101
|
Linc G, Sepsi A, Molnár-Láng M. A FISH Karyotype to Study Chromosome Polymorphisms for the Elytrigia elongata E Genome. Cytogenet Genome Res 2012; 136:138-44. [DOI: 10.1159/000334835] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2011] [Indexed: 11/19/2022] Open
|
102
|
Vitulo N, Albiero A, Forcato C, Campagna D, Dal Pero F, Bagnaresi P, Colaiacovo M, Faccioli P, Lamontanara A, Šimková H, Kubaláková M, Perrotta G, Facella P, Lopez L, Pietrella M, Gianese G, Doležel J, Giuliano G, Cattivelli L, Valle G, Stanca AM. First survey of the wheat chromosome 5A composition through a next generation sequencing approach. PLoS One 2011; 6:e26421. [PMID: 22028874 PMCID: PMC3196578 DOI: 10.1371/journal.pone.0026421] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 09/26/2011] [Indexed: 01/29/2023] Open
Abstract
Wheat is one of the world's most important crops and is characterized by a large polyploid genome. One way to reduce genome complexity is to isolate single chromosomes using flow cytometry. Low coverage DNA sequencing can provide a snapshot of individual chromosomes, allowing a fast characterization of their main features and comparison with other genomes. We used massively parallel 454 pyrosequencing to obtain a 2x coverage of wheat chromosome 5A. The resulting sequence assembly was used to identify TEs, genes and miRNAs, as well as to infer a virtual gene order based on the synteny with other grass genomes. Repetitive elements account for more than 75% of the genome. Gene content was estimated considering non-redundant reads showing at least one match to ESTs or proteins. The results indicate that the coding fraction represents 1.08% and 1.3% of the short and long arm respectively, projecting the number of genes of the whole chromosome to approximately 5,000. 195 candidate miRNA precursors belonging to 16 miRNA families were identified. The 5A genes were used to search for syntenic relationships between grass genomes. The short arm is closely related to Brachypodium chromosome 4, sorghum chromosome 8 and rice chromosome 12; the long arm to regions of Brachypodium chromosomes 4 and 1, sorghum chromosomes 1 and 2 and rice chromosomes 9 and 3. From these similarities it was possible to infer the virtual gene order of 392 (5AS) and 1,480 (5AL) genes of chromosome 5A, which was compared to, and found to be largely congruent with the available physical map of this chromosome.
Collapse
Affiliation(s)
- Nicola Vitulo
- CRIBI Biotechnology Center, University of Padova, Padova, Italy
| | - Alessandro Albiero
- CRIBI Biotechnology Center, University of Padova, Padova, Italy
- Bmr-genomics srl, Padova, Italy
| | - Claudio Forcato
- CRIBI Biotechnology Center, University of Padova, Padova, Italy
| | - Davide Campagna
- CRIBI Biotechnology Center, University of Padova, Padova, Italy
| | | | | | | | | | | | - Hana Šimková
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Olomouc, Czech Republic
| | - Marie Kubaláková
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Olomouc, Czech Republic
| | | | | | | | | | | | - Jaroslav Doležel
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Olomouc, Czech Republic
| | | | - Luigi Cattivelli
- CRA Genomics Research Centre, Fiorenzuola d'Arda, Italy
- * E-mail:
| | - Giorgio Valle
- CRIBI Biotechnology Center, University of Padova, Padova, Italy
| | | |
Collapse
|
103
|
Cseh A, Kruppa K, Molnár I, Rakszegi M, Doležel J, Molnár-Láng M. Characterization of a new 4BS.7HL wheat–barley translocation line using GISH, FISH, and SSR markers and its effect on the β-glucan content of wheat. Genome 2011; 54:795-804. [DOI: 10.1139/g11-044] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A spontaneous interspecific Robertsonian translocation was revealed by genomic in situ hybridization (GISH) in the progenies of a monosomic 7H addition line originating from a new wheat ‘Asakaze komugi’ × barley ‘Manas’ hybrid. Fluorescence in situ hybridization (FISH) with repetitive DNA sequences (Afa family, pSc119.2, and pTa71) allowed identification of all wheat chromosomes, including wheat chromosome arm 4BS involved in the translocation. FISH using barley telomere- and centromere-specific repetitive DNA probes (HvT01 and (AGGGAG)n) confirmed that one of the arms of barley chromosome 7H was involved in the translocation. Simple sequence repeat (SSR) markers specific to the long (L) and short (S) arms of barley chromosome 7H identified the translocated chromosome segment as 7HL. Further analysis of the translocation chromosome clarified the physical position of genetically mapped SSRs within 7H, with a special focus on its centromeric region. The presence of the HvCslF6 gene, responsible for (1,3;1,4)-β-d-glucan production, was revealed in the centromeric region of 7HL. An increased (1,3;1,4)-β-d-glucan level was also detected in the translocation line, demonstrating that the HvCslF6 gene is of potential relevance for the manipulation of wheat (1,3;1,4)-β-d-glucan levels.
Collapse
Affiliation(s)
- A. Cseh
- Agricultural Research Institute of the Hungarian Academy of Sciences, H-2462, Martonvásár, PO Box 19, Hungary
| | - K. Kruppa
- Agricultural Research Institute of the Hungarian Academy of Sciences, H-2462, Martonvásár, PO Box 19, Hungary
| | - I. Molnár
- Agricultural Research Institute of the Hungarian Academy of Sciences, H-2462, Martonvásár, PO Box 19, Hungary
| | - M. Rakszegi
- Agricultural Research Institute of the Hungarian Academy of Sciences, H-2462, Martonvásár, PO Box 19, Hungary
| | - J. Doležel
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Sokolovská 6, Olomouc, CZ-77200, Czech Republic
| | - M. Molnár-Láng
- Agricultural Research Institute of the Hungarian Academy of Sciences, H-2462, Martonvásár, PO Box 19, Hungary
| |
Collapse
|
104
|
Tang ZX, Fu SL, Ren ZL, Zhang T, Zou YT, Yang ZJ, Li GR, Zhou JP, Zhang HQ, Yan BJ, Zhang HY, Tan FQ. Diversity and evolution of four dispersed repetitive DNA sequences in the genus Secale. Genome 2011; 54:285-300. [PMID: 21491972 DOI: 10.1139/g10-118] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We present the first characterization of 360 sequences in six species of the genus Secale of both cultivated and wild accessions. These include four distinct kinds of dispersed repetitive DNA sequences named pSc20H, pSc119.1, pSaO5(411), and pSaD15(940) belonging to the Revolver family. During the evolution of the genus Secale from wild to cultivated accessions, the pSaO5(411)-like sequences became shorter mainly because of the deletion of a trinucleotide tandem repeating unit, the pSc20H-like sequences displayed apparent homogenization in cultivated rye, and the second intron of Revolver became longer. In addition, the pSc20H-, pSc119.1-, and pSaO5(411)-like sequences cloned from wild rye and cultivated rye could be divided into two large clades. No single case of the four kinds of repetitive elements has been inherited by each Secale accession from a lone ancestor. It is reasonable to consider the vertical transmission of the four repetitive elements during the evolution of the genus Secale. The pSc20H- and pSaO5(411)-like sequences showed evolutionary elimination at specific chromosomal locations from wild species to cultivated species. These cases imply that different repetitive DNA sequences have played different roles in the chromosome development and genomic evolution of rye. The present study adds important information to the investigations dealing with characterization of dispersed repetitive elements in wild and cultivated rye.
Collapse
Affiliation(s)
- Zong-Xiang Tang
- State Key Laboratory of Plant Breeding and Genetics, Sichuan Agriculture University, Ya'an, Sichuan 625014, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Tomita M. Revolver and superior: novel transposon-like gene families of the plant kingdom. Curr Genomics 2011; 11:62-9. [PMID: 20808526 PMCID: PMC2851119 DOI: 10.2174/138920210790217954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 10/29/2009] [Accepted: 10/29/2009] [Indexed: 11/22/2022] Open
Abstract
High-throughput sequencing of eukaryotic genomes has revived interest in the structure and function of repetitive genomic sequences, previously referred to as junk DNA. Repetitive sequences, including transposable elements, are now believed to play a significant role in genomic differentiation and evolution. Some are also expressed as regulatory noncoding RNAs. Vast DNA databases exist for higher eukaryotes; however, with the exception of homologues of known repetitive-sequence-families and transposable elements, most repetitive elements still need to be annotated. Revolver and Superior, both discovered in the Triticeae, are novel classes of transposon-like genes and major components of large cereal genomes. Revolver was isolated from rye via genome subtraction of sequences common to rye and wheat. Superior was isolated from rye by cleavage with EcoO109I, the recognition sites of which consist of a 5'- PuGGNCCPy-3' multi-sequence. Revolver is 2929-3041 bp long with an inverted repeat sequence on each end. The Superior family elements are 1292-1432 bp in length, with divergent 5' regions, indicating the presence of considerable structural diversity. Revolver and Superior are transcriptionally active elements; Revolver harbors a single gene consisting of three exons and two introns, encoding a protein of 139 amino acid residues. Revolver variants range in size from 2665 bp to 4269 bp, with some variants lacking the 5' region, indicating structural diversity around the first exon. Revolver and Superior are dispersed across all seven chromosomes of rye. Revolver has existed since the diploid progenitor of wheat, and has been amplified or lost in several species during the evolution of the Triticeae. This article reviews the recently discovered Revolver and Superior families of plant transposons, which do not share identity with any known autonomous transposable elements or repetitive elements from any living species.
Collapse
Affiliation(s)
- Motonori Tomita
- Molecular Genetics Laboratory, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| |
Collapse
|
106
|
González-García M, Cuacos M, González-Sánchez M, Puertas MJ, Vega JM. Painting the rye genome with genome-specific sequences. Genome 2011; 54:555-64. [PMID: 21751868 DOI: 10.1139/g11-003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We used rye-specific repetitive DNA sequences in fluorescence in situ hybridization (FISH) to paint the rye genome and to identify rye DNA in a wheat background. A 592 bp fragment from the rye-specific dispersed repetitive family R173 (named UCM600) was cloned and used as a FISH probe. UCM600 is dispersed over the seven rye chromosomes, being absent from the pericentromeric and subtelomeric regions. A similar pattern of distribution was also observed on the rye B chromosomes, but with weaker signals. The FISH hybridization patterns using UCM600 as probe were comparable with those obtained with the genomic in situ hybridization (GISH) procedure. There were, however, sharper signals and less background with FISH. UCM600 was combined with the rye-specific sequences Bilby and pSc200 to obtain a more complete painting. With these probes, the rye chromosomes were labeled with distinctive patterns; thus, allowing the rye cultivar 'Imperial' to be karyotyped. It was also possible to distinguish rye chromosomes in triticale and alien rye chromatin in wheat-rye addition and translocation lines. The distribution of UCM600 was similar in cultivated rye and in the wild Secale species Secale vavilovii Grossh., Secale sylvestre Host, and Secale africanum Stapf. Thus, UCM600 can be used to detect Secale DNA introgressed from wild species in a wheat background.
Collapse
|
107
|
Książczyk T, Apolinarska B, Kulak-Książczyk S, Wiśniewska H, Stojałowski S, Łapiński M. Identification of the chromosome complement and the spontaneous 1R/1V translocations in allotetraploid Secale cereale × Dasypyrum villosum hybrids through cytogenetic approaches. J Appl Genet 2011; 52:305-11. [PMID: 21584731 PMCID: PMC3132420 DOI: 10.1007/s13353-011-0048-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 03/27/2011] [Accepted: 04/07/2011] [Indexed: 11/25/2022]
Abstract
Genome modifications that occur at the initial interspecific hybridization event are dynamic and can be consolidated during the process of stabilization in successive generations of allopolyploids. This study identifies the number and chromosomal location of ribosomal DNA (rDNA) sites between Secale cereale, Dasypyrum villosum, and their allotetraploid S. cereale × D. villosum hybrids. For the first time, we show the advantages of FISH to reveal chromosome rearrangements in the tetraploid Secale × Dasypyrum hybrids. Based on the specific hybridization patterns of ribosomal 5S, 35S DNA and rye species-specific pSc200 DNA probes, a set of genotypes with numerous Secale/Dasypyrum translocations of 1R/1V chromosomes were identified in successive generations of allotetraploid S. cereale × D. villosum hybrids. In addition we analyse rye chromosome pairs using FISH with chromosome-specific DNA sequences on S. cereale × D. villosum hybrids.
Collapse
Affiliation(s)
- Tomasz Książczyk
- Laboratory of Cytogenetics and Molecular Biology, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, Poznan, Poland.
| | | | | | | | | | | |
Collapse
|
108
|
Comparative analysis of the N-genome in diploid and polyploid Aegilops species. Chromosome Res 2011; 19:541-8. [DOI: 10.1007/s10577-011-9211-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 04/26/2011] [Accepted: 04/26/2011] [Indexed: 10/18/2022]
|
109
|
Cuacos M, González-García M, González-Sánchez M, Puertas MJ, Vega JM. Activation of rye 5RL neocentromere by an organophosphate pesticide. Cytogenet Genome Res 2011; 134:151-62. [PMID: 21555880 DOI: 10.1159/000325744] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2010] [Indexed: 01/13/2023] Open
Abstract
An interstitial constriction located on the long arm of rye chromosome 5R (5RL) shows neocentromeric activity at meiosis. In some meiocytes this region is strongly stretched orienting with the true centromere to opposite poles at metaphase I, and keeping sister chromatid cohesion at anaphase I. We found previously that the frequency of neocentric activity varied dramatically in different generations suggesting the effect of environmental factors. Here we studied the behavior of the 5RL neocentromere in mono- and ditelosomic 5RL, and mono-, and disomic 5R wheat-rye addition lines, untreated and treated with an organophosphate pesticide. The treated plants form neocentromeres with an about 4.5-fold increased frequency compared to untreated ones, demonstrating that the pesticide promotes neocentric activity. The neocentromere was activated irrespectively of the pairing configuration or the presence of a complete or truncated 5R centromere. Fluorescence in situ hybridization (FISH) with 2 repetitive sequences (UCM600 and pSc119.2) present at the constriction showed kinetic activity at several locations within this region. Immunostaining with anti-α-tubulin showed that treated plants have abnormal spindles in 46% of the metaphase I cells, indicating that disturbances in spindle formation might promote neocentromere activation.
Collapse
Affiliation(s)
- M Cuacos
- Departamento de Genética, Facultad de Biología, Universidad Complutense, Madrid, Spain
| | | | | | | | | |
Collapse
|
110
|
Adonina IG, Orlovskaya OA, Tereshchenko OY, Koren LV, Khotyleva LV, Shumny VK, Salina EA. Development of commercially valuable traits in hexaploid triticale lines with Aegilops introgressions as dependent on the genome composition. RUSS J GENET+ 2011. [DOI: 10.1134/s1022795411040028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
111
|
Georgieva M, Sepsi A, Tyankova N, Molnár-Láng M. Molecular cytogenetic characterization of two high protein wheat-Thinopyrum intermedium partial amphiploids. J Appl Genet 2011; 52:269-77. [PMID: 21404041 DOI: 10.1007/s13353-011-0037-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 02/26/2011] [Indexed: 11/26/2022]
Abstract
Fluorescence and genomic in situ hybridization (FISH and GISH) were used to establish the cytogenetic constitution of two wheat × Thinopyrum intermedium partial amphiploids H95 and 55(1-57). Both partial amphiploids are high-protein lines having resistance to leaf rust, yellow rust and powdery mildew and have in total 56 chromosomes per cell. Repetitive DNA probes (pTa71, Afa family and pSc119.2) were used to identify the individual wheat chromosomes and to reveal the distribution of these probes within the alien chromosomes. FISH detected 6B tetrasomy in H95 and a null (1D)-tetrasomy (1B) in 55(1-57). GISH was carried out using biotin labeled Th. intermedium DNA and digoxigenin labeled Pseudoroegneria spicata DNA as probes, subsequently. GISH results revealed 44 wheat chromosomes and four Thinopyrum chromosome pairs, including three S and one J chromosome pairs in line H95. Line 55(1-57), contained 42 wheat chromosomes and six Th. intermedium pairs, including two S and one J(S) pairs. Additionally, two identical translocated chromosome pairs with diminished affinity to the alien chromatin were detected in both amphiploids. Another two translocations were found in 55(1-57), with satellite sections from the Thinopyrum J genome.
Collapse
Affiliation(s)
- Mariyana Georgieva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | | | | | |
Collapse
|
112
|
Evtushenko EV, Vershinin AV. Heterogeneous organization of a tandem repeat family in subtelomeric heterochromatin of rye. RUSS J GENET+ 2010. [DOI: 10.1134/s1022795410090152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
113
|
Fat element—a new marker for chromosome and genome analysis in the Triticeae. Chromosome Res 2010; 18:697-709. [DOI: 10.1007/s10577-010-9151-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 07/05/2010] [Accepted: 07/29/2010] [Indexed: 10/19/2022]
|
114
|
Qi Z, Du P, Qian B, Zhuang L, Chen H, Chen T, Shen J, Guo J, Feng Y, Pei Z. Characterization of a wheat-Thinopyrum bessarabicum (T2JS-2BS.2BL) translocation line. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 121:589-97. [PMID: 20407740 DOI: 10.1007/s00122-010-1332-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 04/01/2010] [Indexed: 05/07/2023]
Abstract
Thinopyrum bessarabicum (2n = 2x = 14, JJ or E(b)E(b)) is an important genetic resource for wheat improvement due to its salinity tolerance and disease resistance. Development of wheat-Th. bessarabicum translocation lines will facilitate its practical utilization in wheat improvement. In this study, a novel wheat-Th. bessarabicum translocation line T2JS-2BS.2BL, which carries a segment of Th. bessarabicum chromosome arm 2JS was identified and further characterized using sequential chromosome C-banding, genomic in situ hybridization (GISH), dual-color fluorescent in situ hybridization (FISH) and DNA markers. The translocation breakpoint was mapped within bin C-2BS1-0.53 of chromosome 2B through marker analysis. Compared to the Chinese Spring (CS) parent and to CS-type lines, the translocation line has more fertile spikes per plant, longer spikes, more grains per spike and higher yield per plant, which suggests that the alien segment carries yield-related genes. However, plants with the translocation are also taller, head later and have lower 1,000-kernel weight than CS or CS-type lines. By using markers specific to the barley photoperiod response gene Ppd-H1, it was determined that the late heading date was conferred by a recessive allele located on the 2JS segment. In addition, four markers specific for the translocated segment were identified, which can be used for marker-aided screening.
Collapse
Affiliation(s)
- Zengjun Qi
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Tomita M, Asao M, Kuraki A. Effective isolation of retrotransposons and repetitive DNA families from the wheat genome. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2010; 52:679-691. [PMID: 20590997 DOI: 10.1111/j.1744-7909.2010.00954.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
New classes of repetitive DNA elements were effectively identified by isolating small fragments of the elements from the wheat genome. A wheat A genome library was constructed from Triticum monococcum by degenerate cleavage with EcoO109I, the recognition sites of which consisted of 5'-PuGGNCCPy-3' multi-sequences. Three novel repetitive sequences pTm6, pTm69 and pTm58 derived from the A genome were screened and tested for high copy number using a blotting approach. pTm6 showed identity with integrase domains of the barley Ty1-Copia-retrotransposon BARE-1 and pTm58 showed similarity to the barley Ty3-gypsy-like retrotransposon Romani. pTm69, however, constituted a tandem array with useful genomic specificities, but did not share any identity with known repetitive elements. This study also sought to isolate wheat D-genome-specific repetitive elements regardless of the level of methylation, by genomic subtraction. Total genomic DNA of Aegilops tauschii was cleaved into short fragments with a methylation-insensitive 4 bp cutter, MboI, and then common DNA sequences between Ae. tauschii and Triticum turgidum were subtracted by annealing with excess T. turgidum genomic DNA. The D genome repetitive sequence pAt1 was isolated and used to identify an additional novel repetitive sequence family from wheat bacterial artificial chromosomes with a size range of 1 395-1 850 bp. The methods successfully led pathfinding of two unique repetitive families.
Collapse
Affiliation(s)
- Motonori Tomita
- Molecular Genetics Laboratory, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan.
| | | | | |
Collapse
|
116
|
Deumling B. Sequence arrangement of a highly methylated satellite DNA of a plant, Scilla: A tandemly repeated inverted repeat. Proc Natl Acad Sci U S A 2010; 78:338-42. [PMID: 16592953 PMCID: PMC319048 DOI: 10.1073/pnas.78.1.338] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
G+C-rich satellite DNA, representing about 19% of total nuclear DNA, was isolated from various tissues of the monocotyledonous plant, Scilla siberica, by using Ag(+)-Cs(2)SO(4) gradient techniques. This satellite DNA had an unusually high melting point and a high methylcytosine (m(5)C) content ( approximately 25% of total bases; m(5)C/cytosine ratio approximately 1.5) and was localized, by in situ hybridization, in the heterochromatin regions of the chromosomes. Digestion with restriction endonuclease Hae III yielded a series of fragments ranging from 35 to several hundred nucleotide pairs. The major fragments, I-IV (35, 50, 59, and 69, nucleotide pairs, respectively), were isolated, and their nucleotide sequences were determined. The dominant fragment I was a highly symmetrical molecule, with a basically palindromic arrangement. This sequence represented the basic unit of Scilla satellite DNA and was tandemly repeated many times, with some base substitutions and multiple successive insertions of the tetranucleotide G-T-C-C. The dinucleotide CpG was the commonest nearest-neighbor sequence. Thin layer chromatography, DNA sequence analysis, and gas chromatography combined with mass spectrometry showed the high m(5)C content (m(5)C/Cyt = 2.2 and 2.8, respectively, for fragments II and III). Identical cleavage fragments were found in satellite DNAs from two other species of this genus (S. amoena and S. ingridae), which suggests that this constitutively methylated sequence is evolutionarily stable. The sequence arrangement of this plant satellite DNA is compared with those reported for several animal satellite DNAs.
Collapse
Affiliation(s)
- B Deumling
- Department of Membrane Biology and Biochemistry, Institute of Cell and Tumor Biology, German Cancer Research Center, D-6900 Heidelberg, Federal Republic of Germany
| |
Collapse
|
117
|
Szakács É, Molnár-Láng M. Molecular cytogenetic evaluation of chromosome instability inTriticum aestivum—Secale cereale disomic addition lines. J Appl Genet 2010; 51:149-52. [DOI: 10.1007/bf03195723] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
118
|
Evolutionary analysis of the CACTA DNA-transposon Caspar across wheat species using sequence comparison and in situ hybridization. Mol Genet Genomics 2010; 284:11-23. [DOI: 10.1007/s00438-010-0544-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Accepted: 05/04/2010] [Indexed: 01/17/2023]
|
119
|
Molnár-Láng M, Cseh A, Szakács E, Molnár I. Development of a wheat genotype combining the recessive crossability alleles kr1kr1kr2kr2 and the 1BL.1RS translocation, for the rapid enrichment of 1RS with new allelic variation. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 120:1535-45. [PMID: 20145905 DOI: 10.1007/s00122-010-1274-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 01/19/2010] [Indexed: 05/18/2023]
Abstract
The main objective of the present work was to develop a wheat genotype containing both the recessive crossability alleles (kr1kr1kr2kr2), allowing high crossability between 6x wheat and diploid rye, and the 1BL.1RS wheat/rye translocation chromosome. This wheat genotype could be used as a recipient partner in wheat-rye crosses for the efficient introduction of new allelic variation into 1RS in translocation wheats. After crossing the wheat cultivars 'Mv Magdaléna' and 'Mv Béres', which carry the 1BL.1RS translocation involving the 1RS chromosome arm from 'Petkus', with the line 'Mv9 kr1', 117 F(2) plants were analysed for crossability, ten of which had higher than 50% seed set with rye and thus presumably carried the kr1kr1kr2kr2 alleles. Four of the ten plants contained the 1BL.1RS translocation in the disomic condition as detected by genomic in situ hybridization (GISH). The wheat x rye F(1) hybrids produced between these lines and the rye cultivar 'Kriszta' were analysed in meiosis using GISH. 1BL.1RS/1R chromosome pairing was detected in 62.4% of the pollen mother cells. The use of fluorescent in situ hybridization (FISH) with the repetitive DNA probes pSc119.2, Afa family and pTa71 allowed the 1R and 1BL.1RS chromosomes to be identified. The presence of the 1RS arm from 'Kriszta' besides that of 'Petkus' was demonstrated in the F(1) hybrids using the rye SSR markers RMS13 and SCM9. In four of the 22 BC(1) progenies analysed, only 'Kriszta'-specific bands were observed with these markers, though the presence of the 1BL.1RS translocation was detected using GISH. It can be concluded that recombination occurred between the 'Petkus' and 'Kriszta' 1RS chromosome arms in the translocated chromosome in these plants.
Collapse
Affiliation(s)
- Márta Molnár-Láng
- Agricultural Research Institute of the Hungarian Academy of Sciences, POB 19, Martonvásár, 2462, Hungary.
| | | | | | | |
Collapse
|
120
|
Evtushenko EV, Elisafenko EA, Vershinin AV. The relationship between two tandem repeat families in rye heterochromatin. Mol Biol 2010. [DOI: 10.1134/s0026893310010012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
121
|
Possible ancient origin of heterochromatic JNK sequences in chromosomes 2R of Secale vavilovii Grossh. J Appl Genet 2010; 51:1-8. [PMID: 20145294 DOI: 10.1007/bf03195704] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Employing FISH analysis as well as BLAST and CUSTAL W (1.82) programs, we investigated types of DNA nucleotide sequences building an additional heterochromatic band in 2R chromosomes of 3 lines of Secale vavilovii Grossh. The probes used in FISH analysis were designed based on the reverse transcriptase sequence of Ty1-copia and Ty3-gypsy retrotransposons and the 5S rRNA gene sequence. No hybridization signals from the reverse transcriptase probes were observed in the chromosome region where the additional band occurs. On the other hand, signals were observed after hybridization with the 5S rDNA probe, clearly suggesting the presence of that type of sequences in the analyzed heterochromatin band. Using BLAST and CUSTAL W programs, we revealed high similarity of the JNK1 sequence to the 5S rRNA gene from Hordeum chilense (HCH1016, HCH1018, 88%) and to a fragment of the 5S rRNA sequence of H. marinum (HMAR003, 97%). In addition, the same fragment of JNK1 was shown to be very similar to the part of the Angela retrotransposon (92%) as well as to the SNAC 426K20-1 transposon (89%) belonging to CACTA family, both from Triticum monococcum, and to Zingeria biebersteiniana pericentromeric sequences (78%). The similarity of JNK1 to those sequences may be accidental or the JNK1 may represent an ancient mobile genetic element that caught the 5S rRNA sequence. During the evolution those sequences might have been accumulated in the particular region on the 2R chromosome. Our results suggest that the additional heterochromatin band in chromosomes 2R of S. vavilovii is a collection of defective genes and/or mobile genetic elements.
Collapse
|
122
|
Zoshchuk SA, Zoshchuk NV, Amosova AV, Dedkova OS, Badaeva ED. Intraspecific divergence in wheats of the Emmer group using in situ hybridization with the Spelt-1 family of tandem repeats. RUSS J GENET+ 2009. [DOI: 10.1134/s102279540911012x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
123
|
Dedkova OS, Badaeva ED, Amosova AV, Martynov SP, Ruanet VV, Mitrofanova OP, Pukhal’skiy VA. Diversity and the origin of the European population of Triticum dicoccum (Schrank) Schuebl. As revealed by chromosome analysis. RUSS J GENET+ 2009. [DOI: 10.1134/s1022795409090099] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
124
|
Anamthawat-Jónsson K, Wenke T, Thórsson AT, Sveinsson S, Zakrzewski F, Schmidt T. Evolutionary diversification of satellite DNA sequences from Leymus (Poaceae: Triticeae). Genome 2009; 52:381-90. [PMID: 19370093 DOI: 10.1139/g09-013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The genus Leymus (lymegrass) comprises about 30 polyploid, perennial, temperate grass species in the tribe Triticeae (family Poaceae). Previous studies indicated a large diversity in the Leymus genome, and therefore, the aim of this study was to isolate new repetitive DNA sequences that can be used for differentiating Leymus species and elucidating their genomic relationships. A C0t-1 DNA plasmid library was generated from genomic DNA of American tetraploid species Leymus triticoides. A family of highly repetitive satellite DNA sequences, designated Lt1, was obtained from this library. The Lt1 family consisted of 380 bp SacI repeating units arranging in tandem arrays. A 120 bp MspI subfamily was discovered within this family, indicating that cytosine methylation may have played an important role in the evolution of satellite sequences. The Lt1 satellite was localized in the subtelomeric heterochromatic blocks of L. triticoides chromosomes, which are present on all chromosomes and often on both arms. The Lt1 sequences are abundant in L. triticoides but absent in its closely related species Leymus racemosus. Significant homology was found between the Lt1 family and numerous repetitive sequences from Poaceae species, indicating that the Lt1 is an ancient family of tandemly repeated sequences in grasses.
Collapse
|
125
|
Coriton O, Barloy D, Huteau V, Lemoine J, Tanguy AM, Jahier J. Assignment of Aegilops variabilis Eig chromosomes and translocations carrying resistance to nematodes in wheat. Genome 2009; 52:338-46. [PMID: 19370089 DOI: 10.1139/g09-011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The allotetraploid species Aegilops variabilis Eig (2n = 28, UUSvSv) belongs to the tribe Triticeae and is closely related to wheat. One accession, Ae. variabilis No. 1, was found to be resistant to the cereal cyst nematode (CCN) and the root-knot nematode (RKN). As the genetic variability for resistance to those two pests is limited within wheat, this accession was crossed to bread wheat. Previous work enabled the development of two addition lines and two translocation lines carrying resistance. Here, we demonstrate, using genomic in situ hybridization, that there is no U-Sv interchange in the parental accession of Ae. variabilis. However, there are multiple rearrangements in the Sv chromosomes. The Ae. variabilis chromosome carrying the CreX gene for resistance to CCN combined segments with homoeology to wheat groups 1, 2, 4, and 6. The CreX gene belongs to the group 1 part and it was likely to have been introduced into chromosome 1BL at a similar location as the previously found QTL QCre.srd-1B for CCN resistance. The second Ae. variabilis chromosome carrying CreY and Rkn2 combined segments with homoeology to wheat groups 2, 4, and 7 on its short arm and group 3 on its long arm. It was designated as 3Sv. The two genes for resistance are carried by its long arm and have been transferred to wheat chromosome 3BL through homoeologous and genetically balanced recombination. Different SSR markers present in the introgressed segments could be used in marker-assisted selection.
Collapse
Affiliation(s)
- Olivier Coriton
- UMR 118 APBV-INRA - Agrocampus Ouest-Universite de Rennes 1, BP 35327, F-35653 Le Rheu, France.
| | | | | | | | | | | |
Collapse
|
126
|
Molnár I, Benavente E, Molnár-Láng M. Detection of intergenomic chromosome rearrangements in irradiated Triticum aestivum--Aegilops biuncialis amphiploids by multicolour genomic in situ hybridization. Genome 2009; 52:156-65. [PMID: 19234564 DOI: 10.1139/g08-114] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The frequency and pattern of irradiation-induced intergenomic chromosome rearrangements were analysed in the mutagenized (M0) and the first selfed (M1) generations of Triticum aestivum L. - Aegilops biuncialis Vis. amphiploids (2n = 70, AABBDDUbUbMbMb) by multicolour genomic in situ hybridization (mcGISH). mcGISH allowed the simultaneous discrimination of individual Ae. biuncialis genomes and wheat chromosomes. Dicentric chromosomes, fragments, and terminal translocations were most frequently induced by gamma-irradiation, but centric fusions and internal exchanges were also more abundant in the treated plants than in control amphiploids. Rearrangements involving the Ub genome (Ub-type aberrations) were more frequent than those involving the Mb genome (Mb-type aberrations). This irradiation sensitivity of the Ub chromosomes was attributed to their centromeric or near-centromeric regions, since Ub-type centric fusions were significantly more abundant than Mb-type centric fusions at all irradiation doses. Dicentrics completely disappeared, but centric fusions and translocations were well transmitted from M0 to M1. Identification of specific chromosomes involved in some rearrangements was attempted by sequential fluorescence in situ hybridization with a mix of repeated DNA probes and GISH on the same slide. The irradiated amphiploids formed fewer seeds than untreated plants, but normal levels of fertility were recovered in their offspring. The irradiation-induced wheat - Ae. biuncialis intergenomic translocations will facilitate the successful introgression of drought tolerance and other alien traits into bread wheat.
Collapse
Affiliation(s)
- István Molnár
- Agricultural Research Institute of the Hungarian Academy of Sciences, H-2462, Martonvasar, POB 19, Hungary.
| | | | | |
Collapse
|
127
|
Yuan WY, Tomita M. Centromeric distribution of 350-family inDasypyrum villosumand its application to identifyingDasypyrumchromatin in the wheat genome. Hereditas 2009; 146:58-66. [DOI: 10.1111/j.1601-5223.2009.02110.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
128
|
Tomita M, Akai K, Morimoto T. Genomic Subtraction Recovers Rye-Specific DNA Elements Enriched in the Rye Genome. Mol Biotechnol 2009; 42:160-7. [DOI: 10.1007/s12033-009-9151-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Accepted: 01/22/2009] [Indexed: 11/24/2022]
|
129
|
Marín S, Martín A, Barro F. Comparative FISH mapping of two highly repetitive DNA sequences in Hordeum chilense (Roem. et Schult.). Genome 2008; 51:580-8. [PMID: 18650948 DOI: 10.1139/g08-044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hordeum chilense Roem. et Schult. (2n = 14) is an autogamous wild barley from Chile and Argentina included in the section Anisolepis Nevski. This species shows interesting agronomic traits that can be incorporated into crop plant species. Hordeum chilense has been successfully crossed with species of the genus Aegilops. Among the amphiploids obtained, the hexaploid tritordeum (2n = 6x = 42, AABBHchHch) is outstanding and shows good agronomic characteristics, suggesting its potential either as a new crop or as a bridge species to introgress interesting traits into cultivated cereals. The aim of the present work was to study the hybridization patterns of the two repetitive DNA probes pAs1 and pSc119.2 to evaluate their utility for the identification of H. chilense chromosomes. Fourteen lines of H. chilense were analyzed with fluorescent in situ hybridization using probes pSc119.2 and pAs1. The probe pAs1 was more widely dispersed than pSc119.2 over the H. chilense (Hch) genome. We found 89 different signals for pAs1, distributed evenly over the whole genome, and 10 for pSc119.2, located mainly over the telomeric regions. Five distinct hybridization signals were found for pAs1 and four distinct signals for pSc119.2. These signals allow the identification of different H. chilense lines. For example, centromeric signals for pAs1 on the short arms of chromosomes 1 and 7 identify line H46, and a telomeric signal for pSc119.2 on the short arm of chromosome 2 identifies line H1. A high degree of polymorphism in the hybridization patterns was found, confirming the extensive variability present in H. chilense. This work provides tools for the identification of H. chilense chromosomes in different genetic backgrounds.
Collapse
Affiliation(s)
- S Marín
- Departamento de Mejora Genética Vegetal, Instituto de Agricultura Sostenible (CSIC), Apdo. 4084, 14080 Cordoba, Spain
| | | | | |
Collapse
|
130
|
Badaeva ED, Dedkova OS, Koenig J, Bernard S, Bernard M. Analysis of introgression of Aegilops ventricosa Tausch. genetic material in a common wheat background using C-banding. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2008; 117:803-11. [PMID: 18597067 DOI: 10.1007/s00122-008-0821-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2008] [Accepted: 06/04/2008] [Indexed: 05/16/2023]
Abstract
Seven Triticum aestivum (cv. Moisson)-Aegilops ventricosa addition lines and four VPM-1 lines were studied by C-banding, and compared with the parental common wheat cultivars Marne-Desprez (hereafter Marne), Moisson, and A. ventricosa lines 10 and 11. All of the VPM-1 lines had similar C-banding patterns and carried the same major 5B:7B translocation as the parental Marne cultivar. According to the C-banding analysis, the VPM-1 lines carry a complete 7D(7D(v)) chromosome substitution and a translocation involving the 5D and 5D(v) chromosomes. However, the translocation of the 2N(v)/6N(v) chromosome of A. ventricosa to the short arm of the 2A chromosome of wheat that had been identified in an earlier study using molecular analysis (Bonhomme A, Gale MD, Koebner RMD, Nicolas P, Jahier J, Bernard M in Theor Appl Genet 90:1042-1048, 1995; Jahier J, Abelard P, Tanguy AM, Dedryver F, Rivoal R, Khatkar S, Bariana HS Plant Breed 120:125-128, 2001) was not detected in our study. However, the appearance of a small pAs1 site at the tip of the chromosome 2A short arm in VPM-1 could be indicative of a minor translocation of the A. ventricosa chromosome. The 5B:7B translocation was also found in all seven T. aestivum-A. ventricosa addition lines, although it was not present in the parental common wheat cultivar Moisson. These lines showed different introgression patterns; besides the addition of the five N(v)-genome chromosomes, they also possessed different D(D(v)) genome substitutions or translocations. A whole arm translocation between chromosome 1N(v) and 3D(v) was identified in lines v86 and v137, and also in the A. ventricosa line 10. This observation lends further support to the idea that A. ventricosa line 10, rather than line 11, was used to develop a set of wheat A. ventricosa addition lines.
Collapse
Affiliation(s)
- E D Badaeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, Moscow 119991, Russia.
| | | | | | | | | |
Collapse
|
131
|
Navrátilová A, Koblížková A, Macas J. Survey of extrachromosomal circular DNA derived from plant satellite repeats. BMC PLANT BIOLOGY 2008; 8:90. [PMID: 18721471 PMCID: PMC2543021 DOI: 10.1186/1471-2229-8-90] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Accepted: 08/22/2008] [Indexed: 05/19/2023]
Abstract
BACKGROUND Satellite repeats represent one of the most dynamic components of higher plant genomes, undergoing rapid evolutionary changes of their nucleotide sequences and abundance in a genome. However, the exact molecular mechanisms driving these changes and their eventual regulation are mostly unknown. It has been proposed that amplification and homogenization of satellite DNA could be facilitated by extrachromosomal circular DNA (eccDNA) molecules originated by recombination-based excision from satellite repeat arrays. While the models including eccDNA are attractive for their potential to explain rapid turnover of satellite DNA, the existence of satellite repeat-derived eccDNA has not yet been systematically studied in a wider range of plant genomes. RESULTS We performed a survey of eccDNA corresponding to nine different families and three subfamilies of satellite repeats in ten species from various genera of higher plants (Arabidopsis, Oryza, Pisum, Secale, Triticum and Vicia). The repeats selected for this study differed in their monomer length, abundance, and chromosomal localization in individual species. Using two-dimensional agarose gel electrophoresis followed by Southern blotting, eccDNA molecules corresponding to all examined satellites were detected. EccDNA occurred in the form of nicked circles ranging from hundreds to over eight thousand nucleotides in size. Within this range the circular molecules occurred preferentially in discrete size intervals corresponding to multiples of monomer or higher-order repeat lengths. CONCLUSION This work demonstrated that satellite repeat-derived eccDNA is common in plant genomes and thus it can be seriously considered as a potential intermediate in processes driving satellite repeat evolution. The observed size distribution of circular molecules suggests that they are most likely generated by molecular mechanisms based on homologous recombination requiring long stretches of sequence similarity.
Collapse
Affiliation(s)
- Alice Navrátilová
- Biology Centre ASCR, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice, CZ-37005, Czech Republic
| | - Andrea Koblížková
- Biology Centre ASCR, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice, CZ-37005, Czech Republic
| | - Jiří Macas
- Biology Centre ASCR, Institute of Plant Molecular Biology, Branišovská 31, České Budějovice, CZ-37005, Czech Republic
| |
Collapse
|
132
|
Tomita M, Shinohara K, Morimoto M. Revolver is a new class of transposon-like gene composing the triticeae genome. DNA Res 2008; 15:49-62. [PMID: 18303044 PMCID: PMC2650628 DOI: 10.1093/dnares/dsm029] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Revolver discovered in the Triticeae plant is a novel class of transposon-like gene and a major component of the large cereal genome. An 89 bp segment of Revolver that is enriched in the genome of rye was isolated by deleting the DNA sequences common to rye and wheat. The entire structure of Revolver was determined by using rye genomic clones, which were screened by the 89 bp probe. Revolver consists of 2929-3041 bp with an inverted repeated sequence on each end and is dispersed through all seven chromosomes of the rye genome. Revolver is transcriptionally active, and the isolated full-length cDNA (726 bp) reveals that Revolver harbors a single gene consisting of three exons (342, 88, and 296 bp) and two introns (750 and 1237 bp), and encodes 139 amino acid residues of protein, which shows similarity to some transcriptional regulators. Revolver variants ranging from 2665 to 4269 bp, in which 5' regions were destructed, indicate structural diversities around the first exon. Revolver does not share identity with any known class I or class II autonomous transposable elements of any living species. DNA blot analysis of Triticeae plants shows that Revolver has existed since the diploid progenitor of wheat, and has been amplified or lost in several species during the evolution of the Triticeae.
Collapse
Affiliation(s)
- Motonori Tomita
- Molecular Genetics Laboratory, Faculty of Agriculture, Tottori University, 101, Koyama-minami 4-chome, Tottori City, Tottori 680-8553, Japan.
| | | | | |
Collapse
|
133
|
Shcherban AB, Badaeva ED, Amosova AV, Adonina IG, Salina EA. Genetic and epigenetic changes of rDNA in a synthetic allotetraploid, Aegilops sharonensis x Ae. umbellulata. Genome 2008; 51:261-71. [PMID: 18356962 DOI: 10.1139/g08-006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The synthetic allotetraploid Aegilops sharonensis x Ae. umbellulata (genomic formula S(sh)U) was used to study inheritance and expression of 45S rDNA during early stages of allopolyploid formation. Using silver staining, we revealed suppression of the NORs (nucleolar organizing regions) from the S(sh) genome in response to polyploidization. Most allopolyploid plants of the S(2)-S(4) generations retained the chromosomal location of 45S rDNA typical for the parental species, except for two S(3) plants in which a deletion of the rDNA locus on one of the homologous 6S(sh) chromosomes was revealed. In addition, we found a decrease in NOR signal intensity on both 6S(sh) chromosomes in a portion of the S(3) and S(4) allopolyploid plants. As Southern hybridization showed, the allopolyploid plants demonstrated additive inheritance of parental rDNA units together with contraction of copy number of some rDNA families inherited from Ae. sharonensis. Also, we identified a new variant of amplified rDNA unit with MspAI1 restriction sites characteristic of Ae. umbellulata. These genetic alterations in the allopolyploid were associated with comparative hypomethylation of the promoter region within the Ae. umbellulata-derived rDNA units. The fast uniparental elimination of rDNA observed in the synthetic allopolyploid agrees well with patterns observed previously in natural wheat allotetraploids.
Collapse
Affiliation(s)
- A B Shcherban
- Institute of Cytology and Genetics, Lavrentiev ave. 10, Novosibirsk, 630090, Russia.
| | | | | | | | | |
Collapse
|
134
|
|
135
|
Cuadrado A, Cardoso M, Jouve N. Physical organisation of simple sequence repeats (SSRs) in Triticeae: structural, functional and evolutionary implications. Cytogenet Genome Res 2008; 120:210-9. [PMID: 18504349 DOI: 10.1159/000121069] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2007] [Indexed: 11/19/2022] Open
Abstract
A significant fraction of the nuclear DNA of all eukaryotes is occupied by simple sequence repeats (SSRs) or microsatellites. This type of sequence has sparked great interest as a means of studying genetic variation, linkage mapping, gene tagging and evolution. Although SSRs at different positions in a gene help determine the regulation of expression and the function of the protein produced, little attention has been paid to the chromosomal organisation and distribution of these sequences, even in model species. This review discusses the main achievements in the characterisation of long-range SSR organisation in the chromosomes of Triticum aestivum L., Secale cereale L., and Hordeum vulgare L. (all members of Triticeae). We have detected SSRs using an improved FISH technique based on the random primer labelling of synthetic oligonucleotides (15-24 bases) in multi-colour experiments. Detailed information on the presence and distribution of AC, AG and all the possible classes of trinucleotide repeats has been acquired. These data have revealed the motif-dependent and non-random chromosome distributions of SSRs in the different genomes, and allowed the correlation of particular SSRs with chromosome areas characterised by specific features (e.g., heterochromatin, euchromatin and centromeres) in all three species. The present review provides a detailed comparative study of the distribution of these SSRs in each of the seven chromosomes of the genomes A, B and D of wheat, H of barley and R of rye. The importance of SSRs in plant breeding and their possible role in chromosome structure, function and evolution is discussed.
Collapse
Affiliation(s)
- A Cuadrado
- Department of Cell Biology and Genetics, University of Alcala, Madrid, Spain.
| | | | | |
Collapse
|
136
|
Sepsi A, Molnár I, Szalay D, Molnár-Láng M. Characterization of a leaf rust-resistant wheat-Thinopyrum ponticum partial amphiploid BE-1, using sequential multicolor GISH and FISH. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2008; 116:825-34. [PMID: 18224300 DOI: 10.1007/s00122-008-0716-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Accepted: 01/08/2008] [Indexed: 05/19/2023]
Abstract
In situ hybridization (multicolor GISH and FISH) was used to characterize the genomic composition of the wheat-Thinopyrum ponticum partial amphiploid BE-1. The amphiploid is a high-protein line having resistance to leaf rust (Puccinia recondita f. sp. tritici) and powdery mildew (Blumeria graminis f. sp. tritici) and has in total 56 chromosomes per cell. Multicolor GISH using J, A and D genomic probes showed 16 chromosomes originating from Thinopyrum ponticum and 14 A genome, 14 B genome and 12 D genome chromosomes. Six of the Th. ponticum chromosomes carried segments different from the J genome in their centromeric regions. It was demonstrated that these alien chromosome segments did not originate from the A, B or D genomes of wheat, so the translocation chromosomes were considered to be J(s) type chromosomes carrying segments similar to the S genome near the centromeres. Rearrangements between the A and D genomes of wheat were detected. FISH using Afa family, pSc119.2 and pTa71 probes allowed the identification of all the wheat chromosomes present and the determination of the chromosomes involved in the translocations. The 4A and 7A chromosomes were identified as being involved in intergenomic translocations. The replaced wheat chromosome was identified as 7D. The localization of these repetitive DNA clones on the Th. ponticum chromosomes of the amphiploid was described in the present study. On the basis of their multicolor FISH patterns, the alien chromosomes could be arranged in eight pairs and could also be differentiated unequivocally from each other.
Collapse
Affiliation(s)
- A Sepsi
- Agricultural Research Institute of the Hungarian Academy of Sciences, 2462, Martonvásár, Hungary
| | | | | | | |
Collapse
|
137
|
|
138
|
BALDAUF F, SCHUBERT V, METZLAFF M. Repeated DNA sequences of Aegilops markgrafii (Greuter) Hammer var. markgrafii‘. Cloning, sequencing and analysis of distribution in Poaceae species. Hereditas 2008. [DOI: 10.1111/j.1601-5223.1992.tb00802.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
139
|
ANAMTHAWAT-JÓNSSON K, HESLOP-HARRISON JS. Species specific DNA sequences in the Triticeae. Hereditas 2008. [DOI: 10.1111/j.1601-5223.1992.tb00799.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
140
|
VERSHININ AV, SALINA EA, SVITASHEV SK. Is there a connection between genomic changes and wide hybridization? Hereditas 2008. [DOI: 10.1111/j.1601-5223.1992.tb00826.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
141
|
Vershinin AV, Salina EA, Svitashev SK. Is there a connection between genomic changes and wide hybridization? Hereditas 2008; 116:213-7. [PMID: 1517115 DOI: 10.1111/j.1601-5223.1992.tb00144.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The structural organization of a set of highly repetitive DNA sequences (HRS) of barley (Hordeum vulgare) was studied by blot-hybridization in the genomes of seven Hordeum L. species and several Hordeum x Secale hybrids. The copy numbers of the sequences, and length and intensity of the hybridization fragments varied among barley species; so, this set appeared to be useful as molecular markers for barley species. Structural rearrangements of some HRS were observed in hybrids. It was noteworthy that the genomic changes in the hybrids partially coincided with those that take place during species divergence; so, chromosomal rearrangements are likely to proceed according to certain rules. The possibility of cryptic mobile elements participating in the genomic rearrangements under stress factors of the remote hybridization, is discussed, the primary structure of a Bam HI fragment (999 bp long) of Hordeum vulgare DNA being the example.
Collapse
Affiliation(s)
- A V Vershinin
- Institute of Cytology and Genetics, Novosibirsk, USSR
| | | | | |
Collapse
|
142
|
Baldauf F, Schubert V, Metzlaff M. Repeated DNA sequences of Aegilops markgrafii (Greuter) Hammer var. markgrafii: cloning, sequencing and analysis of distribution in Poaceae species. Hereditas 2008; 116:71-8. [PMID: 1629032 DOI: 10.1111/j.1601-5223.1992.tb00207.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Total DNA of Aegilops markgrafii (Greuter) Hammer var. markgrafii was shot gun cloned. From all the recombinants containing repetitive sequences 1-2% hybridized preferentially with the Ae. markgrafii genome and were almost absent in wheat. The cloned sequences are disperse distributed over the Aegilops chromosomes and show the typical features of eukaryotic repetitive DNA. Five specific probes were tested for their applicability in a screening program on 68 Poaceae accessions.
Collapse
Affiliation(s)
- F Baldauf
- Institute of Genetics, Martin-Luther-University, Halle-Wittenberg, Germany
| | | | | |
Collapse
|
143
|
|
144
|
BASSI PAOLA. QUANTITATIVE VARIATIONS OF NUCLEAR DNA DURING PLANT DEVELOPMENT: A CRITICAL ANALYSIS. Biol Rev Camb Philos Soc 2008. [DOI: 10.1111/j.1469-185x.1990.tb01424.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
145
|
Corredor E, Lukaszewski AJ, Pachón P, Allen DC, Naranjo T. Terminal regions of wheat chromosomes select their pairing partners in meiosis. Genetics 2007; 177:699-706. [PMID: 17720899 PMCID: PMC2034636 DOI: 10.1534/genetics.107.078121] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many plant species, including important crops like wheat, are polyploids that carry more than two sets of genetically related chromosomes capable of meiotic pairing. To safeguard a diploid-like behavior at meiosis, many polyploids evolved genetic loci that suppress incorrect pairing and recombination of homeologues. The Ph1 locus in wheat was proposed to ensure homologous pairing by controlling the specificity of centromere associations that precede chromosome pairing. Using wheat chromosomes that carry rye centromeres, we show that the centromere associations in early meiosis are not based on homology and that the Ph1 locus has no effect on such associations. Although centromeres indeed undergo a switch from nonhomologous to homologous associations in meiosis, this process is driven by the terminally initiated synapsis. The centromere has no effect on metaphase I chiasmate chromosome associations: homologs with identical or different centromeres, in the presence and absence of Ph1, pair the same. A FISH analysis of the behavior of centromeres and distal chromomeres in telocentric and bi-armed chromosomes demonstrates that it is not the centromeric, but rather the subtelomeric, regions that are involved in the correct partner recognition and selection.
Collapse
Affiliation(s)
- Eduardo Corredor
- Departamento de Genética, Facultad de Biología, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
146
|
Plant highly repeated satellite DNA: Molecular evolution, distribution and use for identification of hybrids. SYST BIODIVERS 2007. [DOI: 10.1017/s147720000700240x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
147
|
Variation of the Nuclear, Subnuclear and Chromosomal Flavanol Deposition in Hemlock and Rye. Int J Mol Sci 2007. [DOI: 10.3390/i8070635] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
148
|
Zoshchuk SA, Badaeva ED, Zoshchuk NV, Adonina IG, Shcherban’ AB, Salina EA. Intraspecific divergence in wheats of the Timopheevi group as revealed by in situ hybridization with tandem repeats of the Spelt1 and Spelt52 families. RUSS J GENET+ 2007. [DOI: 10.1134/s1022795407060063] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
149
|
Schneider A, Linc G, Molnár I, Molnár-Láng M. Molecular cytogenetic characterization of Aegilops biuncialis and its use for the identification of 5 derived wheat-Aegilops biuncialis disomic addition lines. Genome 2007; 48:1070-82. [PMID: 16391676 DOI: 10.1139/g05-062] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of the experiments was to produce and identify different Triticum aestivum-Aegilops biuncialis disomic addition lines. To facilitate the exact identification of the Ae. biuncialis chromosomes in these Triticum aestivum-Ae. biuncialis disomic additions, it was necessary to analyze the fluorescence in situ hybridization (FISH) pattern of Ae. biuncialis (2n = 4x = 28, U(b)U(b)M(b)M(b)), comparing it with the diploid progenitors (Aegilops umbellulata, 2n = 2x = 14, UU and Aegilops comosa, 2n = 2x = 14, MM). To identify the Ae. biuncialis chromosomes, FISH was carried out using 2 DNA clones (pSc119.2 and pAs1) on Ae. biuncialis and its 2 diploid progenitor species. Differences in the hybridization patterns of all chromosomes were observed among the 4 Ae. umbellulata accessions, the 4 Ae. comosa accessions, and the 3 Ae. biuncialis accessions analyzed. The hybridization pattern of the M genome was more variable than that of the U genome. Five different wheat-Ae. biuncialis addition lines were produced from the wheat-Ae. biuncialis amphiploids produced earlier in Martonvásár. The 2M, 3M, 7M, 3U, and 5U chromosome pairs were identified with FISH using 3 repetitive DNA clones (pSc119.2, pAs1, and pTa71) in the disomic chromosome additions produced. Genomic in situ hybridization (GISH) was used to differentiate the Ae. biuncialis chromosomes from wheat, but no chromosome rearrangements between wheat and Ae. biuncialis were detected in the addition lines.
Collapse
Affiliation(s)
- Annamária Schneider
- Agricultural Research Institute of the Hungarian Academy of Sciences, Martonvásár
| | | | | | | |
Collapse
|
150
|
Salina EA, Lim KY, Badaeva ED, Shcherban AB, Adonina IG, Amosova AV, Samatadze TE, Vatolina TY, Zoshchuk SA, Leitch AR. Phylogenetic reconstruction of Aegilops section Sitopsis and the evolution of tandem repeats in the diploids and derived wheat polyploids. Genome 2007; 49:1023-35. [PMID: 17036077 DOI: 10.1139/g06-050] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The evolution of 2 tandemly repeated sequences Spelt1 and Spelt52 was studied in Triticum species representing 2 evolutionary lineages of wheat and in Aegilops sect. Sitopsis, putative donors of their B/G genomes. Using fluorescence in situ hybridization we observed considerable polymorphisms in the hybridization patterns of Spelt1 and Spelt52 repeats between and within Triticum and Aegilops species. Between 2 and 28 subtelomeric sites of Spelt1 probe were detected in Ae. speltoidies, depending on accession. From 8 to 12 Spelt1 subtelomeric sites were observed in species of Timopheevi group (GAt genome), whereas the number of signals in emmer/aestivum accessions was significantly less (from 0 to 6). Hybridization patterns of Spelt52 in Ae. speltoides, Ae. longissima, and Ae. sharonensis were species specific. Subtelomeric sites of Spelt52 repeat were detected only in T. araraticum (T. timopheevii), and their number and chromosomal location varied between accessions. Superimposing copy number data onto our phylogenetic scheme constructed from RAPD data suggests 2 major independent amplifications of Spelt52 and 1 of Spelt1 repeats in Aegilops divergence. It is likely that the Spelt1 amplification took place in the ancient Ae. speltoides before the divergence of polyploid wheats. The Spelt52 repeat was probably amplified in the lineage of Ae. speltoides prior to divergence of the allopolyploid T. timopheevii but after the divergence of T. durum. In a separate amplification event, Spelt52 copy number expanded in the common ancestor of Ae. longissima and Ae. sharonensis.
Collapse
Affiliation(s)
- Elena A Salina
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|