101
|
Angel-Sahagún CA, Lezama-Gutiérrez R, Molina-Ochoa J, Pescador-Rubio A, Skoda SR, Cruz-Vázquez C, Lorenzoni AG, Galindo-Velasco E, Fragoso-Sánchez H, Foster JE. Virulence of Mexican isolates of entomopathogenic fungi (Hypocreales: Clavicipitaceae) upon Rhipicephalus=Boophilus microplus (Acari: Ixodidae) larvae and the efficacy of conidia formulations to reduce larval tick density under field conditions. Vet Parasitol 2010; 170:278-86. [PMID: 20359827 DOI: 10.1016/j.vetpar.2010.02.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 02/17/2010] [Accepted: 02/24/2010] [Indexed: 11/15/2022]
Abstract
The first objective was laboratory evaluation of the virulence of 53 Mexican isolates of fungi against larvae of Rhipicephalus (Boophilus) microplus. Thirty-three isolates of Metarhizium anisopliae var. anisopliae (Metschnickoff) Sorokin (Hypocreales: Clavicipitaceae) and 20 isolates of Isaria (Paecilomyces) fumosorosea (fumosoroseus) (Wize) (Eurotiales: Trichomaceae) were tested on 7-day-old larvae under laboratory conditions. Larvae were immersed in a suspension containing 10(8)conidia/mL and the CL(50) values were estimated. Then, field tests were conducted to determine the efficacy of formulations of the isolate with the highest virulence. M. anisopliae (Ma 14 isolate) was formulated with four carriers: Tween, Celite, wheat bran, and Citroline (mineral oil) and applied on pasture beds of Cynodon plectostachyus (L.), at a dose of 2 x 10(9)CFU/m(2). In the first trial, M. anisopliae was applied on plots naturally infested with larvae; in the second trial, tick populations in the experimental plots were eliminated and then re-infested with 20,000 7-day-old larvae. In the laboratory, all M. anisopliae isolates infected larvae with a mortality range between 2 and 100%; also, 13 of 20 I. fumosorosea isolates caused mortality rates between 7 and 94%. In the first field trial, 14 days post-application, conidial formulations in Celite and wheat bran caused 67.8 and 94.2% population reduction, respectively. In the second trial, the Tween formulation caused the highest larval reduction, reaching up to 61% (28 days post-application). Wheat bran formulation caused 58.3% larval reduction (21 days post-application) and was one of the most effective. The carriers and emulsifiers have a large impact on the effectiveness of conidial formulations.
Collapse
Affiliation(s)
- C A Angel-Sahagún
- Departamento de Agronomía, División de Ciencias de la Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato, Carretera Irapuato-Silao, Apartado Postal 311, Irapuato, Guanajuato, CP 36500, Mexico.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Cutullé C, Jonsson NN, Seddon JM. Multiple paternity in Rhipicephalus (Boophilus) microplus confirmed by microsatellite analysis. EXPERIMENTAL & APPLIED ACAROLOGY 2010; 50:51-58. [PMID: 19693678 DOI: 10.1007/s10493-009-9298-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 07/31/2009] [Indexed: 05/28/2023]
Abstract
The aim of this study was to determine if individual ticks among the progeny of a single female Rhipicephalus (Boophilus) microplus tick removed from cattle under natural conditions are the result of mating with one or several males. To this end, simulations were run using an existing dataset of genotypes from 8 microsatellite loci to predict the number of samples required and the best locus. Subsequently, 14-22 progeny from each of 15 engorged female ticks removed from three cows, and the engorged females themselves, were genotyped for the BmM1 locus and the minimum number of potential male parents was determined for each progeny group. Of the 15 progeny groups, 10 must have been sired by more than one male, as indicated by the presence of five unique alleles among the progeny or three unique alleles that could not have been contributed by the female. This finding demonstrates multiple paternity in R. microplus.
Collapse
Affiliation(s)
- C Cutullé
- School of Veterinary Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | | | | |
Collapse
|
103
|
Almazán C, Lagunes R, Villar M, Canales M, Rosario-Cruz R, Jongejan F, de la Fuente J. Identification and characterization of Rhipicephalus (Boophilus) microplus candidate protective antigens for the control of cattle tick infestations. Parasitol Res 2009; 106:471-9. [PMID: 19943063 PMCID: PMC2797406 DOI: 10.1007/s00436-009-1689-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Accepted: 11/10/2009] [Indexed: 11/03/2022]
Abstract
The cattle ticks, Rhipicephalus (Boophilus) spp., affect cattle production in tropical and subtropical regions of the world. Tick vaccines constitute a cost-effective and environmentally friendly alternative to tick control. The recombinant Rhipicephalus microplus Bm86 antigen has been shown to protect cattle against tick infestations. However, variable efficacy of Bm86-based vaccines against geographic tick strains has encouraged the research for additional tick-protective antigens. Herein, we describe the analysis of R. microplus glutathione-S transferase, ubiquitin (UBQ), selenoprotein W, elongation factor-1 alpha, and subolesin (SUB) complementary DNAs (cDNAs) by RNA interference (RNAi) in R. microplus and Rhipicephalus annulatus. Candidate protective antigens were selected for vaccination experiments based on the effect of gene knockdown on tick mortality, feeding, and fertility. Two cDNA clones encoding for UBQ and SUB were used for cattle vaccination and infestation with R. microplus and R. annulatus. Control groups were immunized with recombinant Bm86 or adjuvant/saline. The highest vaccine efficacy for the control of tick infestations was obtained for Bm86. Although with low immunogenic response, the results with the SUB vaccine encourage further investigations on the use of recombinant subolesin alone or in combination with other antigens for the control of cattle tick infestations. The UBQ peptide showed low immunogenicity, and the results of the vaccination trial were inconclusive to assess the protective efficacy of this antigen. These experiments showed that RNAi could be used for the selection of candidate tick-protective antigens. However, vaccination trials are necessary to evaluate the effect of recombinant antigens in the control of tick infestations, a process that requires efficient recombinant protein production and formulation systems.
Collapse
Affiliation(s)
- Consuelo Almazán
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Km. 5 carretera Victoria-Mante, CP 87000, Victoria, Tamaulipas, Mexico
| | | | | | | | | | | | | |
Collapse
|
104
|
Canales M, Labruna MB, Soares JF, Prudencio CR, de la Fuente J. Protective efficacy of bacterial membranes containing surface-exposed BM95 antigenic peptides for the control of cattle tick infestations. Vaccine 2009; 27:7244-8. [PMID: 19835826 DOI: 10.1016/j.vaccine.2009.09.123] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 09/23/2009] [Accepted: 09/26/2009] [Indexed: 11/24/2022]
Abstract
The Rhipicephalus (Boophilus) microplus BM86 and BM95 glycoproteins are homologous proteins that protect cattle against tick infestations. In this study, we demonstrated that the recombinant chimeric protein comprising tick BM95 immunogenic peptides fused to the A. marginale MSP1a N-terminal region for presentation on the Escherichia coli membrane was protective against R. microplus infestations in rabbits. This system provides a novel and simple approach for the production of tick protective antigens by surface display of antigenic protein chimera on live E. coli and suggests the possibility of using recombinant bacterial membrane fractions for vaccination against cattle tick infestations.
Collapse
Affiliation(s)
- Mario Canales
- Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13005 Ciudad Real, Spain
| | | | | | | | | |
Collapse
|
105
|
Estrada-Peña A, Naranjo V, Acevedo-Whitehouse K, Mangold AJ, Kocan KM, de la Fuente J. Phylogeographic analysis reveals association of tick-borne pathogen, Anaplasma marginale, MSP1a sequences with ecological traits affecting tick vector performance. BMC Biol 2009; 7:57. [PMID: 19723295 PMCID: PMC2741432 DOI: 10.1186/1741-7007-7-57] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 09/01/2009] [Indexed: 11/24/2022] Open
Abstract
Background The tick-borne pathogen Anaplasma marginale, which is endemic worldwide, is the type species of the genus Anaplasma (Rickettsiales: Anaplasmataceae). Rhipicephalus (Boophilus) microplus is the most important tick vector of A. marginale in tropical and subtropical regions of the world. Despite extensive characterization of the genetic diversity in A. marginale geographic strains using major surface protein sequences, little is known about the biogeography and evolution of A. marginale and other Anaplasma species. For A. marginale, MSP1a was shown to be involved in vector-pathogen and host-pathogen interactions and to have evolved under positive selection pressure. The MSP1a of A. marginale strains differs in molecular weight because of a variable number of tandem 23-31 amino acid repeats and has proven to be a stable marker of strain identity. While phylogenetic studies of MSP1a repeat sequences have shown evidence of A. marginale-tick co-evolution, these studies have not provided phylogeographic information on a global scale because of the high level of MSP1a genetic diversity among geographic strains. Results In this study we showed that the phylogeography of A. marginale MSP1a sequences is associated with world ecological regions (ecoregions) resulting in different evolutionary pressures and thence MSP1a sequences. The results demonstrated that the MSP1a first (R1) and last (RL) repeats and microsatellite sequences were associated with world ecoregion clusters with specific and different environmental envelopes. The evolution of R1 repeat sequences was found to be under positive selection. It is hypothesized that the driving environmental factors regulating tick populations could act on the selection of different A. marginale MSP1a sequence lineages, associated to each ecoregion. Conclusion The results reported herein provided the first evidence that the evolution of A. marginale was linked to ecological traits affecting tick vector performance. These results suggested that some A. marginale strains have evolved under conditions that support pathogen biological transmission by R. microplus, under different ecological traits which affect performance of R. microplus populations. The evolution of other A. marginale strains may be linked to transmission by other tick species or to mechanical transmission in regions where R. microplus is currently eradicated. The information derived from this study is fundamental toward understanding the evolution of other vector-borne pathogens.
Collapse
|
106
|
Canales M, Almazán C, Naranjo V, Jongejan F, de la Fuente J. Vaccination with recombinant Boophilus annulatus Bm86 ortholog protein, Ba86, protects cattle against B. annulatus and B. microplus infestations. BMC Biotechnol 2009; 9:29. [PMID: 19335900 PMCID: PMC2667501 DOI: 10.1186/1472-6750-9-29] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Accepted: 03/31/2009] [Indexed: 11/22/2022] Open
Abstract
Background The cattle ticks, Boophilus spp., affect cattle production in tropical and subtropical regions of the world. Tick vaccines constitute a cost-effective and environmentally friendly alternative to tick control. The recombinant B. microplus Bm86 protective antigen has been shown to protect cattle against tick infestations. Recently, the gene coding for B. annulatus Bm86 ortholog, Ba86, was cloned and the recombinant protein was secreted and purified from the yeast Pichia pastoris. Results Recombinant Ba86 (Israel strain) was used to immunize cattle to test its efficacy for the control of B. annulatus (Mercedes, Texas, USA strain) and B. microplus (Susceptible, Mexico strain) infestations. Bm86 (Gavac and Mozambique strain) and adjuvant/saline were used as positive and negative controls, respectively. Vaccination with Ba86 reduced tick infestations (71% and 40%), weight (8% and 15%), oviposition (22% and 5%) and egg fertility (25% and 50%) for B. annulatus and B. microplus, respectively. The efficacy of both Ba86 and Bm86 was higher for B. annulatus than for B. microplus. The efficacy of Ba86 was higher for B. annulatus (83.0%) than for B. microplus (71.5%). The efficacy of Bm86 (Gavac; 85.2%) but not Bm86 (Mozambique strain; 70.4%) was higher than that of Ba86 (71.5%) on B. microplus. However, the efficacy of Bm86 (both Gavac and Mozambique strain; 99.6%) was higher than that of Ba86 (83.0%) on B. annulatus. Conclusion These experiments showed the efficacy of recombinant Ba86 for the control of B. annulatus and B. microplus infestations in cattle and suggested that physiological differences between B. microplus and B. annulatus and those encoded in the sequence of Bm86 orthologs may be responsible for the differences in susceptibility of these tick species to Bm86 vaccines.
Collapse
Affiliation(s)
- Mario Canales
- Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, Ciudad Real, Spain.
| | | | | | | | | |
Collapse
|
107
|
Labruna MB, Naranjo V, Mangold AJ, Thompson C, Estrada-Peña A, Guglielmone AA, Jongejan F, de la Fuente J. Allopatric speciation in ticks: genetic and reproductive divergence between geographic strains of Rhipicephalus (Boophilus) microplus. BMC Evol Biol 2009; 9:46. [PMID: 19243585 PMCID: PMC2656471 DOI: 10.1186/1471-2148-9-46] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 02/25/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The cattle tick, Rhipicephalus (Boophilus) microplus, economically impact cattle industry in tropical and subtropical regions of the world. The morphological and genetic differences among R. microplus strains have been documented in the literature, suggesting that biogeographical and ecological separation may have resulted in boophilid ticks from America/Africa and those from Australia being different species. To test the hypothesis of the presence of different boophilid species, herein we performed a series of experiments to characterize the reproductive performance of crosses between R. microplus from Australia, Africa and America and the genetic diversity of strains from Australia, Asia, Africa and America. RESULTS The results showed that the crosses between Australian and Argentinean or Mozambican strains of boophilid ticks are infertile while crosses between Argentinean and Mozambican strains are fertile. These results showed that tick strains from Africa (Mozambique) and America (Argentina) are the same species, while ticks from Australia may actually represent a separate species. The genetic analysis of mitochondrial 12S and 16S rDNA and microsatellite loci were not conclusive when taken separately, but provided evidence that Australian tick strains were genetically different from Asian, African and American strains. CONCLUSION The results reported herein support the hypothesis that at least two different species share the name R. microplus. These species could be redefined as R. microplus (Canestrini, 1887) (for American and African strains) and probably the old R. australis Fuller, 1899 (for Australian strains), which needs to be redescribed. However, experiments with a larger number of tick strains from different geographic locations are needed to corroborate these results.
Collapse
Affiliation(s)
- Marcelo B Labruna
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, 05508-270, Brazil
| | - Victoria Naranjo
- Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13005 Ciudad Real, Spain
| | - Atilio J Mangold
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela, CC 22, CP 2300 Rafaela, Santa Fe, Argentina
| | - Carolina Thompson
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela, CC 22, CP 2300 Rafaela, Santa Fe, Argentina
| | - Agustín Estrada-Peña
- Facultad de Veterinaria, Universidad de Zaragoza, Miguel Servet 177, 50013-Zaragoza, Spain
| | - Alberto A Guglielmone
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela, CC 22, CP 2300 Rafaela, Santa Fe, Argentina
| | - Frans Jongejan
- Utrecht Centre for Tick-borne Diseases (UCTD), Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584CL, Utrecht, The Netherlands
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, 0110, Onderstepoort, South Africa
| | - José de la Fuente
- Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13005 Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
108
|
Estrada-Peña A. Climate, niche, ticks, and models: what they are and how we should interpret them. Parasitol Res 2008; 103 Suppl 1:S87-95. [PMID: 19030890 DOI: 10.1007/s00436-008-1056-7] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Accepted: 05/26/2008] [Indexed: 11/26/2022]
Abstract
Ticks spend most of their life cycle in the environment, and all tick life cycle stages are dependent on a complex combination of climate variables. Furthermore, host availability and vegetation significantly modulate the dynamics of tick populations. Tick recruitment is dependent on successful reproduction, which in turn requires sufficient adult tick densities, available blood meal sources, and egg survival. Though many animals can serve as hosts, there are several determinants of host suitability. For example, host availability in time and space is an important determinant of tick bionomics. Shelter and protection from environmental extremes are critical to tick survival. Questing and diapausing ticks are vulnerable to extremes of temperature and humidity. There are concerns about how predicted climate change may alter several critical features of host-parasite relationships of ticks, the potential for invasion of new areas or alteration of patterns of pathogen transmission in particular. However, modeling approaches that relate known occurrences of tick species to climate (and/or landscape) features and predict geographic occurrences are not completely fulfilling our needs to understand how the "tick panorama" can change as a consequence of these climate trends. This is a short review about the concept of ecological niche as applied to ticks, as well as some raised concerns about its evaluation and strict definition, and its usefulness to map geographical suitability for ticks. Comments about how climate, hosts, and landscape configuration are briefly discussed regarding its applicability to tick mapping and with reference about their impact on tick abundance. I will further comment on already published observations about observed changes in the geographical range of ticks in parts of Europe.
Collapse
Affiliation(s)
- Agustín Estrada-Peña
- Department of Parasitology, Veterinary Faculty, University of Zaragoza, Miguel Servet 177, 50013, Zaragoza, Spain.
| |
Collapse
|
109
|
Estrada-Peña A, Thuiller W. An assessment of the effect of data partitioning on the performance of modelling algorithms for habitat suitability for ticks. MEDICAL AND VETERINARY ENTOMOLOGY 2008; 22:248-257. [PMID: 18816273 DOI: 10.1111/j.1365-2915.2008.00745.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A comparison of the performance of five modelling methods using presence/absence (generalized additive models, discriminant analysis) or presence-only (genetic algorithm for rule-set prediction, ecological niche factor analysis, Gower distance) data for modelling the distribution of the tick species Boophilus decoloratus (Koch, 1844) (Acarina: Ixodidae) at a continental scale (Africa) using climate data was conducted. This work explicitly addressed the usefulness of clustering using the normalized difference vegetation index (NDVI) to split original records and build partial models for each region (cluster) as a method of improving model performance. Models without clustering have a consistently lower performance (as measured by sensitivity and area under the curve [AUC]), although presence/absence models perform better than presence-only models. Two cluster-related variables, namely, prevalence (commonness of tick records in the cluster) and marginality (the relative position of the climate niche occupied by the tick in relation to that available in the cluster) greatly affect the performance of each model (P < 0.05). Both sensitivity and AUC are better for NDVI-derived clusters where the tick is more prevalent or its marginality is low. However, the total size of the cluster or its fragmentation (measured by Shannon's evenness index) did not affect the performance of models. Models derived separately for each cluster produced the best output but resulted in a patchy distribution of predicted occurrence. The use of such a method together with weighting procedures based on prevalence and marginality as derived from populations at each cluster produced a slightly lower predictive performance but a better estimation of the continental distribution of the tick. Therefore, cluster-derived models are able to effectively capture restricting conditions for different tick populations at a regional level. It is concluded that data partitioning is a powerful method with which to describe the climate niche of populations of a tick species, as adapted to local conditions. The use of this methodology greatly improves the performance of climate suitability models.
Collapse
Affiliation(s)
- A Estrada-Peña
- Department of Parasitology, Veterinary Faculty, University of Zaragoza, Zaragoza, Spain.
| | | |
Collapse
|
110
|
Canales M, de la Lastra JMP, Naranjo V, Nijhof AM, Hope M, Jongejan F, de la Fuente J. Expression of recombinant Rhipicephalus (Boophilus) microplus, R. annulatus and R. decoloratus Bm86 orthologs as secreted proteins in Pichia pastoris. BMC Biotechnol 2008; 8:14. [PMID: 18275601 PMCID: PMC2262073 DOI: 10.1186/1472-6750-8-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Accepted: 02/14/2008] [Indexed: 12/02/2022] Open
Abstract
Background Rhipicephalus (Boophilus) spp. ticks economically impact on cattle production in Africa and other tropical and subtropical regions of the world. Tick vaccines constitute a cost-effective and environmentally friendly alternative to tick control. The R. microplus Bm86 protective antigen has been produced by recombinant DNA technology and shown to protect cattle against tick infestations. Results In this study, the genes for Bm86 (R. microplus), Ba86 (R. annulatus) and Bd86 (R. decoloratus) were cloned and characterized from African or Asian tick strains and the recombinant proteins were secreted and purified from P. pastoris. The secretion of recombinant Bm86 ortholog proteins in P. pastoris allowed for a simple purification process rendering a final product with high recovery (35–42%) and purity (80–85%) and likely to result in a more reproducible conformation closely resembling the native protein. Rabbit immunization experiments with recombinant proteins showed immune cross-reactivity between Bm86 ortholog proteins. Conclusion These experiments support the development and testing of vaccines containing recombinant Bm86, Ba86 and Bd86 secreted in P. pastoris for the control of tick infestations in Africa.
Collapse
Affiliation(s)
- Mario Canales
- Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13071 Ciudad Real, Spain.
| | | | | | | | | | | | | |
Collapse
|
111
|
Bazarusanga T, Geysen D, Vercruysse J, Madder M. An update on the ecological distribution of Ixodid ticks infesting cattle in Rwanda: countrywide cross-sectional survey in the wet and the dry season. EXPERIMENTAL & APPLIED ACAROLOGY 2007; 43:279-291. [PMID: 18040870 DOI: 10.1007/s10493-007-9121-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Accepted: 11/08/2007] [Indexed: 05/25/2023]
Abstract
As part of the epidemiological studies aimed at developing an East Coast fever (ECF) immunisation control strategy, which combines an infection and treatment method with strategic tick control, a countrywide tick survey was carried out in both the dry and the wet season to determine the abundance and the dynamics of the tick populations infesting cattle in Rwanda. Six Ixodid tick species where identified from a total of 12,814 tick specimens collected. Rhipicephalus appendiculatus, the main vector of ECF was the most abundant (91.8%) followed by Boophilus decoloratus (6.1%) and Ambyomma variegatum (1.2%). Few ticks from the three other less economically important Ixodid species (Rhipicephalus compositus, R. evertsi evertsi and Ixodes cavipalpus) were recovered. Both adult and immature stages of the most dominant tick species were found to be widespread with a year round presence. The numbers of ticks were high in low land and medium zones and declined markedly in the higher regions of Rwanda. The geographical distribution of various tick species throughout the country and their epidemiological implications are discussed.
Collapse
|
112
|
Nijhof AM, Taoufik A, de la Fuente J, Kocan KM, de Vries E, Jongejan F. Gene silencing of the tick protective antigens, Bm86, Bm91 and subolesin, in the one-host tick Boophilus microplus by RNA interference. Int J Parasitol 2006; 37:653-62. [PMID: 17196597 PMCID: PMC1885961 DOI: 10.1016/j.ijpara.2006.11.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 11/09/2006] [Accepted: 11/14/2006] [Indexed: 11/23/2022]
Abstract
The use of RNA interference (RNAi) to assess gene function has been demonstrated in several three-host tick species but adaptation of RNAi to the one-host tick, Boophilus microplus, has not been reported. We evaluated the application of RNAi in B. microplus and the effect of gene silencing on three tick-protective antigens: Bm86, Bm91 and subolesin. Gene-specific double-stranded (dsRNA) was injected into two tick stages, freshly molted unfed and engorged females, and specific gene silencing was confirmed by real time PCR. Gene silencing occurred in injected unfed females after they were allowed to feed. Injection of dsRNA into engorged females caused gene silencing in the subsequently oviposited eggs and larvae that hatched from these eggs, but not in adults that developed from these larvae. dsRNA injected into engorged females could be detected by quantitative real-time RT-PCR in eggs 14 days from the beginning of oviposition, demonstrating that unprocessed dsRNA was incorporated in the eggs. Eggs produced by engorged females injected with subolesin dsRNA were abnormal, suggesting that subolesin may play a role in embryonic development. The injection of dsRNA into engorged females to obtain gene-specific silencing in eggs and larvae is a novel method which can be used to study gene function in tick embryogenesis.
Collapse
Affiliation(s)
- Ard M Nijhof
- Utrecht Centre for Tick-borne Diseases (UCTD), Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584CL Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|