101
|
Bae YU, Huh JW, Kim BK, Park HY, Seu YB, Doh KO. Enhancement of liposome mediated gene transfer by adding cholesterol and cholesterol modulating drugs. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:3017-3023. [PMID: 27664498 DOI: 10.1016/j.bbamem.2016.09.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/03/2016] [Accepted: 09/19/2016] [Indexed: 10/21/2022]
Abstract
Cholesterol is an important cell membrane component and has been used as co-lipid for cationic liposome to enhance gene delivery. However, the role of cholesterol in transfection efficiency has not been fully understood. In this study, transfection efficiency of liposome was measured after cholesterol was added to the cell culture medium. As a result, addition of cholesterol increased transfection efficiency of several liposomes consisting of different lipid components in various cells (AGS, CHO, COS7 and, MCF7). Furthermore, treatment of cells with cholesterol modulating drugs, imipramine and U18666A, also increased transfection efficiency of liposomes. To elucidate the role of added cholesterol in gene transfer, endocytotic mechanism was studied and also revealed that adding cholesterol in culture media induced participation of caveolae-mediated endocytosis and micropinocytosis in CHO cell. Therefore, the results of this work suggest that modulation of intracellular cholesterol can be an important method to enhance gene delivery.
Collapse
Affiliation(s)
- Yun-Ui Bae
- Department of Physiology, College of Medicine, Yeungnam University, Daegu 42415, Republic of Korea
| | - Jae-Wan Huh
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Bieong-Kil Kim
- School of Life Sciences and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyeon Young Park
- Department of Physiology, College of Medicine, Yeungnam University, Daegu 42415, Republic of Korea
| | - Young-Bae Seu
- School of Life Sciences and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyung-Oh Doh
- Department of Physiology, College of Medicine, Yeungnam University, Daegu 42415, Republic of Korea.
| |
Collapse
|
102
|
Abstract
Background: Gene therapy is an innovative and exciting new branch of medicine. Despite the fact that a human disease has yet to be cured using this therapeutic approach, numerous clinical trials are taking place around the world based on encouraging preclinical data. Objective: The aim of this review is to bring the reader up to date with this rapidly advancing field and to highlight the technical advances that must occur before gene therapy will become common practice in dermatology. Methods: The current level of gene delivery technology restricts the applications. The advantages and disadvantages of viral and nonviral gene delivery systems are discussed. Results: Considerable advances are being made in the areas of cancer immunotherapy and vaccines. Of particular importance to the treatment of skin diseases will be the isolation and ex vivo manipulation of epidermal stem cells, the development of skin-specific regulatory sequences for gene expression, and the formulation of gene delivery systems suitable for systemic administration. Conclusions: In general, skin and keratinocytes are considered to be good targets for gene transfer applications, and several diseases have been identified as potential candidates for treatment in the near future.
Collapse
Affiliation(s)
- Michael J. Hope
- Skin Barrier Research Laboratory, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
103
|
Pierrat P, Casset A, Didier P, Kereselidze D, Lux M, Pons F, Lebeau L. Cationic DOPC-Detergent Conjugates for Safe and Efficient in Vitro and in Vivo Nucleic Acid Delivery. Chembiochem 2016; 17:1771-83. [PMID: 27380144 DOI: 10.1002/cbic.201600302] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Indexed: 01/19/2023]
Abstract
The ability of a nonviral nucleic acid carrier to deliver its cargo to cells with low associated toxicity is a critical issue for clinical applications of gene therapy. We describe biodegradable cationic DOPC-C12 E4 conjugates in which transfection efficiency is based on a Trojan horse strategy. In situ production of the detergent compound C12 E4 through conjugate hydrolysis within the acidic endosome compartment was expected to promote endosome membrane destabilization and subsequent release of the lipoplexes into cytosol. The transfection efficiency of the conjugates has been assessed in vitro, and associated cytotoxicity was determined. Cellular uptake and intracellular distribution of the lipoplexes have been investigated. The results show that direct conjugation of DOPC with C12 E4 produces a versatile carrier that can deliver both DNA and siRNA to cells in vitro with high efficiency and low cytotoxicity. SAR studies suggest that this compound might represent a reasonable compromise between the membrane activity of the released detergent and susceptibility of the conjugate to degradation enzymes in vitro. Although biodegradability of the conjugates had low impact on carrier efficiency in vitro, it proved critical in vivo. Significant improvement of transgene expression was obtained in the mouse lung tuning biodegradability of the carrier. Importantly, this also allowed reduction of the inflammatory response that invariably characterizes cationic-lipid-mediated gene transfer in animals.
Collapse
Affiliation(s)
- Philippe Pierrat
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS-Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, B. P. 60024, 67401, Illkirch, France
| | - Anne Casset
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS-Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, B. P. 60024, 67401, Illkirch, France
| | - Pascal Didier
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS-Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, B. P. 60024, 67401, Illkirch, France
| | - Dimitri Kereselidze
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS-Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, B. P. 60024, 67401, Illkirch, France
| | - Marie Lux
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS-Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, B. P. 60024, 67401, Illkirch, France
| | - Françoise Pons
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS-Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, B. P. 60024, 67401, Illkirch, France
| | - Luc Lebeau
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS-Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, B. P. 60024, 67401, Illkirch, France.
| |
Collapse
|
104
|
Barbeau J, Belmadi N, Montier T, Le Gall T, Dalençon S, Lemiègre L, Benvegnu T. Synthesis of a novel archaeal tetraether-type lipid containing a diorthoester group as a helper lipid for gene delivery. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.05.090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
105
|
Modulated cellular delivery of anti-VEGF siRNA (bevasiranib) by incorporating supramolecular assemblies of hydrophobically modified polyamidoamine dendrimer in stealth liposomes. Int J Pharm 2016; 510:30-41. [PMID: 27291973 DOI: 10.1016/j.ijpharm.2016.06.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/07/2016] [Accepted: 06/08/2016] [Indexed: 12/16/2022]
Abstract
A novel lipopolymer based system was designed and characterized for cellular delivery of anti-VEGF siRNA in SKBR-3 breast tumor cell line. Polyamidoamine (PAMAM) dendrimers of low generations (G1, G2 and G3) were incorporated into polyethylene glycol (PEG)-stabilized liposomes by following the consecutive steps: (a) synthesis of the cholesterol conjugates (40% molar ratio of cholesterol to primary amines of PAMAM), (b) incorporation of the conjugates in liposome by lipid mixing and (c) microencapsulation of the siRNA using the ethanol drop method. The cholesterol conjugates of PAMAM dendrimers (G1-Chol40%, G2-Chol40% and G3-Chol40%) formed self assembly with low CMC values (<11μg/ml). Not only did G2-Chol40% show the highest lipid mixing among the cholesterol conjugates, but also, had the lowest leakage of encapsulated carboxyfluorescein tracer. Various N(amine))/L(lipid)/P(phosphate) mole ratios were investigated for siRNA condensation by ethidium bromide dye exclusion assay. The optimum N/L/P ratio of 20:33:10 was chosen for microencapsulation of anti-VEGF siRNA by ethanol drop method, showing particle size of 130nm, zeta-potential of +4mV, siRNA loading efficiency and capacity of 96% and 13wt%, and high stability against heparin sulfate (extracellular matrix). TEM shows uniform and discrete oligo- or multi-lamellar vesicular structures. The liposome incorporating G2-Chol40% was successfully internalized into SKBR-3 cells mainly through clathrin-mediated endocytosis, which was able to escape from endosomes and showed a significantly higher sequence-specific inhibition of VEGF expression and cell growth than the respective G2-Chol40%/siRNA dendriplexes. Importantly, the cytotoxicity decreased with incorporation of G2-Chol40% in the liposomes.
Collapse
|
106
|
Jain AS, Dhawan VV, Sarmento B, Nagarsenker MS. In Vitro and Ex Vivo Evaluations of Lipid Anti-Cancer Nanoformulations: Insights and Assessment of Bioavailability Enhancement. AAPS PharmSciTech 2016; 17:553-71. [PMID: 27068527 DOI: 10.1208/s12249-016-0522-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 03/22/2016] [Indexed: 12/22/2022] Open
Abstract
Lipid-based nanoformulations have been extensively investigated for improving oral efficacy of plethora of drugs. Chemotherapeutic agents remain a preferred option for effective management of cancer; however, most chemotherapeutic agents suffer from limitation of poor oral bioavailability that is associated with their physicochemical properties. Drug delivery via lipid-based nanosystems possesses strong rational and potential for improving oral bioavailability of such anti-cancer molecules through various mechanisms, viz. improving their gut solubilisation owing to micellization, improving mucosal permeation, improving lymphatic uptake, inhibiting intestinal metabolism and/or inhibiting P-glycoprotein efflux of molecules in the gastrointestinal tract. Various in vitro characterization techniques have been reported in literature that aid in getting insights into mechanisms of lipid-based nanodevices in improving oral efficacy of anti-cancer drugs. The review focuses on different characterization techniques that can be employed for evaluation of lipid-based nanosystems and their role in effective anti-cancer drug delivery.
Collapse
|
107
|
Influence of particle size on the in vivo potency of lipid nanoparticle formulations of siRNA. J Control Release 2016; 235:236-244. [PMID: 27238441 DOI: 10.1016/j.jconrel.2016.05.059] [Citation(s) in RCA: 227] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 05/15/2016] [Accepted: 05/25/2016] [Indexed: 12/25/2022]
Abstract
Lipid nanoparticles (LNP) can provide a clinically effective method for delivering small interfering RNA (siRNA) to silence pathological genes in hepatocytes. The gene silencing potency of these LNP-siRNA systems has been shown to depend on a variety of factors including association with serum factors such as ApoE and the pKa of component ionizable lipids. Here we investigate the influence of LNP size, an important parameter affecting tissue penetration of LNP systems, on the pharmacokinetics, biodistribution, and hepatic gene silencing potency of LNP-siRNA systems following intravenous administration. For LNP systems stabilized by a polyethylene glycol (PEG)-lipid that can dissociate from the LNP following injection, it is shown that small (diameter≤30nm) systems are considerably less potent than their larger counterparts. This is attributed in part to the ability of other lipid components, particularly the ionizable amino-lipid, to dissociate from the LNP following dissociation of the PEG-lipid. Small LNP stabilized by PEG-lipids with slow dissociation rates exhibited much reduced amino-lipid dissociation rates, however such systems are relatively impotent due to the continued presence of the PEG coating. These results demonstrate the delicate balance between the in vivo potency of LNP-siRNA systems and the residence times of component lipids in the LNP particle itself and suggest new directions to optimize the in vivo gene silencing potency of small LNP-siRNA systems.
Collapse
|
108
|
Prenyl Ammonium Salts--New Carriers for Gene Delivery: A B16-F10 Mouse Melanoma Model. PLoS One 2016; 11:e0153633. [PMID: 27088717 PMCID: PMC4835110 DOI: 10.1371/journal.pone.0153633] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 04/02/2016] [Indexed: 11/19/2022] Open
Abstract
PURPOSE Prenyl ammonium iodides (Amino-Prenols, APs), semi-synthetic polyprenol derivatives were studied as prospective novel gene transfer agents. METHODS AP-7, -8, -11 and -15 (aminoprenols composed of 7, 8, 11 or 15 isoprene units, respectively) were examined for their capacity to form complexes with pDNA, for cytotoxicity and ability to transfect genes to cells. RESULTS All the carriers were able to complex DNA. The highest, comparable to commercial reagents, transfection efficiency was observed for AP-15. Simultaneously, AP-15 exhibited the lowest negative impact on cell viability and proliferation--considerably lower than that of commercial agents. AP-15/DOPE complexes were also efficient to introduce pDNA to cells, without much effect on cell viability. Transfection with AP-15/DOPE complexes influenced the expression of a very few among 44 tested genes involved in cellular lipid metabolism. Furthermore, complexes containing AP-15 and therapeutic plasmid, encoding the TIMP metallopeptidase inhibitor 2 (TIMP2), introduced the TIMP2 gene with high efficiency to B16-F10 melanoma cells but not to B16-F10 melanoma tumors in C57BL/6 mice, as confirmed by TIMP2 protein level determination. CONCLUSION Obtained results indicate that APs have a potential as non-viral vectors for cell transfection.
Collapse
|
109
|
Chen W, Li H, Liu Z, Yuan W. Lipopolyplex for Therapeutic Gene Delivery and Its Application for the Treatment of Parkinson's Disease. Front Aging Neurosci 2016; 8:68. [PMID: 27092073 PMCID: PMC4820442 DOI: 10.3389/fnagi.2016.00068] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 03/21/2016] [Indexed: 01/10/2023] Open
Abstract
Lipopolyplex is a core-shell structure composed of nucleic acid, polycation and lipid. As a non-viral gene delivery vector, lipopolyplex combining the advantages of polyplex and lipoplex has shown superior colloidal stability, reduced cytotoxicity, extremely high gene transfection efficiency. Following intravenous administration, there are many strategies based on lipopolyplex to overcome the complex biological barriers in systemic gene delivery including condensation of nucleic acids into nanoparticles, long circulation, cell targeting, endosomal escape, release to cytoplasm and entry into cell nucleus. Parkinson's disease (PD) is the second most common neurodegenerative disorder and severely influences the patients' life quality. Current gene therapy clinical trials for PD employing viral vectors didn't achieve satisfactory efficacy. However, lipopolyplex may become a promising alternative approach owing to its stability in blood, ability to cross the blood-brain barrier (BBB) and specific targeting to diseased brain cells.
Collapse
Affiliation(s)
- Wei Chen
- Department of Neurology, Xinhua Hospital, Shanghai JiaoTong University School of Medicine Shanghai, China
| | - Hui Li
- School of Pharmacy, Shanghai JiaoTong University Shanghai, China
| | - Zhenguo Liu
- Department of Neurology, Xinhua Hospital, Shanghai JiaoTong University School of Medicine Shanghai, China
| | - Weien Yuan
- School of Pharmacy, Shanghai JiaoTong University Shanghai, China
| |
Collapse
|
110
|
|
111
|
Tanaka H, Sato Y, Harashima H, Akita H. Cellular environment-responsive nanomaterials for use in gene and siRNA delivery: molecular design for biomembrane destabilization and intracellular collapse. Expert Opin Drug Deliv 2016; 13:1015-27. [DOI: 10.1517/17425247.2016.1154531] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hiroki Tanaka
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yusuke Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | - Hidetaka Akita
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
112
|
Wu Y, Li L, Chen Q, Su Y, Levkin PA, Davidson G. Single-Tailed Lipidoids Enhance the Transfection Activity of Their Double-Tailed Counterparts. ACS COMBINATORIAL SCIENCE 2016; 18:43-50. [PMID: 26651853 DOI: 10.1021/acscombsci.5b00117] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cationic lipid-like molecules (lipidoids) are widely used for in vitro and in vivo gene delivery. Nearly all lipidoids developed to date employ double-tail or multiple-tail structures for transfection. Single-tail lipidoids are seldom considered for transfection as they have low efficiency in gene delivery. So far, there is no detailed study on the contribution to transfection efficiency of single-tail lipidoids when combined with standard double-tail lipidoids. Here, we use combinatorial chemistry to synthesize 17 double-tail and 17 single-tail lipidoids using thiol-yne and thiol-ene click chemistry, respectively. HEK 293T cells were used to analyze transfection efficiency by fluorescence microscopy and calculated based on the percentage of cells transfected. The size and zeta potential of liposomes and lipoplexes were characterized by dynamic light scattering (DLS). Intracellular DNA delivery and trafficking was further examined using confocal microscopy. Our study shows that combining single with double-tail lipidoids increases uptake of lipoplexes, as well as cellular transfection efficiency.
Collapse
Affiliation(s)
- Yihang Wu
- Institute of Toxicology and
Genetics, Karlsruhe Institute of Technology, 76344 Karlsruhe, Germany
| | - Linxian Li
- Institute of Toxicology and
Genetics, Karlsruhe Institute of Technology, 76344 Karlsruhe, Germany
| | - Qing Chen
- Institute of Toxicology and
Genetics, Karlsruhe Institute of Technology, 76344 Karlsruhe, Germany
| | - Yi Su
- Institute of Toxicology and
Genetics, Karlsruhe Institute of Technology, 76344 Karlsruhe, Germany
| | - Pavel A. Levkin
- Institute of Toxicology and
Genetics, Karlsruhe Institute of Technology, 76344 Karlsruhe, Germany
| | - Gary Davidson
- Institute of Toxicology and
Genetics, Karlsruhe Institute of Technology, 76344 Karlsruhe, Germany
| |
Collapse
|
113
|
Mukherjee A, Chaudhuri T, Moulik SP, Banerjee M. Internal charge transfer based ratiometric interaction of anionic surfactant with calf thymus DNA bound cationic surfactant: Study I. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 152:1-7. [PMID: 26183417 DOI: 10.1016/j.saa.2015.07.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 07/03/2015] [Accepted: 07/08/2015] [Indexed: 06/04/2023]
Abstract
Cetyl trimethyl ammonium bromide (CTAB) binds calf thymus (ct-) DNA like anionic biopolymers electrostatically and established equilibrium both in the ground as well as in excited state in aqueous medium at pH 7. Anionic sodium dodecyl sulfate (SDS) does not show even hydrophobic interaction with ct-DNA at low concentration. On contrary, SDS can establish well defined equilibrium with DNA bound CTAB in ground state where the same CTAB-DNA isosbestic point reappears. First report of internal charge transfer (ICT) based binding of CTAB with ct-DNA as well as ICT based interaction of anionic SDS with DNA bound CTAB that shows dynamic quenching contribution also. The reappearance of anodic peak and slight increase in cathodic peak current with increasing concentration (at lower range) of anionic SDS, possibly reflect the release of CTAB from DNA bound CTAB by SDS.
Collapse
Affiliation(s)
- Abhijit Mukherjee
- Department of Chemistry, Dr. Bhupendranath Dutta Smriti Mahavidyalaya, Burdwan 713407, India
| | - Tandrima Chaudhuri
- Department of Chemistry, Dr. Bhupendranath Dutta Smriti Mahavidyalaya, Burdwan 713407, India.
| | - Satya Priya Moulik
- Centre for Surface Science, Department of Chemistry, Jadavpur University, Kolkata 700 032, India
| | - Manas Banerjee
- Department of Chemistry, University of Burdwan, Burdwan 713104, WB, India
| |
Collapse
|
114
|
Oliveira ACN, Nogueira SS, Gonçalves O, Cerqueira MF, Alpuim P, Tovar J, Rodriguez-Abreu C, Brezesinski G, Gomes AC, Lúcio M, Oliveira MECDR. Role of counter-ion and helper lipid content in the design and properties of nanocarrier systems: a biophysical study in 2D and 3D lipid assemblies. RSC Adv 2016. [DOI: 10.1039/c6ra08125h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study validates a model for DODAX : MO assemblies highlighting the role of counter-ion and MO content in their biophysical properties.
Collapse
Affiliation(s)
- Ana C. N. Oliveira
- CBMA (Centre of Molecular and Environmental Biology)
- Department of Biology
- University of Minho
- Campus of Gualtar
- 4710-057 Braga
| | - Sara S. Nogueira
- CFUM (Centre of Physics)
- Department of Physics
- University of Minho
- Campus of Gualtar
- 4710-057 Braga
| | - Odete Gonçalves
- CBMA (Centre of Molecular and Environmental Biology)
- Department of Biology
- University of Minho
- Campus of Gualtar
- 4710-057 Braga
| | - M. F. Cerqueira
- CFUM (Centre of Physics)
- Department of Physics
- University of Minho
- Campus of Gualtar
- 4710-057 Braga
| | - P. Alpuim
- CFUM (Centre of Physics)
- Department of Physics
- University of Minho
- Campus of Gualtar
- 4710-057 Braga
| | - Júlia Tovar
- CFUM (Centre of Physics)
- Department of Physics
- University of Minho
- Campus of Gualtar
- 4710-057 Braga
| | | | | | - Andreia C. Gomes
- CBMA (Centre of Molecular and Environmental Biology)
- Department of Biology
- University of Minho
- Campus of Gualtar
- 4710-057 Braga
| | - Marlene Lúcio
- CFUM (Centre of Physics)
- Department of Physics
- University of Minho
- Campus of Gualtar
- 4710-057 Braga
| | | |
Collapse
|
115
|
Falsini S, Ristori S. Lipoplexes from Non-viral Cationic Vectors: DOTAP-DOPE Liposomes and Gemini Micelles. Methods Mol Biol 2016; 1445:33-43. [PMID: 27436311 DOI: 10.1007/978-1-4939-3718-9_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This chapter describes the topic of gene therapy based on colloidal drug delivery, as an alternative to the use of viral carriers. Non-viral vectors are promising transfection agents and do not suffer from limitations related to toxicity and immunogenic effects. In particular, lipid-based aggregates are generally considered biocompatible and versatile nanocarriers whose composition can be designed to include a cationic molecule which ensures strong interaction with nucleic acid. Herein the main issues related to complex formation and in vitro administration are illustrated with key examples, such as liposome-DNA plasmid (pDNA) association and micelles-siRNA complexes.
Collapse
Affiliation(s)
- Sara Falsini
- Department of Chemistry "Ugo Shiff" & CSGI, University of Florence, via della Lastruccia 3, 50019, Sesto Fiorentino, Firenze, Italy.
| | - Sandra Ristori
- Dipartimento di Scienze della Terra, Università di Firenze, Via La Pira 4, 50121, Florence, Italy
| |
Collapse
|
116
|
Zeng X, de Groot AM, Sijts AJAM, Broere F, Oude Blenke E, Colombo S, van Eden W, Franzyk H, Nielsen HM, Foged C. Surface coating of siRNA-peptidomimetic nano-self-assemblies with anionic lipid bilayers: enhanced gene silencing and reduced adverse effects in vitro. NANOSCALE 2015; 7:19687-19698. [PMID: 26553270 DOI: 10.1039/c5nr04807a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Cationic vectors have demonstrated the potential to facilitate intracellular delivery of therapeutic oligonucleotides. However, enhanced transfection efficiency is usually associated with adverse effects, which also proves to be a challenge for vectors based on cationic peptides. In this study a series of proteolytically stable palmitoylated α-peptide/β-peptoid peptidomimetics with a systematically varied number of repeating lysine and homoarginine residues was shown to self-assemble with small interfering RNA (siRNA). The resulting well-defined nanocomplexes were coated with anionic lipids giving rise to net anionic liposomes. These complexes and the corresponding liposomes were optimized towards efficient gene silencing and low adverse effects. The optimal anionic liposomes mediated a high silencing effect, which was comparable to that of the control (cationic Lipofectamine 2000), and did not display any noticeable cytotoxicity and immunogenicity in vitro. In contrast, the corresponding nanocomplexes mediated a reduced silencing effect with a more narrow safety window. The surface coating with anionic lipid bilayers led to partial decomplexation of the siRNA-peptidomimetic nanocomplex core of the liposomes, which facilitated siRNA release. Additionally, the optimal anionic liposomes showed efficient intracellular uptake and endosomal escape. Therefore, these findings suggest that a more efficacious and safe formulation can be achieved by surface coating of the siRNA-peptidomimetic nano-self-assemblies with anionic lipid bilayers.
Collapse
Affiliation(s)
- Xianghui Zeng
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark.
| | - Anne Marit de Groot
- Division of Immunology, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - Alice J A M Sijts
- Division of Immunology, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - Femke Broere
- Division of Immunology, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - Erik Oude Blenke
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark. and Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Stefano Colombo
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark.
| | - Willem van Eden
- Division of Immunology, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - Henrik Franzyk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Hanne Mørck Nielsen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark.
| | - Camilla Foged
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark.
| |
Collapse
|
117
|
Investigation of Fatty Acid Ketohydrazone Modified Liposome's Properties as a Drug Carrier. JOURNAL OF DRUG DELIVERY 2015; 2015:481670. [PMID: 26649201 PMCID: PMC4663332 DOI: 10.1155/2015/481670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 10/02/2015] [Accepted: 10/18/2015] [Indexed: 12/05/2022]
Abstract
pH-responsive liposomes were prepared by modifying the liposome with acid-cleaving amphiphiles. Palmitic ketohydrazone (P-KH) or stearic ketohydrazone (S-KH), composed of hydrophilic sugar headgroup and hydrophobic acyl chain, was used as a modifier of the DMPC liposome. Because the ketohydrazone group of P-KH or S-KH was cleaved at low pH conditions (<pH 5.0), the delivery of the P-KH modified liposomes was observed probably via an endocytic pathway. The membrane properties of these liposomes were characterized, focusing on the variation of both polarity (measured by Laurdan) and membrane fluidity (measured by DPH) at low pH condition. The interface of the P-KH modified liposome at acidic pH was found to become more hydrophobic and less fluidic as compared with that at neutral pH; that is, P-KH modified liposome became more rigid structure. Therefore, it seems that the P-KH modified liposome could protect encapsulated drugs from the enzymes in the lysosome. This study shows the novel approach about design of pH-responsive liposomes based on the membrane properties.
Collapse
|
118
|
trans-2-Aminocyclohexanol-based amphiphiles as highly efficient helper lipids for gene delivery by lipoplexes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:3113-25. [DOI: 10.1016/j.bbamem.2015.08.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 08/26/2015] [Accepted: 08/28/2015] [Indexed: 11/17/2022]
|
119
|
Abstract
Messenger RNA (mRNA) has recently emerged with remarkable potential as an effective alternative to DNA-based therapies because of several unique advantages. mRNA does not require nuclear entry for transfection activity and has a negligible chance of integrating into the host genome which excludes the possibility of potentially detrimental genomic alternations. Chemical modification of mRNA has further enhanced its stability and decreased its activation of innate immune responses. Additionally, mRNA has been found to have rapid expression and predictable kinetics. Nevertheless, the ubiquitous application of mRNA remains challenging given its unfavorable attributes, such as large size, negative charge and susceptibility to enzymatic degradation. Further refinement of mRNA delivery modalities is therefore essential for its development as a therapeutic tool. This review provides an exclusive overview of current state-of-the-art biomaterials and nanotechnology platforms for mRNA delivery, and discusses future prospects to bring these exciting technologies into clinical practice.
Collapse
Affiliation(s)
- Mohammad Ariful Islam
- Laboratory for Nanoengineering & Drug Delivery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | |
Collapse
|
120
|
Miri MR, Behzad-Behbahani A, Fardaei M, Farhadi A, Talebkhan Y, Mohammadi M, Tayebinia M, Farokhinejad F, Alavi P, Fanian M, Zare F, Saberzade J, Nikouyan N, Okhovat MA, Ranjbaran R, Rafiei Dehbidi G, Naderi S. Construction of bacterial ghosts for transfer and expression of a chimeric hepatitis C virus gene in macrophages. J Microbiol Methods 2015; 119:228-232. [PMID: 26578242 DOI: 10.1016/j.mimet.2015.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 11/10/2015] [Accepted: 11/10/2015] [Indexed: 01/06/2023]
Abstract
The bacterial ghost (BG) production is a field of biotechnology for applications in vaccine and drug delivery. We assessed the capacity of BG for delivery of a recombinant gene encoded for both cell mediated and antibody dependent epitopes of hepatitis C virus (HCV) into murine macrophages. Escherichia coli (E. coli) cells were transformed with the lysis plasmid (pHH43). To produce chimeric gene, NS3 (non-structural protein 3) and core regions of HCV genome were fused together by splicing by overlap extension (SOEing) PCR and were cloned into plasmid pEGFP-C1. Bacterial ghosts were loaded with recombinant pEGFP-C1 and then were transferred to murine macrophages (RAW 264.7). To investigate plasmid transfection and chimeric mRNA transcription, fluorescent microscopy and RT-PCR were used. In vitro studies indicated that bacterial ghosts loaded with pEGFP-C1 plasmid were efficiently taken up by murine macrophages and indicated a high transfection rate (62%), as shown by fluorescent microscopy. RT-PCR from extracted intracellular mRNAs for chimeric Core-NS3 gene showed a specific 607 bp fragment of the gene. The sequence analysis of purified PCR products demonstrated the expected unique mRNA sequence. We constructed a chimeric HCV gene containing both cell mediated and antibody dependent epitopes with a significant expression in murine macrophages delivered by bacterial ghost.
Collapse
Affiliation(s)
- M R Miri
- Department of Medical Biotechnology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - A Behzad-Behbahani
- Department of Medical Biotechnology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran; Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - M Fardaei
- Department of Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - A Farhadi
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Y Talebkhan
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - M Mohammadi
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - M Tayebinia
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - F Farokhinejad
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - P Alavi
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - M Fanian
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - F Zare
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - J Saberzade
- Department of Medical Biotechnology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - N Nikouyan
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - M A Okhovat
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - R Ranjbaran
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - G Rafiei Dehbidi
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - S Naderi
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
121
|
Kauffman KJ, Dorkin JR, Yang JH, Heartlein MW, DeRosa F, Mir FF, Fenton OS, Anderson DG. Optimization of Lipid Nanoparticle Formulations for mRNA Delivery in Vivo with Fractional Factorial and Definitive Screening Designs. NANO LETTERS 2015; 15:7300-6. [PMID: 26469188 DOI: 10.1021/acs.nanolett.5b02497] [Citation(s) in RCA: 514] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Intracellular delivery of messenger RNA (mRNA) has the potential to induce protein production for many therapeutic applications. Although lipid nanoparticles have shown considerable promise for the delivery of small interfering RNAs (siRNA), their utility as agents for mRNA delivery has only recently been investigated. The most common siRNA formulations contain four components: an amine-containing lipid or lipid-like material, phospholipid, cholesterol, and lipid-anchored polyethylene glycol, the relative ratios of which can have profound effects on the formulation potency. Here, we develop a generalized strategy to optimize lipid nanoparticle formulations for mRNA delivery to the liver in vivo using Design of Experiment (DOE) methodologies including Definitive Screening and Fractional Factorial Designs. By simultaneously varying lipid ratios and structures, we developed an optimized formulation which increased the potency of erythropoietin-mRNA-loaded C12-200 lipid nanoparticles 7-fold relative to formulations previously used for siRNA delivery. Key features of this optimized formulation were the incorporation of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) and increased ionizable lipid:mRNA weight ratios. Interestingly, the optimized lipid nanoparticle formulation did not improve siRNA delivery, indicating differences in optimized formulation parameter design spaces for siRNA and mRNA. We believe the general method described here can accelerate in vivo screening and optimization of nanoparticle formulations with large multidimensional design spaces.
Collapse
Affiliation(s)
| | | | | | | | - Frank DeRosa
- Shire Pharmaceuticals, Lexington, Massachusetts 02421, United States
| | | | | | | |
Collapse
|
122
|
Ohno M, Toyota T, Nomoto T, Fujinami M. Changes in Interfacial Tension of a Lipid Membrane Formed at the Water/Chloroform Interface upon DNA Complex Formation. ANAL SCI 2015; 31:979-86. [PMID: 26460361 DOI: 10.2116/analsci.31.979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Changes in the interfacial tension of a lipid monolayer membrane formed at the water/chloroform interface upon DNA addition were measured using the quasi-elastic laser scattering (QELS) method. A cationic lipid, N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTAP), as well as zwitterionic lipids, 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), were used to form lipid monolayer membranes at different calcium ion concentrations. A rapid decrease of the interfacial tension resulting from electrostatic interactions between DOTAP and DNA was observed within 10 s. However, such rapid decreases were not observed for DOPE or DOPC. A decrease in the interfacial tension was exhibited by DOPE after 1000 s from the addition of DNA, which may be due to an overall structural change in the DOPE membrane. A DOTAP/DOPE complex system showed behaviors attributable to both DOTAP and DOPE, whereas the behavior of the DOTAP/DOPC system resembled that of DOPC alone. The current results provide a model for the so-called lipoplex carriers used in gene therapy.
Collapse
Affiliation(s)
- Masashi Ohno
- Department of Applied Chemistry and Biotechnology, Chiba University
| | | | | | | |
Collapse
|
123
|
DOTAP/DOPE ratio and cell type determine transfection efficiency with DOTAP-liposomes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1996-2001. [DOI: 10.1016/j.bbamem.2015.06.020] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 06/18/2015] [Accepted: 06/19/2015] [Indexed: 11/20/2022]
|
124
|
Next generation macrocyclic and acyclic cationic lipids for gene transfer: Synthesis and in vitro evaluation. Bioorg Med Chem 2015; 23:6364-78. [PMID: 26346671 DOI: 10.1016/j.bmc.2015.08.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/30/2015] [Accepted: 08/25/2015] [Indexed: 12/12/2022]
Abstract
Previously we reported the synthesis and in vitro evaluation of four novel, short-chain cationic lipid gene delivery vectors, characterized by acyclic or macrocyclic hydrophobic regions composed of, or derived from, two 7-carbon chains. Herein we describe a revised synthesis of an expanded library of related cationic lipids to include extended chain analogues, their formulation with plasmid DNA (pDNA) and in vitro delivery into Chinese hamster ovarian (CHO-K1) cells. The formulations were evaluated against each other based on structural differences in the hydrophobic domain and headgroup. Structurally the library is divided into four sets based on lipids derived from two 7- or two 11-carbon hydrophobic chains, C7 and C11 respectively, which possess either a dimethylamine or a trimethylamine derived headgroup. Each set includes four cationic lipids based on an acyclic or macrocyclic, saturated or unsaturated hydrophobic domain. All lipids were co-formulated with the commercial cationic lipid 1,2-dimyristoyl-sn-glycero-3-ethylphosphocholine (EPC) in a 1:1 molar ratio, along with one of two distinct neutral co-lipids, cholesterol or 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) in an overall cationic-to-neutral lipid molar ratio of 3:2. Binding of lipid formulations with DNA, and packing morphology associated with the individual lipid-DNA complexes were characterized by gel electrophoresis and small angle X-ray diffraction (SAXD), respectively. As a general trend, lipoplex formulations based on mismatched binary cationic lipids, composed of a shorter C7 lipid and the longer lipid EPC (C14), were generally associated with higher transfection efficiency and lower cytotoxicity than their more closely matched C11/EPC binary lipid formulation counterparts. Furthermore, the cyclic lipids gave transfection levels as high as or greater than their acyclic counterparts, and formulations with cholesterol exhibited higher transfection and lower cytotoxicity than those formulated with DOPE. A number of the lipid formulations with cholesterol as co-lipid performed as well as, or better than Lipofectamine 2000™ and EPC, the two positive controls employed in these studies. These results suggest that our novel cyclic and acyclic cationic lipid vectors are effective nonviral gene transfer agents that warrant further investigation.
Collapse
|
125
|
Gallego-Yerga L, Lomazzi M, Franceschi V, Sansone F, Ortiz Mellet C, Donofrio G, Casnati A, García Fernández JM. Cyclodextrin- and calixarene-based polycationic amphiphiles as gene delivery systems: a structure-activity relationship study. Org Biomol Chem 2015; 13:1708-23. [PMID: 25474077 DOI: 10.1039/c4ob02204a] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Multi-head/multi-tail facial amphiphiles built on cyclodextrin (CD) and calixarene (CA) scaffolds are paradigmatic examples of monodisperse gene delivery systems. The possibility to precisely control the architectural features at the molecular level offers unprecedented opportunities for conducting structure-activity relationship studies. A major requirement for those channels is the design of a sufficiently diverse ensemble of compounds for parallel evaluation of their capabilities to condense DNA into transfection nanoparticles where the gene material is protected from the environment. Here we have undertaken the preparation of an oriented library of β-cyclodextrin (βCD) and calix[4]arene (CA4) vectors with facial amphiphilic character designed to ascertain the effect of the cationic head nature (aminothiourea-, arginine- or guanidine-type groups) and the macrocyclic platform on the abilities to complex plasmid DNA (pDNA) and in the efficiency of the resulting nanocomplexes to transfect cells in vitro. The hydrophobic domain, formed by hexanoyl or hexyl chains, remains constant in each series, matching the overall structure found to be optimal in previous studies. DLS, TEM and AFM data support that all the compounds self-assemble in the presence of pDNA through a process that involves initially electrostatic interactions followed by formation of βCD or CA4 bilayers between the oligonucleotide filaments. Spherical transfectious nanoparticles that are monomolecular in DNA are thus obtained. Evaluation in epithelial COS-7 and human rhabdomyosarcoma RD-4 cells evidenced the importance of having primary amino groups in the vector to warrant high levels of transfection, probably because of their buffering capacity. The results indicate that the optimal cationic head depends on the macrocyclic core, aminothiourea groups being preferred in the βCD series and arginine groups in the CA4 series. Whereas the transfection efficiency relationships remain essentially unchanged within each series, irrespective of the cell type, the optimal platform (βD or CA4) strongly depends on the cell type. The results illustrate the potential of monodisperse vector prototypes and diversity-oriented strategies on identifying the optimal candidates for gene therapy applications.
Collapse
Affiliation(s)
- Laura Gallego-Yerga
- Dept. Química Orgánica, Facultad de Química, Universidad de Sevilla, c/Profesor García González 1, 41012 Sevilla, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
126
|
Lehto T, Wagner E. Sequence-defined polymers for the delivery of oligonucleotides. Nanomedicine (Lond) 2015; 9:2843-59. [PMID: 25535686 DOI: 10.2217/nnm.14.166] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Short synthetic oligonucleotides (ONs) are a group of therapeutic molecules with enormous clinical potential owing to their high specificity and ability to target the expression of virtually any single or group of genes. Clinical translation of ONs is hampered by the inadequate bioavailability in the target cells due to the substantial extracellular and intracellular barriers exposed to these molecules. Different cationic polymers have been successfully deployed for the delivery of ONs. However, heterogeneous nature of these classical polymers is not suitable for clinical applications and hence vectors with completely defined structure are required. In this review, we discuss recent advances with sequence-defined polymers and their application for the delivery of short ONs.
Collapse
Affiliation(s)
- Taavi Lehto
- Pharmaceutical Biotechnology, Department of Pharmacy and Center for Nanoscience (CeNS), Ludwig-Maximilians-University, Munich, Germany
| | | |
Collapse
|
127
|
Affiliation(s)
- Bhushan S Pattni
- Department of Pharmaceutical Sciences, Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University , Boston, Massachusetts 02115, United States
| | - Vladimir V Chupin
- Laboratory for Advanced Studies of Membrane Proteins, Moscow Institute of Physics and Technology , Dolgoprudny 141700, Russia
| | - Vladimir P Torchilin
- Department of Pharmaceutical Sciences, Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University , Boston, Massachusetts 02115, United States.,Department of Biochemistry, Faculty of Science, King Abdulaziz University , Jeddah 21589, Saudi Arabia
| |
Collapse
|
128
|
Swami R, Singh I, Khan W, Ramakrishna S. Diseases originate and terminate by genes: unraveling nonviral gene delivery. Drug Deliv Transl Res 2015; 3:593-610. [PMID: 25786377 DOI: 10.1007/s13346-013-0159-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The world is driving in to the era of transformation of chemical therapeutic molecules to biological genetic material therapeutics, and that is where the biological drugs especially "genes" come into existence. These genes worked as "magical bullets" to specifically silence faulty genes responsible for progression of diseases. Viral gene delivery research is far ahead of nonviral gene delivery technique. However, with more advancement in polymer science, new ways are opening for better and efficient nonviral gene delivery. But efficient delivery method is always considered as a bottleneck for gene delivery as success of which will decide the fate of gene in cells. During the past decade, it became evident that extracellular as well as intracellular barriers compromise the transfection efficiency of nonviral vectors. The challenge for gene therapy research is to pinpoint the rate-limiting steps in this complex process and implement strategies to overcome the biological physiochemical and metabolic barriers encountered during targeting. The synergy between studies that investigate the mechanism of breaking in and breaking out of nonviral gene delivery carrier through various extracellular and intracellular barriers with desired characteristics will enable the rational design of vehicles and revolutionize the treatment of various diseases.
Collapse
Affiliation(s)
- Rajan Swami
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, 500037, India
| | | | | | | |
Collapse
|
129
|
Physicochemical and biological characterization of 1,2-dialkoylamidopropane-based lipoplexes for gene delivery. Biophys Chem 2015; 199:9-16. [DOI: 10.1016/j.bpc.2015.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 02/01/2015] [Accepted: 02/05/2015] [Indexed: 11/21/2022]
|
130
|
Improved intracellular delivery of peptide- and lipid-nanoplexes by natural glycosides. J Control Release 2015; 206:75-90. [PMID: 25758332 DOI: 10.1016/j.jconrel.2015.03.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 03/05/2015] [Accepted: 03/06/2015] [Indexed: 12/29/2022]
Abstract
Targeted nanocarriers undergo endocytosis upon binding to their membrane receptors and are transported into cellular compartments such as late endosomes and lysosomes. In gene delivery the genetic material has to escape from the cellular compartments into the cytosol. The process of endosomal escape is one of the most critical steps for successful gene delivery. For this reason synthetic lipids with fusogenic properties such as 2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) are integrated into the nanocarriers. In this study we show that a natural, plant derived glycoside (SO1861) from Saponaria officinalis L. greatly improves the efficacy of lipid based as well as non-lipid based targeted nanoplexes consisting of a targeted K16 peptide with a nucleic acid binding domain and plasmid-DNA, minicircle-DNA or small interfering RNA (siRNA). By confocal live cell imaging and single cell analyses, we demonstrate that SO1861 augments the escape of the genetic cargo out of the intracellular compartments into the cytosol. Co-localisation experiments with fluorescence labelled dextran and transferrin indicate that SO1861 induces the release of the genetic cargo out of endosomes and lysosomes. However, the transduction efficacy of a lentivirus based gene delivery system was not augmented. In order to design receptor-targeted nanoplexes (LPD) with improved functional properties, SO1861 was integrated into the lipid matrix of the LPD. The SO1861 sensitized LPD (LPDS) were characterized by dynamic light scattering and transmission electron microscopy. Compared to their LPD counterparts the LPDS-nanoplexes showed a greatly improved gene delivery. As shown by differential scanning calorimetry SO1861 can be easily integrated into the lipid bilayer of glycerophospholipid model membranes. This underlines the great potential of SO1861 as a new transfection multiplier for non-viral gene delivery systems.
Collapse
|
131
|
de Jesus MB, Zuhorn IS. Solid lipid nanoparticles as nucleic acid delivery system: Properties and molecular mechanisms. J Control Release 2015; 201:1-13. [DOI: 10.1016/j.jconrel.2015.01.010] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 01/06/2015] [Accepted: 01/07/2015] [Indexed: 01/19/2023]
|
132
|
Mochizuki S, Nishina K, Fujii S, Sakurai K. The transfection efficiency of calix[4]arene-based lipids: the role of the alkyl chain length. Biomater Sci 2015. [DOI: 10.1039/c4bm00303a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Calix[4]arene-based lipids with the C6 alkyl chain length exhibited the highest transfection efficiency among all lipoplexes comprising the lipids with different alkyl chain lengths and plasmid DNA.
Collapse
Affiliation(s)
- Shinichi Mochizuki
- Department of Chemistry and Biochemistry
- The University of Kitakyushu
- Kitakyushu
- Japan
| | - Koichi Nishina
- Department of Chemistry and Biochemistry
- The University of Kitakyushu
- Kitakyushu
- Japan
| | - Shota Fujii
- Department of Chemistry and Biochemistry
- The University of Kitakyushu
- Kitakyushu
- Japan
| | - Kazuo Sakurai
- Department of Chemistry and Biochemistry
- The University of Kitakyushu
- Kitakyushu
- Japan
| |
Collapse
|
133
|
Chan CL, Ewert KK, Majzoub RN, Hwu YK, Liang KS, Leal C, Safinya CR. Optimizing cationic and neutral lipids for efficient gene delivery at high serum content. J Gene Med 2015; 16:84-96. [PMID: 24753287 DOI: 10.1002/jgm.2762] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 04/14/2014] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Cationic liposome (CL)-DNA complexes are promising gene delivery vectors with potential application in gene therapy. A key challenge in creating CL-DNA complexes for application is that their transfection efficiency (TE) is adversely affected by serum. In particular, little is known about the effects of a high serum content on TE, even though this may provide design guidelines for application in vivo. METHODS We prepared CL-DNA complexes in which we varied the neutral lipid [1,2-dioleoyl-sn-glycerophosphatidylcholine, glycerol-monooleate (GMO), cholesterol], the headgroup charge and chemical structure of the cationic lipid, and the ratio of neutral to cationic lipid; we then measured the TE of these complexes as a function of serum content and assessed their cytotoxicity. We tested selected formulations in two human cancer cell lines (M21/melanoma and PC-3/prostate cancer). RESULTS In the absence of serum, all CL-DNA complexes of custom-synthesized multivalent lipids show high TE. Certain combinations of multivalent lipids and neutral lipids, such as MVL5(5+)/GMO-DNA complexes or complexes based on the dendritic-headgroup lipid TMVLG3(8+) exhibited high TE both in the absence and presence of serum. Although their TE still dropped to a small extent in the presence of serum, it reached or surpassed that of benchmark commercial transfection reagents, particularly at a high serum content. CONCLUSIONS Two-component vectors (one multivalent cationic lipid and one neutral lipid) can rival or surpass benchmark reagents at low and high serum contents (up to 50%, v/v). We propose guidelines for optimizing the serum resistance of CL-DNA complexes based on a given cationic lipid.
Collapse
Affiliation(s)
- Chia-Ling Chan
- Department of Materials, Department of Physics, and Molecular, Cellular & Developmental Biology Department, University of California at Santa Barbara, California 93106, USA.,Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
| | - Kai K Ewert
- Department of Materials, Department of Physics, and Molecular, Cellular & Developmental Biology Department, University of California at Santa Barbara, California 93106, USA
| | - Ramsey N Majzoub
- Department of Materials, Department of Physics, and Molecular, Cellular & Developmental Biology Department, University of California at Santa Barbara, California 93106, USA
| | - Yeu-Kuang Hwu
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
| | - Keng S Liang
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan.,Department of Electrophysics, National Chiao-Tung University, Hsinchu 30010, Taiwan
| | - Cecília Leal
- Department of Materials, Department of Physics, and Molecular, Cellular & Developmental Biology Department, University of California at Santa Barbara, California 93106, USA
| | - Cyrus R Safinya
- Department of Materials, Department of Physics, and Molecular, Cellular & Developmental Biology Department, University of California at Santa Barbara, California 93106, USA
| |
Collapse
|
134
|
Kapoor M, Burgess DJ. Targeted Delivery of Nucleic Acid Therapeutics via Nonviral Vectors. ADVANCES IN DELIVERY SCIENCE AND TECHNOLOGY 2015. [DOI: 10.1007/978-3-319-11355-5_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
135
|
Liu Z, Tang S, Xu Z, Wang Y, Zhu X, Li LC, Hong W, Wang X. Preparation and In Vitro Evaluation of a Multifunctional Iron Silicate@Liposome Nanohybrid for pH‐Sensitive Doxorubicin Delivery and Photoacoustic Imaging. JOURNAL OF NANOMATERIALS 2015; 2015. [DOI: 10.1155/2015/541763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 02/09/2015] [Indexed: 01/06/2025]
Abstract
For preventing premature drug release in neutral environment and avoiding them being trapped into the endosomal/lysosomal system, we developed a novel iron silicate@liposome hybrid (ILH) formulation, which can be used as a carrier to transport doxorubicin (DOX) in a pH‐sensitive manner and to escape from endosomal/lysosomal trapping through “proton‐sponge” effect. The high intensity of photoacoustic signal from in vitro photoacoustic imaging (PAI) experiments suggests that it is a promising candidate for PAI agent, providing the potential for simultaneously bioimaging and cancer‐targeting drug delivery. Cytotoxicity of our formulation toward tumor cells was remarkably higher than free DOX (48.4 ± 7.7% and 26.2 ± 8.4%, P < 0.001). Confocal laser scanning microscopy experiments showed the enhanced transportation and enrichment process of DOX in QSG‐7703 cells. Taking together, we developed an easy approach to construct a multifunctional anticancer drug delivery/imaging system with a potency as a PAI agent. The strategy of combining drug carrier and imaging agent is an emerging platform for further construction of nanoparticle and may play a significant role in cancer therapy and diagnosis.
Collapse
|
136
|
Kumar K, Maiti B, Kondaiah P, Bhattacharya S. Efficacious Gene Silencing in Serum and Significant Apoptotic Activity Induction by Survivin Downregulation Mediated by New Cationic Gemini Tocopheryl Lipids. Mol Pharm 2014; 12:351-61. [DOI: 10.1021/mp500620e] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Krishan Kumar
- Department
of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Bappa Maiti
- Department
of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Paturu Kondaiah
- Department
of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Santanu Bhattacharya
- Department
of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
137
|
Hosseinkhani H, Abedini F, Ou KL, Domb AJ. Polymers in gene therapy technology. POLYM ADVAN TECHNOL 2014. [DOI: 10.1002/pat.3432] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hossein Hosseinkhani
- Graduate Institute of Biomedical Engineering; National Taiwan University of Science and Technology (Taiwan Tech); Taipei 10607 Taiwan
- Center of Excellence in Nanomedicine; National Taiwan University of Science and Technology (Taiwan Tech); Taipei 10607 Taiwan
- Research Center for Biomedical Devices and Prototyping Production, Research Center for Biomedical Implants and Microsurgery Devices, Graduate Institute of Biomedical Materials and Tissue Engineering, College of Oral Medicine, Taipei Medical University, Department of Dentistry; Taipei Medical University-Shuang Ho Hospital; Taipei 235 Taiwan
| | - Fatemeh Abedini
- Razi Vaccine and Serum Research Institute; Karaj Alborz IRAN
| | - Keng-Liang Ou
- Research Center for Biomedical Devices and Prototyping Production, Research Center for Biomedical Implants and Microsurgery Devices, Graduate Institute of Biomedical Materials and Tissue Engineering, College of Oral Medicine, Taipei Medical University, Department of Dentistry; Taipei Medical University-Shuang Ho Hospital; Taipei 235 Taiwan
| | - Abraham J. Domb
- Institute of Drug Research, The Center for Nanoscience and Nanotechnology, School of Pharmacy-Faculty of Medicine; The Hebrew University of Jerusalem; Jerusalem 91120 Israel
| |
Collapse
|
138
|
Betker JL, Anchordoquy TJ. Relating toxicity to transfection: using sphingosine to maintain prolonged expression in vitro. Mol Pharm 2014; 12:264-73. [PMID: 25418523 PMCID: PMC4291780 DOI: 10.1021/mp500604r] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cationic reagents are commonly used to facilitate DNA delivery, and transfection experiments are typically initiated in cell culture where the optimal charge ratio is determined. While transfection rates are often enhanced at higher +/- charge ratios, the cellular toxicity associated with the greater amounts of cationic components at elevated charge ratios is often not considered. In addition, the prolonged effects of cationic lipid uptake on cell viability are not evident in a typical 24-48 h transfection experiment. In this study, we compare the transfection efficiency of cationic lipoplexes to effects on viability of cultured cells in both the short and long term (7 days). Our results indicate that, while minimal toxicity is evident 24 h after exposure to DOTAP-based lipoplexes, cell viability continues to decline and ultimately compromises reporter gene expression at longer times. Substitution of a naturally occurring cationic amphiphile, sphingosine, for DOTAP greatly reduces toxicity and allows high expression to be maintained over prolonged periods.
Collapse
Affiliation(s)
- Jamie L Betker
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado , Anschutz Medical Campus, 12850 East Montview Boulevard, Aurora, Colorado 80045, United States
| | | |
Collapse
|
139
|
Bhavsar D, Subramanian K, Sethuraman S, Krishnan UM. EpCAM-targeted liposomal si-RNA delivery for treatment of epithelial cancer. Drug Deliv 2014; 23:1101-14. [PMID: 25417832 DOI: 10.3109/10717544.2014.973082] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND RNA interference (RNAi) technology using short interfering RNA (si-RNA) has shown immense potential in the treatment of cancers through silencing of specific genes. Cationic non-viral vectors employed for gene delivery exhibit toxic effects in normal cells limiting their widespread use, therefore, site-specific delivery using benign carriers could address this issue. OBJECTIVE Design of a non-toxic carrier that enables site-specific delivery of si-RNA into the cancer cells is of prime importance to realize the promise of gene silencing. METHODS In the present study, non-cationic liposomes encapsulating si-RNA against epithelial cell adhesion molecule (EpCAM) were developed and characterized for encapsulation efficiency, colloidal stability, in vitro and in vivo gene silencing efficacy. RESULTS PEGylated liposomes containing phosphatidyl choline and phosphatidyl ethanolamine exhibited maximum si-RNA encapsulation efficiency of 47%, zeta potential of -21 mV, phase transition temperature of 51 °C and good colloidal stability in phosphate-buffered saline (PBS) containing bovine serum albumin (BSA) and plasma protein (PP) at 37 °C. Conjugation of epithelial cell adhesion molecule (EpCAM) antibody to the liposomes resulted in enhanced cell internalization and superior down-regulation of EpCAM gene in MCF-7 cell lines when compared with free si-RNA and the non-targeted liposomes. In vivo evaluation of immunoliposomes for their efficacy in regressing the tumor volume in Balb/c SCID mice showed about 35% reduction of tumor volume in comparison with the positive control when administered with an extremely low dose of 0.15 mg/kg twice a week for 4 weeks. CONCLUSION Our results exhibit that the nanocarrier-mediated silencing of EpCAM gene is a promising strategy to treat epithelial cancers.
Collapse
Affiliation(s)
- Dhiraj Bhavsar
- a Centre for Nanotechnology & Advanced Biomaterials, School of Chemical & Biotechnology , SASTRA University , Thanjavur , India and
| | - Krishnakumar Subramanian
- b L&T Ophthalmic Pathology Department, Sankara Nethralaya , Vision Research Foundation , Chennai , India
| | - Swaminathan Sethuraman
- a Centre for Nanotechnology & Advanced Biomaterials, School of Chemical & Biotechnology , SASTRA University , Thanjavur , India and
| | - Uma Maheswari Krishnan
- a Centre for Nanotechnology & Advanced Biomaterials, School of Chemical & Biotechnology , SASTRA University , Thanjavur , India and
| |
Collapse
|
140
|
Borrajo E, Vidal A, Alonso MJ, Garcia‐Fuentes M. How Regenerative Medicine Can Benefit from Nucleic Acids Delivery Nanocarriers? POLYMERS IN REGENERATIVE MEDICINE 2014:285-336. [DOI: 10.1002/9781118356692.ch9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
|
141
|
Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat Rev Drug Discov 2014; 13:813-27. [PMID: 25287120 DOI: 10.1038/nrd4333] [Citation(s) in RCA: 1051] [Impact Index Per Article: 95.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The use of nanoparticulate pharmaceutical drug delivery systems (NDDSs) to enhance the in vivo effectiveness of drugs is now well established. The development of multifunctional and stimulus-sensitive NDDSs is an active area of current research. Such NDDSs can have long circulation times, target the site of the disease and enhance the intracellular delivery of a drug. This type of NDDS can also respond to local stimuli that are characteristic of the pathological site by, for example, releasing an entrapped drug or shedding a protective coating, thus facilitating the interaction between drug-loaded nanocarriers and target cells or tissues. In addition, imaging contrast moieties can be attached to these carriers to track their real-time biodistribution and accumulation in target cells or tissues. Here, I highlight recent developments with multifunctional and stimuli-sensitive NDDSs and their therapeutic potential for diseases including cancer, cardiovascular diseases and infectious diseases.
Collapse
|
142
|
Abstract
The use of nanoparticulate pharmaceutical drug delivery systems (NDDSs) to enhance the in vivo effectiveness of drugs is now well established. The development of multifunctional and stimulus-sensitive NDDSs is an active area of current research. Such NDDSs can have long circulation times, target the site of the disease and enhance the intracellular delivery of a drug. This type of NDDS can also respond to local stimuli that are characteristic of the pathological site by, for example, releasing an entrapped drug or shedding a protective coating, thus facilitating the interaction between drug-loaded nanocarriers and target cells or tissues. In addition, imaging contrast moieties can be attached to these carriers to track their real-time biodistribution and accumulation in target cells or tissues. Here, I highlight recent developments with multifunctional and stimuli-sensitive NDDSs and their therapeutic potential for diseases including cancer, cardiovascular diseases and infectious diseases.
Collapse
|
143
|
Sakashita M, Mochizuki S, Sakurai K. Hepatocyte-targeting gene delivery using a lipoplex composed of galactose-modified aromatic lipid synthesized with click chemistry. Bioorg Med Chem 2014; 22:5212-9. [DOI: 10.1016/j.bmc.2014.08.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 07/16/2014] [Accepted: 08/08/2014] [Indexed: 11/27/2022]
|
144
|
Mansourian M, Badiee A, Jalali SA, Shariat S, Yazdani M, Amin M, Jaafari MR. Effective induction of anti-tumor immunity using p5 HER-2/neu derived peptide encapsulated in fusogenic DOTAP cationic liposomes co-administrated with CpG-ODN. Immunol Lett 2014; 162:87-93. [PMID: 25086399 DOI: 10.1016/j.imlet.2014.07.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/06/2014] [Accepted: 07/21/2014] [Indexed: 12/29/2022]
Abstract
Cationic liposomes have been used as efficient antigen delivery systems for cancer vaccination. The current study has investigated whether the incorporation of the helper-fusogenic lipid dioleoylphosphatidylethanolamine (DOPE) in cationic liposomes composed of 1,2-dioleoyl-3-trimethylammonium propane (DOTAP)-cholesterol enhances the cytosolic delivery of p5 HER-2/neu derived peptide (p5) and promotes cytotoxic T lymphocytes (CTL) response. The p5, which is a very hydrophobic peptide, was encapsulated into liposomes by using three different methods and characterized for their colloidal properties. A chaotropic loading method using 7 M urea provided the highest encapsulation yields. Mice were first immunized with encapsulated p5 in liposomes composed of either DOTAP-cholesterol or DOTAP-cholesterol-DOPE, alone or co-administered with CpG-ODN, as an immunoadjuvant, then, inoculated with a subcutaneous injection of TUBO tumor cells. Results obtained from enzyme-linked immunospot, cytotoxicity and intracellular cytokine assays as well as tumor sizes and animal survival analysis demonstrated that p5 encapsulated in DOTAP-cholesterol-DOPE liposomes co-administered with CpG-ODN greatly enhanced the cytotoxic T lymphocytes response and highly inhibited the tumor progression. The outperformance of DOTAP-cholesterol-DOPE liposomes+CpG-ODN was found to be attributed to its capability in induction of both CD8+ and CD4+ responses. This formulation could be a suitable vaccine candidate against Her2 positive cancers and merits further investigations.
Collapse
Affiliation(s)
- Mercedeh Mansourian
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Badiee
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Amir Jalali
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Immunogenetic and Cell Culture Department, Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sheida Shariat
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Yazdani
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohamdreza Amin
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Biotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
145
|
Cationic polyene phospholipids as DNA carriers for ocular gene therapy. BIOMED RESEARCH INTERNATIONAL 2014; 2014:703253. [PMID: 25147812 PMCID: PMC4131563 DOI: 10.1155/2014/703253] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 06/18/2014] [Indexed: 11/17/2022]
Abstract
Recent success in the treatment of congenital blindness demonstrates the potential of ocular gene therapy as a therapeutic approach. The eye is a good target due to its small size, minimal diffusion of therapeutic agent to the systemic circulation, and low immune and inflammatory responses. Currently, most approaches are based on viral vectors, but efforts continue towards the synthesis and evaluation of new nonviral carriers to improve nucleic acid delivery. Our objective is to evaluate the efficiency of novel cationic retinoic and carotenoic glycol phospholipids, designated C20-18, C20-20, and C30-20, to deliver DNA to human retinal pigmented epithelium (RPE) cells. Liposomes were produced by solvent evaporation of ethanolic mixtures of the polyene compounds and coformulated with 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) or cholesterol (Chol). Addition of DNA to the liposomes formed lipoplexes, which were characterized for binding, size, biocompatibility, and transgene efficiency. Lipoplex formulations of suitable size and biocompatibility were assayed for DNA delivery, both qualitatively and quantitatively, using RPE cells and a GFP-encoding plasmid. The retinoic lipoplex formulation with DOPE revealed a transfection efficiency comparable to the known lipid references 3β-[N-(N′,N′-dimethylaminoethane)-carbamoyl]-cholesterol (DC-Chol) and 1,2-dioleoyl-sn-glycero-3-ethylphosphocholine (EPC) and GeneJuice. The results demonstrate that cationic polyene phospholipids have potential as DNA carriers for ocular gene therapy.
Collapse
|
146
|
Pensado A, Seijo B, Sanchez A. Current strategies for DNA therapy based on lipid nanocarriers. Expert Opin Drug Deliv 2014; 11:1721-31. [DOI: 10.1517/17425247.2014.935337] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Andrea Pensado
- University of Santiago de Compostela, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy,
Campus Vida, 15782 Santiago de Compostela, Spain
| | - Begoña Seijo
- University of Santiago de Compostela, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy,
Campus Vida, 15782 Santiago de Compostela, Spain
- Health Research Institute-University Clinical Hospital of Santiago de Compostela (IDIS), Molecular Image Group,
A Choupana, 15706 Santiago de Compostela, Spain
| | - Alejandro Sanchez
- University of Santiago de Compostela, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy,
Campus Vida, 15782 Santiago de Compostela, Spain
- Health Research Institute-University Clinical Hospital of Santiago de Compostela (IDIS), Molecular Image Group,
A Choupana, 15706 Santiago de Compostela, Spain
| |
Collapse
|
147
|
Next generation delivery system for proteins and genes of therapeutic purpose: why and how? BIOMED RESEARCH INTERNATIONAL 2014; 2014:327950. [PMID: 25126554 PMCID: PMC4122142 DOI: 10.1155/2014/327950] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/09/2014] [Indexed: 12/30/2022]
Abstract
Proteins and genes of therapeutic interests in conjunction with different delivery systems are growing towards new heights. "Next generation delivery systems" may provide more efficient platform for delivery of proteins and genes. In the present review, snapshots about the benefits of proteins or gene therapy, general procedures for therapeutic protein or gene delivery system, and different next generation delivery system such as liposome, PEGylation, HESylation, and nanoparticle based delivery have been depicted with their detailed explanation.
Collapse
|
148
|
Wientjes MG, Yeung BZ, Lu Z, Wientjes MG, Au JLS. Predicting diffusive transport of cationic liposomes in 3-dimensional tumor spheroids. J Control Release 2014; 192:10-8. [PMID: 24995948 DOI: 10.1016/j.jconrel.2014.06.050] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 06/23/2014] [Indexed: 10/25/2022]
Abstract
Nanotechnology is widely used in cancer research. Models that predict nanoparticle transport and delivery in tumors (including subcellular compartments) would be useful tools. This study tested the hypothesis that diffusive transport of cationic liposomes in 3-dimensional (3D) systems can be predicted based on liposome-cell biointerface parameters (binding, uptake, retention) and liposome diffusivity. Liposomes comprising different amounts of cationic and fusogenic lipids (10-30mol% DOTAP or 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine, 1-20mol% DOPE or 1,2-dioleoyl-3-trimethylammonium-propane, +25 to +44mV zeta potential) were studied. We (a) measured liposome-cell biointerface parameters in monolayer cultures, and (b) calculated effective diffusivity based on liposome size and spheroid composition. The resulting parameters were used to simulate the liposome concentration-depth profiles in 3D spheroids. The simulated results agreed with the experimental results for liposomes comprising 10-30mol% DOTAP and ≤10mol% DOPE, but not for liposomes with higher DOPE content. For the latter, model modifications to account for time-dependent extracellular concentration decrease and liposome size increase did not improve the predictions. The difference among low- and high-DOPE liposomes suggests concentration-dependent DOPE properties in 3D systems that were not captured in monolayers. Taken together, our earlier and present studies indicate the diffusive transport of neutral, anionic and cationic nanoparticles (polystyrene beads and liposomes, 20-135nm diameter, -49 to +44mV) in 3D spheroids, with the exception of liposomes comprising >10mol% DOPE, can be predicted based on the nanoparticle-cell biointerface and nanoparticle diffusivity. Applying the model to low-DOPE liposomes showed that changes in surface charge affected the liposome localization in intratumoral subcompartments within spheroids.
Collapse
Affiliation(s)
- Michael G Wientjes
- Optimum Therapeutics LLC, 9363 Towne Centre Drive, San Diego, CA 92121, USA
| | - Bertrand Z Yeung
- Optimum Therapeutics LLC, 9363 Towne Centre Drive, San Diego, CA 92121, USA; Department of Pharmaceutical Sciences, University of Oklahoma, Oklahoma City, OK 73126, USA
| | - Ze Lu
- Optimum Therapeutics LLC, 9363 Towne Centre Drive, San Diego, CA 92121, USA
| | | | - Jessie L S Au
- Optimum Therapeutics LLC, 9363 Towne Centre Drive, San Diego, CA 92121, USA; Department of Pharmaceutical Sciences, University of Oklahoma, Oklahoma City, OK 73126, USA.
| |
Collapse
|
149
|
Abstract
Gene therapy is a widespread and promising treatment of many diseases resulting from genetic disorders, infections and cancer. The feasibility of the gene therapy is mainly depends on the development of appropriate method and suitable vectors. For an efficient gene delivery, it is very important to use a carrier that is easy to produce, stable, non-oncogenic and non-immunogenic. Currently most of the vectors actually suffer from many problems. Therefore, the ideal gene therapy delivery system should be developed that can be easily used for highly efficient delivery and able to maintain long-term gene expression, and can be applicable to basic research as well as clinical settings. This article provides a brief over view on the concept and aim of gene delivery, the different gene delivery systems and use of different materials as a carrier in the area of gene therapy.
Collapse
|
150
|
A novel nonviral gene delivery system: multifunctional envelope-type nano device. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 119:197-230. [PMID: 19343308 DOI: 10.1007/10_2008_40] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
In this review we introduce a new concept for developing a nonviral gene delivery system which we call "Programmed Packaging." Based on this concept, we succeeded in developing a multifunctional envelope-type nano device (MEND), which exerts high transfection activities equivalent to those of an adenovirus in a dividing cell. The use of MEND has been extended to in vivo applications. PEG/peptide/DOPE ternary conjugate (PPD)-MEND, a new in vivo gene delivery system for the targeting of tumor cells that dissociates surface-modified PEG in tumor tissue by matrix metalloproteinase (MMP) and exerts significant transfection activities, was developed. In parallel with the development of MEND, a quantitative gene delivery system, Confocal Image-assisted 3-dimensionally integrated quantification (CIDIQ), also was developed. This method identified the rate-limiting step of the nonviral gene delivery system by comparing it with adenoviral-mediated gene delivery. The results of this analysis provide a new direction for the development of rational nonviral gene delivery systems.
Collapse
|