). HPPD inhibitors constitute a promising area of discovery and development of innovative herbicides with some advantages, including excellent crop selectivity, low application rates, and broad-spectrum weed control. HPPD inhibitors have been investigated for agrochemical interests, and some of them have already been commercialized as herbicides. In this review, we mainly focus on the chemical biology of HPPD, discovery of new potential inhibitors, and strategies for engineering transgenic crops resistant to current HPPD-inhibiting herbicides. The conclusion raises some relevant gaps for future research directions.
Collapse
Affiliation(s)
- Ferdinand Ndikuryayo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University , Wuhan 430079, P. R. China
| | - Behrooz Moosavi
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University , Wuhan 430079, P. R. China
| | - Wen-Chao Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University , Wuhan 430079, P. R. China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University , Wuhan 430079, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 30071, P. R. China
| |
Collapse
|
102
|
Martinie RJ, Pollock CJ, Matthews ML, Bollinger JM, Krebs C, Silakov A. Vanadyl as a Stable Structural Mimic of Reactive Ferryl Intermediates in Mononuclear Nonheme-Iron Enzymes. Inorg Chem 2017; 56:13382-13389. [PMID: 28960972 DOI: 10.1021/acs.inorgchem.7b02113] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The iron(II)- and 2-(oxo)glutarate-dependent (Fe/2OG) oxygenases catalyze an array of challenging transformations via a common iron(IV)-oxo (ferryl) intermediate, which in most cases abstracts hydrogen (H•) from an aliphatic carbon of the substrate. Although it has been shown that the relative disposition of the Fe-O and C-H bonds can control the rate of H• abstraction and fate of the resultant substrate radical, there remains a paucity of structural information on the actual ferryl states, owing to their high reactivity. We demonstrate here that the stable vanadyl ion [(VIV-oxo)2+] binds along with 2OG or its decarboxylation product, succinate, in the active site of two different Fe/2OG enzymes to faithfully mimic their transient ferryl states. Both ferryl and vanadyl complexes of the Fe/2OG halogenase, SyrB2, remain stably bound to its carrier protein substrate (l-aminoacyl-S-SyrB1), whereas the corresponding complexes harboring transition metals (Fe, Mn) in lower oxidation states dissociate. In the well-studied taurine:2OG dioxygenase (TauD), the disposition of the substrate C-H bond relative to the vanadyl ion defined by pulse electron paramagnetic resonance methods is consistent with the crystal structure of the reactant complex and computational models of the ferryl state. Vanadyl substitution may thus afford access to structural details of the key ferryl intermediates in this important enzyme class.
Collapse
Affiliation(s)
| | | | - Megan L Matthews
- Department of Chemical Physiology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | | | | | | |
Collapse
|
103
|
Mitchell AJ, Dunham NP, Martinie RJ, Bergman JA, Pollock CJ, Hu K, Allen BD, Chang WC, Silakov A, Bollinger JM, Krebs C, Boal AK. Visualizing the Reaction Cycle in an Iron(II)- and 2-(Oxo)-glutarate-Dependent Hydroxylase. J Am Chem Soc 2017; 139:13830-13836. [PMID: 28823155 DOI: 10.1021/jacs.7b07374] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Iron(II)- and 2-(oxo)-glutarate-dependent oxygenases catalyze diverse oxidative transformations that are often initiated by abstraction of hydrogen from carbon by iron(IV)-oxo (ferryl) complexes. Control of the relative orientation of the substrate C-H and ferryl Fe-O bonds, primarily by direction of the oxo group into one of two cis-related coordination sites (termed inline and offline), may be generally important for control of the reaction outcome. Neither the ferryl complexes nor their fleeting precursors have been crystallographically characterized, hindering direct experimental validation of the offline hypothesis and elucidation of the means by which the protein might dictate an alternative oxo position. Comparison of high-resolution X-ray crystal structures of the substrate complex, an Fe(II)-peroxysuccinate ferryl precursor, and a vanadium(IV)-oxo mimic of the ferryl intermediate in the l-arginine 3-hydroxylase, VioC, reveals coordinated motions of active site residues that appear to control the intermediate geometries to determine reaction outcome.
Collapse
Affiliation(s)
- Andrew J Mitchell
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Noah P Dunham
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Ryan J Martinie
- Department of Chemistry, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Jonathan A Bergman
- Department of Chemistry, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Christopher J Pollock
- Department of Chemistry, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Kai Hu
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States.,The Huck Institutes for the Life Sciences, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Benjamin D Allen
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States.,The Huck Institutes for the Life Sciences, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Wei-Chen Chang
- Department of Chemistry, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Alexey Silakov
- Department of Chemistry, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - J Martin Bollinger
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States.,Department of Chemistry, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Carsten Krebs
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States.,Department of Chemistry, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Amie K Boal
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States.,Department of Chemistry, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| |
Collapse
|
104
|
Discovery of Lysine Hydroxylases in the Clavaminic Acid Synthase-Like Superfamily for Efficient Hydroxylysine Bioproduction. Appl Environ Microbiol 2017; 83:AEM.00693-17. [PMID: 28667106 DOI: 10.1128/aem.00693-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/22/2017] [Indexed: 01/19/2023] Open
Abstract
Hydroxylation via C-H bond activation in the absence of any harmful oxidizing reagents is technically difficult in modern chemistry. In this work, we attempted to generate pharmaceutically important hydroxylysine from readily available l-lysine with l-lysine hydroxylases from diverse microorganisms. Clavaminic acid synthase-like superfamily gene mining and phylogenetic analysis led to the discovery of six biocatalysts, namely two l-lysine 3S-hydroxylases and four l-lysine 4R-hydroxylases, the latter of which partially matched known hydroxylases. Subsequent characterization of these hydroxylases revealed their capacity for regio- and stereoselective hydroxylation into either C-3 or C-4 positions of l-lysine, yielding (2S,3S)-3-hydroxylysine and (2S,4R)-4-hydroxylysine, respectively. To determine if these factors had industrial application, we performed a preparative production of both hydroxylysines under optimized conditions. For this, recombinant l-lysine hydroxylase-expressing Escherichia coli cells were used as a biocatalyst for l-lysine bioconversion. In batch-scale reactions, 531 mM (86.1 g/liter) (2S,3S)-3-hydroxylysine was produced from 600 mM l-lysine with an 89% molar conversion after a 52-h reaction, and 265 mM (43.0 g/liter) (2S,4R)-4-hydroxylysine was produced from 300 mM l-lysine with a molar conversion of 88% after 24 h. This report demonstrates the highly efficient production of hydroxylysines using lysine hydroxylases, which may contribute to future industrial bioprocess technologies.IMPORTANCE The present study identified six l-lysine hydroxylases belonging to the 2-oxoglutarate-dependent dioxygenase superfamily, although some of them overlapped with known hydroxylases. While the substrate specificity of l-lysine hydroxylases was relatively narrow, we found that (2S,3S)-3-hydroxylysine was hydroxylated by 4R-hydroxylase and (2S,5R)-5-hydroxylysine was hydroxylated by both 3S- and 4R-hydroxylases. Moreover, the l-arginine hydroxylase VioC also hydroxylated l-lysine, albeit to a lesser extent. Further, we also demonstrated the bioconversion of l-lysine into (2S,3S)-3-hydroxylysine and (2S,4R)-4-hydroxylysine on a gram scale under optimized conditions. These findings provide new insights into biocatalytic l-lysine hydroxylation and thus have a great potential for use in manufacturing bioprocesses.
Collapse
|
105
|
Su H, Sheng X, Zhu W, Ma G, Liu Y. Mechanistic Insights into the Decoupled Desaturation and Epoxidation Catalyzed by Dioxygenase AsqJ Involved in the Biosynthesis of Quinolone Alkaloids. ACS Catal 2017. [DOI: 10.1021/acscatal.7b01606] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Hao Su
- School of Chemistry and Chemical
Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Xiang Sheng
- School of Chemistry and Chemical
Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Wenyou Zhu
- School of Chemistry and Chemical
Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Guangcai Ma
- School of Chemistry and Chemical
Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yongjun Liu
- School of Chemistry and Chemical
Engineering, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
106
|
Henderson KL, Li M, Martinez S, Lewis EA, Hausinger RP, Emerson JP. Global stability of an α-ketoglutarate-dependent dioxygenase (TauD) and its related complexes. Biochim Biophys Acta Gen Subj 2017; 1861:987-994. [PMID: 28214548 PMCID: PMC5453726 DOI: 10.1016/j.bbagen.2017.02.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/22/2017] [Accepted: 02/14/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND TauD is a nonheme iron(II) and α-ketoglutarate (αKG) dependent dioxygenase, and a member of a broader family of enzymes that oxidatively decarboxylate αKG to succinate and carbon dioxide thereby activating O2 to perform a range of oxidation reactions. However before O2 activation can occur, these enzymes bind both substrate and cofactor in an effective manner. Here the thermodynamics associated with substrate and cofactor binding to FeTauD are explored. METHODS Thermal denaturation of TauD and its enzyme-taurine, enzyme-αKG, and enzyme-taurine-αKG complexes are explored using circular dichroism (CD) spectroscopy and differential scanning calorimetry (DSC). RESULTS Taurine binding is endothermic (+26kcal/mol) and entropically driven that includes burial of hydrophobic surfaces to close the lid domain. Binding of αKG is enthalpically favorable and shows cooperativity with taurine binding, where the change in enthalpy associated with αKG binding (δΔHcal) increases from -30.1kcal/mol when binding to FeTauD to -65.2kcal/mol when binding to the FeTauD-taurine complex. CONCLUSIONS The intermolecular interactions that govern taurine and αKG binding impact the global stability of TauD and its complexes, with clear and dramatic cooperativity between substrate and cofactor. GENERAL SIGNIFICANCE Thermal denaturation of TauD and its enzyme-taurine, enzyme-αKG, and enzyme-taurine-αKG complexes each exhibited increased temperature stability over the free enzyme. Through deconvolution of the energetic profiles for all species studied, a thermodynamic cycle was generated that shows significant cooperativity between substrate and cofactor binding which continues to clarity the events leading up O2 activation.
Collapse
Affiliation(s)
- Kate L Henderson
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, United States
| | - Mingjie Li
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, United States
| | - Salette Martinez
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824-4320, United States
| | - Edwin A Lewis
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, United States
| | - Robert P Hausinger
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824-4320, United States
| | - Joseph P Emerson
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, United States.
| |
Collapse
|
107
|
Waldman AJ, Ng TL, Wang P, Balskus EP. Heteroatom-Heteroatom Bond Formation in Natural Product Biosynthesis. Chem Rev 2017; 117:5784-5863. [PMID: 28375000 PMCID: PMC5534343 DOI: 10.1021/acs.chemrev.6b00621] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Natural products that contain functional groups with heteroatom-heteroatom linkages (X-X, where X = N, O, S, and P) are a small yet intriguing group of metabolites. The reactivity and diversity of these structural motifs has captured the interest of synthetic and biological chemists alike. Functional groups containing X-X bonds are found in all major classes of natural products and often impart significant biological activity. This review presents our current understanding of the biosynthetic logic and enzymatic chemistry involved in the construction of X-X bond containing functional groups within natural products. Elucidating and characterizing biosynthetic pathways that generate X-X bonds could both provide tools for biocatalysis and synthetic biology, as well as guide efforts to uncover new natural products containing these structural features.
Collapse
Affiliation(s)
- Abraham J. Waldman
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| | - Tai L. Ng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| | - Peng Wang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| | - Emily P. Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| |
Collapse
|
108
|
Agarwal V, Miles ZD, Winter JM, Eustáquio AS, El Gamal AA, Moore BS. Enzymatic Halogenation and Dehalogenation Reactions: Pervasive and Mechanistically Diverse. Chem Rev 2017; 117:5619-5674. [PMID: 28106994 PMCID: PMC5575885 DOI: 10.1021/acs.chemrev.6b00571] [Citation(s) in RCA: 271] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Naturally produced halogenated compounds are ubiquitous across all domains of life where they perform a multitude of biological functions and adopt a diversity of chemical structures. Accordingly, a diverse collection of enzyme catalysts to install and remove halogens from organic scaffolds has evolved in nature. Accounting for the different chemical properties of the four halogen atoms (fluorine, chlorine, bromine, and iodine) and the diversity and chemical reactivity of their organic substrates, enzymes performing biosynthetic and degradative halogenation chemistry utilize numerous mechanistic strategies involving oxidation, reduction, and substitution. Biosynthetic halogenation reactions range from simple aromatic substitutions to stereoselective C-H functionalizations on remote carbon centers and can initiate the formation of simple to complex ring structures. Dehalogenating enzymes, on the other hand, are best known for removing halogen atoms from man-made organohalogens, yet also function naturally, albeit rarely, in metabolic pathways. This review details the scope and mechanism of nature's halogenation and dehalogenation enzymatic strategies, highlights gaps in our understanding, and posits where new advances in the field might arise in the near future.
Collapse
Affiliation(s)
- Vinayak Agarwal
- Center for Oceans and Human Health, Scripps Institution of Oceanography, University of California, San Diego
| | - Zachary D. Miles
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego
| | | | - Alessandra S. Eustáquio
- College of Pharmacy, Department of Medicinal Chemistry & Pharmacognosy and Center for Biomolecular Sciences, University of Illinois at Chicago
| | - Abrahim A. El Gamal
- Center for Oceans and Human Health, Scripps Institution of Oceanography, University of California, San Diego
| | - Bradley S. Moore
- Center for Oceans and Human Health, Scripps Institution of Oceanography, University of California, San Diego
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego
| |
Collapse
|
109
|
Socco S, Bovee RC, Palczewski MB, Hickok JR, Thomas DD. Epigenetics: The third pillar of nitric oxide signaling. Pharmacol Res 2017; 121:52-58. [PMID: 28428114 DOI: 10.1016/j.phrs.2017.04.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 04/10/2017] [Indexed: 12/14/2022]
Abstract
Nitric oxide (NO), the endogenously produced free radical signaling molecule, is generally thought to function via its interactions with heme-containing proteins, such as soluble guanylyl cyclase (sGC), or by the formation of protein adducts containing nitrogen oxide functional groups (such as S-nitrosothiols, 3-nitrotyrosine, and dinitrosyliron complexes). These two types of interactions result in a multitude of down-stream effects that regulate numerous functions in physiology and disease. Of the numerous purported NO signaling mechanisms, epigenetic regulation has gained considerable interest in recent years. There is now abundant experimental evidence to establish NO as an endogenous epigenetic regulator of gene expression and cell phenotype. Nitric oxide has been shown to influence key aspects of epigenetic regulation that include histone posttranslational modifications, DNA methylation, and microRNA levels. Studies across disease states have observed NO-mediated regulation of epigenetic protein expression and enzymatic activity resulting in remodeling of the epigenetic landscape to ultimately influence gene expression. In addition to the well-established pathways of NO signaling, epigenetic mechanisms may provide much-needed explanations for poorly understood context-specific effects of NO. These findings provide more insight into the molecular mechanisms of NO signaling and increase our ability to dissect its functional role(s) in specific micro-environments in health and disease. This review will summarize the current state of NO signaling via epigenetic mechanisms (the "third pillar" of NO signaling).
Collapse
Affiliation(s)
- Samantha Socco
- Department of Medicinal Chemistry & Pharmacognosy, University of Illinois at Chicago, 60612, USA
| | - Rhea C Bovee
- Department of Medicinal Chemistry & Pharmacognosy, University of Illinois at Chicago, 60612, USA
| | - Marianne B Palczewski
- Department of Medicinal Chemistry & Pharmacognosy, University of Illinois at Chicago, 60612, USA
| | - Jason R Hickok
- Department of Medicinal Chemistry & Pharmacognosy, University of Illinois at Chicago, 60612, USA
| | - Douglas D Thomas
- Department of Medicinal Chemistry & Pharmacognosy, University of Illinois at Chicago, 60612, USA.
| |
Collapse
|
110
|
Peroxiredoxin 1 (Prx1) is a dual-function enzyme by possessing Cys-independent catalase-like activity. Biochem J 2017; 474:1373-1394. [PMID: 28219939 PMCID: PMC5452528 DOI: 10.1042/bcj20160851] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 02/16/2017] [Accepted: 02/20/2017] [Indexed: 02/01/2023]
Abstract
Peroxiredoxin (Prx) was previously known as a Cys-dependent thioredoxin. However, we unexpectedly observed that Prx1 from the green spotted puffer fish Tetraodon nigroviridis (TnPrx1) was able to reduce H2O2 in a manner independent of Cys peroxidation and reductants. This study aimed to validate a novel function for Prx1, delineate the biochemical features and explore its antioxidant role in cells. We have confirmed that Prx1 from the puffer fish and humans truly possesses a catalase (CAT)-like activity that is independent of Cys residues and reductants, but dependent on iron. We have identified that the GVL motif was essential to the CAT-like activity of Prx1, but not to the Cys-dependent thioredoxin peroxidase (POX) activity, and generated mutants lacking POX and/or CAT-like activities for individual functional validation. We discovered that the TnPrx1 POX and CAT-like activities possessed different kinetic features in the reduction of H2O2. The overexpression of wild-type TnPrx1 and mutants differentially regulated the intracellular levels of reactive oxygen species (ROS) and the phosphorylation of p38 in HEK-293T cells treated with H2O2. Prx1 is a dual-function enzyme by acting as POX and CAT with varied affinities towards ROS. This study extends our knowledge on Prx1 and provides new opportunities to further study the biological roles of this family of antioxidants.
Collapse
|
111
|
Wei WJ, Siegbahn PEM, Liao RZ. Theoretical Study of the Mechanism of the Nonheme Iron Enzyme EgtB. Inorg Chem 2017; 56:3589-3599. [PMID: 28277674 DOI: 10.1021/acs.inorgchem.6b03177] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
EgtB is a nonheme iron enzyme catalyzing the C-S bond formation between γ-glutamyl cysteine (γGC) and N-α-trimethyl histidine (TMH) in the ergothioneine biosynthesis. Density functional calculations were performed to elucidate and delineate the reaction mechanism of this enzyme. Two different mechanisms were considered, depending on whether the sulfoxidation or the S-C bond formation takes place first. The calculations suggest that the S-O bond formation occurs first between the thiolate and the ferric superoxide, followed by homolytic O-O bond cleavage, very similar to the case of cysteine dioxygenase. Subsequently, proton transfer from a second-shell residue Tyr377 to the newly generated iron-oxo moiety takes place, which is followed by proton transfer from the TMH imidazole to Tyr377, facilitated by two crystallographically observed water molecules. Next, the S-C bond is formed between γGC and TMH, followed by proton transfer from the imidazole CH moiety to Tyr377, which was calculated to be the rate-limiting step for the whole reaction, with a barrier of 17.9 kcal/mol in the quintet state. The calculated barrier for the rate-limiting step agrees quite well with experimental kinetic data. Finally, this proton is transferred back to the imidazole nitrogen to form the product. The alternative thiyl radical attack mechanism has a very high barrier, being 25.8 kcal/mol, ruling out this possibility.
Collapse
Affiliation(s)
- Wen-Jie Wei
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology , Wuhan 430074, China
| | - Per E M Siegbahn
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University , SE-10691 Stockholm, Sweden
| | - Rong-Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology , Wuhan 430074, China
| |
Collapse
|
112
|
Bigelow JO, England J, Klein JEMN, Farquhar ER, Frisch JR, Martinho M, Mandal D, Münck E, Shaik S, Que L. Oxoiron(IV) Tetramethylcyclam Complexes with Axial Carboxylate Ligands: Effect of Tethering the Carboxylate on Reactivity. Inorg Chem 2017; 56:3287-3301. [DOI: 10.1021/acs.inorgchem.6b02659] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jennifer O. Bigelow
- Department of Chemistry
and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jason England
- Department of Chemistry
and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Johannes E. M. N. Klein
- Department of Chemistry
and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Erik R. Farquhar
- Department of Chemistry
and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jonathan R. Frisch
- Department of Chemistry
and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Marlène Martinho
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Debasish Mandal
- Institute of Chemistry and the Lise Meitner-Minerva
Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Eckard Münck
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Sason Shaik
- Institute of Chemistry and the Lise Meitner-Minerva
Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Lawrence Que
- Department of Chemistry
and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
113
|
Pornsuwan S, Maenpuen S, Kamutira P, Watthaisong P, Thotsaporn K, Tongsook C, Juttulapa M, Nijvipakul S, Chaiyen P. 3,4-Dihydroxyphenylacetate 2,3-dioxygenase from Pseudomonas aeruginosa: An Fe(II)-containing enzyme with fast turnover. PLoS One 2017; 12:e0171135. [PMID: 28158217 PMCID: PMC5291488 DOI: 10.1371/journal.pone.0171135] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/15/2017] [Indexed: 11/18/2022] Open
Abstract
3,4-dihydroxyphenylacetate (DHPA) dioxygenase (DHPAO) from Pseudomonas aeruginosa (PaDHPAO) was overexpressed in Escherichia coli and purified to homogeneity. As the enzyme lost activity over time, a protocol to reactivate and conserve PaDHPAO activity has been developed. Addition of Fe(II), DTT and ascorbic acid or ROS scavenging enzymes (catalase or superoxide dismutase) was required to preserve enzyme stability. Metal content and activity analyses indicated that PaDHPAO uses Fe(II) as a metal cofactor. NMR analysis of the reaction product indicated that PaDHPAO catalyzes the 2,3-extradiol ring-cleavage of DHPA to form 5-carboxymethyl-2-hydroxymuconate semialdehyde (CHMS) which has a molar absorptivity of 32.23 mM-1cm-1 at 380 nm and pH 7.5. Steady-state kinetics under air-saturated conditions at 25°C and pH 7.5 showed a Km for DHPA of 58 ± 8 μM and a kcat of 64 s-1, indicating that the turnover of PaDHPAO is relatively fast compared to other DHPAOs. The pH-rate profile of the PaDHPAO reaction shows a bell-shaped plot that exhibits a maximum activity at pH 7.5 with two pKa values of 6.5 ± 0.1 and 8.9 ± 0.1. Study of the effect of temperature on PaDHPAO activity indicated that the enzyme activity increases as temperature increases up to 55°C. The Arrhenius plot of ln(k’cat) versus the reciprocal of the absolute temperature shows two correlations with a transition temperature at 35°C. Two activation energy values (Ea) above and below the transition temperature were calculated as 42 and 14 kJ/mol, respectively. The data imply that the rate determining steps of the PaDHPAO reaction at temperatures above and below 35°C may be different. Sequence similarity network analysis indicated that PaDHPAO belongs to the enzyme clusters that are largely unexplored. As PaDHPAO has a high turnover number compared to most of the enzymes previously reported, understanding its biochemical and biophysical properties should be useful for future applications in biotechnology.
Collapse
Affiliation(s)
- Soraya Pornsuwan
- Department of Chemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Somchart Maenpuen
- Department of Biochemistry, Faculty of Science, Burapha University, Chonburi, Thailand
| | - Philaiwarong Kamutira
- Department of Biochemistry, Faculty of Science, Burapha University, Chonburi, Thailand
| | - Pratchaya Watthaisong
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Kittisak Thotsaporn
- Department of Biochemistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Chanakan Tongsook
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Maneerat Juttulapa
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Sarayut Nijvipakul
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Pimchai Chaiyen
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
114
|
Sánchez M, Sabio L, Gálvez N, Capdevila M, Dominguez-Vera JM. Iron chemistry at the service of life. IUBMB Life 2017; 69:382-388. [PMID: 28150902 DOI: 10.1002/iub.1602] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 12/27/2016] [Indexed: 01/10/2023]
Abstract
Iron is an essential element for almost all organisms on Earth. It is necessary for a number of crucial processes such as hemoglobin and myoglobin transport and storage of oxygen in mammals; electron transfer support in a variety of iron-sulfur protein or cytochrome reactions; and activation and catalysis of reactions of a wide range of substrate like alkanes, olefins, and alcohols. Living organisms adopted iron as the main metal to carry out all of these functions due to the rich coordination chemistry of its two main redox states, Fe2+ and Fe3+ , and because of its abundance in the Earth's crust and oceans. This paper presents an overview of the coordination chemistry of iron that makes it suitable for a large variety of functions within biological systems. Despite iron's chemical advantages, organisms were forced to manage with some drawbacks: Fe3+ insolubility and the formation of toxic radicals, especially the hydroxyl radical. Iron chemistry within biology is an example of how organisms evolved by creating molecular machinery to overcome these difficulties and perform crucial processes with extraordinary elegance and efficiency. © 2017 IUBMB Life, 69(6):382-388, 2017.
Collapse
Affiliation(s)
- Manu Sánchez
- Departamento de Química Inorgánica and Instituto de Biotecnología, Universidad de Granada, Spain
| | - Laura Sabio
- Departamento de Química Inorgánica and Instituto de Biotecnología, Universidad de Granada, Spain
| | - Natividad Gálvez
- Departamento de Química Inorgánica and Instituto de Biotecnología, Universidad de Granada, Spain
| | - Mercè Capdevila
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès (Barcelona), Spain
| | - Jose M Dominguez-Vera
- Departamento de Química Inorgánica and Instituto de Biotecnología, Universidad de Granada, Spain
| |
Collapse
|
115
|
Baker TM, Nakashige TG, Nolan EM, Neidig ML. Magnetic circular dichroism studies of iron(ii) binding to human calprotectin. Chem Sci 2017; 8:1369-1377. [PMID: 28451278 PMCID: PMC5361872 DOI: 10.1039/c6sc03487j] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/11/2016] [Indexed: 12/17/2022] Open
Abstract
Calprotectin (CP) is an abundant metal-chelating protein involved in host defense, and the ability of human CP to bind Fe(ii) in a calcium-dependent manner was recently discovered. In the present study, near-infrared magnetic circular dichroism spectroscopy is employed to investigate the nature of Fe(ii) coordination at the two transition-metal-binding sites of CP that are a His3Asp motif (site 1) and a His6 motif (site 2). Upon the addition of sub-stoichiometric Fe(ii), a six-coordinate (6C) Fe(ii) center associated with site 2 is preferentially formed in the presence of excess Ca(ii). This site exhibits an exceptionally large ligand field (10Dq = 11 045 cm-1) for a non-heme Fe(ii) protein. Analysis of CP variants lacking residues of the His6 motif supports that CP coordinates Fe(ii) at site 2 by employing six His ligands. In the presence of greater than one equiv. of Fe(ii) or upon mutation of the His6 motif, the metal ion also binds at site 1 of CP to form a five-coordinate (5C) Fe(ii)-His3Asp motif that was previously unidentified in this system. Notably, the introduction of His-to-Ala mutations at the His6 motif results in a mixture of 6C (site 2) and 5C (site 1) signals in the presence of sub-stoichiometric Fe(ii). These results are consistent with a reduced Fe(ii)-binding affinity of site 2 as more weakly coordinating water-derived ligands complete the 6C site. In the absence of Ca(ii), both sites 1 and 2 are occupied upon addition of sub-stoichiometric Fe(ii), and a stronger ligand field is observed for the 5C site. These spectroscopic studies provide further evaluation of a unique non-heme Fe(ii)-His6 site for metalloproteins and support the notion that Ca(ii) ions influence the Fe(ii)-binding properties of CP.
Collapse
Affiliation(s)
- Tessa M Baker
- Department of Chemistry , University of Rochester , Rochester , New York 14627 , USA .
| | - Toshiki G Nakashige
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , USA .
| | - Elizabeth M Nolan
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , USA .
| | - Michael L Neidig
- Department of Chemistry , University of Rochester , Rochester , New York 14627 , USA .
| |
Collapse
|
116
|
Peck SC, Wang C, Dassama LMK, Zhang B, Guo Y, Rajakovich LJ, Bollinger JM, Krebs C, van der Donk WA. O-H Activation by an Unexpected Ferryl Intermediate during Catalysis by 2-Hydroxyethylphosphonate Dioxygenase. J Am Chem Soc 2017; 139:2045-2052. [PMID: 28092705 PMCID: PMC5302023 DOI: 10.1021/jacs.6b12147] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Activation
of O–H bonds by inorganic metal-oxo complexes
has been documented, but no cognate enzymatic process is known. Our
mechanistic analysis of 2-hydroxyethylphosphonate dioxygenase
(HEPD), which cleaves the C1–C2 bond of its substrate to afford
hydroxymethylphosphonate on the biosynthetic pathway to
the commercial herbicide phosphinothricin, uncovered an example
of such an O–H-bond-cleavage event. Stopped-flow UV–visible
absorption and freeze-quench Mössbauer experiments identified
a transient iron(IV)-oxo (ferryl) complex. Maximal accumulation of
the intermediate required both the presence of deuterium in the substrate
and, importantly, the use of 2H2O as solvent.
The ferryl complex forms and decays rapidly enough to be on the catalytic
pathway. To account for these unanticipated results, a new mechanism
that involves activation of an O–H bond by the ferryl complex
is proposed. This mechanism accommodates all available data on the
HEPD reaction.
Collapse
Affiliation(s)
- Spencer C Peck
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States.,Institute for Genomic Biology, University of Illinois at Urbana-Champaign , 1206 West Gregory Drive, Urbana, Illinois 61801, United States
| | - Chen Wang
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Laura M K Dassama
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Bo Zhang
- Department of Chemistry, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Yisong Guo
- Department of Chemistry, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Lauren J Rajakovich
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - J Martin Bollinger
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States.,Department of Chemistry, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Carsten Krebs
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States.,Department of Chemistry, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Wilfred A van der Donk
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States.,Institute for Genomic Biology, University of Illinois at Urbana-Champaign , 1206 West Gregory Drive, Urbana, Illinois 61801, United States
| |
Collapse
|
117
|
Kal S, Que L. Dioxygen activation by nonheme iron enzymes with the 2-His-1-carboxylate facial triad that generate high-valent oxoiron oxidants. J Biol Inorg Chem 2017; 22:339-365. [PMID: 28074299 DOI: 10.1007/s00775-016-1431-2] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 12/13/2016] [Indexed: 11/24/2022]
Abstract
The 2-His-1-carboxylate facial triad is a widely used scaffold to bind the iron center in mononuclear nonheme iron enzymes for activating dioxygen in a variety of oxidative transformations of metabolic significance. Since the 1990s, over a hundred different iron enzymes have been identified to use this platform. This structural motif consists of two histidines and the side chain carboxylate of an aspartate or a glutamate arranged in a facial array that binds iron(II) at the active site. This triad occupies one face of an iron-centered octahedron and makes the opposite face available for the coordination of O2 and, in many cases, substrate, allowing the tailoring of the iron-dioxygen chemistry to carry out a plethora of diverse reactions. Activated dioxygen-derived species involved in the enzyme mechanisms include iron(III)-superoxo, iron(III)-peroxo, and high-valent iron(IV)-oxo intermediates. In this article, we highlight the major crystallographic, spectroscopic, and mechanistic advances of the past 20 years that have significantly enhanced our understanding of the mechanisms of O2 activation and the key roles played by iron-based oxidants.
Collapse
Affiliation(s)
- Subhasree Kal
- Department of Chemistry, Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Lawrence Que
- Department of Chemistry, Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
118
|
Liu Y, Tu N, Xie W, Li Y. Theoretical investigation on proton transfer mechanism of extradiol dioxygenase. RSC Adv 2017. [DOI: 10.1039/c7ra08080h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The formation mechanism of alkyl(hydro)peroxo species is performed via two parallel pathways.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Pulp and Paper Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
- Faculty of Environmental & Biological Engineering
| | - Ningyu Tu
- Faculty of Environmental & Biological Engineering
- Guangdong University of Petrochemical Technology
- Maoming 525000
- P. R. China
| | - Wenyu Xie
- Faculty of Environmental & Biological Engineering
- Guangdong University of Petrochemical Technology
- Maoming 525000
- P. R. China
| | - Youming Li
- State Key Laboratory of Pulp and Paper Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| |
Collapse
|
119
|
Fischer AA, Lindeman SV, Fiedler AT. Spectroscopic and computational studies of reversible O2 binding by a cobalt complex of relevance to cysteine dioxygenase. Dalton Trans 2017; 46:13229-13241. [DOI: 10.1039/c7dt01600j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Spectroscopic and computational studies of reversible O2 binding by a cobalt active-site mimic shed light on the catalytic mechanism of cysteine dioxygenases.
Collapse
|
120
|
Wise CE, Grant JL, Amaya JA, Ratigan SC, Hsieh CH, Manley OM, Makris TM. Divergent mechanisms of iron-containing enzymes for hydrocarbon biosynthesis. J Biol Inorg Chem 2016; 22:221-235. [DOI: 10.1007/s00775-016-1425-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/09/2016] [Indexed: 12/22/2022]
|
121
|
Rafique MZ, Carvalho E, Stracke R, Palmieri L, Herrera L, Feller A, Malnoy M, Martens S. Nonsense Mutation Inside Anthocyanidin Synthase Gene Controls Pigmentation in Yellow Raspberry ( Rubus idaeus L.). FRONTIERS IN PLANT SCIENCE 2016; 7:1892. [PMID: 28066458 PMCID: PMC5165238 DOI: 10.3389/fpls.2016.01892] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 11/30/2016] [Indexed: 05/27/2023]
Abstract
Yellow raspberry fruits have reduced anthocyanin contents and offer unique possibility to study the genetics of pigment biosynthesis in this important soft fruit. Anthocyanidin synthase (Ans) catalyzes the conversion of leucoanthocyanidin to anthocyanidin, a key committed step in biosynthesis of anthocyanins. Molecular analysis of the Ans gene enabled to identify an inactive ans allele in a yellow fruit raspberry ("Anne"). A 5 bp insertion in the coding region was identified and designated as ans+5. The insertion creates a premature stop codon resulting in a truncated protein of 264 amino acids, compared to 414 amino acids wild-type ANS protein. This mutation leads to loss of function of the encoded protein that might also result in transcriptional downregulation of Ans gene as a secondary effect, i.e., nonsense-mediated mRNA decay. Further, this mutation results in loss of visible and detectable anthocyanin pigments. Functional characterization of raspberry Ans/ans alleles via complementation experiments in the Arabidopsis thaliana ldox mutant supports the inactivity of encoded protein through ans+5 and explains the proposed block in the anthocyanin biosynthetic pathway in raspberry. Taken together, our data shows that the mutation inside Ans gene in raspberry is responsible for yellow fruit phenotypes.
Collapse
Affiliation(s)
- Muhammad Z. Rafique
- Research and Innovation Center, Fondazione Edmund MachSan Michele all’Adige, Italy
| | - Elisabete Carvalho
- Research and Innovation Center, Fondazione Edmund MachSan Michele all’Adige, Italy
| | - Ralf Stracke
- Genome Research, Department of Biology, Bielefeld UniversityBielefeld, Germany
| | - Luisa Palmieri
- Research and Innovation Center, Fondazione Edmund MachSan Michele all’Adige, Italy
| | - Lorena Herrera
- Research and Innovation Center, Fondazione Edmund MachSan Michele all’Adige, Italy
| | - Antje Feller
- Research and Innovation Center, Fondazione Edmund MachSan Michele all’Adige, Italy
- Department of Developmental Genetics, Centre for Plant Molecular Biology, University of TübingenTübingen, Germany
| | - Mickael Malnoy
- Research and Innovation Center, Fondazione Edmund MachSan Michele all’Adige, Italy
| | - Stefan Martens
- Research and Innovation Center, Fondazione Edmund MachSan Michele all’Adige, Italy
| |
Collapse
|
122
|
Basu Mallik S, Pai A, Shenoy RR, Jayashree BS. Novel flavonol analogues as potential inhibitors of JMJD3 histone demethylase-A study based on molecular modelling. J Mol Graph Model 2016; 72:81-87. [PMID: 28064082 DOI: 10.1016/j.jmgm.2016.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/21/2016] [Accepted: 12/01/2016] [Indexed: 12/12/2022]
Abstract
Epigenetic modulation of gene expression has drawn enormous attention among researchers globally in the present scenario. Since their discovery, Jmj-C histone demethylases were identified as useful markers in understanding the role of epigenetics in inflammatory conditions and in cancer as well. This has created arousal of interest in search of suitable candidates. Potential inhibitors from various other scaffolds such as hydroxyquinolines, hydroxamic acids and triazolopyridines have already been identified and reported. In this direction, our present study attempts to target one of the important members of the family- namely JMJD3 (also known as KDM6B), that plays a pivotal role in inflammatory and immune reactions. Using molecular modeling approaches, myricetin analogues were identified as promising inhibitors of JMJD3. Extensive literature review showed myricetin as the most promising flavonol inhibitor for this enzyme. It served as a prototype for our study and modification of it's scaffold led to generation of analogues. The ZINC database was used as a repository for natural compounds and their analogues. Using similarity search options, 65 analogues of myricetin were identified and screened against JMJD3 (PDB ID: 4ASK), using the high throughput virtual screening and ligand docking tools in Maestro Molecular Modeling platform (version 10.5) from Schrödinger, LLC. 8 analogues out of 65 were identified as the most appropriate candidates which gave the best pose in ligand docking. Their binding mode and energy calculations were analysed using induced fit docking (IFD) and prime-MMGBSA tool, respectively. Thus, our findings highlight the most promising analogues of myricetin with comparable binding affinity as well as binding energy than their counterparts that could be taken for further optimisation as inhibitors of JMJD3 in both in vitro and in vivo screening studies.
Collapse
Affiliation(s)
- Sanchari Basu Mallik
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, 576104, India
| | - Aravinda Pai
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, 576104, India
| | - Rekha R Shenoy
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, 576104, India
| | - B S Jayashree
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, 576104, India.
| |
Collapse
|
123
|
Subedi BP, Fitzpatrick PF. Kinetic Mechanism and Intrinsic Rate Constants for the Reaction of a Bacterial Phenylalanine Hydroxylase. Biochemistry 2016; 55:6848-6857. [DOI: 10.1021/acs.biochem.6b01012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bishnu P. Subedi
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio Texas 78229, United States
| | - Paul F. Fitzpatrick
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio Texas 78229, United States
| |
Collapse
|
124
|
Oxygen activation by mononuclear Mn, Co, and Ni centers in biology and synthetic complexes. J Biol Inorg Chem 2016; 22:407-424. [PMID: 27853875 DOI: 10.1007/s00775-016-1402-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 10/21/2016] [Indexed: 10/20/2022]
Abstract
The active sites of metalloenzymes that catalyze O2-dependent reactions generally contain iron or copper ions. However, several enzymes are capable of activating O2 at manganese or nickel centers instead, and a handful of dioxygenases exhibit activity when substituted with cobalt. This minireview summarizes the catalytic properties of oxygenases and oxidases with mononuclear Mn, Co, or Ni active sites, including oxalate-degrading oxidases, catechol dioxygenases, and quercetin dioxygenase. In addition, recent developments in the O2 reactivity of synthetic Mn, Co, or Ni complexes are described, with an emphasis on the nature of reactive intermediates featuring superoxo-, peroxo-, or oxo-ligands. Collectively, the biochemical and synthetic studies discussed herein reveal the possibilities and limitations of O2 activation at these three "overlooked" metals.
Collapse
|
125
|
Abstract
The non-heme Fe enzymes are ubiquitous in nature and perform a wide range of functions involving O2 activation. These had been difficult to study relative to heme enzymes; however, spectroscopic methods that provide significant insight into the correlation of structure with function have now been developed. This Current Topics article summarizes both the molecular mechanism these enzymes use to control O2 activation in the presence of cosubstrates and the oxygen intermediates these reactions generate. Three types of O2 activation are observed. First, non-heme reactivity is shown to be different from heme chemistry where a low-spin FeIII-OOH non-heme intermediate directly reacts with substrate. Also, two subclasses of non-heme Fe enzymes generate high-spin FeIV═O intermediates that provide both σ and π frontier molecular orbitals that can control selectivity. Finally, for several subclasses of non-heme Fe enzymes, binding of the substrate to the FeII site leads to the one-electron reductive activation of O2 to an FeIII-superoxide capable of H atom abstraction and electrophilic attack.
Collapse
Affiliation(s)
- Edward I Solomon
- Department of Chemistry, Stanford University , Stanford, California 94305, United States.,SLAC National Accelerator Laboratory , Menlo Park, California 94025, United States
| | - Serra Goudarzi
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | - Kyle D Sutherlin
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| |
Collapse
|
126
|
Fischer AA, Stracey N, Lindeman SV, Brunold TC, Fiedler AT. Synthesis, X-ray Structures, Electronic Properties, and O 2/NO Reactivities of Thiol Dioxygenase Active-Site Models. Inorg Chem 2016; 55:11839-11853. [PMID: 27801576 DOI: 10.1021/acs.inorgchem.6b01931] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Mononuclear non-heme iron complexes that serve as structural and functional mimics of the thiol dioxygenases (TDOs), cysteine dioxygenase (CDO) and cysteamine dioxygenase (ADO), have been prepared and characterized with crystallographic, spectroscopic, kinetic, and computational methods. The high-spin Fe(II) complexes feature the facially coordinating tris(4,5-diphenyl-1-methylimidazol-2-yl)phosphine (Ph2TIP) ligand that replicates the three histidine (3His) triad of the TDO active sites. Further coordination with bidentate l-cysteine ethyl ester (CysOEt) or cysteamine (CysAm) anions yielded five-coordinate (5C) complexes that resemble the substrate-bound forms of CDO and ADO, respectively. Detailed electronic-structure descriptions of the [Fe(Ph2TIP)(LS,N)]BPh4 complexes, where LS,N = CysOEt (1) or CysAm (2), were generated through a combination of spectroscopic techniques [electronic absorption, magnetic circular dichroism (MCD)] and density functional theory (DFT). Complexes 1 and 2 decompose in the presence of O2 to yield the corresponding sulfinic acid (RSO2H) products, thereby emulating the reactivity of the TDO enzymes and related complexes. Rate constants and activation parameters for the dioxygenation reactions were measured and interpreted with the aid of DFT calculations for O2-bound intermediates. Treatment of the TDO models with nitric oxide (NO)-a well-established surrogate of O2-led to a mixture of high-spin and low-spin {FeNO}7 species at low temperature (-70 °C), as indicated by electron paramagnetic resonance (EPR) spectroscopy. At room temperature, these Fe/NO adducts convert to a common species with EPR and infrared (IR) features typical of cationic dinitrosyl iron complexes (DNICs). To complement these results, parallel spectroscopic, computational, and O2/NO reactivity studies were carried out using previously reported TDO models that feature an anionic hydrotris(3-phenyl-5-methyl-pyrazolyl)borate (Ph,MeTp-) ligand. Though the O2 reactivities of the Ph2TIP- and Ph,MeTp-based complexes are quite similar, the supporting ligand perturbs the energies of Fe 3d-based molecular orbitals and modulates Fe-S bond covalency, suggesting possible rationales for the presence of neutral 3His coordination in CDO and ADO.
Collapse
Affiliation(s)
- Anne A Fischer
- Department of Chemistry, Marquette University , Milwaukee, Wisconsin 53201, United States
| | - Nuru Stracey
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Sergey V Lindeman
- Department of Chemistry, Marquette University , Milwaukee, Wisconsin 53201, United States
| | - Thomas C Brunold
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Adam T Fiedler
- Department of Chemistry, Marquette University , Milwaukee, Wisconsin 53201, United States
| |
Collapse
|
127
|
Zhu Y, Ksibe AZ, Schäfer H, Blindauer CA, Bugg TDH, Chen Y. O2-independent demethylation of trimethylamineN-oxide by Tdm ofMethylocella silvestris. FEBS J 2016; 283:3979-3993. [DOI: 10.1111/febs.13902] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/09/2016] [Accepted: 09/15/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Yijun Zhu
- School of Life Sciences; University of Warwick; Coventry UK
| | - Amira Z. Ksibe
- Department of Chemistry; University of Warwick; Coventry UK
| | | | | | | | - Yin Chen
- School of Life Sciences; University of Warwick; Coventry UK
| |
Collapse
|
128
|
Nastri F, Chino M, Maglio O, Bhagi-Damodaran A, Lu Y, Lombardi A. Design and engineering of artificial oxygen-activating metalloenzymes. Chem Soc Rev 2016; 45:5020-54. [PMID: 27341693 PMCID: PMC5021598 DOI: 10.1039/c5cs00923e] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Many efforts are being made in the design and engineering of metalloenzymes with catalytic properties fulfilling the needs of practical applications. Progress in this field has recently been accelerated by advances in computational, molecular and structural biology. This review article focuses on the recent examples of oxygen-activating metalloenzymes, developed through the strategies of de novo design, miniaturization processes and protein redesign. Considerable progress in these diverse design approaches has produced many metal-containing biocatalysts able to adopt the functions of native enzymes or even novel functions beyond those found in Nature.
Collapse
Affiliation(s)
- Flavia Nastri
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia, 80126 Naples, Italy
| | - Marco Chino
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia, 80126 Naples, Italy
| | - Ornella Maglio
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia, 80126 Naples, Italy
- IBB, CNR, Via Mezzocannone 16, 80134 Naples, Italy
| | - Ambika Bhagi-Damodaran
- Department of Chemistry, University of Illinois at Urbana-Champaign, A322 CLSL, 600 South Mathews Avenue, Urbana, IL 61801
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, A322 CLSL, 600 South Mathews Avenue, Urbana, IL 61801
| | - Angela Lombardi
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia, 80126 Naples, Italy
| |
Collapse
|
129
|
Kingsbury JM, Shamaprasad N, Billmyre RB, Heitman J, Cardenas ME. Cancer-associated isocitrate dehydrogenase mutations induce mitochondrial DNA instability. Hum Mol Genet 2016; 25:3524-3538. [PMID: 27427385 DOI: 10.1093/hmg/ddw195] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 12/15/2022] Open
Abstract
A major advance in understanding the progression and prognostic outcome of certain cancers, such as low-grade gliomas, acute myeloid leukaemia, and chondrosarcomas, has been the identification of early-occurring mutations in the NADP+-dependent isocitrate dehydrogenase genes IDH1 and IDH2 These mutations result in the production of the onco-metabolite D-2-hydroxyglutarate (2HG), thought to contribute to disease progression. To better understand the mechanisms of 2HG pathophysiology, we introduced the analogous glioma-associated mutations into the NADP+ isocitrate dehydrogenase genes (IDP1, IDP2, IDP3) in Saccharomyces cerevisiae Intriguingly, expression of the mitochondrial IDP1R148H mutant allele results in high levels of 2HG production as well as extensive mtDNA loss and respiration defects. We find no evidence for a reactive oxygen-mediated mechanism mediating this mtDNA loss. Instead, we show that 2HG production perturbs the iron sensing mechanisms as indicated by upregulation of the Aft1-controlled iron regulon and a concomitant increase in iron levels. Accordingly, iron chelation, or overexpression of a truncated AFT1 allele that dampens transcription of the iron regulon, suppresses the loss of respirative capacity. Additional suppressing factors include overexpression of the mitochondrial aldehyde dehydrogenase gene ALD5 or disruption of the retrograde response transcription factor RTG1 Furthermore, elevated α-ketoglutarate levels also suppress 2HG-mediated respiration loss; consistent with a mechanism by which 2HG contributes to mtDNA loss by acting as a toxic α-ketoglutarate analog. Our findings provide insight into the mechanisms that may contribute to 2HG oncogenicity in glioma and acute myeloid leukaemia progression, with the promise for innovative diagnostic and prognostic strategies and novel therapeutic modalities.
Collapse
Affiliation(s)
- Joanne M Kingsbury
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Nachiketha Shamaprasad
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - R Blake Billmyre
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Maria E Cardenas
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
130
|
Protein effects in non-heme iron enzyme catalysis: insights from multiscale models. J Biol Inorg Chem 2016; 21:645-57. [DOI: 10.1007/s00775-016-1374-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/20/2016] [Indexed: 01/09/2023]
|
131
|
Meier KK, Rogers MS, Kovaleva EG, Lipscomb JD, Bominaar EL, Münck E. Enzyme Substrate Complex of the H200C Variant of Homoprotocatechuate 2,3-Dioxygenase: Mössbauer and Computational Studies. Inorg Chem 2016; 55:5862-70. [PMID: 27275865 PMCID: PMC4924929 DOI: 10.1021/acs.inorgchem.6b00148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The extradiol, aromatic ring-cleaving enzyme homoprotocatechuate 2,3-dioxygenase (HPCD) catalyzes a complex chain of reactions that involve second sphere residues of the active site. The importance of the second-sphere residue His200 was demonstrated in studies of HPCD variants, such as His200Cys (H200C), which revealed significant retardations of certain steps in the catalytic process as a result of the substitution, allowing novel reaction cycle intermediates to be trapped for spectroscopic characterization. As the H200C variant largely retains the wild-type active site structure and produces the correct ring-cleaved product, this variant presents a valuable target for mechanistic HPCD studies. Here, the high-spin Fe(II) states of resting H200C and the H200C-homoprotocatechuate enzyme-substrate (ES) complex have been characterized with Mössbauer spectroscopy to assess the electronic structures of the active site in these states. The analysis reveals a high-spin Fe(II) center in a low symmetry environment that is reflected in the values of the zero-field splitting (ZFS) (D ≈ - 8 cm(-1), E/D ≈ 1/3 in ES), as well as the relative orientations of the principal axes of the (57)Fe magnetic hyperfine (A) and electric field gradient (EFG) tensors relative to the ZFS tensor axes. A spin Hamiltonian analysis of the spectra for the ES complex indicates that the magnetization axis of the integer-spin S = 2 Fe(II) system is nearly parallel to the symmetry axis, z, of the doubly occupied dxy ground orbital deduced from the EFG and A-values, an observation, which cannot be rationalized by DFT assisted crystal-field theory. In contrast, ORCA/CASSCF calculations for the ZFS tensor in combination with DFT calculations for the EFG- and A-tensors describe the experimental data remarkably well.
Collapse
Affiliation(s)
- Katlyn K. Meier
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Melanie S. Rogers
- Department of Biochemistry, Molecular Biology and Biophysics and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Elena G. Kovaleva
- Stanford Synchrotron Radiation Lightsource, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - John D. Lipscomb
- Department of Biochemistry, Molecular Biology and Biophysics and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Emile L. Bominaar
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Eckard Münck
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
132
|
Tu Y, Liu F, Guo D, Fan L, Zhu Z, Xue Y, Gao Y, Guo M. Molecular characterization of flavanone 3-hydroxylase gene and flavonoid accumulation in two chemotyped safflower lines in response to methyl jasmonate stimulation. BMC PLANT BIOLOGY 2016; 16:132. [PMID: 27286810 PMCID: PMC4902928 DOI: 10.1186/s12870-016-0813-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/18/2016] [Indexed: 05/08/2023]
Abstract
BACKGROUND Among secondary metabolites, flavonoids are particularly crucial for plant growth, development, and reproduction, as well as beneficial for maintenance of human health. As a flowering plant, safflower has synthesized a striking variety of flavonoids with various pharmacologic properties. However, far less research has been carried out on the genes involved in the biosynthetic pathways that generate these amazing flavonoids, especially characterized quinochalcones. In this study, we first cloned and investigated the participation of a presumed flavanone 3-hydroxylase gene (F3H) from safflower (CtF3H) in a flavonoid biosynthetic pathway. RESULTS Bioinformation analysis showed that CtF3H shared high conserved residues and confidence with F3H from other plants. Subcellular localization uncovered the nuclear and cytosol localization of CtF3H in onion epidermal cells. The functional expressions of CtF3H in Escherichia coli BL21(DE3)pLysS cells in the pMAL-C5x vector led to the production of dihydrokaempferol when naringenin was the substrate. Furthermore, the transcriptome expression of CtF3H showed a diametrically opposed expression pattern in a quinochalcone-type safflower line (with orange-yellow flowers) and a flavonol-type safflower line (with white flowers) under external stimulation by methyl jasmonate (MeJA), which has been identified as an elicitor of flavonoid metabolites. Further metabolite analysis showed the increasing tendency of quinochalcones and flavonols, such as hydroxysafflor yellow A, kaempferol-3-O-β-D-glucoside, kaempferol-3-O-β-rutinoside, rutin, carthamin, and luteolin, in the quinochalcone-type safflower line. Also, the accumulation of kaempferol-3-O-β-rutinoside and kaempferol-3-O-β-D-glucoside in flavonols-typed safflower line showed enhanced accumulation pattern after MeJA treatment. However, other flavonols, such as kaempferol, dihydrokaempferol and quercetin-3-O-β-D-glucoside, in flavonols-typed safflower line presented down accumulation respond to MeJA stimulus. CONCLUSIONS Our results showed that the high expression of CtF3H in quinochalcone-type safflower line was associated with the accumulation of both quinochalcones and flavonols, whereas its low expression did not affect the increased accumulation of glycosylated derivatives (kaempferol-3-O-β-rutinoside and rutin) in flavonols-typed safflower line but affect the upstream precursors (D-phenylalanine, dihydrokaempferol, kaempferol), which partly revealed the function of CtF3H in different phenotypes and chemotypes of safflower lines.
Collapse
Affiliation(s)
- YanHua Tu
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Fei Liu
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - DanDan Guo
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - LiJiao Fan
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - ZhenXian Zhu
- School of Biological and Environmental Sciences, Nanjing Forestry University, Nanjing, 210095, People's Republic of China
| | - YingRu Xue
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Yue Gao
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, People's Republic of China.
| | - MeiLi Guo
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
133
|
Tearing down to build up: Metalloenzymes in the biosynthesis lincomycin, hormaomycin and the pyrrolo [1,4]benzodiazepines. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:724-737. [DOI: 10.1016/j.bbapap.2016.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 02/24/2016] [Accepted: 03/02/2016] [Indexed: 11/21/2022]
|
134
|
Dong G, Lu J, Lai W. Insights into the Mechanism of Aromatic Ring Cleavage of Noncatecholic Compound 2-Aminophenol by Aminophenol Dioxygenase: A Quantum Mechanics/Molecular Mechanics Study. ACS Catal 2016. [DOI: 10.1021/acscatal.6b00372] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Geng Dong
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Jiarui Lu
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Wenzhen Lai
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| |
Collapse
|
135
|
Thermodynamics of substrate binding to the metal site in homoprotocatechuate 2,3-dioxygenase: Using ITC under anaerobic conditions to study enzyme–substrate interactions. Biochim Biophys Acta Gen Subj 2016; 1860:910-916. [DOI: 10.1016/j.bbagen.2015.07.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/17/2015] [Accepted: 07/24/2015] [Indexed: 11/24/2022]
|
136
|
Wu LF, Meng S, Tang GL. Ferrous iron and α-ketoglutarate-dependent dioxygenases in the biosynthesis of microbial natural products. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:453-70. [DOI: 10.1016/j.bbapap.2016.01.012] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 01/22/2016] [Accepted: 01/29/2016] [Indexed: 01/29/2023]
|
137
|
Schnicker NJ, Dey M. Structural analysis of cofactor binding for a prolyl 4-hydroxylase from the pathogenic bacteriumBacillus anthracis. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2016; 72:675-81. [DOI: 10.1107/s2059798316004198] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 03/11/2016] [Indexed: 11/11/2022]
Abstract
The prolyl 4-hydroxylases (P4Hs) are mononuclear nonheme iron enzymes that catalyze the formation of 4R-hydroxyproline from many different substrates, with various biological implications. P4H is a key player in collagen accumulation, which has implications in fibrotic disorders. The stabilization of collagen triple-helical structureviaprolyl hydroxylation is the rate-limiting step in collagen biosynthesis, and therefore P4H has been extensively investigated as a potential therapeutic target of fibrotic disease. Understanding how these enzymes recognize cofactors and substrates is important and will aid in the future design of inhibitors of P4H. In this article, X-ray crystal structures of a metallocofactor- and α-ketoglutarate (αKG)-bound form of P4H fromBacillus anthracis(BaP4H) are reported. Structures of BaP4H were solved at 1.63 and 2.35 Å resolution and contained a cadmium ion and αKG bound in the active site. The αKG–Cd–BaP4H ternary complex reveals conformational changes of conserved residues upon the binding of metal ion and αKG, resulting in a closed active-site configuration required for dioxygen, substrate binding and catalysis.
Collapse
|
138
|
Sheet D, Paine TK. Aerobic alcohol oxidation and oxygen atom transfer reactions catalyzed by a nonheme iron(ii)-α-keto acid complex. Chem Sci 2016; 7:5322-5331. [PMID: 30155184 PMCID: PMC6020522 DOI: 10.1039/c6sc01476c] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 04/23/2016] [Indexed: 11/21/2022] Open
Abstract
An iron(ii)-benzoylformate complex of a monoanionic facial tridentate ligand catalyzes the aerobic oxidation of sulfides to sulfoxides, alkenes to epoxides, and alcohols to the corresponding carbonyl compounds.
α-Ketoglutarate-dependent enzymes catalyze many important biological oxidation/oxygenation reactions. Iron(iv)–oxo intermediates have been established as key oxidants in these oxidation reactions. While most reported model iron(ii)–α-keto acid complexes exhibit stoichiometric reactivity, selective oxidation of substrates with dioxygen catalyzed by biomimetic iron(ii)–α-keto acid complexes remains unexplored. In this direction, we have investigated the ability of an iron(ii) complex [(TpPh,Me)FeII(BF)] (1) (TpPh,Me = hydrotris(3-phenyl-5-methylpyrazolyl)borate and BF = monoanionic benzoylformate) to catalyze the aerobic oxidation of organic substrates. An iron–oxo oxidant, intercepted in the reaction of 1 with O2, selectively oxidizes sulfides to sulfoxides, alkenes to epoxides, and alcohols to the corresponding carbonyl compounds. The oxidant from 1 is able to hydroxylate the benzylic carbon of phenylacetic acid to afford mandelic acid with the incorporation of one oxygen atom from O2 into the product. The iron(ii)–benzoylformate complex oxidatively converts phenoxyacetic acids to the corresponding phenols, thereby mimicking the function of iron(ii)–α-ketoglutarate-dependent 2,4-dichlorophenoxyacetate dioxygenase (TfdA). Furthermore, complex 1 exhibits catalytic aerobic oxidation of alcohols and oxygen atom transfer reactions with multiple turnovers.
Collapse
Affiliation(s)
- Debobrata Sheet
- Department of Inorganic Chemistry , Indian Association for the Cultivation of Science , 2A & 2B Raja S. C. Mullick Road, Jadavpur , Kolkata 700032 , India . ; ; Tel: +91-33-2473-4971
| | - Tapan Kanti Paine
- Department of Inorganic Chemistry , Indian Association for the Cultivation of Science , 2A & 2B Raja S. C. Mullick Road, Jadavpur , Kolkata 700032 , India . ; ; Tel: +91-33-2473-4971
| |
Collapse
|
139
|
Schnicker NJ, Dey M. Bacillus anthracis Prolyl 4-Hydroxylase Modifies Collagen-like Substrates in Asymmetric Patterns. J Biol Chem 2016; 291:13360-74. [PMID: 27129244 DOI: 10.1074/jbc.m116.725432] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Indexed: 11/06/2022] Open
Abstract
Proline hydroxylation is the most prevalent post-translational modification in collagen. The resulting product trans-4-hydroxyproline (Hyp) is of critical importance for the stability and thus function of collagen, with defects leading to several diseases. Prolyl 4-hydroxylases (P4Hs) are mononuclear non-heme iron α-ketoglutarate (αKG)-dependent dioxygenases that catalyze Hyp formation. Although animal and plant P4Hs target peptidyl proline, prokaryotes have been known to use free l-proline as a precursor to form Hyp. The P4H from Bacillus anthracis (BaP4H) has been postulated to act on peptidyl proline in collagen peptides, making it unusual within the bacterial clade, but its true physiological substrate remains enigmatic. Here we use mass spectrometry, fluorescence binding, x-ray crystallography, and docking experiments to confirm that BaP4H recognizes and acts on peptidyl substrates but not free l-proline, using elements characteristic of an Fe(II)/αKG-dependent dioxygenases. We further show that BaP4H can hydroxylate unique peptidyl proline sites in collagen-derived peptides with asymmetric hydroxylation patterns. The cofactor-bound crystal structures of BaP4H reveal active site conformational changes that define open and closed forms and mimic "ready" and "product-released" states of the enzyme in the catalytic cycle. These results help to clarify the role of BaP4H as well as provide broader insights into human collagen P4H and proteins with poly-l-proline type II helices.
Collapse
Affiliation(s)
- Nicholas J Schnicker
- From the Department of Chemistry, University of Iowa, Iowa City, Iowa 52242-1727
| | - Mishtu Dey
- From the Department of Chemistry, University of Iowa, Iowa City, Iowa 52242-1727
| |
Collapse
|
140
|
Weichold V, Milbredt D, van Pée KH. Die spezifische enzymatische Halogenierung - von der Entdeckung halogenierender Enzyme bis zu deren Anwendung in vitro und in vivo. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201509573] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Veit Weichold
- Fachrichtung Chemie und Lebensmittelchemie, Allgemeine Biochemie; TU Dresden; 01062 Dresden Deutschland
| | - Daniela Milbredt
- Fachrichtung Chemie und Lebensmittelchemie, Allgemeine Biochemie; TU Dresden; 01062 Dresden Deutschland
| | - Karl-Heinz van Pée
- Fachrichtung Chemie und Lebensmittelchemie, Allgemeine Biochemie; TU Dresden; 01062 Dresden Deutschland
| |
Collapse
|
141
|
Weichold V, Milbredt D, van Pée KH. Specific Enzymatic Halogenation-From the Discovery of Halogenated Enzymes to Their Applications In Vitro and In Vivo. Angew Chem Int Ed Engl 2016; 55:6374-89. [DOI: 10.1002/anie.201509573] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/02/2015] [Indexed: 01/22/2023]
Affiliation(s)
- Veit Weichold
- Fachrichtung Chemie und Lebensmittelchemie, Allgemeine Biochemie; TU Dresden; 01062 Dresden Germany
| | - Daniela Milbredt
- Fachrichtung Chemie und Lebensmittelchemie, Allgemeine Biochemie; TU Dresden; 01062 Dresden Germany
| | - Karl-Heinz van Pée
- Fachrichtung Chemie und Lebensmittelchemie, Allgemeine Biochemie; TU Dresden; 01062 Dresden Germany
| |
Collapse
|
142
|
Mai BK, Kim Y. Is It Fe(III)-Oxyl Radical That Abstracts Hydrogen in the C-H Activation of TauD? A Theoretical Study Based on the DFT Potential Energy Surfaces. Inorg Chem 2016; 55:3844-52. [PMID: 27031914 DOI: 10.1021/acs.inorgchem.5b02939] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Taurine:α-ketoglutarate dioxygenase (TauD) is one of the most important enzymes in the α-ketoglutarate dioxygenase family, which are involved in many important biochemical processes. TauD converts taurine into amino acetaldehyde and sulfite at its nonheme iron center, and a large H/D kinetic isotope effect (KIE) has been found in the hydrogen atom transfer (HAT) of taurine suggesting a large tunneling effect. Recently, highly electrophilic Fe(III)-oxyl radicals have been proposed as a key species for HAT in the catalytic mechanism of C–H activation, which might be prepared prior to the actual HAT. In order to investigate this hypothesis and large tunneling effect, DFT potential energy surfaces along the intrinsic reaction path were generated. The predicted rate constants and H/D KIEs using variational transition-state theory including multidimensional tunneling, based on these potential surfaces, have excellent agreement with experimental data. This study revealed that the reactive processes of C–H activation consisted of two distinguishable parts: (1) the substrate approaching the Fe(IV)-oxo center without C–H bond cleavage, which triggers the catalytic process by inducing metal-to-ligand charge transfer to form the Fe(III)-oxyl species, and (2) the actual HAT from the substrate to the Fe(III)-oxyl species. Most of the activation energy was used in the first part, and the actual HAT required only a small amount of energy to overcome the TS with a very large tunneling effect. The donor–acceptor interaction between σC–H and σ*Fe–O orbitals reduced the activation energy significantly to make C–H activation feasible.
Collapse
Affiliation(s)
- Binh Khanh Mai
- Department of Applied Chemistry, Kyung Hee University , 1 Seochun-Dong, Giheung-Gu, Yongin-Si, Gyeonggi-Do 446-701, Korea
| | - Yongho Kim
- Department of Applied Chemistry, Kyung Hee University , 1 Seochun-Dong, Giheung-Gu, Yongin-Si, Gyeonggi-Do 446-701, Korea
| |
Collapse
|
143
|
Catalytic strategies of the non-heme iron dependent oxygenases and their roles in plant biology. Curr Opin Chem Biol 2016; 31:126-35. [PMID: 27015291 PMCID: PMC4879150 DOI: 10.1016/j.cbpa.2016.02.017] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/25/2016] [Accepted: 02/26/2016] [Indexed: 12/18/2022]
Abstract
Current evidence for iron-oxo reactive intermediates is reviewed. In crystallo intermediates detected in a native extradiol dioxygenase reaction. Carotenoid cleavage dioxygenases catalyse strigolactone biosynthesis. Identification of plant cysteine oxidases involved in the plant hypoxic response. Applications of enzyme manipulation to plant biology and agriculture are discussed.
Non-heme iron-dependent oxygenases catalyse the incorporation of O2 into a wide range of biological molecules and use diverse strategies to activate their substrates. Recent kinetic studies, including in crystallo, have provided experimental support for some of the intermediates used by different subclasses of this enzyme family. Plant non-heme iron-dependent oxygenases have diverse and important biological roles, including in growth signalling, stress responses and secondary metabolism. Recently identified roles include in strigolactone biosynthesis, O-demethylation in morphine biosynthesis and regulating the stability of hypoxia-responsive transcription factors. We discuss current structural and mechanistic understanding of plant non-heme iron oxygenases, and how their chemical/genetic manipulation could have agricultural benefit, for example, for improved yield, stress tolerance or herbicide development.
Collapse
|
144
|
The different catalytic roles of the metal-binding ligands in human 4-hydroxyphenylpyruvate dioxygenase. Biochem J 2016; 473:1179-89. [PMID: 26936969 DOI: 10.1042/bcj20160146] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/02/2016] [Indexed: 11/17/2022]
Abstract
4-Hydroxyphenylpyruvate dioxygenase (HPPD) is a non-haem iron(II)-dependent oxygenase that catalyses the conversion of 4-hydroxyphenylpyruvate (HPP) to homogentisate (HG). In the active site, a strictly conserved 2-His-1-Glu facial triad co-ordinates the iron ready for catalysis. Substitution of these residues resulted in about a 10-fold decrease in the metal binding affinity, as measured by isothermal titration calorimetry, and a large reduction in enzyme catalytic efficiencies. The present study revealed the vital role of the ligand Glu(349) in enzyme function. Replacing this residue with alanine resulted in loss of activity. The E349G variant retained 5% activity for the coupled reaction, suggesting that co-ordinating water may be able to support activation of the trans-bound dioxygen upon substrate binding. The reaction catalysed by the H183A variant was fully uncoupled. H183A variant catalytic activity resulted in protein cleavage between Ile(267) and Ala(268) and the production of an N-terminal fragment. The H266A variant was able to produce 4-hydroxyphenylacetate (HPA), demonstrating that decarboxylation had occurred but that there was no subsequent product formation. Structural modelling of the variant enzyme with bound dioxygen revealed the rearrangement of the co-ordination environment and the dynamic behaviour of bound dioxygen in the H266A and H183A variants respectively. These models suggest that the residues regulate the geometry of the reactive oxygen intermediate during the oxidation reaction. The mutagenesis and structural simulation studies demonstrate the critical and unique role of each ligand in the function of HPPD, and which correlates with their respective co-ordination position.
Collapse
|
145
|
Folkertsma E, de Waard EF, Korpershoek G, van Schaik AJ, Solozabal Mirón N, Borrmann M, Nijsse S, Moelands MAH, Lutz M, Otte M, Moret M, Klein Gebbink RJM. Mimicry of the 2‐His‐1‐Carboxylate Facial Triad Using Bulky N,N,O‐Ligands: Non‐Heme Iron Complexes Featuring a Single Facial Ligand and Easily Exchangeable Co‐Ligands. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201501406] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Emma Folkertsma
- Organic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands, http://www.uu.nl/en/research/organic‐chemistry‐catalysis
| | - Esther F. de Waard
- Organic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands, http://www.uu.nl/en/research/organic‐chemistry‐catalysis
| | - Gerda Korpershoek
- Organic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands, http://www.uu.nl/en/research/organic‐chemistry‐catalysis
| | - Arnoldus J. van Schaik
- Organic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands, http://www.uu.nl/en/research/organic‐chemistry‐catalysis
| | - Naiara Solozabal Mirón
- Organic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands, http://www.uu.nl/en/research/organic‐chemistry‐catalysis
| | - Mandy Borrmann
- Organic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands, http://www.uu.nl/en/research/organic‐chemistry‐catalysis
| | - Sjoerd Nijsse
- Organic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands, http://www.uu.nl/en/research/organic‐chemistry‐catalysis
| | - Marcel A. H. Moelands
- Organic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands, http://www.uu.nl/en/research/organic‐chemistry‐catalysis
| | - Martin Lutz
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Matthias Otte
- Organic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands, http://www.uu.nl/en/research/organic‐chemistry‐catalysis
| | - Marc‐Etienne Moret
- Organic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands, http://www.uu.nl/en/research/organic‐chemistry‐catalysis
| | - Robertus J. M. Klein Gebbink
- Organic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands, http://www.uu.nl/en/research/organic‐chemistry‐catalysis
| |
Collapse
|
146
|
Baum AE, Lindeman SV, Fiedler AT. Mononuclear Iron‐(hydro/semi)quinonate Complexes Featuring Neutral and Charged Scorpionates: Synthetic Models of Intermediates in the Hydroquinone Dioxygenase Mechanism. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201501380] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Amanda E. Baum
- Department of ChemistryMarquette UniversityP. O. Box 1881, 535 N. 14th St.53233MilwaukeeWIUSA
| | - Sergey V. Lindeman
- Department of ChemistryMarquette UniversityP. O. Box 1881, 535 N. 14th St.53233MilwaukeeWIUSA
| | - Adam T. Fiedler
- Department of ChemistryMarquette UniversityP. O. Box 1881, 535 N. 14th St.53233MilwaukeeWIUSA
| |
Collapse
|
147
|
Theoretical Model of the Structure and the Reaction Mechanisms of Sulfur Oxygenase Reductase in Acidithiobacillus thiooxidans. ACTA ACUST UNITED AC 2015. [DOI: 10.4028/www.scientific.net/amr.1130.67] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sulfur oxygenase reductase (SOR), which is thought to be an important enzyme involved in sulfur oxidation in many microorganisms, may play a key role in sulfur oxidation in Acidithiobacillusthiooxidans. Draft genome sequence of A. thiooxidans A01 indicated the presence of sulfur oxygenase reductase gene (sor). The complementary DNA fragment was speculated to encode a putative 311-aa full-length protein SOR. Structural analysis of SOR revealed that three cysteines located in the two conserved domains, C32 at V-G-P-K-V-C32 as well as C102 and C105 at C102-X-X-C105, might form the substrate activation and binding site. It was proposed that conserved motif H87-X3-H91-X23-E115 acted as ligands might combine with iron atom to constitute a mononuclear non-heme iron center, catalyzing the oxidation reaction of substrate.
Collapse
|
148
|
Yi W, Yuan L, Kun Y, Zhengwen H, Jing T, Xu F, Hong G, Yong W. What factors influence the reactivity of C-H hydroxylation and C=C epoxidation by [Fe(IV)(L(ax))(1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane)(O)](n+). J Biol Inorg Chem 2015; 20:1123-34. [PMID: 26345158 DOI: 10.1007/s00775-015-1294-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 08/26/2015] [Indexed: 11/26/2022]
Abstract
Density functional theory is used to investigate geometric structures and mechanisms for hydroxylation and epoxidation from propene for four non-heme iron complexes, [Fe(IV)(L(ax))(TMC)(O)](n+), which are the inverted isomers of [Fe(IV)(O)(TMC)(Lax)](n+) (Lax = acetonitrile (AN), monoanionic trifluoroacetate (TF), azide (N3), thiolate (SR)). The Fe(IV)O unit is found to be sterically less hindered in [Fe(IV)(L(ax))(TMC)(O)](n+) than that in [Fe(IV)(O)(TMC)(L(ax))](n+). Becke, three-parameter, Lee-Yang-Parr (B3LYP) calculations show that hydroxylation and epoxidation proceed via a two-state-reactivity on competing triplet and quintet spin surfaces; and the reactions have been invariably mediated by the S = 2 state. The reaction pathways computed reveal that 2-AN is the most reactive in the four [Fe(IV)(L(ax))(TMC)(O)](n+) complexes; along the reaction pathway, the axial ligand moves away from the iron center, and thus, the energy of the LUMO decreases. The anionic axial ligand, which is more electron releasing than neutral AN, shows a strong overlap of iron orbitals. Thus, the anionic ligand does not move away from the iron center. The H-abstraction is affected by the tunneling contribution, the more electron donation power of the axial ligand, the more effect of the tunneling contribution. Adding the tunneling correction, the relative reactivity of the hydroxylation follows the trend: 2-AN > 2-SR ≈ 2-N3 > 2-TF. However, for the epoxidation, the reactivity is in the following order of 2-AN > 2-TF > 2-N3 > 2-SR. Except for 2-AN, 2-X (L(ax) = TF, N3, SR) complexes chemoselectively hydroxylate even in the presence of a C=C double bond.
Collapse
Affiliation(s)
- Wang Yi
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China.
| | - Liu Yuan
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Yang Kun
- Department of Physics, Dalian Maritime University, 1 Linghai Road, Dalian, 116026, China
| | - He Zhengwen
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Tian Jing
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Fei Xu
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Guo Hong
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Wang Yong
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
| |
Collapse
|
149
|
Rivard BS, Rogers MS, Marell DJ, Neibergall MB, Chakrabarty S, Cramer CJ, Lipscomb JD. Rate-Determining Attack on Substrate Precedes Rieske Cluster Oxidation during Cis-Dihydroxylation by Benzoate Dioxygenase. Biochemistry 2015; 54:4652-64. [PMID: 26154836 DOI: 10.1021/acs.biochem.5b00573] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rieske dearomatizing dioxygenases utilize a Rieske iron-sulfur cluster and a mononuclear Fe(II) located 15 Å across a subunit boundary to catalyze O2-dependent formation of cis-dihydrodiol products from aromatic substrates. During catalysis, O2 binds to the Fe(II) while the substrate binds nearby. Single-turnover reactions have shown that one electron from each metal center is required for catalysis. This finding suggested that the reactive intermediate is Fe(III)-(H)peroxo or HO-Fe(V)═O formed by O-O bond scission. Surprisingly, several kinetic phases were observed during the single-turnover Rieske cluster oxidation. Here, the Rieske cluster oxidation and product formation steps of a single turnover of benzoate 1,2-dioxygenase are investigated using benzoate and three fluorinated analogues. It is shown that the rate constant for product formation correlates with the reciprocal relaxation time of only the fastest kinetic phase (RRT-1) for each substrate, suggesting that the slower phases are not mechanistically relevant. RRT-1 is strongly dependent on substrate type, suggesting a role for substrate in electron transfer from the Rieske cluster to the mononuclear iron site. This insight, together with the substrate and O2 concentration dependencies of RRT-1, indicates that a reactive species is formed after substrate and O2 binding but before electron transfer from the Rieske cluster. Computational studies show that RRT-1 is correlated with the electron density at the substrate carbon closest to the Fe(II), consistent with initial electrophilic attack by an Fe(III)-superoxo intermediate. The resulting Fe(III)-peroxo-aryl radical species would then readily accept an electron from the Rieske cluster to complete the cis-dihydroxylation reaction.
Collapse
Affiliation(s)
- Brent S Rivard
- †Department of Biochemistry, Molecular Biology, and Biophysics and the Center for Metals in Biocatalysis, ‡Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Melanie S Rogers
- †Department of Biochemistry, Molecular Biology, and Biophysics and the Center for Metals in Biocatalysis, ‡Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Daniel J Marell
- †Department of Biochemistry, Molecular Biology, and Biophysics and the Center for Metals in Biocatalysis, ‡Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Matthew B Neibergall
- †Department of Biochemistry, Molecular Biology, and Biophysics and the Center for Metals in Biocatalysis, ‡Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Sarmistha Chakrabarty
- †Department of Biochemistry, Molecular Biology, and Biophysics and the Center for Metals in Biocatalysis, ‡Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christopher J Cramer
- †Department of Biochemistry, Molecular Biology, and Biophysics and the Center for Metals in Biocatalysis, ‡Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - John D Lipscomb
- †Department of Biochemistry, Molecular Biology, and Biophysics and the Center for Metals in Biocatalysis, ‡Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
150
|
Sun CC, Dong WR, Zhao J, Nie L, Xiang LX, Zhu G, Shao JZ. Cysteine-independent Catalase-like Activity of Vertebrate Peroxiredoxin 1 (Prx1). J Biol Chem 2015; 290:19942-54. [PMID: 26088136 DOI: 10.1074/jbc.m115.659011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Indexed: 11/06/2022] Open
Abstract
Peroxiredoxins (Prxs) are a ubiquitous family of antioxidant proteins that are known as thioredoxin peroxidases. Here we report that Prx1 proteins from Tetraodon nigroviridis and humans also possess a previously unknown catalase-like activity that is independent of Cys residues and reductants but dependent on iron. We identified that the GVL motif was essential to the catalase (CAT)-like activity of Prx1 but not to the Cys-dependent thioredoxin peroxidase (POX) activity, and we generated mutants lacking POX and/or CAT activities for individually delineating their functional features. We discovered that the TnPrx1 POX and CAT activities possessed different kinetic features in reducing H2O2. The overexpression of wild-type TnPrx1 and mutants differentially regulated the intracellular levels of reactive oxygen species and p38 phosphorylation in HEK-293T cells treated with H2O2. These observations suggest that the dual antioxidant activities of Prx1 may be crucial for organisms to mediate intracellular redox homeostasis.
Collapse
Affiliation(s)
- Cen-Cen Sun
- From the College of Life Sciences, Zhejiang University and Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, China and
| | - Wei-Ren Dong
- From the College of Life Sciences, Zhejiang University and Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, China and
| | - Jing Zhao
- From the College of Life Sciences, Zhejiang University and Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, China and
| | - Li Nie
- From the College of Life Sciences, Zhejiang University and Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, China and
| | - Li-Xin Xiang
- From the College of Life Sciences, Zhejiang University and Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, China and
| | - Guan Zhu
- From the College of Life Sciences, Zhejiang University and Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, China and the Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843
| | - Jian-Zhong Shao
- From the College of Life Sciences, Zhejiang University and Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, China and
| |
Collapse
|