101
|
Hatip FFB, Suenaga M, Yamada T, Matsunaga Y. Reversal of temperature-induced conformational changes in the amyloid-beta peptide, Abeta40, by the beta-sheet breaker peptides 16-23 and 17-24. Br J Pharmacol 2009; 158:1165-72. [PMID: 19785651 DOI: 10.1111/j.1476-5381.2009.00384.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND AND PURPOSE Aggregates of the protein amyloid-beta (Abeta) play a crucial role in the pathogenesis of Alzheimer's disease (AD). Most therapeutic approaches to AD do not target Abeta, so determination of the factor(s) that facilitate aggregation and discovering agents that prevent aggregation have great potential therapeutic value. EXPERIMENTAL APPROACH We investigated ex vivo the temperature-sensitive regions of Abeta1-40 (Abeta40) and their interactions with octapeptides derived from sequences within Abeta40 -beta-sheet breaker peptides (betaSBP) - using enzyme-linked immunosorbent assay, and dot blot and far-UV circular dichroism (CD) spectroscopy. We measured changes within the physiological limits of temperature, using antibodies targeting epitopes 1-7, 5-10, 9-14 and 17-21 within Abeta40. KEY RESULTS Temperature-dependent conformational changes were observed in Abeta40 at epitopes 9-14 and 17-21 at 36-38 and 36-40 degrees C respectively. The betaSBPs 16-23 and 17-24, but not 15-22 and 18-25, could inhibit the changes. Moreover, betaSBPs 16-23 and 17-24 increased digestion of Abeta40 by protease K, indicating a decreased aggregation of Abeta40, whereas betaSBPs 15-22 and 18-25 did not increase this digestion. CD spectra revealed that beta-sheet formation in Abeta40 at 38 degrees C was reduced with betaSBPs 16-23 and 17-24. CONCLUSIONS AND IMPLICATIONS The epitopes 9-14 and 17-21 are the temperature-sensitive regions within Abeta40. The betaSBPs, Abeta16-23 and 17-24 reversed temperature-induced beta-sheet formation, and decreased Abeta40 aggregation. The results suggest that the 17-23 epitope of Abeta40 is crucially involved in preventing Abeta40 aggregation and consequent deposition of Abeta40 in AD brain.
Collapse
Affiliation(s)
- Funda F Bölükbaşi Hatip
- Department of Pharmacology, Division of Internal Medicine, Faculty of Medicine, Pamukkale University, Kinikli Campus, Denizli, Turkey
| | | | | | | |
Collapse
|
102
|
Jiang D, Dinh KL, Ruthenburg TC, Zhang Y, Su L, Land DP, Zhou F. A kinetic model for beta-amyloid adsorption at the air/solution interface and its implication to the beta-amyloid aggregation process. J Phys Chem B 2009; 113:3160-8. [PMID: 19260715 DOI: 10.1021/jp8085792] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
At the air/buffer solution interface the kinetics of adsorption of amyloid beta peptide, Abeta(1-42), whose bulk concentration (submicromolar) is more than 2 orders of magnitude lower than that typically used in other in vitro aggregation studies, has been studied using a Langmuir-Blodgett trough. The pressure-time curves exhibit a lag phase, wherein the surface pressure essentially remains at zero, and a rising phase, corresponding to the Abeta adsorption at the interface. The duration of the lag phase was found to be highly dependent on both the Abeta bulk concentration and the solution temperature. A large activation energy (62.2 +/- 4.1 KJ/mol) was determined and the apparent adsorption rate constant was found to be linearly dependent on the Abeta bulk concentration. Attenuated total reflection-IR spectra of the adsorbed Abeta transferred to a solid substrate and circular dichroism measurements of Abeta in the solution layer near the interface reveal that the natively unstructured Abeta in the bulk undergo a conformation change (folding) to mainly the alpha-helical structure. The results suggest that, prior to the adsorption step, an equilibrium between Abeta conformations is established within the subsurface. The kinetic equation derived from this model confirms that the overall Abeta adsorption is kinetically controlled and the apparent rate constant is proportional to the Abeta bulk concentration. This model also indicates that interfaces such as cell membranes and lipid bilayers may facilitate Abeta aggregation/ fibrillation by providing a thin hydrophobic layer adjacent to the interface for the initial A/beta conformation change (misfolding) and accumulation. Such a preconcentration effect offers a plausible explanation of the fact that Abeta fibrillation occurs in vivo at nanomolar concentrations. Another important biological implication from our work is that Abeta misfolding may occur before its adsorption onto a cell membrane. This general kinetic model should also find applications in adsorption studies of other types of biomolecules whose overall kinetics exhibits a lag phase that is dependent on the bulk concentration of the adsorbate.
Collapse
Affiliation(s)
- Dianlu Jiang
- Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles, California 90032, USA
| | | | | | | | | | | | | |
Collapse
|
103
|
Maji SK, Ogorzalek Loo RR, Inayathullah M, Spring SM, Vollers SS, Condron MM, Bitan G, Loo JA, Teplow DB. Amino acid position-specific contributions to amyloid beta-protein oligomerization. J Biol Chem 2009; 284:23580-91. [PMID: 19567875 PMCID: PMC2749133 DOI: 10.1074/jbc.m109.038133] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Indexed: 12/21/2022] Open
Abstract
Understanding the structural and assembly dynamics of the amyloid beta-protein (Abeta) has direct relevance to the development of therapeutic agents for Alzheimer disease. To elucidate these dynamics, we combined scanning amino acid substitution with a method for quantitative determination of the Abeta oligomer frequency distribution, photo-induced cross-linking of unmodified proteins (PICUP), to perform "scanning PICUP." Tyr, a reactive group in PICUP, was substituted at position 1, 10, 20, 30, or 40 (for Abeta40) or 42 (for Abeta42). The effects of these substitutions were probed using circular dichroism spectroscopy, thioflavin T binding, electron microscopy, PICUP, and mass spectrometry. All peptides displayed a random coil --> alpha/beta --> beta transition, but substitution-dependent alterations in assembly kinetics and conformer complexity were observed. Tyr(1)-substituted homologues of Abeta40 and Abeta42 assembled the slowest and yielded unusual patterns of oligomer bands in gel electrophoresis experiments, suggesting oligomer compaction had occurred. Consistent with this suggestion was the observation of relatively narrow [Tyr(1)]Abeta40 fibrils. Substitution of Abeta40 at the C terminus decreased the population conformational complexity and substantially extended the highest order of oligomers observed. This latter effect was observed in both Abeta40 and Abeta42 as the Tyr substitution position number increased. The ability of a single substitution (Tyr(1)) to alter Abeta assembly kinetics and the oligomer frequency distribution suggests that the N terminus is not a benign peptide segment, but rather that Abeta conformational dynamics and assembly are affected significantly by the competition between the N and C termini to form a stable complex with the central hydrophobic cluster.
Collapse
Affiliation(s)
| | - Rachel R. Ogorzalek Loo
- Department of Biological Chemistry, David Geffen School of Medicine
- Molecular Biology Institute
| | | | | | | | | | - Gal Bitan
- From the Department of Neurology and
- Molecular Biology Institute
- Brain Research Institute, and
| | - Joseph A. Loo
- Department of Biological Chemistry, David Geffen School of Medicine
- Molecular Biology Institute
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095
| | - David B. Teplow
- From the Department of Neurology and
- Molecular Biology Institute
- Brain Research Institute, and
| |
Collapse
|
104
|
Yokoyama K, Cho H, Cullen SP, Kowalik M, Briglio NM, Hoops HJ, Zhao Z, Carpenter MA. Microscopic investigation of reversible nanoscale surface size dependent protein conjugation. Int J Mol Sci 2009; 10:2348-2366. [PMID: 19564953 PMCID: PMC2695281 DOI: 10.3390/ijms10052348] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 05/14/2009] [Accepted: 05/18/2009] [Indexed: 11/16/2022] Open
Abstract
Aβ(1-40) coated 20 nm gold colloidal nanoparticles exhibit a reversible color change as pH is externally altered between pH 4 and 10. This reversible process may contain important information on the initial reversible step reported for the fibrillogenesis of Aβ (a hallmark of Alzheimer's disease). We examined this reversible color change by microscopic investigations. AFM images on graphite surfaces revealed the morphology of Aβ aggregates with gold colloids. TEM images clearly demonstrate the correspondence between spectroscopic features and conformational changes of the gold colloid.
Collapse
Affiliation(s)
- Kazushige Yokoyama
- Department of Chemistry, The State University of New York at Geneseo, 1 College Circle, Geneseo, NY 14454, USA; E-Mails:
(H.C.);
(S.P.C.);
(M.K.);
(N.M.B.)
| | - Hyunah Cho
- Department of Chemistry, The State University of New York at Geneseo, 1 College Circle, Geneseo, NY 14454, USA; E-Mails:
(H.C.);
(S.P.C.);
(M.K.);
(N.M.B.)
| | - Sean P. Cullen
- Department of Chemistry, The State University of New York at Geneseo, 1 College Circle, Geneseo, NY 14454, USA; E-Mails:
(H.C.);
(S.P.C.);
(M.K.);
(N.M.B.)
| | - Matthew Kowalik
- Department of Chemistry, The State University of New York at Geneseo, 1 College Circle, Geneseo, NY 14454, USA; E-Mails:
(H.C.);
(S.P.C.);
(M.K.);
(N.M.B.)
| | - Nicole M. Briglio
- Department of Chemistry, The State University of New York at Geneseo, 1 College Circle, Geneseo, NY 14454, USA; E-Mails:
(H.C.);
(S.P.C.);
(M.K.);
(N.M.B.)
| | - Harold J. Hoops
- Department of Biology, The State University of New York at Geneseo, 1 College Circle, Geneseo, NY 14454, USA; E-Mail:
(H.J.H.)
| | - Zhouying Zhao
- College of Nanoscale Science and Engineering, University of Albany-SUNY, 255 Fuller Road, Albany, NY 12203, USA; E-Mails:
(Z.-Y.Z.);
(M.A.C.)
| | - Michael A. Carpenter
- College of Nanoscale Science and Engineering, University of Albany-SUNY, 255 Fuller Road, Albany, NY 12203, USA; E-Mails:
(Z.-Y.Z.);
(M.A.C.)
| |
Collapse
|
105
|
Chini MG, Scrima M, D'Ursi AM, Bifulco G. Fibril aggregation inhibitory activity of the beta-sheet breaker peptides: a molecular docking approach. J Pept Sci 2009; 15:229-34. [PMID: 19090016 DOI: 10.1002/psc.1095] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In the present study, we used a molecular docking as a rapid, interactive method to study the inhibition of fibrillogenesis process by beta-sheet breaker peptide (BSB) (Ac-L(1)-V(2)-(NMet)F(3)-F(4)-A(5)-NH(2)). Our aim was to find the complex (Abeta:BSB) that blocks the aggregation of the fibrils, and to identify the binding sequences for the small peptides on Abeta(1-42). An NMR structure solved by Lührs et al. in 2005 was used to study the interaction of BSB with the amyloid aggregated forms. From our preliminary step-by-step docking studies, the L(17)-D(23) sequence seems to be one of the most common active sites of Abeta(1-42), and critical in amyloid fibril formation. We note that a single molecule of BSB does not influence the interaction between the two fibrils, while a little excess of BSB (two molecules) with respect to the amyloid does not completely block but undoubtedly obstructs the aggregation process.
Collapse
Affiliation(s)
- Maria Giovanna Chini
- Department of Pharmaceutical Sciences, University of Salerno, Fisciano (SA), Italy
| | | | | | | |
Collapse
|
106
|
Herl L, Thomas AV, Lill CM, Banks M, Deng A, Jones PB, Spoelgen R, Hyman BT, Berezovska O. Mutations in amyloid precursor protein affect its interactions with presenilin/gamma-secretase. Mol Cell Neurosci 2009; 41:166-74. [PMID: 19281847 DOI: 10.1016/j.mcn.2009.02.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 02/13/2009] [Accepted: 02/18/2009] [Indexed: 01/13/2023] Open
Abstract
Alzheimer's disease is characterized by accumulation of toxic beta-amyloid (Abeta) in the brain and neuronal death. Several mutations in presenilin (PS1) and beta-amyloid precursor protein (APP) associate with an increased Abeta(42/40) ratio. Abeta(42), a highly fibrillogenic species, is believed to drive Abeta aggregation. Factors shifting gamma-secretase cleavage of APP to produce Abeta(42) are unclear. We investigate the molecular mechanism underlying altered Abeta(42/40) ratios associated with APP mutations at codon 716 and 717. Using FRET-based fluorescence lifetime imaging to monitor APP-PS1 interactions, we show that I716F and V717I APP mutations increase the proportion of interacting molecules earlier in the secretory pathway, resulting in an increase in Abeta generation. A PS1 conformation assay reveals that, in the presence of mutant APP, PS1 adopts a conformation reminiscent of FAD-associated PS1 mutations, thus influencing APP binding to PS1/gamma-secretase. Mutant APP affects both intracellular location and efficiency of APP-PS1 interactions, thereby changing the Abeta(42/40) ratio.
Collapse
Affiliation(s)
- Lauren Herl
- Alzheimer Research Unit, MassGeneral Institute for Neurodegenerative, Diseases, Massachusetts General Hospital, 114 16th Street, Charlestown, MA 02129, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Kayed R, Pensalfini A, Margol L, Sokolov Y, Sarsoza F, Head E, Hall J, Glabe C. Annular protofibrils are a structurally and functionally distinct type of amyloid oligomer. J Biol Chem 2008; 284:4230-7. [PMID: 19098006 DOI: 10.1074/jbc.m808591200] [Citation(s) in RCA: 260] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Amyloid oligomers are believed to play causal roles in several types of amyloid-related neurodegenerative diseases. Several different types of amyloid oligomers have been reported that differ in morphology, size, or toxicity, raising the question of the pathological significance and structural relationships between different amyloid oligomers. Annular protofibrils (APFs) have been described in oligomer preparations of many different amyloidogenic proteins and peptides as ring-shaped or pore-like structures. They are interesting because their pore-like morphology is consistent with numerous reports of membrane-permeabilizing activity of amyloid oligomers. Here we report the preparation of relatively homogeneous preparations of APFs and an antiserum selective for APFs (alphaAPF) compared with prefibrillar oligomers (PFOs) and fibrils. PFOs appear to be precursors for APF formation, which form in high yield after exposure to a hydrophobic-hydrophilic interface. Surprisingly, preformed APFs do not permeabilize lipid bilayers, unlike the precursor PFOs. APFs display a conformation-dependent, generic epitope that is distinct from that of PFOs and amyloid fibrils. Incubation of PFOs with phospholipids vesicles results in a loss of PFO immunoreactivity with a corresponding increase in alphaAPF immunoreactivity, suggesting that lipid vesicles catalyze the conversion of PFOs into APFs. The annular anti-protofibril antibody also recognizes heptameric alpha-hemolysin pores, but not monomers, suggesting that the antibody recognizes an epitope that is specific for a beta barrel structural motif.
Collapse
Affiliation(s)
- Rakez Kayed
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, USA
| | | | | | | | | | | | | | | |
Collapse
|
108
|
Anand P, Nandel FS, Hansmann UHE. The Alzheimer beta-amyloid (Abeta(1-39)) dimer in an implicit solvent. J Chem Phys 2008; 129:195102. [PMID: 19026087 PMCID: PMC5942451 DOI: 10.1063/1.3021062] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Accepted: 10/14/2008] [Indexed: 11/15/2022] Open
Abstract
Oligomers of Abeta peptides are suspected as the underlying cause of Alzheimer disease. Knowledge of their structural properties could therefore lead to a deeper understanding of the mechanism behind the outbreak of this disease. As a step in this direction we have studied Abeta dimers by all-atom molecular dynamics simulations. Equilibrated structures at 300 K were clustered into different families with similar structural features. The dominant cluster has parallel N-terminals and a well defined segment Leu17-Ala21 that are stabilized by salt bridges between Lys28 of one chain and either Glu22 or Asp23 of the other chain. The formation of these salt bridges may be the limiting step in oligomerization and fibrillogenesis.
Collapse
Affiliation(s)
- Priya Anand
- Department of Biophysics, Panjab University, Chandigarh-160014, India.
| | | | | |
Collapse
|
109
|
Lee JH, Barral S, Reitz C. The neuronal sortilin-related receptor gene SORL1 and late-onset Alzheimer's disease. Curr Neurol Neurosci Rep 2008; 8:384-91. [PMID: 18713574 DOI: 10.1007/s11910-008-0060-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Recent studies indicate that two clusters of single nucleotide polymorphisms in the neuronal sortilin-related receptor gene (SORL1) are causally associated with late-onset Alzheimer's disease (AD). At the cellular level, SORL1 is thought to be involved in intracellular trafficking of amyloid precursor protein. When this gene is suppressed, toxic amyloid beta production is increased, and high levels of amyloid betaare associated with a higher AD risk. Extending the cellular findings, gene expression studies show that SORL1 is differentially expressed in AD patients compared with controls. Furthermore, several genetic studies have identified allelic and haplotypic SORL1 variants associated with late-onset AD, and these variants confer small to modest risk of AD. Taken together, the evidence for SORL1 as a causative gene is compelling. However, putative variants have not yet been identified. Further research is necessary to determine its utility as a diagnostic marker of AD or as a target for new therapeutic approaches.
Collapse
Affiliation(s)
- Joseph H Lee
- Sergievsky Center, 630 W. 168th Street, New York, NY 10032, USA.
| | | | | |
Collapse
|
110
|
Abstract
There are currently over two dozen agents targeting β-amyloid (Aβ) in human clinical trials. More than a dozen of these are forms of anti-amyloid immunotherapy. Although other anti-amyloid interventions are further along in the development process, thus far only immunotherapy has provided post-mortem evidence that it can alter elements of the underlying pathology of Alzheimer’s disease (AD) in actual patients.In the past 30 years, there have been many attempts to develop treatments for AD. Early therapies were developed based on a limited understanding of the disease (Slide 1). Prior to the 1980s, a clear pathophysiologic mechanism for AD was not known; instead, symptomatic therapies targeted associated symptoms, such as agitation, insomnia, and psychosis. In the 1970s, several preclinical studies pointed toward synaptic transmission abnormalities, particularly neurochemical abnormalities, as the root cause of AD, and treatments with cholinesterase inhibitors grew out of that theory. Today, the cholinergic hypothesis has been largely discredited in the primary pathogenesis of AD. Another theory based on neurotransmitter abnormalities, the glutaminergic hypothesis, has also gone out of favor as a causal explanation for AD. This did not stop medications based on these mechanisms from finding a meaningful place in the clinical pharmacopeia for treatment of AD.In the 1990s, many clinical trials followed up on epidemiologic studies suggesting systemic causes of AD. These clinical trials focused on anti-inflammatories, hormone replacement, and antioxidants. The trials performed have largely failed, with the possible exception of the trials of vitamin E, an antioxidant. None of these agents have proven useful as disease-modifying therapies for symptomatic AD.
Collapse
|
111
|
Abstract
Amyloid oligomers are believed to play important causal roles in many types of amyloid-related degenerative diseases. Many different laboratories have reported amyloid oligomers that differ in size, morphology, toxicity, and method of preparation or purification, raising the question of the structural relationships among these oligomer preparations. The structural plasticity that has been reported to occur in amyloids formed from the same protein sequence indicates that it is quite possible that different oligomer preparations may represent distinct structural variants. In view of the difficulty in determining the precise structure of amyloids, conformation- and epitope-specific antibodies may provide a facile means of classifying amyloid oligomer structures. Conformation-dependent antibodies that recognize generic epitopes that are specifically associated with distinct aggregation states of many different amyloid-forming sequences indicate that there are at least two fundamentally distinct types of amyloid oligomers: fibrillar and prefibrillar oligomers. Classification of amyloid oligomers according to their underlying structures may be a more useful and rational approach than relying on differences in size and morphology.
Collapse
Affiliation(s)
- Charles G Glabe
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, USA.
| |
Collapse
|
112
|
Chauhan V, Ji L, Chauhan A. Anti-amyloidogenic, anti-oxidant and anti-apoptotic role of gelsolin in Alzheimer’s disease. Biogerontology 2008; 9:381-9. [DOI: 10.1007/s10522-008-9169-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Accepted: 08/03/2008] [Indexed: 10/21/2022]
|
113
|
Rodziewicz-Motowidło S, Czaplewska P, Sikorska E, Spodzieja M, Kołodziejczyk AS. The Arctic mutation alters helix length and type in the 11-28 beta-amyloid peptide monomer-CD, NMR and MD studies in an SDS micelle. J Struct Biol 2008; 164:199-209. [PMID: 18765285 DOI: 10.1016/j.jsb.2008.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 07/11/2008] [Accepted: 07/29/2008] [Indexed: 11/30/2022]
Abstract
The beta-amyloid (Abeta) is the major peptide constituent of neuritic plaques in Alzheimer's disease, and its aggregation is believed to play a central role in the pathogenesis of the disease. Naturally occurring mutations resulting in changes in the Abeta sequence (pos. 21-23) are associated with familial Alzheimer's-like diseases with extensive cerebrovascular pathology. It has been demonstrated that such mutations alter the aggregation ability of Abeta and its neurotoxicity. Among the five mutations at positions 21-23 there is one with distinct clinical characteristics and a potentially distinct pathogenic mechanism-the Arctic (E22G) mutation. We have examined the structures of fragment 11-28 of the native peptide and its E22G variant. This fragment was chosen because it has been shown to be a good model for conformational and aggregation studies as it contains the hydrophobic core responsible for aggregation and the residues critical to alpha-secretase cleavage of APP. The detailed structure of the two peptides was determined using CD, 2D NMR and molecular dynamics techniques under water-SDS micelle conditions. Our studies indicated the existence of partially alpha- and 3(10)-helical conformations in the native and mutated peptide, respectively.
Collapse
|
114
|
Valerio M, Porcelli F, Zbilut JP, Giuliani A, Manetti C, Conti F. pH effects on the conformational preferences of amyloid beta-peptide (1-40) in HFIP aqueous solution by NMR spectroscopy. ChemMedChem 2008; 3:833-43. [PMID: 18228239 DOI: 10.1002/cmdc.200700324] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The structure and aggregation state of amyloid beta-peptide (Abeta) in membrane-like environments are important determinants of pathological events in Alzheimer's disease. In fact, the neurotoxic nature of amyloid-forming peptides and proteins is associated with specific conformational transitions proximal to the membrane. Under certain conditions, the Abeta peptide undergoes a conformational change that brings the peptide in solution to a "competent state" for aggregation. Conversion can be obtained at medium pH (5.0-6.0), and in vivo this appears to take place in the endocytic pathway. The combined use of (1)H NMR spectroscopy and molecular dynamics-simulated annealing calculations in aqueous hexafluoroisopropanol simulating the membrane environment, at different pH conditions, enabled us to get some insights into the aggregation process of Abeta, confirming our previous hypotheses of a relationship between conformational flexibility and aggregation propensity. The conformational space of the peptide was explored by means of an innovative use of principal component analysis as applied to residue-by-residue root-mean-square deviations values from a reference structure. This procedure allowed us to identify the aggregation-prone regions of the peptide.
Collapse
Affiliation(s)
- Mariacristina Valerio
- Dipartimento di Chimica, Università La Sapienza, Piazzale Aldo Moro 5, 00185 Roma, Italia
| | | | | | | | | | | |
Collapse
|
115
|
Membrane dipole potential of interaction between amyloid protein and phospholipid membranes is dependent on protein aggregation state. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/j.jcice.2008.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
116
|
Abstract
Alzheimer's disease is the most common form of dementia in the elderly, and it is characterized by elevated brain iron levels and accumulation of copper and zinc in cerebral beta-amyloid deposits (e.g., senile plaques). Both ionic zinc and copper are able to accelerate the aggregation of Abeta, the principle component of beta-amyloid deposits. Copper (and iron) can also promote the neurotoxic redox activity of Abeta and induce oxidative cross-linking of the peptide into stable oligomers. Recent reports have documented the release of Abeta together with ionic zinc and copper in cortical glutamatergic synapses after excitation. This, in turn, leads to the formation of Abeta oligomers, which, in turn, modulates long-term potentiation by controlling synaptic levels of the NMDA receptor. The excessive accumulation of Abeta oligomers in the synaptic cleft would then be predicted to adversely affect synaptic neurotransmission. Based on these findings, we have proposed the "Metal Hypothesis of Alzheimer's Disease," which stipulates that the neuropathogenic effects of Abeta in Alzheimer's disease are promoted by (and possibly even dependent on) Abeta-metal interactions. Increasingly sophisticated pharmaceutical approaches are now being implemented to attenuate abnormal Abeta-metal interactions without causing systemic disturbance of essential metals. Small molecules targeting Abeta-metal interactions (e.g., PBT2) are currently advancing through clinical trials and show increasing promise as disease-modifying agents for Alzheimer's disease based on the "metal hypothesis."
Collapse
Affiliation(s)
- Ashley I. Bush
- grid.415325.40000000115123749The Mental Health Research Institute, 155 Oak Street, 3052 Parkville, Victoria Australia
- grid.1008.9000000012179088XDepartment of Pathology, University of Melbourne, Grattan Street, 3010 Parkville, Victoria Australia
| | - Rudolph E. Tanzi
- grid.32224.350000000403869924Genetics and Aging Research Unit, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, 02129 Charlestown, Massachusetts
| |
Collapse
|
117
|
Rocha S, Thünemann AF, Pereira MDC, Coelho M, Möhwald H, Brezesinski G. Influence of fluorinated and hydrogenated nanoparticles on the structure and fibrillogenesis of amyloid beta-peptide. Biophys Chem 2008; 137:35-42. [PMID: 18625543 DOI: 10.1016/j.bpc.2008.06.010] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 06/21/2008] [Accepted: 06/23/2008] [Indexed: 12/20/2022]
Abstract
Peptide aggregation in amyloid fibrils is implicated in the pathogenesis of several diseases such as Alzheimer's disease. There is a strong correlation between amyloid fibril formation and a decrease in conformational stability of the native state. Amyloid-beta peptide (Abeta), the aggregating peptide in Alzheimer's disease, is natively unfolded. The deposits found in Alzheimer's disease are composed of Abeta fibrillar aggregates rich in beta-sheet structure. The influence of fluorinated complexes on the secondary structure and fibrillogenesis of Abeta peptide was studied by circular dichroism (CD) spectroscopy and transmission electron microscopy (TEM). CD spectra show that complexes of polyampholyte and fluorinated dodecanoic acid induce alpha-helix structure in Abeta, but their hydrogenated analogous lead to beta-sheet formation and aggregation. The fluorinated nanoparticles with highly negative zeta potential and hydrophobic fluorinated core have the fundamental characteristics to prevent Abeta fibrillogenesis.
Collapse
Affiliation(s)
- Sandra Rocha
- LEPAE, Dept. of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | | | | | | | | | | |
Collapse
|
118
|
Structures and free-energy landscapes of the wild type and mutants of the Abeta(21-30) peptide are determined by an interplay between intrapeptide electrostatic and hydrophobic interactions. J Mol Biol 2008; 379:815-29. [PMID: 18479708 DOI: 10.1016/j.jmb.2008.04.028] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 04/09/2008] [Accepted: 04/11/2008] [Indexed: 11/23/2022]
Abstract
The initial events in protein aggregation involve fluctuations that populate monomer conformations, which lead to oligomerization and fibril assembly. The highly populated structures, driven by a balance between hydrophobic and electrostatic interactions in the protease-resistant wild-type Abeta(21-30) peptide and mutants E22Q (Dutch), D23N (Iowa), and K28N, are analyzed using molecular dynamics simulations. Intrapeptide electrostatic interactions were connected to calculated pK(a) values that compare well with the experimental estimates. The pK(a) values of the titratable residues show that E22 and D23 side chains form salt bridges only infrequently with the K28 side chain. Contacts between E22-K28 are more probable in "dried" salt bridges, whereas D23-K28 contacts are more probable in solvated salt bridges. The strength of the intrapeptide hydrophobic interactions increases as D23N<WT<E22Q<K28A. Free-energy profiles and disconnectivity representation of the energy landscapes show that the monomer structures partition into four distinct basins. The hydrophobic interactions cluster the Abeta(21-30) peptide into two basins, differentiated by the relative position of the DVG(23-25) and GSN(25-27) fragments about the G25 residue. The E22Q mutation increases the population with intact VGSN turn compared to the wild-type (WT) peptide. The increase in the population of the structures in the aggregation-prone Basin I in E22Q, which occurs solely due to the difference in charge states between the Dutch mutant and the WT, gives a structural explanation of the somewhat larger aggregation rate in the mutant. The D23N mutation dramatically reduces the intrapeptide interactions. The K28A mutation increases the intrapeptide hydrophobic interactions that promote population of structures in Basin I and Basin II whose structures are characterized by hydrophobic interaction between V24 and K28 side chains but with well-separated ends of the backbone atoms in the VGSN turn. The intrapeptide electrostatic interactions in the WT and E22Q peptides roughen the free-energy surface compared to the K28A peptide. The D23N mutation has a flat free-energy surface, corresponding to an increased population of random coil-like structures with weak hydrophobic and electrostatic interactions. We propose that mutations or sequences that enhance the probability of occupying Basin I would promote aggregation of Abeta peptides.
Collapse
|
119
|
Gordon LM, Nisthal A, Lee AB, Eskandari S, Ruchala P, Jung CL, Waring AJ, Mobley PW. Structural and functional properties of peptides based on the N-terminus of HIV-1 gp41 and the C-terminus of the amyloid-beta protein. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:2127-37. [PMID: 18515070 DOI: 10.1016/j.bbamem.2008.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 04/07/2008] [Accepted: 05/06/2008] [Indexed: 11/30/2022]
Abstract
Given their high alanine and glycine levels, plaque formation, alpha-helix to beta-sheet interconversion and fusogenicity, FP (i.e., the N-terminal fusion peptide of HIV-1 gp41; 23 residues) and amyloids were proposed as belonging to the same protein superfamily. Here, we further test whether FP may exhibit 'amyloid-like' characteristics, by contrasting its structural and functional properties with those of Abeta(26-42), a 17-residue peptide from the C-terminus of the amyloid-beta protein responsible for Alzheimer's. FTIR spectroscopy, electron microscopy, light scattering and predicted amyloid structure aggregation (PASTA) indicated that aqueous FP and Abeta(26-42) formed similar networked beta-sheet fibrils, although the FP fibril interactions were weaker. FP and Abeta(26-42) both lysed and aggregated human erythrocytes, with the hemolysis-onsets correlated with the conversion of alpha-helix to beta-sheet for each peptide in liposomes. Congo red (CR), a marker of amyloid plaques in situ, similarly inhibited either FP- or Abeta(26-42)-induced hemolysis, and surface plasmon resonance indicated that this may be due to direct CR-peptide binding. These findings suggest that membrane-bound beta-sheets of FP may contribute to the cytopathicity of HIV in vivo through an amyloid-type mechanism, and support the classification of HIV-1 FP as an 'amyloid homolog' (or 'amylog').
Collapse
Affiliation(s)
- Larry M Gordon
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
120
|
Itoh SG, Okamoto Y. Amyloid-beta(29-42) dimer formations studied by a multicanonical-multioverlap molecular dynamics simulation. J Phys Chem B 2008; 112:2767-70. [PMID: 18271578 DOI: 10.1021/jp712170h] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amyloid-beta peptides are known to form amyloid fibrils and are considered to play an important role in Alzheimer's disease. Amyloid-beta(29-42) is a fragment of the amyloid-beta peptide and also has a tendency to form amyloid fibrils. In order to study the mechanism of amyloidogenesis of this fragment, we applied one of the generalized-ensemble algorithms, the multicanonical-multioverlap algorithm, to amyloid-beta(29-42) dimer in aqueous solution. We obtained a detailed free-energy landscape of the dimer system. From the detailed free-energy landscape, we examined monomer and dimer formations of amyloid-beta(29-42) and deduced dimerization processes, which correspond to seeding processes in the amyloidogenesis of amyloid-beta(29-42).
Collapse
Affiliation(s)
- Satoru G Itoh
- Department of Physics, School of Science, Nagoya University, Nagoya, Aichi, Japan.
| | | |
Collapse
|
121
|
Wang SSS, Wu JW, Yamamoto S, Liu HS. Diseases of protein aggregation and the hunt for potential pharmacological agents. Biotechnol J 2008; 3:165-92. [DOI: 10.1002/biot.200700065] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
122
|
Gaggelli E, Janicka-Klos A, Jankowska E, Kozlowski H, Migliorini C, Molteni E, Valensin D, Valensin G, Wieczerzak E. NMR studies of the Zn2+ interactions with rat and human beta-amyloid (1-28) peptides in water-micelle environment. J Phys Chem B 2007; 112:100-9. [PMID: 18072760 DOI: 10.1021/jp075168m] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alzheimer's disease is a fatal neurodegenerative disorder involving the abnormal accumulation and deposition of peptides (amyloid-beta, Abeta) derived from the amyloid precursor protein. Here, we present the structure and the Zn2+ binding sites of human and rat Abeta(1-28) fragments in water/sodium dodecyl sulfate (SDS) micelles by using 1H NMR spectroscopy. The chemical shift variations measured after Zn2+ addition at T>310 K allowed us to assign the binding donor atoms in both rat and human zinc complexes. The Asp-1 amine, His-6 Ndelta, Glu-11 COO-, and His-13 Nepsilon of rat Abeta28 all enter the metal coordination sphere, while His-6 Ndelta, His-13, His-14 Nepsilon, Asp-1 amine, and/or Glu-11 COO- are all bound to Zn2+ in the case of human Abeta28. Finally, a comparison between the rat and human binding abilities was discussed.
Collapse
Affiliation(s)
- Elena Gaggelli
- Department of Chemistry, University of Siena, via Aldo Moro, 53-100 Siena, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Abstract
Protein misfolding and the subsequent assembly of protein molecules into aggregates of various morphologies represent common mechanisms that link a number of important human diseases, known as protein-misfolding diseases. The current list of these disorders includes (but is not limited to) numerous neurodegenerative diseases, cataracts, arthritis, medullary carcinoma of the thyroid, late-onset diabetes mellitus, symptomatic (hemodialysis-related) beta(2)-microglobulin amyloidosis, arthritis and many other systemic, localized and familial amyloidoses. Progress in understanding protein-misfolding pathologies and in potential rational drug design aimed at the inhibition or reversal of protein aggregation depends on our ability to study the details of the misfolding process, to follow the aggregation process and to see and analyze the structure and mechanical properties of the aggregated particles. Nanoimaging provides a method to monitor the aggregation process, visualize protein aggregates and analyze their properties and provides fundamental knowledge of key factors that lead to protein misfolding and self-assembly in various protein-misfolding pathologies, therefore advancing medicine dramatically.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Indiana University School of Medicine, Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, IN, USA.
| |
Collapse
|
124
|
Ionov ID. Specific mechanism for blood inflow stimulation in brain area prone to Alzheimer's disease lesions. Int J Neurosci 2007; 117:1425-42. [PMID: 17729154 DOI: 10.1080/00207450601125733] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The present study describes the specific two-stage mechanism that intensifies blood supply to the brain area comprising amygdala, hippocampus, olfactory bulb, entorhinal cortex, and neocortex (AHBC). Cholinergic neurons from the nuclei of basal forebrain induce vasodilatory effect through release of acetylcholine. In physiological aging the efficacy of this neuronal system declines, while intensive formation of amyloidogenic peptides starts. These peptides at low, picomolar concentrations activate alpha7 nicotinic acetylcholine receptors, thus enhancing angiogenesis and in so doing restoring blood supply to the AHBC area.
Collapse
Affiliation(s)
- Ilya D Ionov
- Center on Theoretical Problems in Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
125
|
Qin Z, Hu D, Han S, Hong DP, Fink AL. Role of different regions of alpha-synuclein in the assembly of fibrils. Biochemistry 2007; 46:13322-30. [PMID: 17963364 DOI: 10.1021/bi7014053] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Elucidating the details of the assembly of amyloid fibrils is a key step to understanding the mechanism of amyloid deposition diseases including Parkinson's disease. Although several models have been proposed, based on analyses of polypeptides and short peptides, a detailed understanding of the structure and mechanism of alpha-synuclein fibrillation remains elusive. In this study, we used trypsin and endoproteinase GluC to digest intact alpha-synuclein fibrils and to analyze the detailed morphology of the resultant fibrils/remnants. We also created three mutants of alpha-synuclein, in which the N-terminal and C-terminal regions were removed, both individually and in combination, and investigated the detailed morphology of the fibrils from these mutants. Our results indicate that the assembly of mature alpha-synuclein fibrils is hierarchical: protofilaments --> protofibrils --> mature fibrils. There is a core region of approximately 70 amino acids, from residues approximately 32 to 102, which comprises the beta-rich core of the protofilaments and fibrils. In contrast, the two terminal regions show no evidence of participating in the assembly of the protofilament core but play a key role in the interactions between the protofilaments, which is necessary for the fibril maturation.
Collapse
Affiliation(s)
- Zhijie Qin
- Department of Chemistry & Biochemistry, University of California, Santa Cruz, California 95064, USA
| | | | | | | | | |
Collapse
|
126
|
Rangachari V, Moore BD, Reed DK, Sonoda LK, Bridges AW, Conboy E, Hartigan D, Rosenberry TL. Amyloid-beta(1-42) rapidly forms protofibrils and oligomers by distinct pathways in low concentrations of sodium dodecylsulfate. Biochemistry 2007; 46:12451-62. [PMID: 17910477 DOI: 10.1021/bi701213s] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is characterized by large numbers of senile plaques in the brain that consist of fibrillar aggregates of 40- and 42-residue amyloid-beta (Abeta) peptides. However, the degree of dementia in AD correlates better with the concentration of soluble Abeta species assayed biochemically than with histologically determined plaque counts, and several investigators now propose that soluble aggregates of Abeta are the neurotoxic agents that cause memory deficits and neuronal loss. These endogenous aggregates are minor components in brain extracts from AD patients and transgenic mice that express human Abeta, but several species have been detected by gel electrophoresis in sodium dodecylsulfate (SDS) and isolated by size exclusion chromatography (SEC). Endogenous Abeta aggregation is stimulated at cellular interfaces rich in lipid rafts, and anionic micelles that promote Abeta aggregation in vitro may be good models of these interfaces. We previously found that micelles formed in dilute SDS (2 mM) promote Abeta(1-40) fiber formation by supporting peptide interaction on the surface of a single micelle complex. In contrast, here we report that monomeric Abeta(1-42) undergoes an immediate conversion to a predominant beta-structured conformation in 2 mM SDS which does not proceed to amyloid fibrils. The conformational change is instead rapidly followed by the near quantitative conversion of the 4 kDa monomer SDS gel band to 8-14 kDa bands consistent with dimers through tetramers. Removal of SDS by dialysis gave a shift in the predominant SDS gel bands to 30-60 kDa. While these oligomers resemble the endogenous aggregates, they are less stable. In particular, they do not elute as discrete species on SEC, and they are completed disaggregated by boiling in 1% SDS. It appears that endogenous oligomeric Abeta aggregates are stabilized by undefined processes that have not yet been incorporated into in vitro Abeta aggregation procedures.
Collapse
Affiliation(s)
- Vijayaraghavan Rangachari
- Department of Neuroscience, Mayo Clinic College of Medicine, 4500 San Pablo Road, Jacksonville, Florida 32224, USA
| | | | | | | | | | | | | | | |
Collapse
|
127
|
Wischik CM, Harrington CR, Mukaetova-Ladinska EB, Novak M, Edwards PC, McArthur FK. Molecular characterization and measurement of Alzheimer's disease pathology: implications for genetic and environmental aetiology. CIBA FOUNDATION SYMPOSIUM 2007; 169:268-93; discussion 293-302. [PMID: 1490426 DOI: 10.1002/9780470514306.ch16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The neuropathological changes seen in Alzheimer's disease represent an interaction between the ageing process in which normal intellectual function is retained, and changes which are specifically associated with severe cognitive deterioration. Molecular analysis of these changes has tended to emphasize the distinction between neurofibrillary pathology, which is intracellular and highly correlated with cognitive deterioration, and the changes associated with the deposition of extracellular amyloid, which appears to be widespread in normal ageing. Extracellular amyloid deposits consist of fibrils composed of a short 42 amino acid peptide (beta/A4) derived by abnormal proteolysis from a much larger precursor molecule (APP). The recent demonstration of a mutation associated with APP in rare cases with familial dementia, neurofibrillary pathology in the hippocampus and atypical cortical Lewy body pathology raises the possibility that abnormal processing of APP could be linked directly with neurofibrillary pathology. Neurofibrillary tangles and neuritic plaques are sites of dense accumulation of pathological paired helical filaments (PHFs) which are composed in part of an antigenically modified form of the microtubule-associated protein tau. The average brain tissue content of PHFs measured biochemically does not increase in the course of normal ageing but increases 10-fold relative to age-matched controls in patients with Alzheimer's disease. There is also a substantial (three-fold) disease-related decline in normal soluble tau protein relative to age-matched controls. This intracellular redistribution of a protein essential for microtubule stability in cortico-cortical association circuits may play an important part in the molecular pathogenesis of dementia in Alzheimer's disease. The role of abnormal proteolysis of APP in this process remains to be elucidated. Immunohistochemical studies on renal dialysis cases have failed to detect evidence of neurofibrillary pathology related to aluminium accumulation in brain tissue. Nevertheless it needs to be seen whether more sensitive biochemical assays of neurofibrillary pathology can demonstrate evidence of an association with aluminium.
Collapse
Affiliation(s)
- C M Wischik
- University of Cambridge Clinical School, Department of Psychiatry, UK
| | | | | | | | | | | |
Collapse
|
128
|
Rodziewicz-Motowidło S, Juszczyk P, Kołodziejczyk AS, Sikorska E, Skwierawska A, Oleszczuk M, Grzonka Z. Conformational solution studies of the SDS micelle-bound 11-28 fragment of two Alzheimer's β-amyloid variants (E22K and A21G) using CD, NMR, and MD techniques. Biopolymers 2007; 87:23-39. [PMID: 17534931 DOI: 10.1002/bip.20768] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The beta-amyloid (Abeta) is the major peptide constituent of neuritic plaques in Alzheimer's disease (AD) and its aggregation is believed to play a central role in the pathogenesis of the disease. Naturally occurring mutations resulting in changes in the Abeta sequence (pos. 21-23) are associated with familial AD-like diseases with extensive cerebrovascular pathology. It was proved that the mutations alter the aggregation ability of Abeta and its neurotoxicity. Among five mutations at positions 21-23 there are two mutations with distinct clinical characteristics and potentially distinct pathogenic mechanism-the Italian (E22K) and the Flemish (A21G) mutations. In our studies we have examined the structures of the 11-28 fragment of the Italian and Flemish Abeta variants. The fragment was chosen because it has been shown to be the most important for amyloid fibril formation. The detailed structure of both variants Abeta(11-28) was determined using CD, 2D NMR, and molecular dynamics techniques under water-SDS micelle conditions. The NMR analysis revealed two distinct sets of proton resonances for the peptides. The studies of both peptides pointed out the existence of well-defined alpha-helical conformation in the Italian mutant, whereas the Flemish was found to be unstructured with the possibility of a bent structure in the central part of the peptide.
Collapse
|
129
|
Lim KH, Henderson GL, Jha A, Louhivuori M. Structural, Dynamic Properties of Key Residues in Aβ Amyloidogenesis: Implications of an Important Role of Nanosecond Timescale Dynamics. Chembiochem 2007; 8:1251-4. [PMID: 17549789 DOI: 10.1002/cbic.200700194] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Kwang Hun Lim
- Department of Chemistry, East Carolina University, Greenville, NC 27858, USA.
| | | | | | | |
Collapse
|
130
|
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease in the growing population of elderly people. A hallmark of AD is the accumulation of plaques in the brain of AD patients. The plaques predominantly consist of aggregates of amyloid-beta (Abeta), a peptide of 39-42 amino acids generated in vivo by specific, proteolytic cleavage of the amyloid precursor protein. There is a growing body of evidence that Abeta aggregates are ordered oligomers and the cause rather than a product of AD. The analysis of the assembly pathway of Abeta in vitro and biochemical characterization of Abeta deposits isolated from AD brains indicate that Abeta oligomerization occurs via distinct intermediates, including oligomers of 3-50 Abeta monomers, annular oligomers, protofibrils, fibrils and plaques. Of these, the most toxic species appear to be small Abeta oligomers. This article reviews the current knowledge of the mechanism of Abeta assembly in vivo and in vitro, as well as the influence of inherited amino acid replacements in Abeta and experimental conditions on Abeta aggregation. Challenges regarding the reproducible handling of the Abeta peptide for in vitro assembly studies are discussed.
Collapse
Affiliation(s)
- Verena H Finder
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
131
|
Gehman JD, Separovic F, Lu K, Mehta AK. Boltzmann statistics rotational-echo double-resonance analysis. J Phys Chem B 2007; 111:7802-11. [PMID: 17583943 DOI: 10.1021/jp072504q] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new approach to rotational-echo double-resonance (REDOR) data analysis, analogous to Boltzmann maximum entropy statistics, is reported. This Boltzmann statistics REDOR (BS-REDOR) approach is useful for reconstructing an unbiased internuclear distance distribution for multiple internuclear distances from experimentally limited REDOR data sets on isolated spin pairs. The analysis is characterized by exploring reconstructions on model data and applied to both [1-(13)C,15N]-glycine and a long intramolecular distance in Abeta (16-22) peptide nanotubes. The approach also provides insight into the minimal number of REDOR data points required to allow faithful determination of dipolar couplings in systems with multiple internuclear distances.
Collapse
Affiliation(s)
- John D Gehman
- School of Chemistry, Bio21 Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
| | | | | | | |
Collapse
|
132
|
Komatsu H, Liu L, Murray IVJ, Axelsen PH. A mechanistic link between oxidative stress and membrane mediated amyloidogenesis revealed by infrared spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:1913-22. [PMID: 17632073 DOI: 10.1016/j.bbamem.2007.05.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Revised: 05/18/2007] [Accepted: 05/22/2007] [Indexed: 10/23/2022]
Abstract
The fully developed lesion of Alzheimer's disease is a dense plaque composed of fibrillar amyloid beta-proteins (Abeta) with a characteristic and well-ordered beta-sheet secondary structure. Because the incipient lesion most likely develops when these proteins are first induced to form beta-sheet structure, it is important to understand factors that induced Abeta to adopt this conformation. In this review, we describe the application of polarized attenuated total internal reflection infrared FT-IR spectroscopy for characterizing the conformation, orientation, and rate of accumulation of Abeta on lipid membranes. We also describe the application and yield of linked analysis, whereby multiple spectra are fit simultaneously with component bands that are constrained to share common fitting parameters. Results have shown that membranes promote beta-sheet formation under a variety of circumstances that may be significant to the pathogenesis of Alzheimer's disease.
Collapse
Affiliation(s)
- Hiroaki Komatsu
- The Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
133
|
Jankowsky JL, Younkin LH, Gonzales V, Fadale DJ, Slunt HH, Lester HA, Younkin SG, Borchelt DR. Rodent A beta modulates the solubility and distribution of amyloid deposits in transgenic mice. J Biol Chem 2007; 282:22707-20. [PMID: 17556372 PMCID: PMC4435736 DOI: 10.1074/jbc.m611050200] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The amino acid sequence of amyloid precursor protein (APP) is highly conserved, and age-related A beta aggregates have been described in a variety of vertebrate animals, with the notable exception of mice and rats. Three amino acid substitutions distinguish mouse and human A beta that might contribute to their differing properties in vivo. To examine the amyloidogenic potential of mouse A beta, we studied several lines of transgenic mice overexpressing wild-type mouse amyloid precursor protein (moAPP) either alone or in conjunction with mutant PS1 (PS1dE9). Neither overexpression of moAPP alone nor co-expression with PS1dE9 caused mice to develop Alzheimer-type amyloid pathology by 24 months of age. We further tested whether mouse A beta could accelerate the deposition of human A beta by crossing the moAPP transgenic mice to a bigenic line expressing human APPswe with PS1dE9. The triple transgenic animals (moAPP x APPswe/PS1dE9) produced 20% more A beta but formed amyloid deposits no faster and to no greater extent than APPswe/PS1dE9 siblings. Instead, the additional mouse A beta increased the detergent solubility of accumulated amyloid and exacerbated amyloid deposition in the vasculature. These findings suggest that, although mouse A beta does not influence the rate of amyloid formation, the incorporation of A beta peptides with differing sequences alters the solubility and localization of the resulting aggregates.
Collapse
Affiliation(s)
- Joanna L. Jankowsky
- Division of Biology, California Institute of Technology, Pasadena, California 91125
| | | | - Victoria Gonzales
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | | - Hilda H. Slunt
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, Florida 32610
| | - Henry A. Lester
- Division of Biology, California Institute of Technology, Pasadena, California 91125
| | | | - David R. Borchelt
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, Florida 32610
- To whom correspondence may be addressed: Dept. of Neuroscience, Mc-Knight Brain Institute, University of Florida, 100 Newell Drive, Rm. L1-100H, P. O. Box 100244, Gainesville, FL 32610-0244. Tel.: 352-294-010; Fax: 352-392-8347;
| |
Collapse
|
134
|
Yu H, Ren J, Qu X. Time-dependent DNA condensation induced by amyloid beta-peptide. Biophys J 2007; 92:185-91. [PMID: 17028131 PMCID: PMC1697842 DOI: 10.1529/biophysj.106.093559] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Accepted: 09/14/2006] [Indexed: 11/18/2022] Open
Abstract
The major protein component of the amyloid deposition in Alzheimer's disease is a 39-43 residue peptide, amyloid beta (Abeta). Abeta is toxic to neurons, although the mechanism of neurodegeneration is uncertain. Evidence exists for non-B DNA conformation in the hippocampus of Alzheimer's disease brains, and Abeta was reportedly able to transform DNA conformation in vitro. In this study, we found that DNA conformation was altered in the presence of Abeta, and Abeta induced DNA condensation in a time-dependent manner. Furthermore, Abeta sheets, serving as condensation nuclei, were crucial for DNA condensation, and Cu(2+) and Zn(2+) ions inhibited Abeta sheet-induced DNA condensation. Our results suggest DNA condensation as a mechanism of Abeta toxicity.
Collapse
Affiliation(s)
- Haijia Yu
- Division of Biological Inorganic Chemistry, Key Laboratory of Rare Earth Chemistry and Physics, Changchun Institute of Applied Chemistry, Graduate School of the Chinese Academy of Sciences, Changchun, Jilin, China
| | | | | |
Collapse
|
135
|
|
136
|
Abstract
The great progress made in defining the structure of protein and peptide amyloid assemblies, particularly the arrangement of peptides in beta-sheets, is counterbalanced by the still poor understanding of the higher organization of beta-sheets within the fibril and overall fibril/fibril associations. The assembly pathway and basis of amyloid toxicity may well depend on these higher-order structural features. For example, significant evidence points to association between sheets as the rate limiting step in fibril assembly, and a critical metal binding site has now been identified that involves residues from different individual sheets. Here we review experiments that are identifying some of the issues associated with sheet-sheet association by investigating simple model peptides derived from the central core of the Abeta peptide implicated in Alzheimer's disease. These peptides transit between fibril/ribbon/nanotube morphologies in response to assembly conditions, laying the foundation for understanding the folding landscape for these higher order assemblies, revealing potential targets for therapeutic intervention, and opening strategies for the design of highly ordered peptide self-assembled microscale morphologies.
Collapse
Affiliation(s)
- Jijun Dong
- Center for the Analysis of Supramolecular Self-assemblies, Departments of Chemistry and Biology, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
137
|
Glabe CC. Amyloid accumulation and pathogensis of Alzheimer's disease: significance of monomeric, oligomeric and fibrillar Abeta. Subcell Biochem 2006; 38:167-77. [PMID: 15709478 DOI: 10.1007/0-387-23226-5_8] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This chapter reviews recent findings that indicate that soluble amyloid oligomers may represent the primary pathological species in Alzheimer's and other degenerative diseases. Various amyloids share a number of common properties, including their structures and pathways for fibril formation and accumulation in disease. Recent findings suggest that toxic amyloid oligomers share a common structure, suggesting that they also share a common mechanism of pathogenesis
Collapse
|
138
|
Small SA, Gandy S. Sorting through the cell biology of Alzheimer's disease: intracellular pathways to pathogenesis. Neuron 2006; 52:15-31. [PMID: 17015224 PMCID: PMC4820242 DOI: 10.1016/j.neuron.2006.09.001] [Citation(s) in RCA: 257] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
During the first 100 years of Alzheimer's disease research, this devastating and intractable disorder has been characterized at the clinical, histological, and molecular levels. Nevertheless, many key mechanistic questions remain unanswered. Here we will emphasize the importance of the cell biology of Alzheimer's disease, reviewing the relevant literature that has expanded our mechanistic understanding, with a particular focus on pathways regulating protein sorting. Accumulated evidence indicates that sorting pathways may be uniquely vulnerable to disease pathogenesis, and recent studies have begun to reveal disease-related defects in the regulation of protein sorting.
Collapse
Affiliation(s)
- Scott A. Small
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Department of Neurology, Columbia University College of Physicians and Surgeons, New York, New York 10032
- Correspondence: (S.A.S.), (S.G.)
| | - Sam Gandy
- Farber Institute for Neurosciences of Thomas Jefferson University, Philadelphia, Pennsylvania 19107
- Correspondence: (S.A.S.), (S.G.)
| |
Collapse
|
139
|
Characterization of Interactions Between Misfolding Proteins and Molecular Chaperones by NMR Spectroscopy. Top Curr Chem (Cham) 2006. [DOI: 10.1007/128_066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
140
|
Mager PP. Molecular Simulation of Solution Conformations of the Amyloid β-Peptide Aβ(1–42) by a Backpropagation Neural Network Model. MOLECULAR SIMULATION 2006. [DOI: 10.1080/08927020108024518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
141
|
Mager PP. Molecular Simulation of the Amyloid β-Peptide Aβ-(1-40) of Alzheimer's Disease. MOLECULAR SIMULATION 2006. [DOI: 10.1080/08927029808024178] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
142
|
Ji X, Naistat D, Li C, Orbulesco J, Leblanc RM. An alternative approach to amyloid fibrils morphology: CdSe/ZnS quantum dots labelled beta-amyloid peptide fragments Abeta (31-35), Abeta (1-40) and Abeta (1-42). Colloids Surf B Biointerfaces 2006; 50:104-11. [PMID: 16766161 DOI: 10.1016/j.colsurfb.2006.02.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Revised: 02/09/2006] [Accepted: 02/12/2006] [Indexed: 11/20/2022]
Abstract
Abeta (31-35) peptide and control peptides as well as full length Abeta (1-40) and Abeta (1-42) peptides were labelled with luminescent CdSe/ZnS quantum dots (QDs) to observe the morphology of amyloid fibers. A comparison was made between QDs and an organic dye, namely Dansyl group, which showed that the QDs present a much better contrast for imaging than the organic dye.
Collapse
Affiliation(s)
- Xiaojun Ji
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Room 315, Coral Gables, FL 33124, USA.
| | | | | | | | | |
Collapse
|
143
|
Parthasarathi L, Devocelle M, Søndergaard C, Baran I, O'Dushlaine CT, Davey NE, Edwards RJ, Moran N, Kenny D, Shields DC. Absolute Net Charge and the Biological Activity of Oligopeptides. J Chem Inf Model 2006; 46:2183-90. [PMID: 16995748 DOI: 10.1021/ci0600760] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sequences of human proteins are frequently prepared as synthetic oligopeptides to assess their functional ability to act as compounds modulating pathways involving the parent protein. Our objective was to analyze a set of oligopeptides, to determine if their solubility or activity correlated with features of their primary sequence, or with features of properties inferred from three-dimensional structural models derived by conformational searches. We generated a conformational database for a set of 78 oligopeptides, derived from human proteins, and correlated their 3D structures with solubility and biological assay activity (as measured by platelet activation and inhibition). Parameters of these conformers (frequency of coil, frequency of turns, the degree of packing, and the energy) did not correlate with solubility, which was instead partly predicted by two measures obtained from primary sequence analysis, that is, the hydrophobic moment and the number of charges. The platelet activity of peptides was correlated with a parameter derived from the structural modeling; this was the second virial coefficient (a measure of the tendency for a structure to autoaggregate). This could be explained by an excess among the active peptides of those which had either a large number of positive charges or in some cases a large number of negative charges, with a corresponding deficit of peptides with a mixture of negative and positive charges. We subsequently determined that a panel of 523 commercially available (and biologically active) peptides shared this elevation of absolute net charge: there were significantly lower frequencies of peptides of mixed charges compared to expectations. We conclude that the design of biologically active peptides should consider favoring those with a higher absolute net charge.
Collapse
Affiliation(s)
- Laavanya Parthasarathi
- UCD Conway Institute of Biomolecular and Biomedical Sciences, University College Dublin, Dublin 4, Republic of Ireland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Seidler NW, Craig HD, Squire TJ. Endogenous plastic composite material in the Alzheimer's brain. Med Hypotheses 2006; 67:467-70. [PMID: 16678976 DOI: 10.1016/j.mehy.2006.02.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Accepted: 02/15/2006] [Indexed: 11/17/2022]
Abstract
Accumulation of amyloid beta (Abeta) peptide in brain is the hallmark of Alzheimer's disease (AD). The resulting plaques though fibrous in nature may also consist of additional structures currently poorly defined. We hypothesize that plastic composite material contributes to plaque formation. This material is organized by polymers of acrolein, which is an oxidized lipid fragment found in AD. Acrolein, a 3-carbon compound, contains a carbonyl and a vinyl group that participate in polymerization via fundamental latex chemistry. The redox and surfactant properties of Abeta allow it to catalyze the polymerization of acrolein. We previously reported observations of thin plastic fragments of Abeta-polyacrolein. The current paper outlines the proposed steps in forming these plastic fragments. Endogenous plastic composite material may significantly contribute to the pathogenesis of AD.
Collapse
Affiliation(s)
- N W Seidler
- Kansas City University of Medicine and Biosciences, Department of Biochemistry, 1750 Independence Avenue, Kansas City, MO 64106, USA.
| | | | | |
Collapse
|
145
|
Zhang CF, Yang P. Zinc-induced aggregation of Abeta (10-21) potentiates its action on voltage-gated potassium channel. Biochem Biophys Res Commun 2006; 345:43-9. [PMID: 16674922 DOI: 10.1016/j.bbrc.2006.04.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Accepted: 04/15/2006] [Indexed: 11/18/2022]
Abstract
Zinc may play an important role in the pathogenesis of Alzheimer's disease (AD) through influencing the conformation and neurotoxicity of amyloid beta-proteins (Abeta). Zn(2+) induces rapid aggregation of synthetic or endogenous Abeta in a pH-dependent fashion. Here we show for the first time that Zn(2+)-induced aggregation of Abeta (10-21) potentiates its action on outward potassium currents in hippocampal CA1 pyramidal neurons. Using the whole-cell voltage-clamp technique, we showed that Abeta (10-21) blocked the fast-inactivating outward potassium current (I(A)) in a concentration- and aggregation-dependent manner, but with no effect on the delayed rectifier potassium current (I(K)). Both the unaggregated and aggregated forms of Abeta (10-21) significantly shifted the activation curve and the inactivation curve of I(A) to more negative potentials. But the aggregated form has more effects than the unaggregated form. These data indicated that aggregation of amyloid fragments by zinc ions is required in order to obtain full modulatory effects on potassium channel currents.
Collapse
Affiliation(s)
- Chao-Feng Zhang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | | |
Collapse
|
146
|
Separation and analysis of the soluble trimer of Aβ1–40 and its effects on the rise in intracellular calcium. Sci Bull (Beijing) 2006. [DOI: 10.1007/s11434-006-0830-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
147
|
Mastrangelo IA, Ahmed M, Sato T, Liu W, Wang C, Hough P, Smith SO. High-resolution Atomic Force Microscopy of Soluble Aβ42 Oligomers. J Mol Biol 2006; 358:106-19. [PMID: 16499926 DOI: 10.1016/j.jmb.2006.01.042] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Revised: 12/12/2005] [Accepted: 01/09/2006] [Indexed: 11/25/2022]
Abstract
Soluble oligomers and protofibrils are widely thought to be the toxic forms of the Abeta42 peptide associated with Alzheimer's disease. We have investigated the structure and formation of these assemblies using a new approach in atomic force microscopy (AFM) that yields high-resolution images of hydrated proteins and allows the structure of the smallest molecular weight (MW) oligomers to be observed and characterized. AFM images of monomers, dimers and other low MW oligomers at early incubation times (< 1h) are consistent with a hairpin structure for the monomeric Abeta42 peptide. The low MW oligomers are relatively compact and have significant order. The most constant dimension of these oligomers is their height (approximately 1-3 nm) above the mica surface; their lateral dimensions (width and length) vary between 5 nm and 10nm. Flat nascent protofibrils with lengths of over 40 nm are observed at short incubation times (< or = 3h); their lateral dimensions of 6-8 nm are consistent with a mass-per-length of 9 kDa/nm previously predicted for the elementary fibril subunit. High MW oligomers with lateral dimensions of 15-25 nm and heights ranging from 2-8 nm are common at high concentrations of Abeta. We show that an inhibitor designed to block the sheet-to-sheet packing in Abeta fibrils is able to cap the heights of these oligomers at approximately 4 nm. The observation of fine structure in the high MW oligomers suggests that they are able to nucleate fibril formation. AFM images obtained as a function of incubation time reveal a sequence of assembly from monomers to soluble oligomers and protofibrils.
Collapse
|
148
|
Glabe CG. Common mechanisms of amyloid oligomer pathogenesis in degenerative disease. Neurobiol Aging 2006; 27:570-5. [PMID: 16481071 DOI: 10.1016/j.neurobiolaging.2005.04.017] [Citation(s) in RCA: 443] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Revised: 04/13/2005] [Accepted: 04/20/2005] [Indexed: 12/19/2022]
Abstract
Many age-related degenerative diseases, including Alzheimer's, Parkinson's, Huntington's diseases and type II diabetes, are associated with the accumulation of amyloid fibrils. The protein components of these amyloids vary widely and the mechanisms of pathogenesis remain an important subject of competing hypotheses and debate. Many different mechanisms have been postulated as significant causal events in pathogenesis, so understanding which events are primary and their causal relationships is critical for the development of more effective therapeutic agents that target the underlying disease mechanisms. Recent evidence indicates that amyloids share common structural properties that are largely determined by their generic polymer properties and that soluble amyloid oligomers may represent the primary pathogenic structure, rather than the mature amyloid fibrils. Since protein function is determined by the three-dimensional structure, the fact that amyloids share generic structures implies that they may also share a common pathological function. Amyloid oligomers from several different proteins share the ability to permeabilize cellular membranes and lipid bilayers, indicating that this may represent the primary toxic mechanism of amyloid pathogenesis. This suggests that membrane permeabilization may initiate a core sequence of common pathological events leading to cell dysfunction and death that is shared among degenerative diseases, whereas pathological events that are unique to one particular type of amyloid or disease may lie in up stream pathways leading to protein mis-folding. Although, these upstream events may be unique to a particular disease related protein, their effects can be rationalized as having a primary effect of increasing the amount of mis-folded, potentially amyloidogenic proteins.
Collapse
Affiliation(s)
- Charles G Glabe
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, USA.
| |
Collapse
|
149
|
Sharma D, Shinchuk LM, Inouye H, Wetzel R, Kirschner DA. Polyglutamine homopolymers having 8-45 residues form slablike beta-crystallite assemblies. Proteins 2006; 61:398-411. [PMID: 16114051 DOI: 10.1002/prot.20602] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
At least nine inherited neurodegenerative diseases, including Huntington's, are caused by poly(L-glutamine) (polyGln, polyQ) expansions > 35-40 repeats in widely or ubiquitously expressed proteins. Except for their expansions, these proteins have no sequence homologies, and their functions mostly remain unknown. Although each disease is characterized by a distinct pathology specific to a subset of neuronal cells, the formation of neuronal intranuclear aggregates containing protein with an expanded polyQ is the hallmark and common feature to most polyQ disorders. The neurodegeneration is thought to be caused by a toxic gain of function that occurs at the protein level and depends on the length of the expansion: Longer repeats cause earlier age of onset and more severe symptoms. To address whether there is a structural difference between polyQ having < 40 versus > 40 residues, we undertook an X-ray fiber diffraction study of synthetic polyQ peptides having varying numbers of residues: Ac-Q8-NH2, D2Q15K2, K2Q28K2, and K2Q45K2. These particular lengths bracket both the range of normalcy (9-36 repeats) and the pathological (45 repeats), and therefore could be indicative of the structural changes expected in expanded polyQ domains. Contrary to expectations of different length-dependent morphologies, we accounted for all the X-ray patterns by slablike, beta-sheet structures, approximately 20 A thick in the beta-chain direction, all having similar monoclinic lattices. Moreover, the slab thickness indicates that K2Q45K2, rather than forming a water-filled nanotube, must form multiple reverse turns.
Collapse
Affiliation(s)
- Deepak Sharma
- Biology Department, Boston College, Chestnut Hill, Massachusetts, USA
| | | | | | | | | |
Collapse
|
150
|
Paravastu AK, Petkova AT, Tycko R. Polymorphic fibril formation by residues 10-40 of the Alzheimer's beta-amyloid peptide. Biophys J 2006; 90:4618-29. [PMID: 16565054 PMCID: PMC1471876 DOI: 10.1529/biophysj.105.076927] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report investigations of the morphology and molecular structure of amyloid fibrils comprised of residues 10-40 of the Alzheimer's beta-amyloid peptide (Abeta(10-40)), prepared under various solution conditions and degrees of agitation. Omission of residues 1-9 from the full-length Alzheimer's beta-amyloid peptide (Abeta(1-40)) did not prevent the peptide from forming amyloid fibrils or eliminate fibril polymorphism. These results are consistent with residues 1-9 being disordered in Abeta(1-40) fibrils, and show that fibril polymorphism is not a consequence of disorder in residues 1-9. Fibril morphology was analyzed by atomic force and electron microscopy, and secondary structure and inter-side-chain proximity were probed using solid-state NMR. Abeta(1-40) fibrils were found to be structurally compatible with Abeta(10-40): Abeta(1-40) fibril fragments were used to seed the growth of Abeta(10-40) fibrils, with propagation of fibril morphology and molecular structure. In addition, comparison of lyophilized and hydrated fibril samples revealed no effect of hydration on molecular structure, indicating that Abeta(10-40) fibrils are unlikely to contain bulk water.
Collapse
Affiliation(s)
- Anant K Paravastu
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA
| | | | | |
Collapse
|