101
|
Abstract
Hsp70 chaperones are involved in multiple biological processes and are recruited to specific processes by designated J domain-containing cochaperones, or J proteins. To understand the evolution and functions of chloroplast Hsp70s and J proteins, we identified the Arabidopsis chloroplast J protein constituency using a combination of genomic and proteomic database searches and individual protein import assays. We show that Arabidopsis chloroplasts have at least 19 J proteins, the highest number of confirmed J proteins for any organelle. These 19 J proteins are classified into 11 clades, for which cyanobacteria and glaucophytes only have homologs for one clade, green algae have an additional three clades, and all the other 7 clades are specific to land plants. Each clade also possesses a clade-specific novel motif that is likely used to interact with different client proteins. Gene expression analyses indicate that most land plant-specific J proteins show highly variable expression in different tissues and are down regulated by low temperatures. These results show that duplication of chloroplast Hsp70 in land plants is accompanied by more than doubling of the number of its J protein cochaperones through adding new J proteins with novel motifs, not through duplications within existing families. These new J proteins likely recruit chloroplast Hsp70 to perform tissue specific functions related to biosynthesis rather than to stress resistance.
Collapse
|
102
|
Liu M, Shi J, Lu C. Identification of stress-responsive genes in Ammopiptanthus mongolicus using ESTs generated from cold- and drought-stressed seedlings. BMC PLANT BIOLOGY 2013; 13:88. [PMID: 23734749 PMCID: PMC3679971 DOI: 10.1186/1471-2229-13-88] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 05/25/2013] [Indexed: 05/23/2023]
Abstract
BACKGROUND Ammopiptanthus mongolicus is the only evergreen broadleaf shrub in the northwest desert of China, which can survive long-term aridity and extremely cold environments. In order to understand the genetic mechanisms underlying stress tolerance and adaptation to unfavorable environments of woody plants, an EST approach was used to investigate expression patterns of A. mongolicus in response to abiotic stresses. RESULTS ESTs were generated from a cDNA library constructed from A. mongolicus seedlings subjected to cold and drought stresses. Analysis of 5,637 cDNA sequences led to the identification of 5,282 ESTs and 1,594 unigenes, which were denoted as the AmCDUnigene set. Of these, 70% of unigenes were annotated and classified into 12 functional categories according to Gene Ontology, and 30% of unigenes encoded unknown function proteins, suggesting some of them were novel or A. mongolicus specific genes. Using comparative analysis with the reported genes from other plants, 528 (33%) unigenes were identified as stress-responsive genes. The functional classification of the 528 genes showed that a majority of them are associated with scavenging reactive oxygen species, stress response, cellular transport, signal transduction and transcription. To further identify candidate abiotic stress-tolerance genes, the 528 stress-responsive genes were compared with reported abiotic stress genes in the Comparative Stress Genes Catalog of GCP. This comparative analysis identified 120 abiotic stress-responsive genes, and their expression in A. mongolicus seedlings under cold or drought stress were characterized by qRT-PCR. Significantly, 82 genes responded to cold and/or drought stress. These cold- and/or drought-inducible genes confirmed that the ROS network, signal transduction and osmolyte accumulation undergo transcriptional reorganization when exposed to cold or drought stress treatments. Additionally, among the 1,594 unigenes sequences, 155 simple sequence repeats (SSRs) were identified. CONCLUSION This study represents a comprehensive analysis of cold and/or drought stress-responsive transcriptiome of A. mongolicus. The newly characterized genes and gene-derived markers from the AmCDUnigene set are valuable resources for a better understanding of the mechanisms that govern stress tolerance in A. mongolicus and other related species. Certain up-regulated genes characterizing these processes are potential targets for breeding for cold and/or drought tolerance of woody plants.
Collapse
Affiliation(s)
- Meiqin Liu
- Analysis and Testing Center, Beijing Forestry University, Beijing, 100083, China
| | - Jing Shi
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Cunfu Lu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
103
|
Bekh-Ochir D, Shimada S, Yamagami A, Kanda S, Ogawa K, Nakazawa M, Matsui M, Sakuta M, Osada H, Asami T, Nakano T. A novel mitochondrial DnaJ/Hsp40 family protein BIL2 promotes plant growth and resistance against environmental stress in brassinosteroid signaling. PLANTA 2013; 237:1509-25. [PMID: 23494613 PMCID: PMC3664749 DOI: 10.1007/s00425-013-1859-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 02/01/2013] [Indexed: 05/20/2023]
Abstract
Plant steroid hormones, brassinosteroids, are essential for growth, development and responses to environmental stresses in plants. Although BR signaling proteins are localized in many organelles, i.e., the plasma membrane, nuclei, endoplasmic reticulum and vacuole, the details regarding the BR signaling pathway from perception at the cellular membrane receptor BRASSINOSTEROID INSENSITIVE 1 (BRI1) to nuclear events include several steps. Brz (Brz220) is a specific inhibitor of BR biosynthesis. In this study, we used Brz-mediated chemical genetics to identify Brz-insensitive-long hypocotyls 2-1D (bil2-1D). The BIL2 gene encodes a mitochondrial-localized DnaJ/Heat shock protein 40 (DnaJ/Hsp40) family, which is involved in protein folding. BIL2-overexpression plants (BIL2-OX) showed cell elongation under Brz treatment, increasing the growth of plant inflorescence and roots, the regulation of BR-responsive gene expression and suppression against the dwarfed BRI1-deficient mutant. BIL2-OX also showed resistance against the mitochondrial ATPase inhibitor oligomycin and higher levels of exogenous ATP compared with wild-type plants. BIL2 participates in resistance against salinity stress and strong light stress. Our results indicate that BIL2 induces cell elongation during BR signaling through the promotion of ATP synthesis in mitochondria.
Collapse
Affiliation(s)
- Davaapurev Bekh-Ochir
- RIKEN Advanced Science Institute, 2-1 Hirosawa, Saitama Wako, 351-0198 Japan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Setsuko Shimada
- RIKEN Advanced Science Institute, 2-1 Hirosawa, Saitama Wako, 351-0198 Japan
| | - Ayumi Yamagami
- RIKEN Advanced Science Institute, 2-1 Hirosawa, Saitama Wako, 351-0198 Japan
| | - Satomi Kanda
- RIKEN Advanced Science Institute, 2-1 Hirosawa, Saitama Wako, 351-0198 Japan
| | - Kenji Ogawa
- RIKEN Advanced Science Institute, 2-1 Hirosawa, Saitama Wako, 351-0198 Japan
| | - Miki Nakazawa
- RIKEN Genome Science Center, Tsurumi, Kanagawa Yokohama, 230-0045 Japan
| | - Minami Matsui
- RIKEN Plant Science Center, Tsurumi, Kanagawa Yokohama, 230-0045 Japan
| | - Masaaki Sakuta
- Department of Biology, Ochanomizu University, Tokyo, 112-8610 Japan
| | - Hiroyuki Osada
- RIKEN Advanced Science Institute, 2-1 Hirosawa, Saitama Wako, 351-0198 Japan
| | - Tadao Asami
- RIKEN Advanced Science Institute, 2-1 Hirosawa, Saitama Wako, 351-0198 Japan
- JST, CREST, 4-1-8 Honcho, Saitama Kawaguchi, 332-0012 Japan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Takeshi Nakano
- RIKEN Advanced Science Institute, 2-1 Hirosawa, Saitama Wako, 351-0198 Japan
- JST, CREST, 4-1-8 Honcho, Saitama Kawaguchi, 332-0012 Japan
| |
Collapse
|
104
|
Sarkar NK, Thapar U, Kundnani P, Panwar P, Grover A. Functional relevance of J-protein family of rice (Oryza sativa). Cell Stress Chaperones 2013; 18:321-31. [PMID: 23160806 PMCID: PMC3631087 DOI: 10.1007/s12192-012-0384-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Revised: 10/27/2012] [Accepted: 10/30/2012] [Indexed: 01/12/2023] Open
Abstract
Protein folding and disaggregation are crucial processes for survival of cells under unfavorable conditions. A network of molecular chaperones supports these processes. Collaborative action of Hsp70 and Hsp100 proteins is an important component of this network. J-proteins/DnaJ members as co-chaperones assist Hsp70. As against 22 DnaJ sequences noted in yeast, rice genome contains 104 J-genes. Rice J-genes were systematically classified into type A (12 sequences), type B (9 sequences), and type C (83 sequences) classes and a scheme of nomenclature of these proteins is proposed. Transcript expression profiles revealed that J-proteins are possibly involved in basal cellular activities, developmental programs, and in stress. Ydj1 is the most abundant J-protein in yeast. Ydj1 deleted yeast cells are nonviable at 37 °C. Two rice ortholog proteins of yeast Ydj1 protein namely OsDjA4 and OsDjA5 successfully rescued the growth defect in mutant yeast. As Hsp70 and J-proteins work in conjunction, it emerges that rice J-proteins can partner with yeast Hsp70 proteins in functioning. It is thus shown that J-protein machine is highly conserved.
Collapse
Affiliation(s)
- Neelam K Sarkar
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021 India
| | - Upasna Thapar
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021 India
| | - Preeti Kundnani
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021 India
| | - Priyankar Panwar
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021 India
| | - Anil Grover
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021 India
| |
Collapse
|
105
|
Liu JZ, Whitham SA. Overexpression of a soybean nuclear localized type-III DnaJ domain-containing HSP40 reveals its roles in cell death and disease resistance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:110-21. [PMID: 23289813 DOI: 10.1111/tpj.12108] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 12/18/2012] [Accepted: 12/20/2012] [Indexed: 05/19/2023]
Abstract
Heat-shock proteins such as HSP70 and HSP90 are important molecular chaperones that play critical roles in biotic and abiotic stress responses; however, the involvement of their co-chaperones in stress biology remains largely uninvestigated. In a screen for candidate genes stimulating cell death in Glycine max (soybean), we transiently overexpressed full-length cDNAs of soybean genes that are highly induced during soybean rust infection in Nicotiana benthamiana leaves. Overexpression of a type-III DnaJ domain-containing HSP40 (GmHSP40.1), a co-chaperone of HSP70, caused hypersensitive response (HR)-like cell death. The HR-like cell death was dependent on MAPKKKα and WIPK, because silencing each of these genes suppressed the HR. Consistent with the presence of a nuclear localization signal (NLS) motif within the GmHSP40.1 coding sequence, GFP-GmHSP40.1 was exclusively present in nuclear bodies or speckles. Nuclear localization of GmHSP40.1 was necessary for its function, because deletion of the NLS or addition of a nuclear export signal abolished its HR-inducing ability. GmHSP40.1 co-localized with HcRed-SE, a protein involved in pri-miRNA processing, which has been shown to be co-localized with SR33-YFP, a protein involved in pre-mRNA splicing, suggesting a possible role for GmHSP40.1 in mRNA splicing or miRNA processing, and a link between these processes and cell death. Silencing GmHSP40.1 enhanced the susceptibility of soybean plants to Soybean mosaic virus, confirming its positive role in pathogen defense. Together, the results demonstrate a critical role of a nuclear-localized DnaJ domain-containing GmHSP40.1 in cell death and disease resistance in soybean.
Collapse
Affiliation(s)
- Jian-Zhong Liu
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, USA
| | | |
Collapse
|
106
|
So HA, Chung E, Lee JH. Molecular characterization of soybean GmDjp1 encoding a type III J-protein induced by abiotic stress. Genes Genomics 2013. [DOI: 10.1007/s13258-013-0078-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
107
|
Góngora-Castillo E, Ibarra-Laclette E, Trejo-Saavedra DL, Rivera-Bustamante RF. Transcriptome analysis of symptomatic and recovered leaves of geminivirus-infected pepper (Capsicum annuum). Virol J 2012; 9:295. [PMID: 23185982 PMCID: PMC3546870 DOI: 10.1186/1743-422x-9-295] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 11/21/2012] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Geminiviruses are a large and important family of plant viruses that infect a wide range of crops throughout the world. The Begomovirus genus contains species that are transmitted by whiteflies and are distributed worldwide causing disease on an array of horticultural crops. Symptom remission, in which newly developed leaves of systemically infected plants exhibit a reduction in symptom severity (recovery), has been observed on pepper (Capsicum annuum) plants infected with Pepper golden mosaic virus (PepGMV). Previous studies have shown that transcriptional and post-transcriptional gene silencing mechanisms are involved in the reduction of viral nucleic acid concentration in recovered tissue. In this study, we employed deep transcriptome sequencing methods to assess transcriptional variation in healthy (mock), symptomatic, and recovered pepper leaves following PepGMV infection. RESULTS Differential expression analyses of the pepper leaf transcriptome from symptomatic and recovered stages revealed a total of 309 differentially expressed genes between healthy (mock) and symptomatic or recovered tissues. Computational prediction of differential expression was validated using quantitative reverse-transcription PCR confirming the robustness of our bioinformatic methods. Within the set of differentially expressed genes associated with the recovery process were genes involved in defense responses including pathogenesis-related proteins, reactive oxygen species, systemic acquired resistance, jasmonic acid biosynthesis, and ethylene signaling. No major differences were found when compared the differentially expressed genes in symptomatic and recovered tissues. On the other hand, a set of genes with novel roles in defense responses was identified including genes involved in histone modification. This latter result suggested that post-transcriptional and transcriptional gene silencing may be one of the major mechanisms involved in the recovery process. Genes orthologous to the C. annuum proteins involved in the pepper-PepGMV recovery response were identified in both Solanum lycopersicum and Solanum tuberosum suggesting conservation of components of the viral recovery response in the Solanaceae. CONCLUSION These data provide a valuable source of information for improving our understanding of the underlying molecular mechanisms by which pepper leaves become symptomless following infection with geminiviruses. The identification of orthologs for the majority of genes differentially expressed in recovered tissues in two major solanaceous crop species provides the basis for future comparative analyses of the viral recovery process across related taxa.
Collapse
Affiliation(s)
- Elsa Góngora-Castillo
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del I.P.N (Cinvestav)-Unidad Irapuato, Km 9.6 Libramiento Norte, Carretera Irapuato-León, Irapuato, Gto., 36821, México
| | - Enrique Ibarra-Laclette
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Cinvestav-Irapuato, Km 9.6 Libramiento Norte, Carretera Irapuato-León, Irapuato, Gto., 36821, México
| | - Diana L Trejo-Saavedra
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del I.P.N (Cinvestav)-Unidad Irapuato, Km 9.6 Libramiento Norte, Carretera Irapuato-León, Irapuato, Gto., 36821, México
| | - Rafael F Rivera-Bustamante
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del I.P.N (Cinvestav)-Unidad Irapuato, Km 9.6 Libramiento Norte, Carretera Irapuato-León, Irapuato, Gto., 36821, México
| |
Collapse
|
108
|
Zhou W, Zhou T, Li MX, Zhao CL, Jia N, Wang XX, Sun YZ, Li GL, Xu M, Zhou RG, Li B. The Arabidopsis J-protein AtDjB1 facilitates thermotolerance by protecting cells against heat-induced oxidative damage. THE NEW PHYTOLOGIST 2012; 194:364-378. [PMID: 22356282 DOI: 10.1111/j.1469-8137.2012.04070.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
AtDjB1 belongs to the J-protein family in Arabidopsis thaliana. Its biological functions in plants are largely unknown. In this study, we examined the roles of AtDjB1 in resisting heat and oxidative stresses in A. thaliana using reverse genetic analysis. AtDjB1 knockout plants (atj1-1) were more sensitive to heat stress than wildtype plants, and displayed decreased concentrations of ascorbate (ASC), and increased concentrations of hydrogen peroxide (H(2)O(2)) and oxidative products after heat shock. Application of H(2)O(2) accelerated cell death and decreased seedling viability in atj1-1. Exogenous ASC conferred much greater thermotolerance in atj1-1 than in wildtype plants, suggesting that a lower concentration of ASC in atj1-1 could be responsible for the increased concentration of H(2)O(2) and decreased thermotolerance. Furthermore, AtDjB1 was found to localize to mitochondria, directly interact with a mitochondrial heat-shock protein 70 (mtHSC70-1), and stimulate ATPase activity of mtHSC70-1. AtDjB1 knockout led to the accumulation of cellular ATP and decreased seedling respiration, indicating that AtDjB1 modulated the ASC concentration probably through affecting the function of mitochondria. Taken together, these results suggest that AtDjB1 plays a crucial role in maintaining redox homeostasis, and facilitates thermotolerance by protecting cells against heat-induced oxidative damage.
Collapse
Affiliation(s)
- Wei Zhou
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
- College of Biology and Engineering, Hebei University of Economics and Business, Shijiazhuang 050061, China
| | - Ting Zhou
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Mi-Xin Li
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Chun-Lan Zhao
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Ning Jia
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Xing-Xing Wang
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Yong-Zhen Sun
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Guo-Liang Li
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| | - Meng Xu
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Ren-Gang Zhou
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| | - Bing Li
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| |
Collapse
|
109
|
Singh A, Mittal D, Lavania D, Agarwal M, Mishra RC, Grover A. OsHsfA2c and OsHsfB4b are involved in the transcriptional regulation of cytoplasmic OsClpB (Hsp100) gene in rice (Oryza sativa L.). Cell Stress Chaperones 2012; 17:243-54. [PMID: 22147560 PMCID: PMC3273560 DOI: 10.1007/s12192-011-0303-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 10/07/2011] [Accepted: 10/11/2011] [Indexed: 01/31/2023] Open
Abstract
ClpB-cytoplasmic (ClpB-cyt)/Hsp100 is an important chaperone protein in rice. Cellular expression of OsClpB-cyt transcript is governed by heat stress, metal stress, and developmental cues. Transgenic rice plants produced with 2 kb OsClpB-cyt promoter driving Gus reporter gene showed heat- and metal-regulated Gus expression in vegetative tissues and constitutive Gus expression in calli, flowering tissues, and embryonal half of seeds. Rice seedlings regenerated with OsClpB-cyt promoter fragment with deletion of its canonical heat shock element sequence (HSE(-273 to -280)) showed not only heat shock inducibility of Gus transcript/protein but also constitutive expression of Gus in vegetative tissues. It thus emerges that the only classical HSE present in OsClpB-cyt promoter is involved in repressing expression of OsClpB-cyt transcript under unstressed control conditions. Yeast one-hybrid assays suggested that OsHsfA2c specifically interacts with OsClpB-cyt promoter. OsHsfA2c also showed binding with OsClpB-cyt and OsHsfB4b showed binding with OsClpB-cyt; notably, interaction of OsHsfB4b was seen for all three OsClpB/Hsp100 protein isoforms (i.e., ClpB-cytoplasmic, ClpB-mitochondrial, and ClpB-chloroplastic). Furthermore, OsHsfB4b showed interaction with OsHsfA2c. This study suggests that OsHsfA2c may play a role as transcriptional activator and that OsHsfB4b is an important part of this heat shock responsive circuitry.
Collapse
Affiliation(s)
- Amanjot Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021 India
| | - Dheeraj Mittal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021 India
| | - Dhruv Lavania
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021 India
| | - Manu Agarwal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021 India
| | - Ratnesh Chandra Mishra
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021 India
| | - Anil Grover
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021 India
| |
Collapse
|
110
|
Griessl MH, Jungkunz I, Sonnewald U, Muller YA. Purification, crystallization and preliminary X-ray diffraction analysis of the Hsp40 protein CPIP1 from Nicotiana tabacum. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:236-9. [PMID: 22298008 PMCID: PMC3274412 DOI: 10.1107/s1744309111055928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 12/27/2011] [Indexed: 11/10/2022]
Abstract
Chaperones promote many different molecular processes, including the folding, targeting and degradation of proteins. The best-studied chaperone system consists of the Hsp70s and their co-chaperones the Hsp40s. Chaperone function can be hijacked by viruses in plants. Potato virus Y interacts via its coat protein with an Hsp40 from Nicotiana tabacum, referred to as NtCPIP1, in order to regulate replication. To understand the molecular determinants of this mechanism, different variants of NtCPIP1 were expressed, purified and crystallized. While crystals of wild-type NtCPIP1 diffracted to 8.0 Å resolution, the deletion mutant NtCPIP1-Δ(1:127) crystallized in space group P2(1)2(1)2 and diffracted to 2.4 Å resolution.
Collapse
Affiliation(s)
- Martin H. Griessl
- Lehrstuhl für Biotechnik, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Henkestrasse 91, D-91052 Erlangen, Germany
| | - Isabel Jungkunz
- Lehrstuhl für Biochemie, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Straudtstrasse S, D-91058 Erlangen, Germany
| | - Uwe Sonnewald
- Lehrstuhl für Biochemie, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Straudtstrasse S, D-91058 Erlangen, Germany
| | - Yves A. Muller
- Lehrstuhl für Biotechnik, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Henkestrasse 91, D-91052 Erlangen, Germany
| |
Collapse
|
111
|
Cho SY, Cho WK, Sohn SH, Kim KH. Interaction of the host protein NbDnaJ with Potato virus X minus-strand stem-loop 1 RNA and capsid protein affects viral replication and movement. Biochem Biophys Res Commun 2012; 417:451-6. [PMID: 22166218 DOI: 10.1016/j.bbrc.2011.11.137] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 11/27/2011] [Indexed: 11/15/2022]
Abstract
Plant viruses must interact with host cellular components to replicate and move from cell to cell. In the case of Potato virus X (PVX), it carries stem-loop 1 (SL1) RNA essential for viral replication and movement. Using two-dimensional electrophoresis northwestern blot analysis, we previously identified several host proteins that bind to SL1 RNA. Of those, we further characterized a DnaJ-like protein from Nicotiana benthamiana named NbDnaJ. An electrophoretic mobility shift assay confirmed that NbDnaJ binds only to SL1 minus-strand RNA, and bimolecular fluorescence complementation (BiFC) indicated that NbDnaJ interacts with PVX capsid protein (CP). Using a series of deletion mutants, the C-terminal region of NbDnaJ was found to be essential for the interaction with PVX CP. The expression of NbDnaJ significantly changed upon infection with different plant viruses such as PVX, Tobacco mosaic virus, and Cucumber mosaic virus, but varied depending on the viral species. In transient experiments, both PVX replication and movement were inhibited in plants that over-expressed NbDnaJ but accelerated in plants in which NbDnaJ was silenced. In summary, we suggest that the newly identified NbDnaJ plays a role in PVX replication and movement by interacting with SL1(-) RNA and PVX CP.
Collapse
Affiliation(s)
- Sang-Yun Cho
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | | | | | | |
Collapse
|
112
|
Yu HT, Xu SB, Zheng CH, Wang T. Comparative Proteomic Study Reveals the Involvement of Diurnal Cycle in Cell Division, Enlargement, and Starch Accumulation in Developing Endosperm of Oryza sativa. J Proteome Res 2011; 11:359-71. [DOI: 10.1021/pr200779p] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hua Tao Yu
- Key Laboratory for Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, and National Center for Plant Gene Research, Beijing 100093, China
- Graduate School of Chinese Academy of Sciences, Beijing 100049, China
| | - Sheng Bao Xu
- Key Laboratory for Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, and National Center for Plant Gene Research, Beijing 100093, China
| | - Can Hui Zheng
- Key Laboratory for Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, and National Center for Plant Gene Research, Beijing 100093, China
- Graduate School of Chinese Academy of Sciences, Beijing 100049, China
| | - Tai Wang
- Key Laboratory for Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, and National Center for Plant Gene Research, Beijing 100093, China
| |
Collapse
|
113
|
Chen KM, Piippo M, Holmström M, Nurmi M, Pakula E, Suorsa M, Aro EM. A chloroplast-targeted DnaJ protein AtJ8 is negatively regulated by light and has rapid turnover in darkness. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:1780-3. [PMID: 21592617 DOI: 10.1016/j.jplph.2011.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 04/12/2011] [Accepted: 04/12/2011] [Indexed: 05/20/2023]
Abstract
The DnaJ proteins (also called as J proteins, J domain proteins or HSP40 proteins) function as molecular co-chaperones for the HSP70 proteins. We assessed the expression of the small chloroplast-targeted DnaJ protein, the AtJ8 protein, by subjecting the wild type Arabidopsis plants to different illumination conditions. It is shown that the expression of the transcripts and proteins of the ATJ8 gene is primarily regulated at the level of transcription. When plants were incubated under high light for 3h, both the transcripts and proteins were completely abolished. Upon transfer of plants to darkness, the transcripts started rapidly accumulating, and subsequently, the AtJ8 protein became visible after 2h in darkness. Conversely, incubation of plants in darkness or under low light intensities induced expression of the ATJ8 transcripts and proteins. Feeding plants with sugars clearly decreased the transcript and protein levels, and incubation with cycloheximide revealed a rapid turnover for AtJ8 in darkness. Moreover, the AtJ8 protein was found to be nearly missing from the var1 mutant, which lacks the FTSH5 protease. It is concluded that AtJ8 is expressed mainly in darkness, is prone to a rapid turnover but is partially stabilized by the FTSH proteases.
Collapse
Affiliation(s)
- Kun-Ming Chen
- College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | | | | | | | | | | | | |
Collapse
|
114
|
Swatek KN, Graham K, Agrawal GK, Thelen JJ. The 14-3-3 Isoforms Chi and Epsilon Differentially Bind Client Proteins from Developing Arabidopsis Seed. J Proteome Res 2011; 10:4076-87. [DOI: 10.1021/pr200263m] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kirby N. Swatek
- Interdisciplinary Plant Group and Department of Biochemistry, University of Missouri, Christopher S. Bond Life Sciences Center, Columbia, Missouri 65211, United States
| | - Katherine Graham
- Interdisciplinary Plant Group and Department of Biochemistry, University of Missouri, Christopher S. Bond Life Sciences Center, Columbia, Missouri 65211, United States
| | - Ganesh K. Agrawal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), GPO 13265, Kathmandu, Nepal
| | - Jay J. Thelen
- Interdisciplinary Plant Group and Department of Biochemistry, University of Missouri, Christopher S. Bond Life Sciences Center, Columbia, Missouri 65211, United States
| |
Collapse
|
115
|
Pegoraro C, Mertz LM, da Maia LC, Rombaldi CV, de Oliveira AC. Importance of heat shock proteins in maize. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s12892-010-0119-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
116
|
Yamamoto H, Peng L, Fukao Y, Shikanai T. An Src homology 3 domain-like fold protein forms a ferredoxin binding site for the chloroplast NADH dehydrogenase-like complex in Arabidopsis. THE PLANT CELL 2011; 23:1480-93. [PMID: 21505067 PMCID: PMC3101538 DOI: 10.1105/tpc.110.080291] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 03/07/2011] [Accepted: 04/05/2011] [Indexed: 05/18/2023]
Abstract
Some subunits of chloroplast NAD(P)H dehydrogenase (NDH) are related to those of the respiratory complex I, and NDH mediates photosystem I (PSI) cyclic electron flow. Despite extensive surveys, the electron donor and its binding subunits have not been identified. Here, we identified three novel components required for NDH activity. CRRJ and CRRL are J- and J-like proteins, respectively, and are components of NDH subcomplex A. CRR31 is an Src homology 3 domain-like fold protein, and its C-terminal region may form a tertiary structure similar to that of PsaE, a ferredoxin (Fd) binding subunit of PSI, although the sequences are not conserved between CRR31 and PsaE. Although CRR31 can accumulate in thylakoids independently of NDH, its accumulation requires CRRJ, and CRRL accumulation depends on CRRJ and NDH. CRR31 was essential for the efficient operation of Fd-dependent plastoquinone reduction in vitro. The phenotype of crr31 pgr5 suggested that CRR31 is required for NDH activity in vivo. We propose that NDH functions as a PGR5-PGRL1 complex-independent Fd:plastoquinone oxidoreductase in chloroplasts and rename it the NADH dehydrogenase-like complex.
Collapse
Affiliation(s)
- Hiroshi Yamamoto
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Lianwei Peng
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yoichiro Fukao
- Plant Global Educational Project, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0101, Japan
| | - Toshiharu Shikanai
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
- Address correspondence to
| |
Collapse
|
117
|
Emerging picture of host chaperone and cyclophilin roles in RNA virus replication. Virology 2011; 411:374-82. [PMID: 21295323 DOI: 10.1016/j.virol.2010.12.061] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 12/31/2010] [Indexed: 11/23/2022]
Abstract
Many plus-strand (+)RNA viruses co-opt protein chaperones from the host cell to assist the synthesis, localization and folding of abundant viral proteins, to regulate viral replication via activation of replication proteins and to interfere with host antiviral responses. The most frequently subverted host chaperones are heat shock protein 70 (Hsp70), Hsp90 and the J-domain co-chaperones. The various roles of these host chaperones in RNA virus replication are presented to illustrate the astonishing repertoire of host chaperone functions that are subverted by RNA viruses. This review also discusses the emerging roles of cyclophilins, which are peptidyl-prolyl isomerases with chaperone functions, in replication of selected (+)RNA viruses.
Collapse
|
118
|
Shen L, Kang YGG, Liu L, Yu H. The J-domain protein J3 mediates the integration of flowering signals in Arabidopsis. THE PLANT CELL 2011; 23:499-514. [PMID: 21343416 PMCID: PMC3077791 DOI: 10.1105/tpc.111.083048] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 01/07/2011] [Accepted: 02/08/2011] [Indexed: 05/18/2023]
Abstract
The timing of the switch from vegetative to reproductive development in Arabidopsis thaliana is controlled by an intricate network of flowering pathways, which converge on the transcriptional regulation of two floral pathway integrators, FLOWERING LOCUS T (FT) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1). SHORT VEGETATIVE PHASE (SVP) acts as a key flowering regulator that represses the expression of FT and SOC1. Here, we report the identification of another potent flowering promoter, Arabidopsis DNAJ HOMOLOG 3 (J3), which mediates the integration of flowering signals through its interaction with SVP. J3 encodes a type I J-domain protein and is ubiquitously expressed in various plant tissues. J3 expression is regulated by multiple flowering pathways. Loss of function of J3 results in a significant late-flowering phenotype, which is partly due to decreased expression of SOC1 and FT. We further show that J3 interacts directly with SVP in the nucleus and prevents in vivo SVP binding to SOC1 and FT regulatory sequences. Our results suggest a flowering mechanism by which J3 integrates flowering signals from several genetic pathways and acts as a transcriptional regulator to upregulate SOC1 and FT through directly attenuating SVP binding to their regulatory sequences during the floral transition.
Collapse
Affiliation(s)
| | | | | | - Hao Yu
- Address correspondence to
| |
Collapse
|
119
|
Integrating miRNA and mRNA expression profiles in response to heat stress-induced injury in rat small intestine. Funct Integr Genomics 2010; 11:203-13. [DOI: 10.1007/s10142-010-0198-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2010] [Revised: 10/14/2010] [Accepted: 10/19/2010] [Indexed: 12/21/2022]
|
120
|
Costenaro-da-Silva D, Passaia G, Henriques JAP, Margis R, Pasquali G, Revers LF. Identification and expression analysis of genes associated with the early berry development in the seedless grapevine (Vitis vinifera L.) cultivar Sultanine. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2010; 179:510-9. [PMID: 21802609 DOI: 10.1016/j.plantsci.2010.07.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 07/23/2010] [Accepted: 07/27/2010] [Indexed: 05/13/2023]
Abstract
Sultanine grapevine (Vitis vinifera L.) is one of the most important commercial seedless table-grape varieties and the main source of seedlessness for breeding programs around the world. Despite its commercial relevance, little is known about the genetic control of seedlessness in grapes, remaining unknown the molecular identity of genes responsible for such phenotype. Actually, studies concerning berry development in seedless grapes are scarce at the molecular level. We therefore developed a representational difference analysis (RDA) modified method named Bulk Representational Analysis of Transcripts (BRAT) in the attempt to identify genes specifically associated with each of the main developmental stages of Sultanine grapevine berries. A total of 2400 transcript-derived fragments (TDFs) were identified and cloned by RDA according to three specific developmental berry stages. After sequencing and in silico analysis, 1554 (64.75%) TDFs were validated according to our sequence quality cut-off. The assembly of these expressed sequence tags (ESTs) yielded 504 singletons and 77 clusters, with an overall EST redundancy of approximately 67%. Amongst all stage-specific cDNAs, nine candidate genes were selected and, along with two reference genes, submitted to a deeper analysis of their temporal expression profiles by reverse transcription-quantitative PCR. Seven out of nine genes proved to be in agreement with the stage-specific expression that allowed their isolation by RDA.
Collapse
Affiliation(s)
- Danielle Costenaro-da-Silva
- Programa de Pós-graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, P.O. Box 15.005, CEP 91.501-970 Porto Alegre, RS, Brazil
| | | | | | | | | | | |
Collapse
|
121
|
Jelenska J, van Hal JA, Greenberg JT. Pseudomonas syringae hijacks plant stress chaperone machinery for virulence. Proc Natl Acad Sci U S A 2010; 107:13177-82. [PMID: 20615948 PMCID: PMC2919979 DOI: 10.1073/pnas.0910943107] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Plant heat shock protein Hsp70 is the major target of HopI1, a virulence effector of pathogenic Pseudomonas syringae. Hsp70 is essential for the virulence function of HopI1. HopI1 directly binds Hsp70 through its C-terminal J domain and stimulates Hsp70 ATP hydrolysis activity in vitro. In plants, HopI1 forms large complexes in association with Hsp70 and induces and recruits cytosolic Hsp70 to chloroplasts, the site of HopI1 localization. Deletion of a central P/Q-rich repeat region disrupts HopI1 virulence but not Hsp70 interactions or association with chloroplasts. Thus, HopI1 must not only bind Hsp70 through its J domain, but likely actively affects Hsp70 activity and/or specificity. At high temperature, HopI1 is dispensable for P. syringae pathogenicity, unless excess Hsp70 is provided. A working hypothesis is that Hsp70 has a defense-promoting activity(s) that HopI1 or high temperature can subvert. Enhanced susceptibility of Hsp70-depleted plants to nonpathogenic strains of P. syringae supports a defense-promoting role for Hsp70.
Collapse
Affiliation(s)
- Joanna Jelenska
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Jodocus A. van Hal
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Jean T. Greenberg
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| |
Collapse
|
122
|
Mangelsen E, Wanke D, Kilian J, Sundberg E, Harter K, Jansson C. Significance of light, sugar, and amino acid supply for diurnal gene regulation in developing barley caryopses. PLANT PHYSIOLOGY 2010; 153:14-33. [PMID: 20304969 PMCID: PMC2862414 DOI: 10.1104/pp.110.154856] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2010] [Accepted: 03/16/2010] [Indexed: 05/21/2023]
Abstract
The caryopses of barley (Hordeum vulgare), as of all cereals, are complex sink organs optimized for starch accumulation and embryo development. While their early to late development has been studied in great detail, processes underlying the caryopses' diurnal adaptation to changes in light, temperature, and the fluctuations in phloem-supplied carbon and nitrogen have remained unknown. In an attempt to identify diurnally affected processes in developing caryopses at the early maturation phase, we monitored global changes of both gene expression and metabolite levels. We applied the 22 K Barley1 GeneChip microarray and identified 2,091 differentially expressed (DE) genes that were assigned to six major diurnal expression clusters. Principal component analysis and other global analyses demonstrated that the variability within the data set relates to genes involved in circadian regulation, storage compound accumulation, embryo development, response to abiotic stress, and photosynthesis. The correlation of amino acid and sugar profiles with expression trajectories led to the identification of several hundred potentially metabolite-regulated DE genes. A comparative analysis of our data set and publicly available microarray data disclosed suborgan-specific expression of almost all diurnal DE genes, with more than 350 genes specifically expressed in the pericarp, endosperm, or embryo tissues. Our data reveal a tight linkage between day/night cycles, changes in light, and the supply of carbon and nitrogen. We present a model that suggests several phases of diurnal gene expression in developing barley caryopses, summarized as starvation and priming, energy collection and carbon fixation, light protection and chaperone activity, storage and growth, and embryo development.
Collapse
Affiliation(s)
- Elke Mangelsen
- Department of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|
123
|
Goswami AV, Chittoor B, D'Silva P. Understanding the functional interplay between mammalian mitochondrial Hsp70 chaperone machine components. J Biol Chem 2010; 285:19472-82. [PMID: 20392697 PMCID: PMC2885226 DOI: 10.1074/jbc.m110.105957] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitochondria biogenesis requires the import of several precursor proteins that are synthesized in the cytosol. The mitochondrial heat shock protein 70 (mtHsp70) machinery components are highly conserved among eukaryotes, including humans. However, the functional properties of human mtHsp70 machinery components have not been characterized among all eukaryotic families. To study the functional interactions, we have reconstituted the components of the mtHsp70 chaperone machine (Hsp70/J-protein/GrpE/Hep) and systematically analyzed in vitro conditions for biochemical functions. We observed that the sequence-specific interaction of human mtHsp70 toward mitochondrial client proteins differs significantly from its yeast counterpart Ssc1. Interestingly, the helical lid of human mtHsp70 was found dispensable to the binding of P5 peptide as compared with the other Hsp70s. We observed that the two human mitochondrial matrix J-protein splice variants differentially regulate the mtHsp70 chaperone cycle. Strikingly, our results demonstrated that human Hsp70 escort protein (Hep) possesses a unique ability to stimulate the ATPase activity of mtHsp70 as well as to prevent the aggregation of unfolded client proteins similar to J-proteins. We observed that Hep binds with the C terminus of mtHsp70 in a full-length context and this interaction is distinctly different from unfolded client-specific or J-protein binding. In addition, we found that the interaction of Hep at the C terminus of mtHsp70 is regulated by the helical lid region. However, the interaction of Hep at the ATPase domain of the human mtHsp70 is mutually exclusive with J-proteins, thus promoting a similar conformational change that leads to ATPase stimulation. Additionally, we highlight the biochemical defects of the mtHsp70 mutant (G489E) associated with a myelodysplastic syndrome.
Collapse
Affiliation(s)
- Arvind Vittal Goswami
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | | | | |
Collapse
|