101
|
Wang Y, Yu Z, Zhang Z, Ren R, Zhang S. Orderly nucleic acid aggregates by electrostatic self-assembly in single cells for miRNA detection and visualizing. Analyst 2018; 141:2861-4. [PMID: 27063644 DOI: 10.1039/c6an00160b] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Orderly nucleic acid aggregates (ONAAs) self-assembled on mesoporous silica nanoparticles (MSNs) with positively charged aminopropyl groups (PC) were firstly developed. Interestingly, a novel electrostatic DNA self-assembly could realize hybridization chain reaction (HCR) on the surface of PCMSNs in single cells. Significantly, a non-destructive amplification strategy based on ONAAs-PCMSNs was successfully developed for miRNA detection and in situ imaging by the prominent and agminated fluorescence-bright spots in living cells.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, China
| | - Zhaopeng Yu
- Shandong Province Key Laboratory of Detection Technology for Tumor Makers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China.
| | - Zhen Zhang
- Shandong Province Key Laboratory of Detection Technology for Tumor Makers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China.
| | - Rui Ren
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, China and Shandong Province Key Laboratory of Detection Technology for Tumor Makers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China.
| | - Shusheng Zhang
- Shandong Province Key Laboratory of Detection Technology for Tumor Makers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China.
| |
Collapse
|
102
|
Epigenetic predictive biomarkers for response or outcome to platinum-based chemotherapy in non-small cell lung cancer, current state-of-art. THE PHARMACOGENOMICS JOURNAL 2018; 19:5-14. [PMID: 30190521 DOI: 10.1038/s41397-018-0029-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/27/2018] [Accepted: 05/14/2018] [Indexed: 12/11/2022]
Abstract
Platinum-based chemotherapy is commonly used to treat non-small cell lung cancer (NSCLC). However, its efficacy is limited and no molecular biomarkers that predict response are available. In this review, we summarize current knowledge concerning potential epigenetic predictive markers for platinum-based chemotherapy response in NSCLC. A systematic search of PubMed and ClinicalTrials.gov using keywords "non-small cell lung cancer" combined with "chemotherapy predictive biomarkers", "chemotherapy epigenetics biomarkers", "chemotherapy microRNA biomarkers", "chemotherapy DNA methylation" and "chemotherapy miRNA biomarkers" revealed 1740 articles from PubMed and 36 clinical trials. Finally, 22 papers and no trials fulfilled the review criteria. Among miRNA, combination of miR-1290, miR-196b and miR-135a in tumor tissue, and miR-21, miR-25, miR27b, and miR-326 in plasma were predictive for response to platinum-based chemotherapy in advanced NSCLC. RASSF1A methylation measured in tumor or blood was predictive for response to neoadjuvant chemotherapy. These biomarkers remain experimental and none have been tested in a prospective trial.
Collapse
|
103
|
Mousa SA, Glinsky GV, Lin HY, Ashur-Fabian O, Hercbergs A, Keating KA, Davis PJ. Contributions of Thyroid Hormone to Cancer Metastasis. Biomedicines 2018; 6:biomedicines6030089. [PMID: 30135398 PMCID: PMC6165185 DOI: 10.3390/biomedicines6030089] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/14/2018] [Accepted: 08/18/2018] [Indexed: 12/17/2022] Open
Abstract
Acting at a cell surface receptor on the extracellular domain of integrin αvβ3, thyroid hormone analogues regulate downstream the expression of a large panel of genes relevant to cancer cell proliferation, to cancer cell survival pathways, and to tumor-linked angiogenesis. Because αvβ3 is involved in the cancer cell metastatic process, we examine here the possibility that thyroid hormone as l-thyroxine (T4) and the thyroid hormone antagonist, tetraiodothyroacetic acid (tetrac), may respectively promote and inhibit metastasis. Actions of T4 and tetrac that are relevant to cancer metastasis include the multitude of synergistic effects on molecular levels such as expression of matrix metalloproteinase genes, angiogenesis support genes, receptor tyrosine kinase (EGFR/ERBB2) genes, specific microRNAs, the epithelial–mesenchymal transition (EMT) process; and on the cellular level are exemplified by effects on macrophages. We conclude that the thyroid hormone-αvβ3 interaction is mechanistically linked to cancer metastasis and that modified tetrac molecules have antimetastatic activity with feasible therapeutic potential.
Collapse
Affiliation(s)
- Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA.
| | - Gennadi V Glinsky
- Institute of Engineering in Medicine, University of California, San Diego, CA 92093, USA.
| | - Hung-Yun Lin
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA.
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
- Taipei Cancer Center, Taipei Medical University, Taipei 11031 Taiwan.
- Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei 11031, Taiwan.
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Osnat Ashur-Fabian
- Department of Human Molecular Genetics and Biochemistry, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Aleck Hercbergs
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, OH 44195, USA.
| | - Kelly A Keating
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA.
| | - Paul J Davis
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA.
- Department of Medicine, Albany Medical College, Albany, NY 12208, USA.
| |
Collapse
|
104
|
Li M, Su Y, Zhang F, Chen K, Xu X, Xu L, Zhou J, Wang W. A dual-targeting reconstituted high density lipoprotein leveraging the synergy of sorafenib and antimiRNA21 for enhanced hepatocellular carcinoma therapy. Acta Biomater 2018; 75:413-426. [PMID: 29859368 DOI: 10.1016/j.actbio.2018.05.049] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 05/25/2018] [Accepted: 05/29/2018] [Indexed: 01/28/2023]
Abstract
Sorafenib (So) is a multi-target kinase inhibitor extensively used in clinic for hepatocellular carcinoma therapy. It demonstrated strong inhibition both in tumor proliferation and tumor angiogenesis, while hampered by associated cutaneous side-effect and drug resistance. The knockdown of miR-21 with antisense oligonucleotides (antimiRNA21) was regarded as an efficient strategy for increasing tumor sensibility to chemotherapy, which could be employed to appreciate the efficacy of So. Herein, we successfully formulated a dual-targeting delivery system for enhanced hepatocellular carcinoma therapy by encapsulating So and antimiRNA21 in RGD pentapeptide-modified reconstituted high-density lipoprotein (RGD-rHDL/So/antimiRNA21). The RGD and apolipoprotein A-I (ApoA-I) on nanoparticles (NPs) could drive the system simultaneously to tumor neovascular and parenchyma by binding to the overexpressed ανβ3-integrin and SR-B1 receptors, achieving precise delivery of therapeutics to maximize the efficacy. A series in vitro and in vivo experiments revealed that co-delivery of So and antimiRNA21 by RGD-rHDL significantly strengthened the anti-tumor and anti-angiogenic effect of So with negligible toxicity towards major organs, reversed drug-resistance and was capable of remodeling tumor environments. The constructed RGD-rHDL/So/antimiRNA21 with improved efficacy and excellent tumor targeting ability provided new idea for chemo-gene combined therapy in hepatocellular carcinoma. STATEMENT OF SIGNIFICANCE Sorafenib (So) is a multi-target kinase inhibitor which was approved by FDA as first-line drug for hepatocellular carcinoma (HCC) therapy. However, long term application of So in clinic was hampered by serious dermal toxicity and drug resistance. Although numerous researchers were devoted to finding alternatives or therapies as combination treatments with So to reach more desired therapeutic efficacy, the therapeutic options were still limited. The present study prepares RGD pentapeptide decorated biomimic reconstituted high-density lipoprotein (rHDL) loaded with So and antimiRNA21 (RGD-rHDL/So/antimiRNA21) for enhanced HCC therapy. The RGD-rHDL/So/antimiRNA21 NPs offer an effective platform for anti-tumor and anti-angiogenesis therapy in HCC and provide new approach to reverse drug-resistance of So for feasible clinical application.
Collapse
|
105
|
Inhibitory effect of 11-carbonyl-beta-boswellic acid on non-small cell lung cancer H446 cells. Biochem Biophys Res Commun 2018; 503:2202-2205. [PMID: 29953860 DOI: 10.1016/j.bbrc.2018.06.137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 06/25/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND The anti-lung tumor potential of 11-carbonyl-β-boswellic acid was investigated. MATERIALS & METHODS The inhibitory effects of 11-carbonyl-β-boswellic acid on non-small cell lung cancer (NSCLC) was assessed by proliferation, apoptosis, cell cycle and molecular mechanisms in NSCLC H446 cells in vitro. The results showed that the growth of H446 cells was significantly inhibited by 11-carbonyl-β-boswellic acid in a dose- and time-dependent manner. Meanwhile, 11-carbonyl-β-boswellic acid induced cell apoptosis and cell cycle G2-M phase arrest in H446 cells. RESULTS Mechanistically, 11-carbonyl-β-boswellic acid could activate JNK signaling pathway, down-regulate the expression of surviving protein, and activate the cleavage of PARP, leading to marked inhibitory effect on H446 cells. CONCLUSIONS These findings suggest that 11-carbonyl-β-boswellic acid may be a potential usefulness for preventing and treatment of NSCLC.
Collapse
|
106
|
Hsieh CH, Tai SK, Yang MH. Snail-overexpressing Cancer Cells Promote M2-Like Polarization of Tumor-Associated Macrophages by Delivering MiR-21-Abundant Exosomes. Neoplasia 2018; 20:775-788. [PMID: 29981499 PMCID: PMC6031090 DOI: 10.1016/j.neo.2018.06.004] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 06/01/2018] [Accepted: 06/11/2018] [Indexed: 01/04/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a major event during cancer progression and metastasis; however, the definitive role of EMT in remodeling tumor microenvironments (TMEs) is unclear. Tumor-associated macrophages (TAMs) are a major type of host immune cells in TMEs, and they perform a wide range of functions to regulate tumor colonization and progression by regulating tumor invasiveness, local tumor immunity, and angiogenesis. TAMs are considered to have an M2-like, i.e., alternatively activated, phenotype; however, how these EMT-undergoing cancer cells promote M2 polarization of TAMs as a crucial tumor-host interplay during cancer progression is unclear. In this study, we investigated the mechanism of EMT-mediated TAM activation. Here, we demonstrate that the EMT transcriptional factor Snail directly activates the transcription of MIR21 to produce miR-21-abundant tumor-derived exosomes (TEXs). The miR-21-containing exosomes were engulfed by CD14+ human monocytes, suppressing the expression of M1 markers and increasing that of M2 markers. Knockdown of miR-21 in Snail-expressing human head and neck cancer cells attenuated the Snail-induced M2 polarization, angiogenesis, and tumor growth. In head and neck cancer samples, a high expression of miR-21 was correlated with a higher level of SNAI1 and the M2 marker MRC1. This study elucidates the mechanism of EMT-mediated M2 polarization through delivery of the miR-21-abundant exosomes, which may serve as a candidate biomarker of tumor progression and provide a potential target for intercepting EMT-mediated TME remodeling.
Collapse
Affiliation(s)
- Chia-Hsin Hsieh
- Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 11221, Taiwan
| | - Shyh-Kuan Tai
- Department of Otolaryngology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Muh-Hwa Yang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 11221, Taiwan; Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 11221, Taiwan; Cancer Progression Research Center, National Yang-Ming University, Taipei 11221, Taiwan; Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
| |
Collapse
|
107
|
Zhu L, Xue F, Xu X, Xu J, Hu S, Liu S, Cui Y, Gao C. MicroRNA-198 inhibition of HGF/c-MET signaling pathway overcomes resistance to radiotherapy and induces apoptosis in human non-small-cell lung cancer. J Cell Biochem 2018; 119:7873-7886. [PMID: 29943841 DOI: 10.1002/jcb.27204] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/24/2018] [Indexed: 12/20/2022]
Abstract
Non-small-cell lung cancer (NSCLC) is the most common cause of death from cancer worldwide. MicroRNAs (miRNAs) are a group of important regulators in NSCLC, including miR-198. However, the underlying molecular mechanisms of miR-198 involvement in intrinsic resistance to radiotherapy in NSCLC remain to be elucidated. In this study, to investigate the clinical significance of miR-198 in NSCLC in relation to the response to radiotherapy, we determined the expression patterns of miR-198 between responders and nonresponders after 2 months of radiotherapy and found that decreased expressions of miR-198 were associated with radiotherapy resistance. In addition, we altered the endogenous miR-198 using mimics or inhibitors to examine the effects of miR-198 on 4-Gy-irradiated A549 and SPCA-1 cells in vitro. Upregulating miR-198 was shown to inhibit cell proliferation, migration, and invasion and induce apoptosis. MiR-198 inhibition produced a reciprocal result. PHA665752, a selective small-molecule c-Met inhibitor, potently inhibited hepatocyte growth factor (HGF)-stimulated and constitutive c-Met phosphorylation and rescued 4-Gy-irradiated A549 and SPCA-1 cells from miR-198 inhibition. Most importantly, we established tumor xenografts of 4-Gy-irradiated A549 and SPCA-1 cells in nude mice and found that miR-198 could suppress tumor formation. Hence, our data delineates the molecular pathway by which miR-198 inhibits NSCLC cellular proliferation and induces apoptosis following radiotherapy, providing a novel target aimed at improving the radiotherapeutic response in NSCLC.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Feng Xue
- Department of Medical Oncology, Heilongjiang Provincial Hospital, Harbin, China
| | - Xiangying Xu
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China.,The Third Affiliated Hospital of SUN YAT-SEN University, Guangzhou, China
| | - Jianyu Xu
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Songliu Hu
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shanshan Liu
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ying Cui
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Chunzi Gao
- The Second Ward of Oncology Department, The First Clinical Hospital affiliated to Harbin Medical University, Harbin, China
| |
Collapse
|
108
|
Wei Y, Zhu M, Schober A. Macrophage MicroRNAs as Therapeutic Targets for Atherosclerosis, Metabolic Syndrome, and Cancer. Int J Mol Sci 2018; 19:ijms19061756. [PMID: 29899293 PMCID: PMC6032097 DOI: 10.3390/ijms19061756] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/05/2018] [Accepted: 06/08/2018] [Indexed: 02/07/2023] Open
Abstract
Macrophages play a crucial role in the innate immune system and contribute to a broad spectrum of pathologies in chronic inflammatory diseases. MicroRNAs (miRNAs) have been demonstrated to play important roles in macrophage functions by regulating macrophage polarization, lipid metabolism and so on. Thus, miRNAs represent promising diagnostic and therapeutic targets in immune disorders. In this review, we will summarize the role of miRNAs in atherosclerosis, metabolic syndrome, and cancer by modulating macrophage phenotypes, which has been supported by in vivo evidence.
Collapse
Affiliation(s)
- Yuanyuan Wei
- Experimental Vascular Medicine, Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, 80336 Munich, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80802 Munich, Germany.
| | - Mengyu Zhu
- Experimental Vascular Medicine, Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, 80336 Munich, Germany.
| | - Andreas Schober
- Experimental Vascular Medicine, Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, 80336 Munich, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80802 Munich, Germany.
| |
Collapse
|
109
|
Jing C, Cao H, Qin X, Yu S, Wu J, Wang Z, Ma R, Feng J. Exosome-mediated gefitinib resistance in lung cancer HCC827 cells via delivery of miR-21. Oncol Lett 2018; 15:9811-9817. [PMID: 29928355 DOI: 10.3892/ol.2018.8604] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 10/26/2017] [Indexed: 11/05/2022] Open
Abstract
Acquired resistance to gefitinib remains a major challenge in cancer treatment. In the present study, the effect of exosomes on the transmission of gefitinib resistance from gefitinib-resistant HCC827 lung cancer cells (H827R) to their gefitinib-sensitive counterparts and the potential underlying mechanisms by which this occurs was investigated. Exosomes were obtained from the cell supernatant using ultracentrifugation and the ExoQuick-TC exosome precipitation solution. Drug resistance was assessed by flow cytometry, apoptosis assays and cell counting kit-8 assays. The expression of microRNA (miR)-21 was analyzed by reverse transcription-quantitative polymerase chain reaction. Exosomes released by H827R cells (R/exo) may decrease the sensitivity of the human NSCLC HCC827 cell line to gefitinib. The results indicated that miR-21 expression was increased in R/exo and R/exo-treated H827S cells. However, miR-21 inhibition abrogated exosome-mediated drug resistance. Phosphorylated-protein kinase B (p-Akt), which is downstream of miR-21, was downregulated following gefitinib treatment; however, R/exo pretreatment elevated p-Akt levels and promoted the activation of Akt. By contrast, miR-21 inhibition reduced p-Akt expression. Therefore, the induction of miR-21 via exosomes and the activation of Akt may be mechanisms by which exosomes mediate the transfer of drug resistance.
Collapse
Affiliation(s)
- Changwen Jing
- Clinical Cancer Research Center, Jiangsu Cancer Hospital, Cancer Institute of Jiangsu Province, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Haixia Cao
- Clinical Cancer Research Center, Jiangsu Cancer Hospital, Cancer Institute of Jiangsu Province, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Xiaobing Qin
- The Fourth Clinical School of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Shaorong Yu
- Department of Chemotherapy, Jiangsu Cancer Hospital, Cancer Institute of Jiangsu Province, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Jianzhong Wu
- Clinical Cancer Research Center, Jiangsu Cancer Hospital, Cancer Institute of Jiangsu Province, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Zhuo Wang
- Clinical Cancer Research Center, Jiangsu Cancer Hospital, Cancer Institute of Jiangsu Province, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Rong Ma
- Clinical Cancer Research Center, Jiangsu Cancer Hospital, Cancer Institute of Jiangsu Province, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Jifeng Feng
- Department of Chemotherapy, Jiangsu Cancer Hospital, Cancer Institute of Jiangsu Province, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
110
|
Abstract
BACKGROUND Breast cancer has a high prevalence among women worldwide. Tumor invasion and metastasis still remains an open issue that causes most of the therapeutic failures and remains the prime cause of patient mortality. Hence, there is an unmet need to develop the most effective therapeutic approach with the lowest side effects and highest cytotoxicity that will effectively arrest or eradicate metastasis. METHODS An MTT assay and scratch test were used to assess the cytotoxicity and migration effects of Urtica dioica on the breast cancer cells. The QRT-PCR was used to study the expression levels of miR-21, MMP1, MMP9, MMP13, CXCR4, vimentin, and E-cadherin. RESULTS The results of gene expression in tumoral groups confirmed the overexpression of miR-21, MMP1, MMP9, MMP13, vimentin, and CXCR4, and the lower expression of E-cadherin compared to control groups (P<0.05). Moreover, the results of the MTT assay show that Urtica dioica significantly inhibited breast cancer cell proliferation. Moreover, findings from the scratch assay exhibited the inhibitory effects of Urtica dioica on the migration of breast cancer cell lines. CONCLUSION Urtica dioica extract could inhibit cancer cell migration by regulating miR-21, MMP1, MMP9, MMP13, vimentin, CXCR4, and E-Cadherin. Moreover, our findings demonstrated that the extract could decrease miR-21 expression, which substantially lessens the overexpressed MMP1, MMP9, MMP13, vimentin, and CXCR4 and increases E-cadherin in the tumoral group.
Collapse
|
111
|
Zhen-fei W, Yong-ping M, Jun-qing L, Yong-yan L, Jing-quan L. Xanthii fructus inhibits malignant behaviors of lung cancer cells. INFECTION INTERNATIONAL 2018. [DOI: 10.1515/ii-2017-0158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Objective
This study aimed to investigate the influence of Xanthii fructus on the expression of small noncoding RNA (sncRNA) and the malignant behaviors of lung cancer cells.
Method
A549 cells were treated with Xanthii fructus extract. SncRNA expression was detected by real-time PCR. Proliferation, anchorage-independent growth, and invasion capacities were determined using Cell Counting Kit (CCK)-8, soft agar colony formation, and Matrigel assays, respectively.
Results
Xanthii fructus extract downregulated microRNA (miR)-21 expression and upregulated PIWI-interacting RNA (piRNA)55490 expression. The proliferation, anchorage-independent growth, and invasion capacities of A549 cells were strongly inhibited by the extract.
Conclusion
Xanthii fructus can inhibit the malignant behaviors of lung cancer cells.
Collapse
|
112
|
Ji C, Xu Q, Guo L, Wang X, Ren Y, Zhang H, Zhu W, Ming Z, Yuan Y, Ren X, Song J, Cheng Y, Yang J, Zhang Y. eEF-2 Kinase-targeted miR-449b confers radiation sensitivity to cancer cells. Cancer Lett 2018; 418:64-74. [DOI: 10.1016/j.canlet.2018.01.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/27/2017] [Accepted: 01/08/2018] [Indexed: 10/18/2022]
|
113
|
Cui M, Liu W, Zhang L, Guo F, Liu Y, Chen F, Liu T, Ma R, Wu R. Over-Expression of miR-21 and Lower PTEN Levels in Wilms' Tumor with Aggressive Behavior. TOHOKU J EXP MED 2018; 242:43-52. [PMID: 28529243 DOI: 10.1620/tjem.242.43] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Wilms' tumor (WT) is the most common pediatric kidney tumor. MiR-21 is one of the most frequently overexpressed microRNAs in solid tumors, while phosphatase and tensin homolog deleted from chromosome 10 (PTEN) is the most highly mutated tumor suppressor gene. The aim of this study was to investigate the relationship between miR-21 and PTEN in WT. The expression levels of miR-21 and the PTEN protein were determined by qRT-PCR and Western blot analyses in WT specimens, respectively. In WT tissues, the miR-21 expression levels were significantly higher and the PTEN protein levels were significantly lower, compared to the adjacent non-tumorous renal tissues. The higher levels of miR-21 and lower levels of PTEN were correlated with age (> 24 months), late clinical stage, unfavorable histopathological type and lymphatic metastasis. A univariate linear regression analysis indicated a significant correlation between higher miR-21 levels and lower PTEN levels. Using the SK-NEP-1 WT cell line, we showed that the decreased expression levels of miR-21 promoted cell proliferation and invasion, but inhibited apoptosis. Importantly, lowered expression levels of miR-21 increased the expression levels of PTEN protein and decreased the expression levels of phosphoinositide 3-kinase (PI3K) and phosphorylated protein kinase B (p-AKT), each of which functions in the downstream signaling pathway. Dual luciferase-reporter assays indicated that PTEN mRNA was a direct target of miR-21. In conclusion, higher miR-21 levels and lower PTEN protein levels are predictive biomarkers for poor prognosis of WT patients. Over-expression of miR-21 promotes aggressive behavior of WT by targeting PTEN.
Collapse
Affiliation(s)
- Mingyu Cui
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong University
| | - Wei Liu
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong University
| | - Lijuan Zhang
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong University
| | - Feng Guo
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong University
| | - Yang Liu
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong University
| | - Fang Chen
- Shandong Quality Inspection Center for Medical Devices
| | - Ting Liu
- Qilu Children's Hospital of Shandong University
| | - Rui Ma
- Shandong Medical Imaging Research Institute
| | - Rongde Wu
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong University
| |
Collapse
|
114
|
MiR-21 and MiR-155 promote non-small cell lung cancer progression by downregulating SOCS1, SOCS6, and PTEN. Oncotarget 2018; 7:84508-84519. [PMID: 27811366 PMCID: PMC5356677 DOI: 10.18632/oncotarget.13022] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/25/2016] [Indexed: 12/31/2022] Open
Abstract
Lung cancer remains the leading cause of cancer-associated death worldwide. MiR-21 and miR-155 are the most amplified miRNAs in non-small cell lung carcinoma (NSCLC), and are critical promoters of NSCLC progression. However, it remains unclear how miR-21 and miR-155 induce cancer progression, and whether these miRNAs share common targets, such as tumor suppressor genes required to prevent NSCLC. Here we report that miR-21 and miR-155 levels are elevated in NSCLC and are proportional to the progression of the disease. In addition, miR-21 and miR-155 share nearly 30% of their predicted target genes, including SOCS1, SOCS6, and PTEN, three tumor suppressor genes often silenced in NSCLC. Consequently, antagonizing miR-21, miR-155 or both potently inhibited tumor progression in xenografted animal models of NSCLC. Treatment with miR-21 and miR-155 inhibitors in combination was always more effective against NSCLC than treatment with a single inhibitor. Furthermore, levels of miR-21 and miR-155 expression correlated inversely with overall and disease-free survival of NSCLC patients. Our findings reveal that miR-21 and miR-155 promote the development of NSCLC, in part by downregulating SOCS1, SOCS6, and PTEN. Combined inhibition of miR-21 and miR-155 could improve the treatment of NSCLC.
Collapse
|
115
|
Lu L, Xu H, Yang P, Xue J, Chen C, Sun Q, Yang Q, Lu J, Shi A, Liu Q. Involvement of HIF-1α-regulated miR-21, acting via the Akt/NF-κB pathway, in malignant transformation of HBE cells induced by cigarette smoke extract. Toxicol Lett 2018; 289:14-21. [PMID: 29501572 DOI: 10.1016/j.toxlet.2018.02.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/21/2018] [Accepted: 02/27/2018] [Indexed: 12/12/2022]
Abstract
Although the relationship between cigarette smoke and lung cancer has been widely studied, the molecular mechanism for cigarette smoke-induced lung cancer remains largely unclear. The present study investigated the roles of hypoxia-inducible factor (HIF)-1α and miR-21 in the malignant transformation of human bronchial epithelial (HBE) cells induced by cigarette smoke extract (CSE). In case of acute and chronic treatment of HBE cells, CSE increased the levels of HIF-1α, p-Akt, p-NF-κB, and miR-21 and decreased PTEN levels. The increased miR-21 levels induced by CSE were prevented by down-regulation of HIF-1α. Further, elevated miR-21 suppressed PTEN levels, which decreased the levels of p-Akt and p-NF-κB. However, those changes were attenuated in cells co-transfected with HIF-1α siRNA and an miR-21 mimic. Silencing of HIF-1α or NF-κB decreased colony formation and the invasion and migration capacities of CSE-transformed HBE cells; however, up-regulation of miR-21 reversed these effects. These results indicate that the oncogenic capacity of HIF-1α in regulation of miR-21-inhibited PTEN in a manner dependent on the Akt/NF-κB pathway, a process that is involved in the CSE-induced malignant transformation of HBE cells. Thus, the present research has established a new mechanism for cigarette smoke-induced lung carcinogenesis.
Collapse
Affiliation(s)
- Lu Lu
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; Key Laboratory of the Model Animal, Animal Core Facility, Jiangsu Animal Experimental Center for Medical and Pharmaceutical Research, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Hui Xu
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Ping Yang
- School of Public Health, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 510182, Guangdong, People's Republic of China
| | - Junchao Xue
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Chao Chen
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Qian Sun
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Qianlei Yang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Jiachun Lu
- School of Public Health, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 510182, Guangdong, People's Republic of China
| | - Aimin Shi
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; Key Laboratory of the Model Animal, Animal Core Facility, Jiangsu Animal Experimental Center for Medical and Pharmaceutical Research, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.
| | - Qizhan Liu
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.
| |
Collapse
|
116
|
Cao Q, Mao ZD, Shi YJ, Chen Y, Sun Y, Zhang Q, Song L, Peng LP. MicroRNA-7 inhibits cell proliferation, migration and invasion in human non-small cell lung cancer cells by targeting FAK through ERK/MAPK signaling pathway. Oncotarget 2018; 7:77468-77481. [PMID: 27764812 PMCID: PMC5363598 DOI: 10.18632/oncotarget.12684] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 09/02/2016] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE To investigate the effects of microRNA-7 (miR-7) on the proliferation, migration and invasion of non-small cell lung cancer NSCLC) cells by targeting FAK through ERK/MAPK signaling pathway. METHODS NSCLC tissues and adjacent normal tissues were obtained from 160 NSCLC patients after operation. NSCLC cell lines (A549, H1299 and H1355) and a normal human fetal lung fibroblast cell line (MRC-5) were obtained. NSCLC cells were assigned into miR-7 inhibitors, miR-7 mimics, blank, miR-7 mimics control, miR-7 inhibitors control, FAK siRNA and miR-7 inhibitors + FAK siRNA groups. The expressions of miR-7 and FAK mRNA in tissues and cell lines were detected by qRT-PCR and Western-Blotting. Cell proliferation, migration and invasion were detected by MTT assay, wound scratch assay and Transwell assay. RESULTS Compared with adjacent normal tissues, miR-7 expression was down-regulated, but the mRNA and protein expressions of FAK, ERK and MAPK were up-regulated. Compared with the blank and mimics control groups, miR-7 significantly increased but FAK, ERK and MAPK expressions decreased in miR-7 mimics and FAK siRNA groups. Cell proliferation, migration and invasion were inhibited in the miR-7 mimics and FAK siRNA groups, while opposite regarding miR-7 inhibitors group. CONCLUSION The miR-7 can inhibit the activation of ERK/MAPK signaling pathway by down-regulating FAK expression, thereby suppressing the proliferation, migration and invasion of NSCLC cells. The miR-7 and its target gene FAK may be novel targets for the diagnosis and treatment of NSCLC.
Collapse
Affiliation(s)
- Qi Cao
- Department of Respiratory Medicine, Affiliated Changzhou No.2 People's Hospital, Nanjing Medical University, Changzhou 213003, P.R. China
| | - Zheng-Dao Mao
- Department of Respiratory Medicine, Affiliated Changzhou No.2 People's Hospital, Nanjing Medical University, Changzhou 213003, P.R. China
| | - Yu-Jia Shi
- Department of Respiratory Medicine, Affiliated Changzhou No.2 People's Hospital, Nanjing Medical University, Changzhou 213003, P.R. China
| | - Yi Chen
- Department of Respiratory Medicine, Affiliated Changzhou No.2 People's Hospital, Nanjing Medical University, Changzhou 213003, P.R. China
| | - Yun Sun
- Department of Respiratory Medicine, Affiliated Changzhou No.2 People's Hospital, Nanjing Medical University, Changzhou 213003, P.R. China
| | - Qian Zhang
- Department of Respiratory Medicine, Affiliated Changzhou No.2 People's Hospital, Nanjing Medical University, Changzhou 213003, P.R. China
| | - Lei Song
- Department of Respiratory Medicine, Affiliated Changzhou No.2 People's Hospital, Nanjing Medical University, Changzhou 213003, P.R. China
| | - Li-Ping Peng
- Department of Respiratory Medicine, Affiliated Changzhou No.2 People's Hospital, Nanjing Medical University, Changzhou 213003, P.R. China
| |
Collapse
|
117
|
Inhibition of ATG12-mediated autophagy by miR-214 enhances radiosensitivity in colorectal cancer. Oncogenesis 2018; 7:16. [PMID: 29459645 PMCID: PMC5833763 DOI: 10.1038/s41389-018-0028-8] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 01/04/2018] [Indexed: 12/17/2022] Open
Abstract
Radioresistance hampers success in the treatment of patients with advanced colorectal cancer (CRC). Improving our understanding of the underlying mechanisms of radioresistance could increase patients' response to irradiation (IR). MicroRNAs are a class of small RNAs involved in tumor therapy response to radiation. Here we found that miR-214 was markedly decreased in CRC cell lines and blood of CRC patients after IR exposure. Meanwhile, autophagy was enhanced in irradiated CRC cells. Mechanically, ATG12 was predicted and identified as a direct target of miR-214 by dual luciferase assay, qPCR, and Western blot. In vitro and in vivo experiments showed that miR-214 promoted radiosensitivity by inhibiting IR-induced autophagy. Restoration of ATG12 attenuated miR-214-mediated inhibition of cell growth and survival in response to IR. Importantly, miR-214 was highly expressed in radiosensitive CRC specimens and negatively correlated with plasma level of CEA. Moreover, ATG12 and LC3 expressions were increased in radioresistant CRC specimens. Our study elucidates that miR-214 promotes radiosensitivity by inhibition of ATG12-mediated autophagy in CRC. Importantly, miR-214 is a determinant of CRC irradiation response and may serve as a potential therapeutic target in CRC treatment.
Collapse
|
118
|
Yang J, Zou Y, Jiang D. Honokiol suppresses proliferation and induces apoptosis via regulation of the miR‑21/PTEN/PI3K/AKT signaling pathway in human osteosarcoma cells. Int J Mol Med 2018; 41:1845-1854. [PMID: 29393336 PMCID: PMC5810212 DOI: 10.3892/ijmm.2018.3433] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 11/15/2017] [Indexed: 12/18/2022] Open
Abstract
Honokiol (HNK) is a small biphenolic compound, which exerts antineoplastic effects in various types of cancer. However, the mechanism underlying the antitumor effects of HNK in osteosarcoma (OS) cells is not yet fully understood. Emerging evidence has indicated that microRNAs (miRNAs/miRs) serve key roles in numerous pathological processes, including cancer. It has previously been reported that Chinese medicinal herbs harbor anticancer properties via modulating miRNA expression. Therefore, the present study aimed to determine whether HNK could suppress OS cell growth by regulating miRNA expression. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometric analysis were used to evaluate the cell proliferation and apoptosis in human OS cells after treatment with HNK, respectively. The results demonstrated that HNK inhibits proliferation and induces apoptosis of human OS cells in a dose-dependent manner. Furthermore, HNK-induced apoptosis was characterized by upregulation of proapoptotic proteins, including cleaved-caspase-3, cleaved-poly (ADP-ribose) polymerase and B-cell lymphoma 2 (Bcl-2)-associated X protein, and downregulation of the anti-apoptotic protein Bcl-2. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) verified that HNK was able to induce aberrant expression of miRNAs in human OS cells, and miR-21 was one of the miRNAs that was most significantly downregulated. To further investigate miR-21 function, the present study validated that HNK reduces miR-21 levels in a dose-dependent manner. In addition, restoration of miR-21 expression abrogated the suppressive effects of HNK on OS cells. Luciferase assay and western blot analysis identified that miR-21 inhibits the expression of phosphatase and tensin homolog (PTEN) by directly targeting its 3′-UTR. Notably, HNK was able to suppress the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway; however, it was reactivated by miR-21 overexpression. Taken together, these data indicated that HNK may inhibit proliferation and induce apoptosis of human OS cells by modulating the miR-21/PTEN/PI3K/AKT signaling pathway. Therefore, miR-21 may be considered a potential therapeutic target for the treatment of osteosarcoma with HNK.
Collapse
Affiliation(s)
- Jiexiang Yang
- Department of Orthopedics, Τhe First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yonggen Zou
- Department of Orthopedics, The Second Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Dianmin Jiang
- Department of Orthopedics, Τhe First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
119
|
Gao Y, Chen L, Song H, Chen Y, Wang R, Feng B. A double-negative feedback loop between E2F3b and miR- 200b regulates docetaxel chemosensitivity of human lung adenocarcinoma cells. Oncotarget 2018; 7:27613-26. [PMID: 27027446 PMCID: PMC5053675 DOI: 10.18632/oncotarget.8376] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 03/16/2016] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding small RNAs which negatively regulate gene expressions mainly through 3'-untranslated region (3'-UTR) binding of target mRNAs. Recent studies have highlighted the feedback loops between miRNAs and their target genes in physiological and pathological processes including chemoresistance of cancers. Our previous study identified miR-200b/E2F3 axis as a chemosensitivity restorer of human lung adenocarcinoma (LAD) cells. Moreover, E2F3b was bioinformatically proved to be a potential transcriptional regulator of pre-miR-200b gene promoter. The existance of this double-negative feedback minicircuitry comprising E2F3b and miR-200b was confirmed by chromatin immunoprecipitation (ChIP) assay, site-specific mutation and luciferase reporter assay. And the underlying regulatory mechanisms of this feedback loop on docetaxel resistance of LAD cells were further investigated by applying in vitro chemosensitivity assay, colony formation assay, flow cytometric analysis of cell cycle and apoptosis, as well as mice xenograft model. In conclusion, our results suggest that the double-negative feedback loop between E2F3b and miR-200b regulates docetaxel chemosensitivity of human LAD cells mainly through cell proliferation, cell cycle distribution and apoptosis.
Collapse
Affiliation(s)
- Yanping Gao
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China
| | - Longbang Chen
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China
| | - Haizhu Song
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China
| | - Yitian Chen
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China
| | - Rui Wang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China
| | - Bing Feng
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China
| |
Collapse
|
120
|
Bhavsar C, Momin M, Khan T, Omri A. Targeting tumor microenvironment to curb chemoresistance via novel drug delivery strategies. Expert Opin Drug Deliv 2018; 15:641-663. [PMID: 29301448 DOI: 10.1080/17425247.2018.1424825] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Tumor is a heterogeneous mass of malignant cells co-existing with non-malignant cells. This co-existence evolves from the initial developmental stages of the tumor and is one of the hallmarks of cancer providing a protumorigenic niche known as tumor microenvironment (TME). Proliferation, invasiveness, metastatic potential and maintenance of stemness through cross-talk between tumors and its stroma forms the basis of TME. AREAS COVERED The article highlights the developmental phases of a tumor from dysplasia to the formation of clinically detectable tumors. The authors discuss the mechanistic stages involved in the formation of TME and its contribution in tumor outgrowth and chemoresistance. The authors have reviewed various approaches for targeting TME and its hallmarks along with their advantages and pitfalls. The authors also highlight cancer stem cells (CSCs) that are resistant to chemotherapeutics and thus a primary reason for tumor recurrence thereby, posing a challenge for the oncologists. EXPERT OPINION Recent understanding of the cellular and molecular mechanisms involved in acquired chemoresistance has enabled scientists to target the tumor niche and TME and modulate and/or disrupt this communication leading to the transformation from a tumor-supportive niche environment to a tumor-non-supporting environment and give synergistic results towards an effective management of cancer.
Collapse
Affiliation(s)
- Chintan Bhavsar
- a Department of Pharmaceutics, SVKMs Dr. Bhanuben Nanavati College of Pharmacy , University of Mumbai , Mumbai , India
| | - Munira Momin
- a Department of Pharmaceutics, SVKMs Dr. Bhanuben Nanavati College of Pharmacy , University of Mumbai , Mumbai , India
| | - Tabassum Khan
- b Department of Quality Assurance and Pharmaceutical Chemistry, SVKMs Dr. Bhanuben Nanavati College of Pharmacy , University of Mumbai , Mumbai , India
| | - Abdelwahab Omri
- c The Novel Drug & Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry , Laurentian University , Sudbury , ON , Canada
| |
Collapse
|
121
|
Li L, Zhang H, Wang X, Wang J, Wei H. Long non-coding RNA CASC2 enhanced cisplatin-induced viability inhibition of non-small cell lung cancer cells by regulating the PTEN/PI3K/Akt pathway through down-regulation of miR-18a and miR-21. RSC Adv 2018; 8:15923-15932. [PMID: 35542225 PMCID: PMC9080181 DOI: 10.1039/c8ra00549d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/20/2018] [Indexed: 12/12/2022] Open
Abstract
Long non-coding RNA cancer susceptibility candidate 2 (lncRNA CASC2) is a tumor suppressor and has been proved to contribute to chemotherapy efficacy. However, the effect of CASC2 on cisplatin cytotoxicity in non-small cell lung cancer (NSCLC) is unclear. The present study aimed to investigate the role of CASC2 in regulating cisplatin cytotoxicity in NSCLC cells. Herein, we found that CASC2 was low-expressed, while miR-18a and miR-21 were over-expressed in NSCLC cell lines. CASC2 enhanced the inhibition effect of cisplatin on cell viability. Down-regulation of miR-18a and miR-21 exhibited the similar effect to CASC2 and mimics of miR-18a and miR-21 displayed the opposite effect to CASC2. MiR-18a and miR-21 were two targets of CASC2 in NSCLC. PTEN was found to be a target of miR-18a and miR-21 in NSCLC. CASC2 overexpression increased PTEN expression level and reduced the ratio of p-Akt/Akt. MiR-18a or miR-21 mimics attenuated the effect of CASC2 overexpression on the PTEN expression and ratio of p-Akt/Akt. The results suggested that CASC2 enhanced cisplatin-induced viability inhibition of NSCLC cells via PTEN/PI3K/Akt pathway through suppressing miR-18a and miR-21 expression. Long non-coding RNA cancer susceptibility candidate 2 (lncRNA CASC2) is a tumor suppressor and has been proved to contribute to chemotherapy efficacy.![]()
Collapse
Affiliation(s)
- Li Li
- School of Nursing and Health
- Henan University
- Kaifeng 475004
- P. R. China
| | - Haifeng Zhang
- Department of Thoracic Surgery
- Huaihe Hospital of Henan University
- Kaifeng 475000
- P. R. China
| | - Xiaolong Wang
- Department of Thoracic Surgery
- Huaihe Hospital of Henan University
- Kaifeng 475000
- P. R. China
| | - Jiali Wang
- Department of Surgery
- Huaihe Hospital of Henan University
- Kaifeng 475000
- P. R. China
| | - Haitao Wei
- Department of Thoracic Surgery
- Huaihe Hospital of Henan University
- Kaifeng 475000
- P. R. China
| |
Collapse
|
122
|
Maj E, Filip-Psurska B, Milczarek M, Psurski M, Kutner A, Wietrzyk J. Vitamin D derivatives potentiate the anticancer and anti-angiogenic activity of tyrosine kinase inhibitors in combination with cytostatic drugs in an A549 non-small cell lung cancer model. Int J Oncol 2017; 52:337-366. [PMID: 29345296 PMCID: PMC5741374 DOI: 10.3892/ijo.2017.4228] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/17/2017] [Indexed: 12/16/2022] Open
Abstract
Numerous in vitro and in vivo studies have demonstrated that calcitriol [1,25(OH)2D3] and different vitamin D analogs possess antineoplastic activity, regulating proliferation, differentiation and apoptosis, as well as angiogenesis. Vitamin D compounds have been shown to exert synergistic effects when used in combination with different agents used in anticancer therapies in different cancer models. The aim of this study was to evaluate the mechanisms of the cooperation of the vitamin D compounds [1,24(OH)2D3 (PRI-2191) and 1,25(OH)2D3] with tyrosine kinase inhibitors (imatinib and sunitinib) together with cytostatics (cisplatin and docetaxel) in an A549 non-small cell lung cancer model. The cytotoxic effects of the test compounds used in different combinations were evaluated on A549 lung cancer cells, as well as on human lung microvascular endothelial cells (HLMECs). The effects of such combinations on the cell cycle and cell death were also determined. In addition, changes in the expression of proteins involved in cell cycle regulation, angiogenesis and the action of vitamin D were analyzed. Moreover, the effects of 1,24(OH)2D3 on the anticancer activity of sunitinib and sunitinib in combination with docetaxel were examined in an A549 lung cancer model in vivo. Experiments aiming at evaluating the cytotoxicity of the combinations of the test agents revealed that imatinib and sunitinib together with cisplatin or docetaxel exerted potent anti-proliferative effects in vitro on A549 lung cancer cells and in HLMECs; however, 1,24(OH)2D3 and 1,25(OH)2D3 enhanced the cytotoxic effects only in the endothelial cells. Among the test agents, sunitinib and cisplatin decreased the secretion of vascular endothelial growth factor (VEGF)-A from the A549 lung cancer cells. The decrease in the VEGF-A level following incubation with cisplatin correlated with a higher p53 protein expression, while no such correlation was observed following treatment of the A549 cells with sunitinib. Sunitinib together with docetaxel and 1,24(OH)2D3 exhibited a more potent anticancer activity in the A549 lung cancer model compared to double combinations and to treatment with the compounds alone. The observed anticancer activity may be the result of the influence of the test agents on the process of tumor angiogenesis, for example, through the downregulation of VEGF-A expression in tumor and also on the induction of cell death inside the tumor.
Collapse
Affiliation(s)
- Ewa Maj
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Beata Filip-Psurska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Magdalena Milczarek
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Mateusz Psurski
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Andrzej Kutner
- Pharmaceutical Research Institute, 01-793 Warsaw, Poland
| | - Joanna Wietrzyk
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| |
Collapse
|
123
|
Fadejeva I, Olschewski H, Hrzenjak A. MicroRNAs as regulators of cisplatin-resistance in non-small cell lung carcinomas. Oncotarget 2017; 8:115754-115773. [PMID: 29383199 PMCID: PMC5777811 DOI: 10.18632/oncotarget.22975] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 11/15/2017] [Indexed: 12/29/2022] Open
Abstract
With more than 80% of all diagnosed lung cancer cases, non-small cell lung cancer (NSCLC) remains the leading cause of cancer death worldwide. Exact diagnosis is mostly very late and advanced-stage NSCLCs are inoperable at admission. Tailored therapies with tyrosine kinase inhibitors are only available for a minority of patients. Thus, chemotherapy is often the treatment of choice. As first-line chemotherapy for NSCLCs, platinum-based substances (e.g. cisplatin, CDDP) are mainly used. Unfortunately, the positive effects of CDDP are frequently diminished due to development of drug resistance and negative influence of microenvironmental factors like hypoxia. MicroRNAs (miRNAs) are small, non-coding molecules involved in the regulation of gene expression and modification of biological processes like cell proliferation, apoptosis and cell response to chemotherapeutics. Expression of miRNAs is often deregulated in lung cancer compared to corresponding non-malignant tissue. In this review we summarize the present knowledge about the effects of miRNAs on CDDP-resistance in NSCLCs. Further, we focus on miRNAs deregulated by hypoxia, which is an important factor in the development of CDDP-resistance in NSCLCs. This review will contribute to the general understanding of miRNA-regulated biological processes in NSCLC, with special focus on the role of miRNA in CDDP-resistance.
Collapse
Affiliation(s)
- Irina Fadejeva
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Horst Olschewski
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria.,Ludwig Boltzmann Institute of Lung Vascular Research, Medical University of Graz, Graz, Austria
| | - Andelko Hrzenjak
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria.,Ludwig Boltzmann Institute of Lung Vascular Research, Medical University of Graz, Graz, Austria
| |
Collapse
|
124
|
Sun J, Tian X, Lu SQ, Hu HB. MicroRNA-4465 suppresses tumor proliferation and metastasis in non-small cell lung cancer by directly targeting the oncogene EZH2. Biomed Pharmacother 2017; 96:1358-1362. [PMID: 29169732 DOI: 10.1016/j.biopha.2017.11.070] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 11/02/2017] [Accepted: 11/10/2017] [Indexed: 10/18/2022] Open
Abstract
MicroRNA-26 (miR-26) has been reported to be connected with tumor progression. MicroRNA-4465 (miR-4465) was one member of miR-26 family, however, the role of miR-4465 in non-small cell lung cancer (NSCLC) was unknown. This study was aimed to explore the function of miR-4465 and investigate whether miR-4465 can be a potential target for treating human NSCLC. QRT-PCR was applied to evaluate the miR-4465 expression levels in NSCLC cells. Then, we demonstrated the role of miR-4465 in NSCLC cells biological characteristics through detecting proliferation, migration and invasion. Luciferase reporter assay and TargetScan were applied to explore the potential target gene of miR-4465. In this study, we found that the miR-4465 expression levels in NSCLC cell lines were significantly reduced when compared to the normal human bronchial epithelial cell lines. And, over expression of miR-4465 could restrain the proliferation, migration and invasion of NSCLC. Moreover, MiR-4465 reduced EZH2 protein expression through the binding sites in 3' -UTR of the EZH2 mRNA, indicating EZH2 may be a direct target gene of miR-4465. Conclusively, miR-4465 suppressed cancer cells proliferation and metastasis by directly targeting the oncogene EZH2 and it may serve as a new potential therapeutic target in NSCLC.
Collapse
Affiliation(s)
- Jian Sun
- Department of Critical Care Medicine, Lishui Center Hospital, Lishui, Zhejiang, 323000, China
| | - Xin Tian
- Department of Critical Care Medicine, Lishui Center Hospital, Lishui, Zhejiang, 323000, China
| | - Sheng-Qiang Lu
- Department of Anesthesiology, Hubei Cancer Hospital, No 116 Zhuodaoquan South Load,Hongshan District Wuhan HuBei, China.
| | - Hai-Bo Hu
- Department of Thoracic Surgery, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 223002, China.
| |
Collapse
|
125
|
Bu W, Luo T. miR-1297 Promotes Cell Proliferation of Non-Small Cell Lung Cancer Cells: Involving in PTEN/Akt/Skp2 Signaling Pathway. DNA Cell Biol 2017; 36:976-982. [PMID: 28872922 DOI: 10.1089/dna.2017.3886] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Wenjin Bu
- Chongqing Medical University, Chongqing, China
- Department of Ultrasonic Medicine, Inner Mongolia People's Hospital, Hohhot, China
| | - Tianyou Luo
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
126
|
Chu YH, Hardin H, Schneider DF, Chen H, Lloyd RV. MicroRNA-21 and long non-coding RNA MALAT1 are overexpressed markers in medullary thyroid carcinoma. Exp Mol Pathol 2017; 103:229-236. [PMID: 29107050 DOI: 10.1016/j.yexmp.2017.10.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/24/2017] [Accepted: 10/25/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Non-coding RNAs, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), are well-recognized post-transcriptional regulators of gene expression. This study examines the expression of microRNA-21 (miR-21) and lncRNA MALAT1 in medullary thyroid carcinomas (MTCs) and their effects on tumor behavior. METHODS Tissue microarrays (TMAs) were constructed using normal thyroid (n=39), primary tumors (N=39) and metastatic MTCs (N=18) from a total of 42 MTC cases diagnosed between 1987 and 2016. In situ hybridization with probes for miR-21 and MALAT1 was performed. PCR quantification of expression was performed in a subset of normal thyroid (N=10) and primary MTCs (N=32). An MTC-derived cell line (MZ-CRC-1) was transfected with small interfering RNAs (siRNAs) targeting miR-21 and MALAT1 to determine the effects on cell proliferation and invasion. RESULTS In situ hybridization (ISH) showed strong (2+ to 3+) expression of miR-21 in 17 (44%) primary MTCs and strong MALAT1 expression in 37 (95%) primary MTCs. Real-time PCR expression of miR-21 (P<0.001) and MALAT1 (P=0.038) in primary MTCs were significantly higher than in normal thyroid, supporting the ISH findings. Experiments with siRNAs showed inhibition of miR-21 and MALAT1 expression in the MTC-derived cell line, leading to significant decreases in cell proliferation (P<0.05) and invasion (P<0.05). CONCLUSION There is increased expression of miR-21 and MALAT1 in MTCs. This study also showed an in vitro pro-oncogenic effect of MALAT1 and miR-21 in MTCs. The results suggest that overexpression of miR-21 and MALAT1 may regulate MTC progression.
Collapse
Affiliation(s)
- Ying-Hsia Chu
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, United States
| | - Heather Hardin
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, United States
| | - David F Schneider
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, United States
| | - Herbert Chen
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Ricardo V Lloyd
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, United States.
| |
Collapse
|
127
|
Jiang LP, He CY, Zhu ZT. Role of microRNA-21 in radiosensitivity in non-small cell lung cancer cells by targeting PDCD4 gene. Oncotarget 2017; 8:23675-23689. [PMID: 28423589 PMCID: PMC5410336 DOI: 10.18632/oncotarget.15644] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 12/26/2016] [Indexed: 12/14/2022] Open
Abstract
This study aims to explore the effects of microRNA-21 (miR-21) on radiosensitivity in non-small cell lung cancer (NSCLC) by targeting programmed cell deanth 4 (PDCD4) and regulating PI3K/AKT/mTOR signaling pathway. Cancer tissues and adjacent normal tissues were collected from 97 NSCLC patients who received a standard radiotherapy regimen. TUNEL assay was applied to determine cell apoptosis in tissues. The qRT-PCR assay was used to detect the expressions of miR-21 expression and PDCD4 mRNA. The protein expressions of PDCD4 and PI3K/AKT/mTOR signaling pathway-related proteins were determined by Western blotting. Colony formation assay was used to observe the sensitivity to radiotherapy of NSCLC cells. Flow cytometry was adopted to testify cell apoptosis. Compared with adjacent normal tissues, miR-21 expression was significantly increased and the mRNA and protein expressions of PDCD4 were decreased in NSCLC tissues. Higher miR-21 expression was associated with attenuated radiation efficacy and shorter median survival time. PDCD4 was the target gene of miR-21. The miR-21 mimics and siRNA-PDCD4 decreased the sensitivity to radiotherapy and cell apoptosis of A549 and H1299 cells and activated PI3K/AKT/mTOR pathway. The sensitivity of A549 and H1299 cells was strengthened in the miR-21 inhibitors group and the PI3K/AKT/mTOR inhibitors group. The siRNA-PDCD4 could reverse the effects of miR-21 inhibitors on sensitivity to radiotherapy and cell apoptosis of NSCLC cells. Our findings provide strong evidence that miR-21 could inhibit PDCD4 expression and activate PI3K/AKT/mTOR signaling pathway, thereby affecting the radiation sensitivity of NSCLC cells.
Collapse
Affiliation(s)
- Li-Peng Jiang
- Department of Radiation Oncology, First Affiliated Hospital of Liaoning Medical University, Jinzhou 121000, P.R. China
| | - Chun-Yan He
- Department of Prosthodontics, Second Affiliated Hospital of Liaoning Medical University, Jinzhou 121000, P.R. China
| | - Zhi-Tu Zhu
- Department of Oncology, First Affiliated Hospital of Liaoning Medical University, Jinzhou 121000, P.R. China
| |
Collapse
|
128
|
MicroRNA-21 inhibits mitochondria-mediated apoptosis in keloid. Oncotarget 2017; 8:92914-92925. [PMID: 29190966 PMCID: PMC5696232 DOI: 10.18632/oncotarget.21656] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 08/28/2017] [Indexed: 12/21/2022] Open
Abstract
MicroRNA-21 acts as an oncogene by promoting cell proliferation and migration, whereas inhibiting apoptosis in majority of cancers. MicroRNA-21 is upregulated in human keloid fibroblasts. We hypothesized that microRNA-21 may contribute to pathogenesis of keloid fibroblasts. First, enhanced miR-21 but reduced mitochondrial-mediated apoptosis observed in keloid tissues indicated its importance in keloids development. Second, upregulation of microRNA-21 induced a decrease in the ratio of BAX to BCL-2 and suppressed mitochondrial fission in keloid fibroblasts. Third, by attenuating the decline in cellular mitochondrial membrane potential, overexpression of miR-21 suppressed cytochrome c release to the cytoplasm, followed by a decrease in the activity of intracellular caspase-9 and caspase-3, suggesting that mitochondrial-mediated proapoptotic pathway was impaired. Simultaneously, intracellular reactive oxygen species were decreased, indicating microRNA-21 undermined oxidative stress. This phenotype was reversed by miR-21 inhibition. Therefore, our study demonstrates that inhibition of microRNA-21 induces mitochondrial-mediated apoptosis in keloid fibroblasts, proposing microRNA-21 as a potential therapeutic target in keloid fibroblasts.
Collapse
|
129
|
Zhong JT, Zhou SH. Warburg effect, hexokinase-II, and radioresistance of laryngeal carcinoma. Oncotarget 2017; 8:14133-14146. [PMID: 27823965 PMCID: PMC5355168 DOI: 10.18632/oncotarget.13044] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 10/28/2016] [Indexed: 12/26/2022] Open
Abstract
Radiotherapy is now widely used as a part of multidisciplinary treatment approaches for advanced laryngeal carcinoma and preservation of laryngeal function. However, the mechanism of the radioresistance is still unclear. Some studies have revealed that the Warburg effect promotes the radioresistance of various malignant tumors, including laryngeal carcinoma. Among the regulators involved in the Warburg effect, hexokinase-II (HK-II) is a crucial glycolytic enzyme that catalyzes the first essential step of glucose metabolism. HK-II is reportedly highly expressed in some human solid carcinomas by many studies. But for laryngeal carcinoma, there is only one. Till now, no studies have directly targeted inhibited HK-II and enhanced the radiosensitivity of laryngeal carcinoma. Accumulating evidence has shown that dysregulated signaling pathways often result in HK-II overexpression. Here, we summarize recent advances in understanding the association among the Warburg effect, HK-II, and the radioresistance of laryngeal carcinoma. We speculate on the feasibility of enhancing radiosensitivity by targeted inhibiting HK-II signaling pathways in laryngeal carcinoma, which may provide a novel anticancer therapy.
Collapse
Affiliation(s)
- Jiang-Tao Zhong
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shui-Hong Zhou
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
130
|
Wang K, Chen M, Wu W. Analysis of microRNA (miRNA) expression profiles reveals 11 key biomarkers associated with non-small cell lung cancer. World J Surg Oncol 2017; 15:175. [PMID: 28927412 PMCID: PMC5606074 DOI: 10.1186/s12957-017-1244-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 09/03/2017] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) accounts for more than 85% of lung cancer cases which cause most of cancer-related deaths globally. However, the results vary largely in different studies due to different platforms and sample sizes. Here, we aim to identify the key miRNAs in the carcinogenesis of NSCLC that might be potential biomarkers for this cancer. METHODS Meta-analysis was performed on miRNA profile using seven datasets of NSCLC studies. Furthermore, we predicted and investigated the functions of genes regulated by key miRNAs. RESULTS Eleven key miRNAs were identified, including 2 significantly upregulated ones (hsa-miR-21-5p and hsa-miR-233-3p) and 9 downregulated ones (hsa-miR-126-3p, hsa-miR-133a-3p, hsa-miR-140-5p, hsa-miR-143-5p, hsa-miR-145-5p, hsa-miR-30a-5p, hsa-miR-30d-3p, hsa-miR-328-3pn, and hsa-miR-451). The functional enrichment analysis revealed that both up- and downregulated miRNAs were proportionally associated with regulation of transcription from RNA polymerase II promoter. According to transcription factor analysis, there were 65 (43.9%) transcription factors influenced by both up- and downregulated miRNAs. CONCLUSIONS In this study, 11 meta-signature miRNAs, as well as their target genes and transcription factors, were found to play significant role in carcinogenesis of NSCLC. These target genes identified in our study may be profitable to diagnosis and prognostic prediction of NSCLC as biomarkers.
Collapse
Affiliation(s)
- Ke Wang
- Department of Clinical Medicine, Xi'an Medical University, Shaanxi Research Center of Respiratory Diseases Prevention and Diagnosis and Treatment, Xi'an City, Shaanxi Province, 710021, China
| | - Mingwei Chen
- Department of Clinical Medicine, Xi'an Medical University, Shaanxi Research Center of Respiratory Diseases Prevention and Diagnosis and Treatment, Xi'an City, Shaanxi Province, 710021, China.
| | - Wei Wu
- Department of Respiratory, First Affiliated Hospital of Xi'an Medical University, Shaanxi Research Center of Respiratory Diseases Prevention & Diagnosis and Treatment, Xi'an City, Shaanxi Province, China
| |
Collapse
|
131
|
Li Y, Weng Y, Zhong L, Chong H, Chen S, Sun Y, Li W, Shi Q. VEGFR3 inhibition chemosensitizes lung adenocarcinoma A549 cells in the tumor-associated macrophage microenvironment through upregulation of p53 and PTEN. Oncol Rep 2017; 38:2761-2773. [PMID: 29048623 PMCID: PMC5780029 DOI: 10.3892/or.2017.5969] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 05/25/2017] [Indexed: 12/22/2022] Open
Abstract
In lung adenocarcinoma, loss of p53 and PTEN in tumors are associated with decreased response to chemotherapy and decreased survival. A means to pharmacologically upregulate p53 and PTEN protein expression could improve the prognosis of patients with p53- and PTEN-deficient tumors. In the present study we revealed that vascular endothelial growth factor receptor 3 (VEGFR3) inhibition in lung adenocarcinoma cells was associated with improved expression levels of both p53 and PTEN in the tumor-associated macrophage (TAM) microenvironment. Inhibition of VEGFR3 in lung adenocarcinoma cells was associated with growth arrest and decreased migration and invasion. The upregulation of p53 and PTEN protein expression after VEGFR3 inhibition decreased chemotherapy resistance and improved chemosensitivity in co-cultured A549 cells in which p53 and PTEN expression were decreased. Finally, we demonstrated that TAMs promoted the expression of VEGF-C and its receptor VEGFR3. Western blot analysis revealed the co-cultured A549 cells with TAMs are a primary source of VEGF-C and VEGFR3 in the tumor microenvironment. Our studies revealed that VEGFR3 inhibition may be a pharmacological means to upregulate p53 and PTEN protein expression and improve the outcome of patients with p53- and PTEN-deficient tumors.
Collapse
Affiliation(s)
- Ya Li
- Department of Laboratory Medicine, M.O.E., Key Laboratory of Laboratory Medicine Diagnostics, Chongqing Medical University, Chongqing 400016, P.R.China
| | - Yaguang Weng
- Department of Laboratory Medicine, M.O.E., Key Laboratory of Laboratory Medicine Diagnostics, Chongqing Medical University, Chongqing 400016, P.R.China
| | - Liang Zhong
- Department of Laboratory Medicine, M.O.E., Key Laboratory of Laboratory Medicine Diagnostics, Chongqing Medical University, Chongqing 400016, P.R.China
| | - Huimin Chong
- Department of Laboratory Medicine, M.O.E., Key Laboratory of Laboratory Medicine Diagnostics, Chongqing Medical University, Chongqing 400016, P.R.China
| | - Sicheng Chen
- Department of Clinical Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Yanting Sun
- Department of Laboratory Medicine, M.O.E., Key Laboratory of Laboratory Medicine Diagnostics, Chongqing Medical University, Chongqing 400016, P.R.China
| | - Wang Li
- Department of Laboratory Medicine, M.O.E., Key Laboratory of Laboratory Medicine Diagnostics, Chongqing Medical University, Chongqing 400016, P.R.China
| | - Qiong Shi
- Department of Laboratory Medicine, M.O.E., Key Laboratory of Laboratory Medicine Diagnostics, Chongqing Medical University, Chongqing 400016, P.R.China
| |
Collapse
|
132
|
Cao L, Chen J, Ou B, Liu C, Zou Y, chen Q. GAS5 knockdown reduces the chemo-sensitivity of non-small cell lung cancer (NSCLC) cell to cisplatin (DDP) through regulating miR-21/PTEN axis. Biomed Pharmacother 2017; 93:570-579. [DOI: 10.1016/j.biopha.2017.06.089] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/07/2017] [Accepted: 06/23/2017] [Indexed: 11/25/2022] Open
|
133
|
Blandin Knight S, Crosbie PA, Balata H, Chudziak J, Hussell T, Dive C. Progress and prospects of early detection in lung cancer. Open Biol 2017; 7:170070. [PMID: 28878044 PMCID: PMC5627048 DOI: 10.1098/rsob.170070] [Citation(s) in RCA: 535] [Impact Index Per Article: 66.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/27/2017] [Indexed: 12/14/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related death in the world. It is broadly divided into small cell (SCLC, approx. 15% cases) and non-small cell lung cancer (NSCLC, approx. 85% cases). The main histological subtypes of NSCLC are adenocarcinoma and squamous cell carcinoma, with the presence of specific DNA mutations allowing further molecular stratification. If identified at an early stage, surgical resection of NSCLC offers a favourable prognosis, with published case series reporting 5-year survival rates of up to 70% for small, localized tumours (stage I). However, most patients (approx. 75%) have advanced disease at the time of diagnosis (stage III/IV) and despite significant developments in the oncological management of late stage lung cancer over recent years, survival remains poor. In 2014, the UK Office for National Statistics reported that patients diagnosed with distant metastatic disease (stage IV) had a 1-year survival rate of just 15-19% compared with 81-85% for stage I.
Collapse
MESH Headings
- Adenocarcinoma/diagnostic imaging
- Adenocarcinoma/genetics
- Adenocarcinoma/mortality
- Adenocarcinoma/surgery
- Adenocarcinoma of Lung
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/genetics
- Bronchoscopy/methods
- Carcinoma, Non-Small-Cell Lung/diagnostic imaging
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/mortality
- Carcinoma, Non-Small-Cell Lung/surgery
- Carcinoma, Squamous Cell/diagnostic imaging
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/mortality
- Carcinoma, Squamous Cell/surgery
- Circulating Tumor DNA/blood
- Circulating Tumor DNA/genetics
- Early Detection of Cancer/methods
- Humans
- Liquid Biopsy/methods
- Lung Neoplasms/diagnostic imaging
- Lung Neoplasms/genetics
- Lung Neoplasms/mortality
- Lung Neoplasms/surgery
- Neoplasm Staging
- Neoplastic Cells, Circulating/metabolism
- Neoplastic Cells, Circulating/pathology
- Prognosis
- Radiography
- Small Cell Lung Carcinoma/diagnostic imaging
- Small Cell Lung Carcinoma/genetics
- Small Cell Lung Carcinoma/mortality
- Small Cell Lung Carcinoma/surgery
- Survival Analysis
Collapse
Affiliation(s)
- Sean Blandin Knight
- North West Lung Centre, University Hospital South Manchester, Manchester, UK
| | - Phil A Crosbie
- North West Lung Centre, University Hospital South Manchester, Manchester, UK
- Cancer Research UK Lung Cancer Centre of Excellence at Manchester and University College London, UK
| | - Haval Balata
- North West Lung Centre, University Hospital South Manchester, Manchester, UK
| | - Jakub Chudziak
- Clinical and Experimental Pharmacology Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Tracy Hussell
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, UK
| | - Caroline Dive
- Cancer Research UK Lung Cancer Centre of Excellence at Manchester and University College London, UK
- Clinical and Experimental Pharmacology Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| |
Collapse
|
134
|
Taguchi YH. Tensor decomposition-based unsupervised feature extraction applied to matrix products for multi-view data processing. PLoS One 2017; 12:e0183933. [PMID: 28841719 PMCID: PMC5571984 DOI: 10.1371/journal.pone.0183933] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 08/04/2017] [Indexed: 01/17/2023] Open
Abstract
In the current era of big data, the amount of data available is continuously increasing. Both the number and types of samples, or features, are on the rise. The mixing of distinct features often makes interpretation more difficult. However, separate analysis of individual types requires subsequent integration. A tensor is a useful framework to deal with distinct types of features in an integrated manner without mixing them. On the other hand, tensor data is not easy to obtain since it requires the measurements of huge numbers of combinations of distinct features; if there are m kinds of features, each of which has N dimensions, the number of measurements needed are as many as Nm, which is often too large to measure. In this paper, I propose a new method where a tensor is generated from individual features without combinatorial measurements, and the generated tensor was decomposed back to matrices, by which unsupervised feature extraction was performed. In order to demonstrate the usefulness of the proposed strategy, it was applied to synthetic data, as well as three omics datasets. It outperformed other matrix-based methodologies.
Collapse
Affiliation(s)
- Y-h. Taguchi
- Department of Physics, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| |
Collapse
|
135
|
Yuan DY, Meng Z, Xu K, Li QF, Chen C, Li KY, Zhang B. Betulinic acid increases radiosensitization of oral squamous cell carcinoma through inducing Sp1 sumoylation and PTEN expression. Oncol Rep 2017; 38:2360-2368. [DOI: 10.3892/or.2017.5872] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 06/02/2017] [Indexed: 11/05/2022] Open
|
136
|
Mirzaei H, Masoudifar A, Sahebkar A, Zare N, Sadri Nahand J, Rashidi B, Mehrabian E, Mohammadi M, Mirzaei HR, Jaafari MR. MicroRNA: A novel target of curcumin in cancer therapy. J Cell Physiol 2017; 233:3004-3015. [DOI: 10.1002/jcp.26055] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 06/14/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Hamed Mirzaei
- Department of Medical Biotechnology; School of Medicine, Mashhad University of Medical Sciences; Mashhad Iran
| | - Aria Masoudifar
- Department of Molecular Biotechnology; Cell Science Research Center, Royan Institute for Biotechnology, ACECR; Isfahan Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center; Mashhad University of Medical Sciences; Mashhad Iran
| | - Naser Zare
- School of Medicine; Isfahan University of Medical Sciences; Isfahan Iran
| | - Javid Sadri Nahand
- Department of Virology; School of Medicine, Iran University of Medical Sciences; Tehran Iran
| | - Bahman Rashidi
- Department of Anatomical Sciences and Molecular Biology; School of Medicine, Isfahan University of Medical Sciences; Isfahan Iran
| | | | - Mohsen Mohammadi
- Razi Herbal Medicines Research Center and Department of Pharmaceutical Biotechnology; Faculty of Pharmacy; Lorestan University of Medical Sciences; Khorramabad Iran
| | - Hamid Reza Mirzaei
- Department of Immunology; School of Medicine, Tehran University of Medical Sciences; Tehran Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center; School of Pharmacy, Mashhad University of Medical Sciences; Mashhad Iran
| |
Collapse
|
137
|
Li J, Jin H, Yu H, Wang B, Tang J. miRNA‑1284 inhibits cell growth and induces apoptosis of lung cancer cells. Mol Med Rep 2017; 16:3049-3054. [PMID: 28713980 PMCID: PMC5547959 DOI: 10.3892/mmr.2017.6949] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 03/07/2017] [Indexed: 01/20/2023] Open
Abstract
Lung cancer is the most common cancer worldwide, and morbidity and mortality associated with lung cancer has been increasing annually in recent decades. MicroRNAs (miRNAs), which are short non-coding RNA sequences that are involved in the regulation of gene expression, have been previously demonstrated to be key regulators in cancer. The present study aimed to clarify the role of miRNA (miR)-1284 in lung cancer. A549 lung carcinoma cells were transfected with miR-1284 mimic or miR-1284 inhibitor using Lipofectamine 2000. Subsequently, cell viability, growth and apoptosis of A459 cells in the miR-1284 mimic, miR-1284 inhibitor and control groups were assayed by MTT assay, bromodeoxyuridine assay and flow cytometry, respectively. Furthermore, the protein expression levels of p27, p21, Bax, pro-caspase-3, activated caspase-3 and Myc were detected by western blot analysis to investigate the molecular mechanisms underlying the effect of miR-1284 on A549 cells. The cell viability and growth of A549 cells were significantly decreased in the miR-1284 mimic group compared with the control group, whereas the percentage of apoptotic cells was significantly increased. By contrast, miR-1284 inhibitor transfection significantly increased the cell viability and growth compared with control, and decreased apoptosis. Furthermore, expression of p27 was increased in miR-1284 mimic-transfected A549 cells compared with the control group, whereas p21 was unaffected by miR-1284 overexpression or inhibition. The expression of Myc was decreased by miR-1284 mimic transfection compared with the control group. For the other apoptosis-associated proteins that were investigated (Bax, pro-caspase-3 and active caspase-3), the expression levels in the miR-1284 mimic transfected cells were higher than in the other two groups (control and miR-1284 inhibitor). In conclusion, the results suggest that miR-1284 affects cell proliferation and apoptosis of lung cancer cells, indicating that miR-1284 may have a key role in lung tumorigenesis.
Collapse
Affiliation(s)
- Jie Li
- Department of Thoracic Surgery, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Hairong Jin
- Department of Thoracic Surgery, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Hua Yu
- Department of Thoracic Surgery, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Bin Wang
- Department of Thoracic Surgery, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Jian Tang
- Department of Cardio‑Thoracic Surgery, First Affiliated Hospital of Chinese PLA General Hospital, Beijing 100048, P.R. China
| |
Collapse
|
138
|
Dai J, Chen W, Lin Y, Wang S, Guo X, Zhang QQ. Exposure to Concentrated Ambient Fine Particulate Matter Induces Vascular Endothelial Dysfunction via miR-21. Int J Biol Sci 2017; 13:868-877. [PMID: 28808419 PMCID: PMC5555104 DOI: 10.7150/ijbs.19868] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/03/2017] [Indexed: 12/22/2022] Open
Abstract
Vascular endothelial permeability transition does not cause significant lesions, but enhanced permeability may contribute to the development of vascular and other diseases, including atherosclerosis, hypertension, heart failure and cancer. Therefore, elucidating the effect of Particulate Matter 2.5 (PM2.5) on vascular endothelial permeability could help prevent disease that might be caused by PM2.5. Our previous study and the present one revealed that PM2.5 significantly increased the permeability of vascular endothelial cells and disrupted the barrier function of the vascular endothelium in Sprague Dawley (SD) rats. We found that the effect occurred mainly through induction of signal transducer and activator of transcription 3 (STAT3) phosphorylation, further transcriptional regulation of microRNA21 (miR-21) and promotion of miR-21 expression. These changes post-transcriptionally repress tissue inhibitor of metalloproteinases 3 (TIMP3) and promote matrix metalloproteinases 9 (MMP9) expression. This work provides evidence that PM2.5 exerts direct inhibitory action on vascular endothelial barrier function and might give rise to a number of vascular diseases.
Collapse
Affiliation(s)
- Jianwei Dai
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou 510182, China.,The State Key Lab of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510120, China
| | - Wensheng Chen
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou 510182, China
| | - Yuyin Lin
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou 510182, China
| | - Shiwen Wang
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou 510182, China
| | - Xiaolan Guo
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou 510182, China
| | - Qian-Qian Zhang
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
139
|
Repositioning Bazedoxifene as a novel IL-6/GP130 signaling antagonist for human rhabdomyosarcoma therapy. PLoS One 2017; 12:e0180297. [PMID: 28672024 PMCID: PMC5495564 DOI: 10.1371/journal.pone.0180297] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 06/13/2017] [Indexed: 11/23/2022] Open
Abstract
Interleukins-6 (IL-6)/GP130 signaling pathway represents a promising target for cancer therapy due to its critical role in survival and progression of multiple types of cancer. We have identified Bazedoxifene, a Food and Drug Administration (FDA)-approved drug used for the prevention of postmenopausal osteoporosis, with novel function as inhibitor of IL-6/GP130 interaction. In this study, we investigate the effect of Bazedoxifene in rhabdomyosarcoma and evaluate whether inhibiting IL-6/GP130 signaling is an effective therapeutic strategy for rhabdomyosarcoma. The inhibitory effect of Bazedoxifene was assessed in rhabdomyosarcoma cell lines in vitro and RH30 xenograft model was used to further examine the suppressive efficacy of Bazedoxifene on tumor growth in vivo. Rhabdomyosarcoma cells showed their sensitivity to GP130 inhibition using gene knockdown or neutralized antibody, suggesting IL-6/GP130 as therapeutic target in rhabdomyosarcoma cells. Bazedoxifene decreased the signal transducer and activator of transcription3 (STAT3) phosphorylation, blocked STAT3 DNA binding, and down-regulated the expression of STAT3 downstream genes. Bazedoxifene also induced cell apoptosis, reduced cell viability, and inhibited colony formation in rhabdomyosarcoma cells. The inhibition of colony formation, STAT3 phosphorylation, or cell viability following Bazedoxifene treatment was partially reversed by addition of excess IL-6 or overexpression of constitutive STAT3, respectively, supporting Bazedoxifene acted through IL-6/GP130 signaling. In addition, Bazedoxifene repressed cell invasion and angiogenesis in vitro. Furthermore, oral administration of Bazedoxifene significantly suppressed tumor growth and expression of STAT3 phosphorylation in nude mice bearing established human rhabdomyosarcoma xenograft. Taken together, these findings validate IL-6/GP130 signaling as therapeutic target in rhabdomyosarcoma and provide first evidence that Bazedoxifene may serve as a novel promising drug targeting IL-6/GP130 for treatment of rhabdomyosarcoma.
Collapse
|
140
|
Zhan JW, Jiao DM, Wang Y, Song J, Wu JH, Wu LJ, Chen QY, Ma SL. Integrated microRNA and gene expression profiling reveals the crucial miRNAs in curcumin anti-lung cancer cell invasion. Thorac Cancer 2017; 8:461-470. [PMID: 28660665 PMCID: PMC5582578 DOI: 10.1111/1759-7714.12467] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/29/2017] [Accepted: 06/01/2017] [Indexed: 12/11/2022] Open
Abstract
Background Curcumin (diferuloylmethane) has chemopreventive and therapeutic properties against many types of tumors, both in vitro and in vivo. Previous reports have shown that curcumin exhibits anti‐invasive activities, but the mechanisms remain largely unclear. Methods In this study, both microRNA (miRNA) and messenger RNA (mRNA) expression profiles were used to characterize the anti‐metastasis mechanisms of curcumin in human non‐small cell lung cancer A549 cell line. Results Microarray analysis revealed that 36 miRNAs were differentially expressed between the curcumin‐treated and control groups. miR‐330‐5p exhibited maximum upregulation, while miR‐25‐5p exhibited maximum downregulation in the curcumin treatment group. mRNA expression profiles and functional analysis indicated that 226 differentially expressed mRNAs belonged to different functional categories. Significant pathway analysis showed that mitogen‐activated protein kinase, transforming growth factor‐β, and Wnt signaling pathways were significantly downregulated. At the same time, axon guidance, glioma, and ErbB tyrosine kinase receptor signaling pathways were significantly upregulated. We constructed a miRNA gene network that contributed to the curcumin inhibition of metastasis in lung cancer cells. let‐7a‐3p, miR‐1262, miR‐499a‐5p, miR‐1276, miR‐331‐5p, and miR‐330‐5p were identified as key microRNA regulators in the network. Finally, using miR‐330‐5p as an example, we confirmed the role of miR‐330‐5p in mediating the anti‐migration effect of curcumin, suggesting the importance of miRNAs in the regulation of curcumin biological activity. Conclusion Our findings provide new insights into the anti‐metastasis mechanism of curcumin in lung cancer.
Collapse
Affiliation(s)
- Jian-Wei Zhan
- Department of Emergency Disease, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, China
| | - De-Min Jiao
- Department of Respiratory Disease, The 117th Hospital of PLA, Hangzhou, China
| | - Yi Wang
- Department of Emergency Disease, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, China
| | - Jia Song
- Department of Respiratory Disease, The 117th Hospital of PLA, Hangzhou, China
| | - Jin-Hong Wu
- Department of Emergency Disease, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, China
| | - Li-Jun Wu
- Department of Respiratory Disease, The 117th Hospital of PLA, Hangzhou, China
| | - Qing-Yong Chen
- Department of Respiratory Disease, The 117th Hospital of PLA, Hangzhou, China
| | - Sheng-Lin Ma
- Department of Emergency Disease, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, China
| |
Collapse
|
141
|
Yu X, Chen Y, Tian R, Li J, Li H, Lv T, Yao Q. miRNA-21 enhances chemoresistance to cisplatin in epithelial ovarian cancer by negatively regulating PTEN. Oncol Lett 2017; 14:1807-1810. [PMID: 28789414 DOI: 10.3892/ol.2017.6324] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 02/16/2017] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs, 8-23 nucleotides in length, which regulate gene expression at the post-transcriptional level. The present study was performed to analyze the association between microRNA-21 and cisplatin resistance in epithelial ovarian cancer (EOC) SKOV3 and SKOV3/DDP cells. In this experiment, the resistance of SKOV3 and SKOV3/DDP cells to cisplatin was evaluated using the MTT assay. Reverse transcription-quantitative polymerase chain reaction analysis was used to assess miRNA-21 levels and phosphatase and tensin homolog (PTEN) mRNA levels. Western blotting was used to assess PTEN protein levels. miRNA-21 mimics or inhibitors were transfected into SKOV3 and SKOV3/DDP cells. Prior to transfection, higher expression levels of miRNA-21 were observed in SKOV3/DDP cells compared with SKOV3 cells. Following transfection with miRNA-21 mimics, SKOV3 cells demonstrated increased sensitivity to cisplatin compared with negative control cells. Following transfection with the miRNA-21 inhibitor, SKOV3/DDP cells demonstrated decreased sensitivity to cisplatin compared with negative control cells. Furthermore, PTEN mRNA expression levels in SKOV3 cells transfected with miRNA-21 mimics was significantly lower compared with negative control cells. These results suggested that miRNA-21 may regulate cisplatin resistance by negatively targeting PTEN in EOC.
Collapse
Affiliation(s)
- Xiaomin Yu
- Department of Obstetrics and Gynecology, The Eighth People's Hospital of Qingdao, Qingdao, Shandong 266100, P.R. China
| | - Yulong Chen
- Department of Obstetrics and Gynecology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Ruiyun Tian
- Department of Obstetrics and Gynecology, The Eighth People's Hospital of Qingdao, Qingdao, Shandong 266100, P.R. China
| | - Jianxia Li
- Department of Obstetrics and Gynecology, The Eighth People's Hospital of Qingdao, Qingdao, Shandong 266100, P.R. China
| | - Hongyan Li
- Department of Obstetrics and Gynecology, The Eighth People's Hospital of Qingdao, Qingdao, Shandong 266100, P.R. China
| | - Teng Lv
- Department of Obstetrics and Gynecology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Qin Yao
- Department of Obstetrics and Gynecology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
142
|
Modulation of CASC2/miR-21/PTEN pathway sensitizes cervical cancer to cisplatin. Arch Biochem Biophys 2017; 623-624:20-30. [DOI: 10.1016/j.abb.2017.05.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 04/16/2017] [Accepted: 05/02/2017] [Indexed: 12/16/2022]
|
143
|
Yang QS, Jiang LP, He CY, Tong YN, Liu YY. Up-Regulation of MicroRNA-133a Inhibits the MEK/ERK Signaling Pathway to Promote Cell Apoptosis and Enhance Radio-Sensitivity by Targeting EGFR in Esophageal Cancer In Vivo and In Vitro. J Cell Biochem 2017; 118:2625-2634. [PMID: 27933650 DOI: 10.1002/jcb.25829] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/06/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Qing-Shan Yang
- Department of Radiation Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, P.R. China
| | - Li-Peng Jiang
- Department of Radiation Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, P.R. China
| | - Chun-Yan He
- Department of Prosthodontics, Second Affiliated Hospital of Liaoning Medical University, Jinzhou 121000, P.R. China
| | - Yu-Na Tong
- Department of Radiation Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, P.R. China
| | - Yuan-Yuan Liu
- Department of Internal Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, P.R. China
| |
Collapse
|
144
|
NADPH Oxidases: Insights into Selected Functions and Mechanisms of Action in Cancer and Stem Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017. [PMID: 28626501 PMCID: PMC5463201 DOI: 10.1155/2017/9420539] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
NADPH oxidases (NOX) are reactive oxygen species- (ROS-) generating enzymes regulating numerous redox-dependent signaling pathways. NOX are important regulators of cell differentiation, growth, and proliferation and of mechanisms, important for a wide range of processes from embryonic development, through tissue regeneration to the development and spread of cancer. In this review, we discuss the roles of NOX and NOX-derived ROS in the functioning of stem cells and cancer stem cells and in selected aspects of cancer cell physiology. Understanding the functions and complex activities of NOX is important for the application of stem cells in tissue engineering, regenerative medicine, and development of new therapies toward invasive forms of cancers.
Collapse
|
145
|
Han Z, Chen Y, Zhang Y, Wei A, Zhou J, Li Q, Guo L. MiR‐21/PTEN Axis Promotes Skin Wound Healing by Dendritic Cells Enhancement. J Cell Biochem 2017; 118:3511-3519. [PMID: 28374893 DOI: 10.1002/jcb.26026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/03/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Zhaofeng Han
- Department of Burn and Reconstruction The First Affiliated Hospital of Zhengzhou University Zhengzhou 450002 China
| | - Ya Chen
- Department of Burn and Reconstruction The First Affiliated Hospital of Zhengzhou University Zhengzhou 450002 China
| | - Yile Zhang
- Reproductive Medical Center The First Affiliated Hospital of Zhengzhou University Zhengzhou 450002 China
| | - Aizhou Wei
- Department of Burn and Reconstruction The First Affiliated Hospital of Zhengzhou University Zhengzhou 450002 China
| | - Jian Zhou
- Department of Burn and Reconstruction The First Affiliated Hospital of Zhengzhou University Zhengzhou 450002 China
| | - Qian Li
- Department of Burn and Reconstruction The First Affiliated Hospital of Zhengzhou University Zhengzhou 450002 China
| | - Lili Guo
- Department of Plastic Surgery The First Affiliated Hospital of Zhengzhou University Zhengzhou 450002 China
| |
Collapse
|
146
|
Sun X, Lou L, Zhong K, Wan L. MicroRNA-451 regulates chemoresistance in renal cell carcinoma by targeting ATF-2 gene. Exp Biol Med (Maywood) 2017; 242:1299-1305. [PMID: 28429654 DOI: 10.1177/1535370217701625] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Renal cell carcinoma (RCC) is a malignant tumor, which severely threatens human's life, moreover, the multi-drug resistance (MDR) under RCC undoubtedly strengthen the difficulties in the treatment. MiR-451 has been considered to play an important role in regulation of MDR in several cancers, but the role of it in MDR of RCC has not been explored. This study aims to explore the mechanism of miR-451 as a target to regulate chemotherapy resistance, which is crucial for further exploring novel therapy for RCC. Two human cell lines (ACHN and GRC-1) were performed in this study and adriamycin (ADM) was used to construct MDR cell lines. qRT-PCR was used to determine the mRNA expression of miR-451 and ATF-2. Weston blot was used to determine protein expression. MTT assay and flow cytometry were used for assessing cell viability and apoptosis, individually. Luciferase reporter assay was used to detect the targeting of miR-451 and ATF-2. Results presented that the expression of miR-451 was higher in low MDR cell line (ACHN) comparing with the high MDR cell line (GRC-1), while the expression of ATF-2 revealed an opposite results. MiR-451 targeted ATF-2 and regulated its expression. Overexpression of miR-451 strengthened drug resistance, decreased cell viability, and increased cell apoptosis of GRC-1 pretreated by ADM, while overexpressed ATF-2 reversed the effect induced by miR-451 overexpression. Then miR-451 knockdown improved drug susceptibility, decreased cell apoptosis, and increased cell viability of ACHN induced by ADM, however, ATF-2 suppression reversed the low rate of cell apoptosis and high rate of cell viability induced by miR-451 knockdown. Our results revealed that miR-451 regulates the drug resistance of RCC by targeting ATF-2 gene, which might be critical for overcoming MDR in RCC patients. Impact statement This is the first study to emphasize the expression of miR-451 on regulating multi-drug resistance (MDR) in renal cell carcinoma (RCC). Our study found that miR-451 regulates the drug resistance of RCC by targeting ATF-2, which might be critical for overcoming MDR in RCC patients. This study not only provides solid theory foundation for the clinical therapy, but also offers unique insights for the further RCC research. Furthermore, the study helps us to understand the mechanism of MDR, which was crucial for identifying the chemoresistance on several related tumors.
Collapse
Affiliation(s)
- Xiang Sun
- 1 Department of Urology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Longhua Lou
- 1 Department of Urology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Kezhao Zhong
- 1 Department of Urology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Lijuan Wan
- 2 Second Department of Internal Medicine, Cancer Hospital of Jiangxi Province, Nanchang, Jiangxi 330029, People's Republic of China
| |
Collapse
|
147
|
Circulating mircoRNA-21 as a predictor for vascular restenosis after interventional therapy in patients with lower extremity arterial occlusive disease. Biosci Rep 2017; 37:BSR20160502. [PMID: 28250135 PMCID: PMC5484015 DOI: 10.1042/bsr20160502] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/25/2017] [Accepted: 02/28/2017] [Indexed: 12/27/2022] Open
Abstract
The present study was designed to investigate the role of circulating miRNA-21
(miR-21) in vascular restenosis of lower extremity arterial occlusive disease
(LEAOD) patients after interventional therapy. A total of 412 LEAOD patients were enrolled
randomly in the present study. According to computed tomography angiography (CTA) and
ankle-brachial index (ABI), patients were assigned into the restenosis group and the
non-restenosis group. miR-21 expression was detected with quantitative
real-time PCR (qRT-PCR) before and after patients underwent interventional therapy. A follow-up
period of 6 months was achieved. A receiver operating characteristic (ROC) curve was drawn and
the area under the curve (AUC) was calculated to assess the predictive value of
miR-21 in vascular restenosis. Patients were older in the restenosis group
than in the non-restenosis group. The percentages of patients with diabetes and hypertension
were higher in the restenosis group than in the non-restenosis group, and the Fontaine stage
exhibited a significant difference between the two groups. miR-21 expression
was higher in the restenosis group than in the non-restenosis group. miR-21
expression level was related to age, diabetes and hypertension in the restenosis group. Using
miR-21 to predict vascular restenosis yielded an AUC of 0.938 (95%
confidence interval (CI): 0.898–0.977), with Youden index of 0.817, sensitivity of
83.5% and specificity of 98.2%. Logistic regression analysis revealed that
diabetes and miR-21 expression were the major risk factors for vascular
restenosis of LEAOD. miR-21 can be used as a predictive indicator for vascular
restenosis of LEAOD after interventional therapy.
Collapse
|
148
|
Hardin C, Shum E, Singh AP, Perez-Soler R, Cheng H. Emerging treatment using tubulin inhibitors in advanced non-small cell lung cancer. Expert Opin Pharmacother 2017; 18:701-716. [DOI: 10.1080/14656566.2017.1316374] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
149
|
Liang T, Hu XY, Li YH, Tian BQ, Li ZW, Fu Q. MicroRNA-21 Regulates the Proliferation, Differentiation, and Apoptosis of Human Renal Cell Carcinoma Cells by the mTOR-STAT3 Signaling Pathway. Oncol Res 2017; 24:371-380. [PMID: 27712594 PMCID: PMC7838634 DOI: 10.3727/096504016x14685034103356] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
MicroRNA-21 (miRNA-21), a kind of short, noncoding RNAs, functioned as a tumor marker and was upregulated in renal cell carcinoma (RCC). However, the underlying mechanisms of miRNA-21 in RCC were uncertain. Therefore, the effects and mechanisms of miRNA-21 on the proliferation, differentiation, and apoptosis of cultured human RCC cells were further investigated in this study. After slicing miRNA-21 in RCC cells, the viability, mRNA expression of C/EBPα and PPARγ, caspase 3 activity, and protein expression of mTOR, STAT3, and pSTAT3 were determined. It was found that knockdown of miRNA-21 downregulated the optical density (OD) value of cells, inhibited mRNA expression of PPARγ and C/EBPα, and enhanced activity of caspase 3. Furthermore, protein expression of pSTAT3 was also decreased in the absence of miRNA-21. Notably, miRNA-21-changed proliferation, differentiation, and apoptosis of human RCC cells were partially regulated following the block of the mTOR-STAT3 signaling pathway by the mTOR inhibitor (XL388). It was indicated that miRNA-21 promoted proliferation and differentiation and decreased apoptosis of human RCC cells through the activation of the mTOR-STAT3 signaling pathway.
Collapse
Affiliation(s)
- Tao Liang
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, P.R. China
| | | | | | | | | | | |
Collapse
|
150
|
Fu Y, Zhen J, Lu Z. Synergetic Neuroprotective Effect of Docosahexaenoic Acid and Aspirin in SH-Y5Y by Inhibiting miR-21 and Activating RXRα and PPARα. DNA Cell Biol 2017; 36:482-489. [PMID: 28346830 DOI: 10.1089/dna.2017.3643] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Parkinson's disease (PD) is a serious neurodegenerative disorder that lacks effective therapeutic methods. In this research, expressions of PPARα, RXRα, and miR-21 were evaluated in PD patients and normal controls. To investigate the effects of miR-21, docosahexaenoic acid (DHA) and aspirin (ASA) on PD, as well as the relationships between them, SH-Y5Y cells were treated with DHA, ASA, or both for 24 h. The assay showed that levels of miR-21 were increased and levels of PPARα were decreased in PD patients compared with normal controls. miR-21 was negatively correlated with PPARα in PD patients. DHA and ASA could activate RXRα and PPARα, respectively. Additionally, DHA upregulated PPARα expression by inhibiting miR-21 in SH-Y5Y cells. A combination of DHA and ASA efficiently enhanced heterodimer formations of PPARα and RXRα and increased the expression of neurotrophic factors PSD-95, brain-derived neurotrophic factor (BDNF), and glial cell-derived neurotrophic factor (GDNF), while inhibiting NFκB and COX2. These findings suggest that a combination of DHA and ASA could significantly improve the expression of PSD-95, BDNF, and GDNF by promoting heterodimerization of PPARα and RXRα, thus supplying a new therapeutic method for PD.
Collapse
Affiliation(s)
- Yongwang Fu
- 1 Department of Neurology, Renmin Hospital of Wuhan University, Wuhan University , Wuhan, China
| | - Jin Zhen
- 2 Department of Neurology, Inner Mongolia Autonomous Region People's Hospital , Hohhot, China
| | - Zuneng Lu
- 1 Department of Neurology, Renmin Hospital of Wuhan University, Wuhan University , Wuhan, China
| |
Collapse
|