101
|
Li Y, Maurer J, Roth A, Vogel V, Winter E, Mäntele W. A setup for simultaneous measurement of infrared spectra and light scattering signals: watching amyloid fibrils grow from intact proteins. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2014; 85:084302. [PMID: 25173287 DOI: 10.1063/1.4891704] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A setup for the simultaneous measurement of mid-infrared spectra and static light scattering is described that can be used for the analysis of the formation of nanoscale and microscopic aggregates from smaller molecules to biopolymers. It can be easily integrated into sample chambers of infrared spectrometers or combined with laser beams from tunable infrared lasers. Here, its use for the analysis of the formation of amyloid fibrils from intact proteins is demonstrated. The formation of amyloid fibrils or plaques from proteins is a widespread and pathogenetic relevant process, and a number of diseases are caused and correlated with the deposition of amyloid fibrils in cells and tissues. The molecular mechanisms of these transformations, however, are still unclear. We report here the simultaneous measurement of infrared spectra and static light scattering for the analysis of fibril formation from egg-white lysozyme. The transformation of the native form into non-native forms rich in β-sheet structure is measured by analysis of the amide I spectral region in the infrared spectra, which is sensitive for local structures. At the same time, light scattering signals at forward direction as well as the forward/backward ratio, which are sensitive for the number of scattering centers and their approximate sizes, respectively, are collected for the analysis of fibril growth. Thermodynamic and kinetic parameters as well as mechanistic information are deduced from the combination of the two complementary techniques.
Collapse
Affiliation(s)
- Yang Li
- Institut für Biophysik, Goethe-Universität Frankfurt am Main, Max-von Laue-Straße 1, D-60438 Frankfurt am Main, Germany
| | - Jürgen Maurer
- Institut für Biophysik, Goethe-Universität Frankfurt am Main, Max-von Laue-Straße 1, D-60438 Frankfurt am Main, Germany
| | - Andreas Roth
- Institut für Biophysik, Goethe-Universität Frankfurt am Main, Max-von Laue-Straße 1, D-60438 Frankfurt am Main, Germany
| | - Vitali Vogel
- Institut für Biophysik, Goethe-Universität Frankfurt am Main, Max-von Laue-Straße 1, D-60438 Frankfurt am Main, Germany
| | - Ernst Winter
- Institut für Biophysik, Goethe-Universität Frankfurt am Main, Max-von Laue-Straße 1, D-60438 Frankfurt am Main, Germany
| | - Werner Mäntele
- Institut für Biophysik, Goethe-Universität Frankfurt am Main, Max-von Laue-Straße 1, D-60438 Frankfurt am Main, Germany
| |
Collapse
|
102
|
Qing G, Zhao S, Xiong Y, Lv Z, Jiang F, Liu Y, Chen H, Zhang M, Sun T. Chiral effect at protein/graphene interface: a bioinspired perspective to understand amyloid formation. J Am Chem Soc 2014; 136:10736-42. [PMID: 25011035 DOI: 10.1021/ja5049626] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein misfolding to form amyloid aggregates is the main cause of neurodegenerative diseases. While it has been widely acknowledged that amyloid formation in vivo is highly associated with molecular surfaces, particularly biological membranes, how their intrinsic features, for example, chirality, influence this process still remains unclear. Here we use cysteine enantiomer modified graphene oxide (GO) as a model to show that surface chirality strongly influences this process. We report that R-cysteine modification suppresses the adsorption, nucleation, and fiber elongation processes of Aβ(1-40) and thus largely inhibits amyloid fibril formation on the surface, while S-modification promotes these processes. And surface chirality also greatly influences the conformational transition of Aβ(1-40) from α-helix to β-sheet. More interestingly, we find that this effect is highly related to the distance between chiral moieties and GO surface, and inserting a spacer group of about 1-2 nm between them prevents the adsorption of Aβ(1-40) oligomers, which eliminates the chiral effect. Detailed study stresses the crucial roles of GO surface. It brings novel insights for better understanding the amyloidosis process on surface from a biomimetic perspective.
Collapse
Affiliation(s)
- Guangyan Qing
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology , 122 Luoshi Road, Wuhan 430070, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Dehsorkhi A, Castelletto V, Hamley IW. Self-assembling amphiphilic peptides. J Pept Sci 2014; 20:453-67. [PMID: 24729276 PMCID: PMC4237179 DOI: 10.1002/psc.2633] [Citation(s) in RCA: 276] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 02/27/2014] [Accepted: 03/04/2014] [Indexed: 01/08/2023]
Abstract
The self-assembly of several classes of amphiphilic peptides is reviewed, and selected applications are discussed. We discuss recent work on the self-assembly of lipopeptides, surfactant-like peptides and amyloid peptides derived from the amyloid-β peptide. The influence of environmental variables such as pH and temperature on aggregate nanostructure is discussed. Enzyme-induced remodelling due to peptide cleavage and nanostructure control through photocleavage or photo-cross-linking are also considered. Lastly, selected applications of amphiphilic peptides in biomedicine and materials science are outlined.
Collapse
Affiliation(s)
- Ashkan Dehsorkhi
- Department of Chemistry, University of ReadingWhiteknights, Reading, RG6 6AD, UK
| | - Valeria Castelletto
- Department of Chemistry, University of ReadingWhiteknights, Reading, RG6 6AD, UK
| | - Ian W Hamley
- Department of Chemistry, University of ReadingWhiteknights, Reading, RG6 6AD, UK
| |
Collapse
|
104
|
Insight into the anti-amyloidogenic activity of polyphenols and its application in virtual screening of phytochemical database. Med Chem Res 2014. [DOI: 10.1007/s00044-014-1081-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
105
|
Kannan R, Raju M, Sharma KK. The critical role of the central hydrophobic core (residues 71-77) of amyloid-forming αA66-80 peptide in α-crystallin aggregation: a systematic proline replacement study. Amyloid 2014; 21:103-9. [PMID: 24547912 PMCID: PMC4151328 DOI: 10.3109/13506129.2014.888994] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Age-related cataract formation is marked by the progressive aggregation of lens proteins. The formation of protein aggregates in the aging lens has been shown to correlate with the progressive accumulation of a range of post-translational crystallin modifications, including oxidation, deamidation, racemization, methylation, acetylation, N- and C-terminal truncations and low molecular weight (LMW) crystallin fragments. We found that an αA-crystallin-derived peptide, αA66-80 (1.8 kDa), is a prominent LMW peptide concentrated in water-insoluble fractions of the aging lens. The peptide has amyloid-like properties and preferentially insolubilizes α-crystallin from lens-soluble fractions. It binds at multiple sites and forms a hydrophobically driven non-covalent complex with α-crystallin to induce α-crystallin aggregation. To define the specific role of the αA66-80 peptide in age-related protein aggregation and cataract formation, it is important to understand the mechanisms by which this peptide acts. We used scanning proline mutagenesis to identify which particular sequences of the peptide drive it to form amyloid-like fibrils and induce α-crystallin aggregation. The secondary structure and the aggregate morphology of the peptides were determined using circular dichroism and transmission electron microscopy, respectively. Peptides were also tested for their ability to induce α-crystallin aggregation. We found that proline replacement of any residue in the sequence FVIFLDV, which corresponds to residues 71-77, led to an absence of both fibril formation and α-crystallin aggregation. The apparently critical role of 71-77 residues in αA66-80 explains their significance in the self-assembly processes of the peptide and further provide insights into the mechanism of peptide-induced aggregation. Our findings may have applications in the design of peptide aggregation inhibitors.
Collapse
Affiliation(s)
- Rama Kannan
- Department of Biochemistry, University of Missouri , Columbia, MO , USA and
| | | | | |
Collapse
|
106
|
Cameron RT, Quinn SD, Cairns LS, MacLeod R, Samuel IDW, Smith BO, Carlos Penedo J, Baillie GS. The phosphorylation of Hsp20 enhances its association with amyloid-β to increase protection against neuronal cell death. Mol Cell Neurosci 2014; 61:46-55. [PMID: 24859569 PMCID: PMC4148482 DOI: 10.1016/j.mcn.2014.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 04/29/2014] [Accepted: 05/01/2014] [Indexed: 01/25/2023] Open
Abstract
Up-regulation of Hsp20 protein levels in response to amyloid fibril formation is considered a key protective response against the onset of Alzheimer's disease (AD). Indeed, the physical interaction between Hsp20 and Aβ is known to prevent Aβ oligomerisation and protects neuronal cells from Aβ mediated toxicity, however, details of the molecular mechanism and regulatory cell signalling events behind this process have remained elusive. Using both conventional MTT end-point assays and novel real time measurement of cell impedance, we show that Hsp20 protects human neuroblastoma SH-SY5Y cells from the neurotoxic effects of Aβ. In an attempt to provide a mechanism for the neuroprotection afforded by Hsp20, we used peptide array, co-immunoprecipitation analysis and NMR techniques to map the interaction between Hsp20 and Aβ and report a binding mode where Hsp20 binds adjacent to the oligomerisation domain of Aβ, preventing aggregation. The Hsp20/Aβ interaction is enhanced by Hsp20 phosphorylation, which serves to increase association with low molecular weight Aβ species and decrease the effective concentration of Hsp20 required to disrupt the formation of amyloid oligomers. Finally, using a novel fluorescent assay for the real time evaluation of morphology-specific Aβ aggregation, we show that phospho-dependency of this effect is more pronounced for fibrils than for globular Aβ forms and that 25mers corresponding to the Hsp20 N-terminal can be used as Aβ aggregate inhibitors. Our report is the first to provide a molecular model for the Hsp20/Aβ complex and the first to suggest that modulation of the cAMP/cGMP pathways could be a novel route to enhance Hsp20-mediated attenuation of Aβ fibril neurotoxicity.
Collapse
Affiliation(s)
- Ryan T Cameron
- Institute of Cardiovascular and Medical Science, College of Veterinary, Medical and life sciences, University of Glasgow, Glasgow G128QQ, UK
| | - Steven D Quinn
- SUPA School of Physics and Astronomy, University of St Andrews, North Haugh, Fife KY169SS, UK
| | - Lynn S Cairns
- Institute of Cardiovascular and Medical Science, College of Veterinary, Medical and life sciences, University of Glasgow, Glasgow G128QQ, UK
| | - Ruth MacLeod
- Institute of Cardiovascular and Medical Science, College of Veterinary, Medical and life sciences, University of Glasgow, Glasgow G128QQ, UK
| | - Ifor D W Samuel
- SUPA School of Physics and Astronomy, University of St Andrews, North Haugh, Fife KY169SS, UK
| | - Brian O Smith
- Institute of Cardiovascular and Medical Science, College of Veterinary, Medical and life sciences, University of Glasgow, Glasgow G128QQ, UK
| | - J Carlos Penedo
- SUPA School of Physics and Astronomy, University of St Andrews, North Haugh, Fife KY169SS, UK
| | - George S Baillie
- Institute of Cardiovascular and Medical Science, College of Veterinary, Medical and life sciences, University of Glasgow, Glasgow G128QQ, UK.
| |
Collapse
|
107
|
Loureiro JA, Crespo R, Börner H, Martins PM, Rocha FA, Coelho M, Pereira MC, Rocha S. Fluorinated beta-sheet breaker peptides. J Mater Chem B 2014; 2:2259-2264. [DOI: 10.1039/c3tb21483d] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
108
|
Minicozzi V, Chiaraluce R, Consalvi V, Giordano C, Narcisi C, Punzi P, Rossi GC, Morante S. Computational and experimental studies on β-sheet breakers targeting Aβ1-40 fibrils. J Biol Chem 2014; 289:11242-11252. [PMID: 24584938 DOI: 10.1074/jbc.m113.537472] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In this work we present and compare the results of extensive molecular dynamics simulations of model systems comprising an Aβ1-40 peptide in water in interaction with short peptides (β-sheet breakers) mimicking the 17-21 region of the Aβ1-40 sequence. Various systems differing in the customized β-sheet breaker structure have been studied. Specifically we have considered three kinds of β-sheet breakers, namely Ac-LPFFD-NH2 and two variants thereof, one obtained by substituting the acetyl group with the sulfonic amino acid taurine (Tau-LPFFD-NH2) and a second novel one in which the aspartic acid is substituted by an asparagine (Ac-LPFFN-NH2). Thioflavin T fluorescence, circular dichroism, and mass spectrometry experiments have been performed indicating that β-sheet breakers are able to inhibit in vitro fibril formation and prevent the β sheet folding of portions of the Aβ1-40 peptide. We show that molecular dynamics simulations and far UV circular dichroism provide consistent evidence that the new Ac-LPFFN-NH2 β-sheet breaker is more effective than the other two in stabilizing the native α-helix structure of Aβ1-40. In agreement with these results thioflavin T fluorescence experiments confirm the higher efficiency in inhibiting Aβ1-40 aggregation. Furthermore, mass spectrometry data and molecular dynamics simulations consistently identified the 17-21 Aβ1-40 portion as the location of the interaction region between peptide and the Ac-LPFFN-NH2 β-sheet breaker.
Collapse
Affiliation(s)
- Velia Minicozzi
- Department of Physics, University of Rome Tor Vergata and Istituto Nazionale di Fisica Nucleare (INFN), Viadella Ricerca Scientifica 1, 00133 Roma, Italy and.
| | - Roberta Chiaraluce
- Department of Biochemistry, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Roma, Italy
| | - Valerio Consalvi
- Department of Biochemistry, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Roma, Italy
| | - Cesare Giordano
- Biomolecular Chemistry CNR Institute, and Sapienza University of Rome, P. le Aldo Moro 5, 00185 Roma, Italy
| | - Claudia Narcisi
- Department of Physics, University of Rome Tor Vergata and Istituto Nazionale di Fisica Nucleare (INFN), Viadella Ricerca Scientifica 1, 00133 Roma, Italy and
| | - Pasqualina Punzi
- Department of Chemistry, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Roma, Italy
| | - Giancarlo C Rossi
- Department of Physics, University of Rome Tor Vergata and Istituto Nazionale di Fisica Nucleare (INFN), Viadella Ricerca Scientifica 1, 00133 Roma, Italy and
| | - Silvia Morante
- Department of Physics, University of Rome Tor Vergata and Istituto Nazionale di Fisica Nucleare (INFN), Viadella Ricerca Scientifica 1, 00133 Roma, Italy and
| |
Collapse
|
109
|
Liu J, Wang W, Zhang Q, Zhang S, Yuan Z. Study on the Efficiency and Interaction Mechanism of a Decapeptide Inhibitor of β-Amyloid Aggregation. Biomacromolecules 2014; 15:931-9. [DOI: 10.1021/bm401795e] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Jing Liu
- Key Laboratory
of Functional
Polymer Materials of Ministry of Education, and Institute of Polymer
Chemistry, Nankai University, and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, China
| | - Wei Wang
- Key Laboratory
of Functional
Polymer Materials of Ministry of Education, and Institute of Polymer
Chemistry, Nankai University, and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, China
| | - Qian Zhang
- Key Laboratory
of Functional
Polymer Materials of Ministry of Education, and Institute of Polymer
Chemistry, Nankai University, and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, China
| | - Saihui Zhang
- Key Laboratory
of Functional
Polymer Materials of Ministry of Education, and Institute of Polymer
Chemistry, Nankai University, and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, China
| | - Zhi Yuan
- Key Laboratory
of Functional
Polymer Materials of Ministry of Education, and Institute of Polymer
Chemistry, Nankai University, and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, China
| |
Collapse
|
110
|
Mehta AK, Rosen RF, Childers WS, Gehman JD, Walker LC, Lynn DG. Context dependence of protein misfolding and structural strains in neurodegenerative diseases. Biopolymers 2013; 100:722-30. [PMID: 23893572 PMCID: PMC3979318 DOI: 10.1002/bip.22283] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 04/19/2013] [Accepted: 05/07/2013] [Indexed: 01/28/2023]
Abstract
Vast arrays of structural forms are accessible to simple amyloid peptides and environmental conditions can direct assembly into single phases. These insights are now being applied to the aggregation of the Aβ peptide of Alzheimer's disease and the identification of causative phases. We extend use of the imaging agent Pittsburgh compound B to discriminate among Aβ phases and begin to define conditions of relevance to the disease state. Also, we specifically highlight the development of methods for defining the structures of these more complex phases.
Collapse
Affiliation(s)
- Anil K. Mehta
- Departments of Chemistry and Biology, Alzheimer’s Disease Research Center, Emory University, Atlanta, Georgia 30322, USA
| | - Rebecca F. Rosen
- Yerkes National Primate Research Center, Center for Neurodegenerative Disease, Emory University, Atlanta, Georgia 30322, USA
| | - W. Seth Childers
- Departments of Chemistry and Biology, Alzheimer’s Disease Research Center, Emory University, Atlanta, Georgia 30322, USA
| | - John D. Gehman
- School of Chemistry, Bio21 Institute, University of Melbourne, Melbourne, Vic. 3010, Australia
| | - Lary C. Walker
- Yerkes National Primate Research Center, Center for Neurodegenerative Disease, Emory University, Atlanta, Georgia 30322, USA
- Department of Neurology, Emory University, Atlanta, Georgia 30322, USA
| | - David G. Lynn
- Departments of Chemistry and Biology, Alzheimer’s Disease Research Center, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
111
|
Hernández-Guzmán J, Sun L, Mehta AK, Dong J, Lynn DG, Warncke K. Copper(II)-bis-histidine coordination structure in a fibrillar amyloid β-peptide fragment and model complexes revealed by electron spin echo envelope modulation spectroscopy. Chembiochem 2013; 14:1762-71. [PMID: 24014287 PMCID: PMC3864031 DOI: 10.1002/cbic.201300236] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Indexed: 11/09/2022]
Abstract
Truncated and mutated amyloid-β (Aβ) peptides are models for systematic study-in homogeneous preparations-of the molecular origins of metal ion effects on Aβ aggregation rates, types of aggregate structures formed, and cytotoxicity. The 3D geometry of bis-histidine imidazole coordination of Cu(II) in fibrils of the nonapetide acetyl-Aβ(13-21)H14A has been determined by powder (14) N electron spin echo envelope modulation (ESEEM) spectroscopy. The method of simulation of the anisotropic combination modulation is described and benchmarked for a Cu(II) -bis-cis-imidazole complex of known structure. The revealed bis-cis coordination mode, and the mutual orientation of the imidazole rings, for Cu(II) in Ac-Aβ(13-21)H14A fibrils are consistent with the proposed β-sheet structural model and pairwise peptide interaction with Cu(II) , with an alternating [-metal-vacancy-]n pattern, along the N-terminal edge. Metal coordination does not significantly distort the intra-β-strand peptide interactions, which provides a possible explanation for the acceleration of Ac-Aβ(13-21)H14A fibrillization by Cu(II) , through stabilization of the associated state and low-reorganization integration of β-strand peptide pair precursors.
Collapse
Affiliation(s)
- Jessica Hernández-Guzmán
- Dr. J. Hernández-Guzmán, Dr. L. Sun, Prof. K. Warncke Department of Physics Emory University Atlanta, Georgia 30322-2430
| | - Li Sun
- Dr. J. Hernández-Guzmán, Dr. L. Sun, Prof. K. Warncke Department of Physics Emory University Atlanta, Georgia 30322-2430
| | - Anil K. Mehta
- Dr. A. K. Mehta, Dr. J. Dong, Prof. D. G. Lynn Department of Chemistry Emory University Atlanta, Georgia 30322-2430
| | - Jijun Dong
- Dr. A. K. Mehta, Dr. J. Dong, Prof. D. G. Lynn Department of Chemistry Emory University Atlanta, Georgia 30322-2430
| | - David G. Lynn
- Dr. A. K. Mehta, Dr. J. Dong, Prof. D. G. Lynn Department of Chemistry Emory University Atlanta, Georgia 30322-2430
| | - Kurt Warncke
- Dr. J. Hernández-Guzmán, Dr. L. Sun, Prof. K. Warncke Department of Physics Emory University Atlanta, Georgia 30322-2430
| |
Collapse
|
112
|
Xie L, Luo Y, Wei G. Aβ(16-22) peptides can assemble into ordered β-barrels and bilayer β-sheets, while substitution of phenylalanine 19 by tryptophan increases the population of disordered aggregates. J Phys Chem B 2013; 117:10149-60. [PMID: 23926957 DOI: 10.1021/jp405869a] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A recent experimental study reported that termini-uncapped Aβ(16-22) (with sequence KLVFFAE) peptides self-assembled into nanofibrils at pH 2.0. The oligomerization of this uncapped peptide at atomic level in acidic pH condition remains to be determined, as computational studies mainly focus on the self-assembly of capped Aβ(16-22) peptides at neutral pH condition. In this study, using replica exchange molecular dynamics (REMD) simulations with explicit solvent, we investigated the octameric structures of the uncapped Aβ(16-22) and its F19W variant at acidic pH condition. Our simulations reveal that the Aβ(16-22) octamers adopt various conformations, including closed β-barrels, bilayer β-sheets, and disordered aggregates. The closed β-barrel conformation is particularly interesting, as the cylindrical β-barrel has been reported recently as a cytotoxic species. Interpeptide contact probability analyses between all pairs of residues reveal that the hydrophobic and aromatic stacking interactions between F19 residues play an essential role in the formation of β-barrels and bilayer β-sheets. The importance of F19 and the steric effect on the structures of Aβ(16-22) octamers are further examined by REMD simulation of F19W mutant. This REMD run shows that substitution of F19 by W with a more bulky aromatic side chain significantly reduces the β-sheet content and in turn enhances the population of disordered aggregates, indicating that the steric effect significantly affect the self-assembly of low molecular weight Aβ(16-22) oligomers.
Collapse
Affiliation(s)
- Luogang Xie
- State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | | | | |
Collapse
|
113
|
Inhibiting toxic aggregation of amyloidogenic proteins: a therapeutic strategy for protein misfolding diseases. Biochim Biophys Acta Gen Subj 2013; 1830:4860-71. [PMID: 23820032 DOI: 10.1016/j.bbagen.2013.06.029] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 06/19/2013] [Accepted: 06/20/2013] [Indexed: 12/23/2022]
Abstract
BACKGROUND The deposition of self-assembled amyloidogenic proteins is associated with multiple diseases, including Alzheimer's disease, Parkinson's disease and type 2 diabetes mellitus. The toxic misfolding and self-assembling of amyloidogenic proteins are believed to underlie protein misfolding diseases. Novel drug candidates targeting self-assembled amyloidogenic proteins represent a potential therapeutic approach for protein misfolding diseases. SCOPE OF REVIEW In this perspective review, we provide an overview of the recent progress in identifying inhibitors that block the aggregation of amyloidogenic proteins and the clinical applications thereof. MAJOR CONCLUSIONS Compounds such as polyphenols, certain short peptides, and monomer- or oligomer-specific antibodies, can interfere with the self-assembly of amyloidogenic proteins, prevent the formation of oligomers, amyloid fibrils and the consequent cytotoxicity. GENERAL SIGNIFICANCE Some inhibitors have been tested in clinical trials for treating protein misfolding diseases. Inhibitors that target the aggregation of amyloidogenic proteins bring new hope to therapy for protein misfolding diseases.
Collapse
|
114
|
Wang Q, Yu X, Patal K, Hu R, Chuang S, Zhang G, Zheng J. Tanshinones inhibit amyloid aggregation by amyloid-β peptide, disaggregate amyloid fibrils, and protect cultured cells. ACS Chem Neurosci 2013; 4:1004-15. [PMID: 23506133 PMCID: PMC3756451 DOI: 10.1021/cn400051e] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 03/18/2013] [Indexed: 01/10/2023] Open
Abstract
The misfolding and aggregation of amyloid-β (Aβ) peptides into amyloid fibrils is regarded as one of the causative events in the pathogenesis of Alzheimer's disease (AD). Tanshinones extracted from Chinese herb Danshen (Salvia Miltiorrhiza Bunge) were traditionally used as anti-inflammation and cerebrovascular drugs due to their antioxidation and antiacetylcholinesterase effects. A number of studies have suggested that tanshinones could protect neuronal cells. In this work, we examine the inhibitory activity of tanshinone I (TS1) and tanshinone IIA (TS2), the two major components in the Danshen herb, on the aggregation and toxicity of Aβ1-42 using atomic force microscopy (AFM), thioflavin-T (ThT) fluorescence assay, cell viability assay, and molecular dynamics (MD) simulations. AFM and ThT results show that both TS1 and TS2 exhibit different inhibitory abilities to prevent unseeded amyloid fibril formation and to disaggregate preformed amyloid fibrils, in which TS1 shows better inhibitory potency than TS2. Live/dead assay further confirms that introduction of a very small amount of tanshinones enables protection of cultured SH-SY5Y cells against Aβ-induced cell toxicity. Comparative MD simulation results reveal a general tanshinone binding mode to prevent Aβ peptide association, showing that both TS1 and TS2 preferentially bind to a hydrophobic β-sheet groove formed by the C-terminal residues of I31-M35 and M35-V39 and several aromatic residues. Meanwhile, the differences in binding distribution, residues, sites, population, and affinity between TS1-Aβ and TS2-Aβ systems also interpret different inhibitory effects on Aβ aggregation as observed by in vitro experiments. More importantly, due to nonspecific binding mode of tanshinones, it is expected that tanshinones would have a general inhibitory efficacy of a wide range of amyloid peptides. These findings suggest that tanshinones, particularly TS1 compound, offer promising lead compounds with dual protective role in anti-inflammation and antiaggregation for further development of Aβ inhibitors to prevent and disaggregate amyloid formation.
Collapse
Affiliation(s)
- Qiuming Wang
- Department of Chemical and Biomolecular Engineering, Department of Biomedical
Engineering, and College of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio
44325, United States
| | - Xiang Yu
- Department of Chemical and Biomolecular Engineering, Department of Biomedical
Engineering, and College of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio
44325, United States
| | - Kunal Patal
- Department of Chemical and Biomolecular Engineering, Department of Biomedical
Engineering, and College of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio
44325, United States
| | - Rundong Hu
- Department of Chemical and Biomolecular Engineering, Department of Biomedical
Engineering, and College of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio
44325, United States
| | - Steven Chuang
- Department of Chemical and Biomolecular Engineering, Department of Biomedical
Engineering, and College of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio
44325, United States
| | - Ge Zhang
- Department of Chemical and Biomolecular Engineering, Department of Biomedical
Engineering, and College of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio
44325, United States
| | - Jie Zheng
- Department of Chemical and Biomolecular Engineering, Department of Biomedical
Engineering, and College of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio
44325, United States
| |
Collapse
|
115
|
Li G, Pomès R. Binding mechanism of inositol stereoisomers to monomers and aggregates of Aβ(16-22). J Phys Chem B 2013; 117:6603-13. [PMID: 23627280 DOI: 10.1021/jp311350r] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) is a severe neurodegenerative disease with no cure. A potential therapeutic approach is to prevent or reverse the amyloid formation of Aβ42, a key pathological hallmark of AD. We examine the molecular basis for stereochemistry-dependent inhibition of the formation of Aβ fibrils in vitro by a polyol, scyllo-inositol. We present molecular dynamics simulations of the monomeric, disordered aggregate, and protofibrillar states of Aβ(16-22), an amyloid-forming peptide fragment of full-length Aβ, successively with and without scyllo-inositol and its inactive stereoisomer chiro-inositol. Both stereoisomers bind monomers and disordered aggregates with similar affinities of 10-120 mM, whereas binding to β-sheet-containing protofibrils yields affinities of 0.2-0.5 mM commensurate with in vitro inhibitory concentrations of scyllo-inositol. Moreover, scyllo-inositol displays a higher binding specificity for phenylalanine-lined grooves on the protofibril surface, suggesting that scyllo-inositol coats the surface of Aβ protofibrils and disrupts their lateral stacking into amyloid fibrils.
Collapse
Affiliation(s)
- Grace Li
- Department of Biochemistry, University of Toronto, 27 King's College Circle, Toronto, Ontario, Canada M5S 1A1
| | | |
Collapse
|
116
|
Qiang W, Kelley K, Tycko R. Polymorph-specific kinetics and thermodynamics of β-amyloid fibril growth. J Am Chem Soc 2013; 135:6860-71. [PMID: 23627695 DOI: 10.1021/ja311963f] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Amyloid fibrils formed by the 40-residue β-amyloid peptide (Aβ(1-40)) are highly polymorphic, with molecular structures that depend on the details of growth conditions. Underlying differences in physical properties are not well understood. Here, we investigate differences in growth kinetics and thermodynamic stabilities of two Aβ(1-40) fibril polymorphs for which detailed structural models are available from solid-state nuclear magnetic resonance (NMR) studies. Rates of seeded fibril elongation in the presence of excess soluble Aβ(1-40) and shrinkage in the absence of soluble Aβ(1-40) are determined with atomic force microscopy (AFM). From these rates, we derive polymorph-specific values for the soluble Aβ(1-40) concentration at quasi-equilibrium, from which relative stabilities can be derived. The AFM results are supported by direct measurements by ultraviolet absorbance, using a novel dialysis system to establish quasi-equilibrium. At 24 °C, the two polymorphs have significantly different elongation and shrinkage kinetics but similar thermodynamic stabilities. At 37 °C, differences in kinetics are reduced, and thermodynamic stabilities are increased significantly. Fibril length distributions in AFM images provide support for an intermittent growth model, in which fibrils switch randomly between an "on" state (capable of elongation) and an "off" state (incapable of elongation). We also monitor interconversion between polymorphs at 24 °C by solid-state NMR, showing that the two-fold symmetric "agitated" (A) polymorph is more stable than the three-fold symmetric "quiescent" (Q) polymorph. Finally, we show that the two polymorphs have significantly different rates of fragmentation in the presence of shear forces, a difference that helps explain the observed predominance of the A structure when fibrils are grown in agitated solutions.
Collapse
Affiliation(s)
- Wei Qiang
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| | | | | |
Collapse
|
117
|
Baftizadeh F, Pietrucci F, Biarnés X, Laio A. Nucleation process of a fibril precursor in the C-terminal segment of amyloid-β. PHYSICAL REVIEW LETTERS 2013; 110:168103. [PMID: 23679641 DOI: 10.1103/physrevlett.110.168103] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Indexed: 06/02/2023]
Abstract
By extended atomistic simulations in explicit solvent and bias-exchange metadynamics, we study the aggregation process of 18 chains of the C-terminal segment of amyloid-β, an intrinsically disordered protein involved in Alzheimer's disease and prone to form fibrils. Starting from a disordered aggregate, we are able to observe the formation of an ordered nucleus rich in beta sheets. The rate limiting step in the nucleation pathway involves crossing a barrier of approximately 40 kcal/mol and is associated with the formation of a very specific interdigitation of the side chains belonging to different sheets. This structural pattern is different from the one observed experimentally in a microcrystal of the same system, indicating that the structure of a "nascent" fibril may differ from the one of an "extended" fibril.
Collapse
|
118
|
de Tullio MB, Castelletto V, Hamley IW, Martino Adami PV, Morelli L, Castaño EM. Proteolytically inactive insulin-degrading enzyme inhibits amyloid formation yielding non-neurotoxic aβ peptide aggregates. PLoS One 2013; 8:e59113. [PMID: 23593132 PMCID: PMC3623905 DOI: 10.1371/journal.pone.0059113] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 02/11/2013] [Indexed: 01/18/2023] Open
Abstract
Insulin-degrading enzyme (IDE) is a neutral Zn2+ peptidase that degrades short peptides based on substrate conformation, size and charge. Some of these substrates, including amyloid β (Aβ) are capable of self-assembling into cytotoxic oligomers. Based on IDE recognition mechanism and our previous report of the formation of a stable complex between IDE and intact Aβ in vitro and in vivo, we analyzed the possibility of a chaperone-like function of IDE. A proteolytically inactive recombinant IDE with Glu111 replaced by Gln (IDEQ) was used. IDEQ blocked the amyloidogenic pathway of Aβ yielding non-fibrillar structures as assessed by electron microscopy. Measurements of the kinetics of Aβ aggregation by light scattering showed that 1) IDEQ effect was promoted by ATP independent of its hydrolysis, 2) end products of Aβ-IDEQ co-incubation were incapable of “seeding” the assembly of monomeric Aβ and 3) IDEQ was ineffective in reversing Aβ aggregation. Moreover, Aβ aggregates formed in the presence of IDEQ were non-neurotoxic. IDEQ had no conformational effects upon insulin (a non-amyloidogenic protein under physiological conditions) and did not disturb insulin receptor activation in cultured cells. Our results suggest that IDE has a chaperone-like activity upon amyloid-forming peptides. It remains to be explored whether other highly conserved metallopeptidases have a dual protease-chaperone function to prevent the formation of toxic peptide oligomers from bacteria to mammals.
Collapse
Affiliation(s)
- Matias B. de Tullio
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Valeria Castelletto
- Department of Chemistry, University of Reading, Whiteknights, Reading, United Kingdom
| | - Ian W. Hamley
- Department of Chemistry, University of Reading, Whiteknights, Reading, United Kingdom
| | - Pamela V. Martino Adami
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Laura Morelli
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Eduardo M. Castaño
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
119
|
Paulite M, Blum C, Schmid T, Opilik L, Eyer K, Walker GC, Zenobi R. Full spectroscopic tip-enhanced Raman imaging of single nanotapes formed from β-amyloid(1-40) peptide fragments. ACS NANO 2013; 7:911-20. [PMID: 23311496 DOI: 10.1021/nn305677k] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
This study demonstrates that spectral fingerprint patterns for a weakly scattering biological sample can be obtained reproducibly and reliably with tip-enhanced Raman spectroscopy (TERS) that correspond well with the conventional confocal Raman spectra collected for the bulk substance. These provided the basis for obtaining TERS images of individual self-assembled peptide nanotapes using an automated, objective procedure that correlate with the simultaneously obtained scanning tunneling microscopy (STM) images. TERS and STM images (64 × 64 pixels, 3 × 3 μm²) of peptide nanotapes are presented that rely on marker bands in the Raman fingerprint region. Full spectroscopic information in every pixel was obtained, allowing post-processing of data and identification of species of interest. Experimentally, the "gap-mode" TERS configuration was used with a solid metal (Ag) tip in feedback with a metal substrate (Au). Confocal Raman data of bulk nanotapes, TERS point measurements with longer acquisition time, atomic force microscopy images, and an infrared absorption spectrum of bulk nanotapes were recorded for comparison. It is shown that the unique combination of topographic and spectroscopic data that TERS imaging provides reveals differences between the STM and TERS images, for example, nanotapes that are only weakly visible in the STM images, a coverage of the surface with an unknown substance, and the identification of a patch as a protein assembly that could not be unambiguously assigned based on the STM image alone.
Collapse
Affiliation(s)
- Melissa Paulite
- Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
120
|
Anand U, Mukherjee M. Exploring the self-assembly of a short aromatic Aβ(16-24) peptide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:2713-2721. [PMID: 23379750 DOI: 10.1021/la304585a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The use of self-assembling peptides as scaffolds for creating biomaterials has prompted the scientific community to carry out studies on short peptides as model systems. Short peptides help in dissecting contributions from different interactions, unlike large peptides, where multiple interactions make it difficult to dissect the contributions of individual interactions. This opens avenues for fine tuning peptides to carry out a wide range of physical or chemical properties. In this line of study Aβ(16-24) is a versatile building block not only as a scaffold for creating biomaterials but also because it forms the active core in the protein that forms amyloid plaques. In this study, we probe the self-assembly of peptide Aβ(16-24) using fluorescence spectroscopy, circular dichroism, isothermal titration calorimetry, transmission electron microscopy, and atomic force microscopy. The process of self-assembly is dictated by the burial of phenyl alanines in the hydrophobic core and guided by nonbonding interactions and H-bonding. The process of fibril formation is enthalpically driven, and the fibrils showed blue and green luminescence without the addition of any external agent or sensitizer. Because these short peptides are known to bind with fully formed amyloid fibrils, this opens a route to the study of amyloid systems in vitro or isolated from patients suffering from Alzheimer's disease.
Collapse
Affiliation(s)
- Uttam Anand
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Indore By-pass Road, Bhauri, Bhopal 462 030, Madhya Pradesh, India
| | | |
Collapse
|
121
|
Autiero I, Langella E, Saviano M. Insights into the mechanism of interaction between trehalose-conjugated beta-sheet breaker peptides and Aβ(1–42) fibrils by molecular dynamics simulations. MOLECULAR BIOSYSTEMS 2013; 9:2835-41. [DOI: 10.1039/c3mb70235a] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
122
|
Cukalevski R, Boland B, Frohm B, Thulin E, Walsh D, Linse S. Role of aromatic side chains in amyloid β-protein aggregation. ACS Chem Neurosci 2012; 3:1008-16. [PMID: 23259036 PMCID: PMC3526965 DOI: 10.1021/cn300073s] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 09/24/2012] [Indexed: 12/23/2022] Open
Abstract
Aggregation of the amyloid β-protein (Aβ) is believed to be involved in Alzheimer's disease pathogenesis. Here we have investigated the importance of the aromatic rings at positions 19 and 20 for the aggregation rate and mechanism by substituting phenylalanine with leucine. Aggregation kinetics were monitored as a function of time and peptide concentration by thioflavin T (ThT) fluorescence, the aggregation equilibrium by sedimentation assay, structural changes using circular dichroism spectroscopy and the presence of fibrillar material was detected with cryo-transmission electron microscopy. All peptides convert from monomer to amyloid fibrils in a concentration-dependent manner. Substituting F19 with leucine results in a peptide that aggregates significantly slower than the wild type, while substitution of F20 produces a peptide that aggregates faster. The effects of the two substitutions are additive, since simultaneous substitution of F19 and F20 produces a peptide with aggregation kinetics intermediate between F19L and F20L. Our results suggest that the aromatic side-chain of F19 favors nucleation of the aggregation process and may be an important target for therapeutic intervention.
Collapse
Affiliation(s)
- Risto Cukalevski
- Chemistry Department and Molecular Protein Science, Lund University, P.O. Box 124, SE221 00 Lund, Sweden
| | | | | | | | | | | |
Collapse
|
123
|
Richman M, Perelman A, Gertler A, Rahimipour S. Effective Targeting of Aβ to Macrophages by Sonochemically Prepared Surface-Modified Protein Microspheres. Biomacromolecules 2012; 14:110-6. [DOI: 10.1021/bm301401b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Michal Richman
- Department
of Chemistry and ‡Department of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Alex Perelman
- Department
of Chemistry and ‡Department of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Asaf Gertler
- Department
of Chemistry and ‡Department of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Shai Rahimipour
- Department
of Chemistry and ‡Department of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
124
|
Good gene, bad gene: New APP variant may be both. Prog Neurobiol 2012; 99:281-92. [DOI: 10.1016/j.pneurobio.2012.06.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 05/23/2012] [Accepted: 06/11/2012] [Indexed: 01/01/2023]
|
125
|
Skaat H, Chen R, Grinberg I, Margel S. Engineered Polymer Nanoparticles Containing Hydrophobic Dipeptide for Inhibition of Amyloid-β Fibrillation. Biomacromolecules 2012; 13:2662-70. [DOI: 10.1021/bm3011177] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Hadas Skaat
- Department of Chemistry, Bar-Ilan Institute of Nanotechnology and Advanced Materials, Ramat-Gan
52900, Israel
| | - Ravit Chen
- Department of Chemistry, Bar-Ilan Institute of Nanotechnology and Advanced Materials, Ramat-Gan
52900, Israel
| | - Igor Grinberg
- Department of Chemistry, Bar-Ilan Institute of Nanotechnology and Advanced Materials, Ramat-Gan
52900, Israel
| | - Shlomo Margel
- Department of Chemistry, Bar-Ilan Institute of Nanotechnology and Advanced Materials, Ramat-Gan
52900, Israel
| |
Collapse
|
126
|
Nieto-Ortega B, Nebot VJ, Miravet JF, Escuder B, Navarrete JTL, Casado J, Ramírez FJ. Vibrational Circular Dichroism Shows Reversible Helical Handedness Switching in Peptidomimetic l-Valine Fibrils. J Phys Chem Lett 2012; 3:2120-2124. [PMID: 26295757 DOI: 10.1021/jz300725d] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We elucidate the supramolecular organization in the form of microsize fibrils of gels formed by a l-Valine peptidomimetic compound. Analysis was based on circular dichroism spectroscopies, vibrational (VCD) and electronic (CD), supported by microscopy (atomic force and scanning electron). We show how the VCD spectra give account of the micrometric structure of the fibrils formed by the helicoidal arrangement of simpler proto-fibrils, which are organized in a lower hierarchical level. This ability is used to monitorize a fully reversible change in the handedness of the helix by modulating different external stimuli as pH or ionic strength, thus providing the first observation by VCD of such a phenomenon in a short peptide.
Collapse
Affiliation(s)
- Belén Nieto-Ortega
- †Departamento de Química Física, Facultad de Ciencias, Universidad de Málaga, Málaga 29071, Spain
| | - Vicent J Nebot
- ‡Department de Química Inorgànica I Orgànica, Universitat Jaume I, Castellón 12071, Spain
| | - Juan F Miravet
- ‡Department de Química Inorgànica I Orgànica, Universitat Jaume I, Castellón 12071, Spain
| | - Beatriu Escuder
- ‡Department de Química Inorgànica I Orgànica, Universitat Jaume I, Castellón 12071, Spain
| | - Juan T López Navarrete
- †Departamento de Química Física, Facultad de Ciencias, Universidad de Málaga, Málaga 29071, Spain
| | - Juan Casado
- †Departamento de Química Física, Facultad de Ciencias, Universidad de Málaga, Málaga 29071, Spain
| | - Francisco J Ramírez
- †Departamento de Química Física, Facultad de Ciencias, Universidad de Málaga, Málaga 29071, Spain
| |
Collapse
|
127
|
Hamley IW. The Amyloid Beta Peptide: A Chemist’s Perspective. Role in Alzheimer’s and Fibrillization. Chem Rev 2012; 112:5147-92. [DOI: 10.1021/cr3000994] [Citation(s) in RCA: 670] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- I. W. Hamley
- Department
of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD,
U.K
| |
Collapse
|
128
|
Partovi-Nia R, Beheshti S, Qin Z, Mandal HS, Long YT, Girault HH, Kraatz HB. Study of amyloid β-peptide (Aβ12-28-Cys) interactions with Congo red and β-sheet breaker peptides using electrochemical impedance spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:6377-6385. [PMID: 22449117 DOI: 10.1021/la300093h] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A surface-based approach is presented to study the interactions of Aβ12-28-Cys assembled on gold surfaces with Congo red (CR) and a β-sheet breaker (BSB) peptide. The various aspects of the peptide film have been examined using different electrochemical and surface analytical techniques. Cyclic voltammetry and electrochemical impedance spectroscopy (EIS) results using redox probes [Fe(CN)(6)](3-/4-) show that Aβ12-28-Cys on gold forms a stable and reproducible blocking film. EIS analysis shows that CR and BSB have different effects on the electrochemical properties of Aβ12-28-Cys films, presumably due to changes in the interactions between the film and CR and BSB. EIS results indicate that in the case of CR film resistance decreases significantly presumably due to better penetration of the solution-based redox probe into the film, whereas in the case of BSB, the film resistance increases. We interpret this difference to BSB being able to interact with the Aβ12-28-Cys on the surface and presumably forming a film that presents a higher resistance for electron transfer from the redox probe to the solution.
Collapse
Affiliation(s)
- Raheleh Partovi-Nia
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street North, London, Ontario N6A 5B7, Canada
| | | | | | | | | | | | | |
Collapse
|
129
|
Härd T, Lendel C. Inhibition of amyloid formation. J Mol Biol 2012; 421:441-65. [PMID: 22244855 DOI: 10.1016/j.jmb.2011.12.062] [Citation(s) in RCA: 215] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 12/28/2011] [Accepted: 12/29/2011] [Indexed: 12/26/2022]
Abstract
Amyloid is aggregated protein in the form of insoluble fibrils. Amyloid deposition in human tissue-amyloidosis-is associated with a number of diseases including all common dementias and type II diabetes. Considerable progress has been made to understand the mechanisms leading to amyloid formation. It is, however, not yet clear by which mechanisms amyloid and protein aggregates formed on the path to amyloid are cytotoxic. Strategies to prevent protein aggregation and amyloid formation are nevertheless, in many cases, promising and even successful. This review covers research on intervention of amyloidosis and highlights several examples of how inhibition of protein aggregation and amyloid formation has been achieved in practice. For instance, rational design can provide drugs that stabilize a native folded state of a protein, protein engineering can provide new binding proteins that sequester monomeric peptides from aggregation, small molecules and peptides can be designed to block aggregation or direct it into non-cytotoxic paths, and monoclonal antibodies have been developed for therapies towards neurodegenerative diseases based on inhibition of amyloid formation and clearance.
Collapse
Affiliation(s)
- Torleif Härd
- Department of Molecular Biology, Swedish University of Agricultural Sciences, SE-751 24 Uppsala, Sweden.
| | | |
Collapse
|
130
|
Powell LR, Dukes KD, Lammi RK. Probing the efficacy of peptide-based inhibitors against acid- and zinc-promoted oligomerization of amyloid-β peptide via single-oligomer spectroscopy. Biophys Chem 2012; 160:12-9. [PMID: 21945664 PMCID: PMC3210411 DOI: 10.1016/j.bpc.2011.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 08/26/2011] [Accepted: 08/29/2011] [Indexed: 01/18/2023]
Abstract
One avenue for prevention and treatment of Alzheimer's disease involves inhibiting the aggregation of amyloid-β peptide (Aβ). Given the deleterious effects reported for Aβ dimers and trimers, it is important to investigate inhibition of the earliest association steps. We have employed quantized photobleaching of dye-labeled Aβ peptides to characterize four peptide-based inhibitors of fibrillogenesis and/or cytotoxicity, assessing their ability to inhibit association in the smallest oligomers (n=2-5). Inhibitors were tested at acidic pH and in the presence of zinc, conditions that may promote oligomerization in vivo. Distributions of peptide species were constructed by examining dozens of surface-tethered monomers and oligomers, one at a time. Results show that all four inhibitors shift the distribution of Aβ species toward monomers; however, efficacies vary for each compound and sample environment. Collectively, these studies highlight promising design strategies for future oligomerization inhibitors, affording insight into oligomer structures and inhibition mechanisms in two physiologically significant environments.
Collapse
Affiliation(s)
- Lyndsey R Powell
- Department of Chemistry, Physics and Geology, Winthrop University, Rock Hill, SC 29733, USA
| | | | | |
Collapse
|
131
|
Srinivasan A. Experimental inhibition of peptide fibrillogenesis by synthetic peptides, carbohydrates and drugs. Subcell Biochem 2012; 65:271-94. [PMID: 23225008 DOI: 10.1007/978-94-007-5416-4_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Peptide fibrillogenesis generally begins by the transformation of normally soluble proteins into elongated aggregates which are called as amyloid. These fibrils mainly consist of ß-sheets. They share certain common characteristics such as a cross-ß x-ray diffraction pattern, association with other common proteins and typical staining by the dye Congo Red. The individual form of the deposit consists of a disease-specific peptide/protein. The disease-specific protein serves as the basis for the classification of the amyloids. The association of fibril-forming peptides/proteins with diseases makes them primary disease-targets. Understanding the molecular interactions involved in the fibril formation becomes the foremost requirement to characterize the target. Interference with these interactions of ß-sheets in vitro prevents and sometimes reverses the fibril assembly. A small molecule capable of interfering with the formation of fibril could have therapeutic applications in these diseases. This anti-aggregation approach appears to be a viable treatment option. A search for such a molecule is pursued actively world over. All types of compounds and approaches to slow down or prevent the aggregation process have been described in the literature. These efforts are reviewed in this chapter.
Collapse
|
132
|
Beheshti S, Martić S, Kraatz HB. Electrochemical “Signal-On” Reporter for Amyloid Aggregates. Chemphyschem 2011; 13:542-8. [DOI: 10.1002/cphc.201100728] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Indexed: 11/10/2022]
|
133
|
|
134
|
Ngo S, Guo Z. Key residues for the oligomerization of Aβ42 protein in Alzheimer's disease. Biochem Biophys Res Commun 2011; 414:512-6. [PMID: 21986527 DOI: 10.1016/j.bbrc.2011.09.097] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 09/20/2011] [Indexed: 10/17/2022]
Abstract
Deposition of amyloid fibrils consisting of amyloid β (Aβ) protein as senile plaques in the brain is a pathological hallmark of Alzheimer's disease. However, a growing body of evidence shows that soluble Aβ oligomers correlate better with dementia than fibrils, suggesting that Aβ oligomers may be the primary toxic species. The structure and oligomerization mechanism of these Aβ oligomers are crucial for developing effective therapeutics. Here we investigated the oligomerization of Aβ42 in the context of a fusion protein containing GroES and ubiquitin fused to the N-terminus of Aβ sequence. The presence of fusion protein partners, in combination with a denaturing buffer containing 8M urea at pH 10, is unfavorable for Aβ42 aggregation, thus allowing only the most stable structures to be observed. Transmission electron microscopy showed that Aβ42 fusion protein formed globular oligomers, which bound weakly to thioflavin T and Congo red. SDS-PAGE shows that Aβ42 fusion protein formed SDS-resistant hexamers and tetramers. In contrast, Aβ40 fusion protein remained as monomers on SDS gel, suggesting that the oligomerization of Aβ42 fusion protein is not due to the fusion protein partners. Cysteine scanning mutagenesis at 22 residue positions further revealed that single cysteine substitutions of the C-terminal hydrophobic residues (I31, I32, L34, V39, V40, and I41) led to disruption of hexamer and tetramer formation, suggesting that hydrophobic interactions between these residues are most critical for Aβ42 oligomerization.
Collapse
Affiliation(s)
- Sam Ngo
- Department of Neurology, Brain Research Institute, Molecular Biology Institute, University of California, Los Angeles, CA 90095, United States
| | | |
Collapse
|
135
|
Veloso AJ, Kerman K. Modulation of fibril formation by a beta-sheet breaker peptide ligand: an electrochemical approach. Bioelectrochemistry 2011; 84:49-52. [PMID: 21967982 DOI: 10.1016/j.bioelechem.2011.08.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 08/27/2011] [Accepted: 08/31/2011] [Indexed: 11/27/2022]
Abstract
The development of generic inhibitors in order to control the formation of amyloid fibrils and early oligomers is still an unmet medical need. Here, we demonstrate the applicability of electrochemical analysis for the detection of β-sheet breaker peptide ligands that act as excellent inhibitors of Alzheimer's disease (AD) amyloid-β (Aβ) fibrils and oligomers in vitro. As the case study, a well-defined β-sheet breaker pentapeptide (LPFFD, FibIII) was utilized with Aβ(1-42) peptides. Square wave voltammetry (SWV) measurements were confirmed with simultaneous fluorescence analysis of the same incubated Aβ samples using a well-known fluorescent marker of β-sheet formation, Thioflavin T (ThT). Significant changes in the electrochemical signals were observed for the interaction of the Aβ oligomers with FibIII at the early stages of aggregation. The electrochemical approach, in principle, allowed monitoring β-sheet breaker-Aβ interactions on the time scale of aggregation in a label-free and cost-effective format using screen-printed carbon strip (SPCS) electrodes.
Collapse
Affiliation(s)
- Anthony J Veloso
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, Canada
| | | |
Collapse
|
136
|
Richman M, Wilk S, Skirtenko N, Perelman A, Rahimipour S. Surface-modified protein microspheres capture amyloid-β and inhibit its aggregation and toxicity. Chemistry 2011; 17:11171-7. [PMID: 21887833 DOI: 10.1002/chem.201101326] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Indexed: 12/20/2022]
Abstract
The biocompatible and biodegradable properties of protein microspheres and the recent advances in their preparation have generated considerable interest of utilizing these core-shell structures for drug delivery and diagnostic applications. However, effective targeting of protein microspheres to desirable cells or loci still remains a challenge. Here, we describe for the first time a facile one-pot sonochemical approach for covalent modification of protein microspheres made from serum albumin; the surface of which is covalently decorated with a short recognition peptide to target amyloid-β (Aβ) as the main pathogenic protein in Alzheimer's disease (AD). The microspheres were characterized for their morphology, size, and entrapment efficacy by electron microscopy, dynamic light scattering and confocal microscopy. Fluorescence-activated cell-sorting analysis and Thioflavin-T binding assay demonstrated that the conjugated microspheres bind with high affinity and selectivity to Aβ, sequester it from the medium and reduce its aggregation. Upon incubation with Aβ, the microspheres induced formation of amorphous aggregates on their surface with no apparent fibrillar structure. Moreover, the microspheres directly reduced the Aβ-induced toxicity toward neuron like PC12 cells. The conjugated microspheres are smaller than unmodified microspheres and remained stable throughout the incubation under physiological conditions.
Collapse
Affiliation(s)
- Michal Richman
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | | | |
Collapse
|
137
|
Park SK, Pegan SD, Mesecar AD, Jungbauer LM, LaDu MJ, Liebman SW. Development and validation of a yeast high-throughput screen for inhibitors of Aβ₄₂ oligomerization. Dis Model Mech 2011; 4:822-31. [PMID: 21810907 PMCID: PMC3209651 DOI: 10.1242/dmm.007963] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Recent reports point to small soluble oligomers, rather than insoluble fibrils, of amyloid β (Aβ), as the primary toxic species in Alzheimer’s disease. Previously, we developed a low-throughput assay in yeast that is capable of detecting small Aβ42 oligomer formation. Specifically, Aβ42 fused to the functional release factor domain of yeast translational termination factor, Sup35p, formed sodium dodecyl sulfate (SDS)-stable low-n oligomers in living yeast, which impaired release factor activity. As a result, the assay for oligomer formation uses yeast growth to indicate restored release factor activity and presumably reduced oligomer formation. We now describe our translation of this assay into a high-throughput screen (HTS) for anti-oligomeric compounds. By doing so, we also identified two presumptive anti-oligomeric compounds from a sub-library of 12,800 drug-like small molecules. Subsequent biochemical analysis confirmed their anti-oligomeric activity, suggesting that this form of HTS is an efficient, sensitive and cost-effective approach to identify new inhibitors of Aβ42 oligomerization.
Collapse
Affiliation(s)
- Sei-Kyoung Park
- Laboratory for Molecular Biology, Department of Biological Sciences, University of Illinois, Chicago, IL 60607, USA
| | | | | | | | | | | |
Collapse
|
138
|
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disorder characterized by the deposition of amyloids in the brain. One prominent form of amyloid is composed of repeating units of the amyloid-β (Aβ) peptide. Over the past decade, it has become clear that these Aβ amyloids are not homogeneous; rather, they are composed of a series of structures varying in their overall size and shape and the number of Aβ peptides they contain. Recent theories suggest that these different amyloid conformations may play distinct roles in disease, although their relative contributions are still being discovered. Here, we review how chemical probes, such as Congo red, thioflavin T and their derivatives, have been powerful tools for the better understanding of amyloid structure and function. Moreover, we discuss how design and deployment of conformationally selective probes might be used to test emerging models of AD.
Collapse
Affiliation(s)
- Ashley A Reinke
- Department of Biological Chemistry, Pathology and the Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | | |
Collapse
|
139
|
Brambilla D, Le Droumaguet B, Nicolas J, Hashemi SH, Wu LP, Moghimi SM, Couvreur P, Andrieux K. Nanotechnologies for Alzheimer's disease: diagnosis, therapy, and safety issues. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2011; 7:521-40. [PMID: 21477665 DOI: 10.1016/j.nano.2011.03.008] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 03/07/2011] [Accepted: 03/22/2011] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) represents the most common form of dementia worldwide, affecting more than 35 million people. Advances in nanotechnology are beginning to exert a significant impact in neurology. These approaches, which are often based on the design and engineering of a plethora of nanoparticulate entities with high specificity for brain capillary endothelial cells, are currently being applied to early AD diagnosis and treatment. In addition, nanoparticles (NPs) with high affinity for the circulating amyloid-β (Aβ) forms may induce "sink effect" and improve the AD condition. There are also developments in relation to in vitro diagnostics for AD, including ultrasensitive NP-based bio-barcodes, immunosensors, as well as scanning tunneling microscopy procedures capable of detecting Aβ(1-40) and Aβ(1-42). However, there are concerns regarding the initiation of possible NP-mediated adverse events in AD, thus demanding the use of precisely assembled nanoconstructs from biocompatible materials. Key advances and safety issues are reviewed and discussed.
Collapse
Affiliation(s)
- Davide Brambilla
- Laboratoire de Physico-Chimie, Pharmacotechnie et Biopharmacie, Univ Paris-Sud, Faculté de Pharmacie, Châtenay-Malabry, France
| | | | | | | | | | | | | | | |
Collapse
|
140
|
Sakurai T, Iwasaki T, Okuno T, Kawata Y, Kise N. Evaluation of Aβ fibrillization inhibitory effect by a PEG-peptide conjugate based on an Aβ peptide fragment with intramolecular FRET. Chem Commun (Camb) 2011; 47:4709-11. [PMID: 21416107 DOI: 10.1039/c0cc05668e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A PEG-peptide conjugate based on an amyloid β peptide fragment was synthesized. The formed amyloid protofibril-like aggregates induced intramolecular FRET. It proved to be useful as a bioprobe to evaluate the inhibitory effect of organic molecules toward amyloid fibrillization.
Collapse
Affiliation(s)
- Toshihiko Sakurai
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-chou, Tottori 680-8552, Japan.
| | | | | | | | | |
Collapse
|
141
|
Tao K, Wang J, Zhou P, Wang C, Xu H, Zhao X, Lu JR. Self-assembly of short aβ(16-22) peptides: effect of terminal capping and the role of electrostatic interaction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:2723-2730. [PMID: 21309606 DOI: 10.1021/la1034273] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We report the characterization of self-assembly of two short β-amyloid (Aβ) peptides (16-22), KLVFFAE and Ac-KLVFFAE-NH2, focusing on examining the effect of terminal capping. At pH 2.0, TEM and AFM imaging revealed that the uncapped peptide self-assembled into long, straight, and unbranched nanofibrils with a diameter of 3.8 ± 1.0 nm while the capped one formed nanotapes with a width of 70.0 ± 25.0 nm. CD analysis indicated the formation of β-sheet structures in both aggregated systems, but the characteristic CD peaks were less intense and less red-shifted for the uncapped than the capped one, indicative of weaker hydrogen bonding and weaker π-π stacking. Fluorescence and rheological measurements also confirmed stronger intermolecular attraction associated with the capped nanotapes. At acidic pH 2, each uncapped KLVFFAE molecule carries two positive charges at the N-terminus, and the strong electrostatic repulsion favors interfacial curving and twisting within the β-sheet, causing weakening of hydrogen bonds and π-π stacking. In contrast, capping reduces the charge by half, and intermolecular electrostatic repulsion is drastically reduced. As a result, the lateral attraction of β-sheets favors stronger lamellar structuring, leading to the formation of rather flat nanotapes. Flat tapes with similar morphological structure were also formed by the capped peptide at pH 12.0 where the charge on the capping end was reversed. This study has thus demonstrated how self-assembled nanostructures of small peptides can be manipulated through simple molecular structure design and tuning of electrostatic interaction.
Collapse
Affiliation(s)
- Kai Tao
- Centre for Bioengineering and Biotechnology, China University of Petroleum (East China) , 66 Changjiang West Road, Qingdao 266555, China
| | | | | | | | | | | | | |
Collapse
|
142
|
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by acute cognitive decline. The AD brain is featured by extracellular senile amyloid plaques, intraneuronal neurofibrillary tangles and extensive neuronal cell loss in specific regions of the brain associated with memory. The exact mechanism of neuronal cell dysfunction leading to the memory loss in AD is poorly understood. A number of studies have indicated that yeast is a suitable model system to decipher the molecular mechanisms involved in a variety of neurodegenerative disorders caused by pathological protein misfolding and deposition. Here, the knowledge from various studies that have utilized a yeast model to study the mechanism of pathways involved in AD pathogenesis is summarized.
Collapse
Affiliation(s)
- Prashant Bharadwaj
- Centre of Excellence for Alzheimer's Disease Research & Care, School of Exercise, Biomedical & Health Sciences, Edith Cowan University, Perth, WA, Australia
| | | | | |
Collapse
|
143
|
Kumar P, Pillay V, Choonara YE, Modi G, Naidoo D, du Toit LC. In silico theoretical molecular modeling for Alzheimer's disease: the nicotine-curcumin paradigm in neuroprotection and neurotherapy. Int J Mol Sci 2011; 12:694-724. [PMID: 21340009 PMCID: PMC3039975 DOI: 10.3390/ijms12010694] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 01/14/2011] [Accepted: 01/15/2011] [Indexed: 12/21/2022] Open
Abstract
The aggregation of the amyloid-β-peptide (AβP) into well-ordered fibrils has been considered as the key pathological marker of Alzheimer‘s disease. Molecular attributes related to the specific binding interactions, covalently and non-covalently, of a library of compounds targeting of conformational scaffolds were computed employing static lattice atomistic simulations and array constructions. A combinatorial approach using isobolographic analysis was stochastically modeled employing Artificial Neural Networks and a Design of Experiments approach, namely an orthogonal Face-Centered Central Composite Design for small molecules, such as curcumin and glycosylated nornicotine exhibiting concentration-dependent behavior on modulating AβP aggregation and oligomerization. This work provides a mathematical and in silico approach that constitutes a new frontier in providing neuroscientists with a template for in vitro and in vivo experimentation. In future this could potentially allow neuroscientists to adopt this in silico approach for the development of novel therapeutic interventions in the neuroprotection and neurotherapy of Alzheimer‘s disease. In addition, the neuroprotective entities identified in this study may also be valuable in this regard.
Collapse
Affiliation(s)
- Pradeep Kumar
- Department of Pharmacy and Pharmacology, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa; E-Mails: (P.K.); (Y.E.C.); (L.C.d.-T.)
| | - Viness Pillay
- Department of Pharmacy and Pharmacology, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa; E-Mails: (P.K.); (Y.E.C.); (L.C.d.-T.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +27-11-717-2274; Fax: +27-86-517-6890
| | - Yahya E. Choonara
- Department of Pharmacy and Pharmacology, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa; E-Mails: (P.K.); (Y.E.C.); (L.C.d.-T.)
| | - Girish Modi
- Division of Neurosciences, Department of Neurology, University of the Witwatersrand, Johannesburg, South Africa; E-Mail:
| | - Dinesh Naidoo
- Division of Neurosciences, Department of Neurosurgery, University of Witwatersrand, Johannesburg, South Africa; E-Mail:
| | - Lisa C. du Toit
- Department of Pharmacy and Pharmacology, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa; E-Mails: (P.K.); (Y.E.C.); (L.C.d.-T.)
| |
Collapse
|
144
|
Dasari M, Espargaro A, Sabate R, Lopez del Amo JM, Fink U, Grelle G, Bieschke J, Ventura S, Reif B. Bacterial Inclusion Bodies of Alzheimer's Disease β-Amyloid Peptides Can Be Employed To Study Native-Like Aggregation Intermediate States. Chembiochem 2011; 12:407-23. [DOI: 10.1002/cbic.201000602] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Indexed: 01/22/2023]
|
145
|
Reinke AA, Ung PMU, Quintero JJ, Carlson HA, Gestwicki JE. Chemical probes that selectively recognize the earliest Aβ oligomers in complex mixtures. J Am Chem Soc 2010; 132:17655-7. [PMID: 21105683 DOI: 10.1021/ja106291e] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alzheimer's disease (AD) is characterized by the self-assembly of amyloid beta (Aβ) peptides. Recent models implicate some of the earliest Aβ oligomers, such as trimers and tetramers, in disease. However, the roles of these structures remain uncertain, in part, because selective probes of their formation are not available. Toward that goal, we generated bivalent versions of the known Aβ ligand, the pentapeptide KLVFF. We found that compounds containing sufficiently long linkers (∼19 to 24 Å) recognized primarily Aβ trimers and tetramers, with little binding to either monomer or higher order structures. These compounds might be useful probes for early Aβ oligomers.
Collapse
Affiliation(s)
- Ashley A Reinke
- Department of Biological Chemistry, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, Michigan 48109-2216, United States
| | | | | | | | | |
Collapse
|
146
|
Inouye H, Gleason KA, Zhang D, Decatur SM, Kirschner DA. Differential effects of Phe19 and Phe20 on fibril formation by amyloidogenic peptide A beta 16-22 (Ac-KLVFFAE-NH2). Proteins 2010; 78:2306-21. [PMID: 20544966 DOI: 10.1002/prot.22743] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The sequence KLVFFAE (A beta 16-22) in Alzheimer's beta-amyloid is thought to be a core beta-structure that could act as a template for folding other parts of the polypeptide or molecules into fibrillar assemblies rich in beta-sheet. To elucidate the mechanism of the initial folding process, we undertook combined X-ray fiber/powder diffraction and infrared (IR) spectroscopy to analyze lyophilized A beta 16-22 and solubilized/dried peptide containing nitrile probes at F19 and/or F20. Solubilized/dried wild-type (WT) A beta 16-22 and the peptide containing cyanophenylalanine at F19 (19CN) or at F20 (20CN) gave fiber patterns consistent with slab-like beta-crystallites that were cylindrically averaged around the axis parallel to the polypeptide chain direction. The WT and 19CN assemblies showed 30-A period arrays arising from the stacking of the slabs along the peptide chain direction, whereas the 20CN assemblies lacked any such stacking. The electron density projection along the peptide chain direction indicated similar side-chain dispositions for WT and 20CN, but not for 19CN. These X-ray results and modeling imply that in the assembly of WT A beta 16-22 the F19 side chain is localized within the intersheet space and is involved in hydrophobic contact with amino acids across the intersheet space, whereas the F20 side chain localized near the slab surface is less important for the intersheet interaction, but involved in slab stacking. IR observations for the same peptides in dilute solution showed a greater degree of hydrogen bonding for the nitrile groups in 20CN than in 19CN, supporting this interpretation.
Collapse
Affiliation(s)
- Hideyo Inouye
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | | | | | | | | |
Collapse
|
147
|
Katagiri F, Takeyama K, Ohga Y, Hozumi K, Kikkawa Y, Kadoya Y, Nomizu M. Amino acid sequence requirements of laminin beta1 chain peptide B133 (DISTKYFQMSLE) for amyloid-like fibril formation, syndecan binding, and neurite outgrowth promotion. Biochemistry 2010; 49:5909-18. [PMID: 20550135 DOI: 10.1021/bi100748s] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Peptide B133 (DSITKYFQMSLE), derived from mouse laminin beta1 chain (residues 1298-1309), promotes cell attachment, neurite outgrowth, and amyloid-like fibril formation. Previously, we showed that the N-terminal Asp-deleted peptide B133a (SITKYFQMSLE) promotes integrin alpha2beta1-mediated cell attachment and spreading but does not form amyloid-like fibrils, and that the C-terminal Glu-deleted peptide B133g (DSITKYFQMSL) attaches cells without cell spreading and forms amyloid-like fibrils. In this study, we further investigated the amino acid sequence requirements of B133 for biological function using a set of truncated and Ala-substituted peptides. Attachment of cells to B133g was inhibited by only heparin, and Congo Red analysis indicated that the amyloid-like fibril formation activity of B133g was stronger than that of B133. Alanine scan analysis for the B133g peptide indicated that Asp and Ile residues are essential for cell attachment. Additionally, the N-terminal Asp residue was required for neurite outgrowth. Further, amyloid-like fibril formation required Asp and Ile residues. These data suggest that the amyloid-like fibril formation of B133g is required for cell attachment activity. We also evaluated the attachment of cells to the peptides using syndecan- and glypican-overexpressing cells. B133g attached to syndecan-overexpressing cells but not to glypican-overexpressing cells, suggesting that the amyloidogenic peptides promote syndecan-mediated cell attachment. These findings were useful for clarifying the mechanism of amyloid-like fibril formation and biological functions. The B133 peptide promotes amyloid-like fibril formation, syndecan-mediated cell attachment, and neurite outgrowth and has the potential for use as a biomaterial for tissue engineering.
Collapse
Affiliation(s)
- Fumihiko Katagiri
- Laboratory of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | | | | | | | | | | | | |
Collapse
|
148
|
Innocent N, Evans N, Hille C, Wonnacott S. Oligomerisation differentially affects the acute and chronic actions of amyloid-beta in vitro. Neuropharmacology 2010; 59:343-52. [PMID: 20388522 DOI: 10.1016/j.neuropharm.2010.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 03/23/2010] [Accepted: 04/07/2010] [Indexed: 11/26/2022]
Abstract
Key neuropathological hallmarks of Alzheimer's disease include the accumulation of amyloid-beta (Abeta), disruption of Ca(2+) homeostasis and neurodegeneration. However, the physical nature of the toxic Abeta species is controversial. Here, we examined the effect of aging on acute and chronic actions of Abeta peptides: changes in intracellular Ca(2+) and toxic responses, respectively. Acute application of Abeta(1-42) to PC12 cells potentiated KCl-evoked increases in Ca(2+), while chronic application decreased mitochondrial function with concomitant perturbation of membrane integrity and activation of apoptosis in PC12 cells, and reduced neurite length and synaptogenesis in rat cortical neurons. Both the acute and chronic effects of Abeta(1-42) were prevented by the anti-oligomerisation peptide D-KLVFFA, implicating oligomeric structures. The generation of a range of oligomeric species by aging Abeta(1-42) at 37 degrees C for different times was supported by thioflavin T fluorescence and atomic force microscopy. Abeta(1-42) aged for 24 h maximally potentiated KCl-evoked increases in Ca(2+), and this correlated with oligomers composed of 3-6 monomers, as judged by size exclusion filtration. Aging for 72 or 96 h, which generated fibrillar structures, was less efficacious. The Abeta(25-35) fragment that lacks the self-recognition element targeted by D-KLVFFA failed to potentiate KCl-evoked increases in Ca(2+). However, Abeta(25-35) was more efficacious than Abeta(1-42) at decreasing cellular functions when applied chronically. The acute and chronic effects of Abeta(1-42) also showed differential sensitivity to blockade of voltage operated Ca(2+) channels. These results suggest that the acute effects of Abeta(1-42) on Ca(2+) signals do not underpin the toxic responses measured, although both acute and chronic effects are promoted by small oligomeric species.
Collapse
Affiliation(s)
- Neal Innocent
- Department of Biology & Biochemistry, University of Bath, Bath, UK
| | | | | | | |
Collapse
|
149
|
Jun S, Gillespie JR, Shin BK, Saxena S. The second Cu(II)-binding site in a proton-rich environment interferes with the aggregation of amyloid-beta(1-40) into amyloid fibrils. Biochemistry 2009; 48:10724-32. [PMID: 19824649 DOI: 10.1021/bi9012935] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The overall morphology and Cu(II) ion coordination for the aggregated amyloid-beta(1-40) [Abeta(1-40)] in N-ethylmorpholine (NEM) buffer are affected by Cu(II) ion concentration. This effect is investigated by transmission electron microscopy (TEM), atomic force microscopy (AFM), and electron spin echo envelope modulation (ESEEM) spectroscopy. At lower than equimolar concentrations of Cu(II) ions, fibrillar aggregates of Abeta(1-40) are observed. At these concentrations of Cu(II), the monomeric and fibrillar Abeta(1-40) ESEEM data indicate that the Cu(II) ion is coordinated by histidine residues. For aggregated Abeta(1-40) at a Cu(II):Abeta molar ratio of 2:1, TEM and AFM images show both linear fibrils and granular amorphous aggregates. The ESEEM spectra show that the multi-histidine coordination for Cu(II) ion partially breaks up and becomes exposed to water or exchangeable protons of the peptide at a higher Cu(II) concentration. Since the continuous-wave electron spin resonance results also suggest two copper-binding sites in Abeta(1-40), the proton ESEEM peak may arise from the second copper-binding site, which may be significantly involved in the formation of granular amorphous aggregates. Thioflavin T fluorescence and circular dichroism experiments also show that Cu(II) inhibits the formation of fibrils and induces a nonfibrillar beta-sheet conformation. Therefore, we propose that Abeta(1-40) has a second copper-binding site in a proton-rich environment and the second binding Cu(II) ion interferes with a conformational transition into amyloid fibrils, inducing the formation of granular amorphous aggregates.
Collapse
Affiliation(s)
- Sangmi Jun
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | | | | | | |
Collapse
|
150
|
Site-specific modification of Alzheimer's peptides by cholesterol oxidation products enhances aggregation energetics and neurotoxicity. Proc Natl Acad Sci U S A 2009; 106:18563-8. [PMID: 19841277 DOI: 10.1073/pnas.0804758106] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Accumulation of amyloid beta-peptide (Abeta) and tau aggregates, possibly linked to age-associated deficiencies in protein homeostasis, appear to cause Alzheimer's disease. Schiff-base formation between Abeta and the aldehyde-bearing cholesterol oxidation product 3-beta-hydroxy-5-oxo-5,6-secocholestan-6-al is known to increase Abeta amyloidogenicity. Here, we synthesized Abeta variants site-specifically modified with the cholesterol aldehyde at Asp-1, Lys-16, or Lys-28, rather than studying mixtures. These distinct modifications have a similar effect on the thermodynamic propensity for aggregation, enabling aggregation at low concentrations. In contrast, the modification site differentially influences the aggregation kinetics; Lys-16-modified Abeta formed amorphous aggregates fastest and at the lowest concentration (within 2 h at a concentration of 20 nM), followed by the Lys-28 and Asp-1 conjugates. Also, the aggregates resulting from Abeta Lys-16 cholesterol aldehyde conjugation were more toxic to primary rat cortical neurons than treatment with unmodified Abeta under identical conditions and at the same concentration. Our results show that Abeta modification by cholesterol derivatives, especially at Lys-16, renders it kinetically and thermodynamically competent to form neurotoxic aggregates at concentrations approaching the physiologic concentration of Abeta.
Collapse
|