101
|
Lee J, Lee J. Hypoxia-inducible Factor-1 (HIF-1)-independent hypoxia response of the small heat shock protein hsp-16.1 gene regulated by chromatin-remodeling factors in the nematode Caenorhabditis elegans. J Biol Chem 2012; 288:1582-9. [PMID: 23229554 DOI: 10.1074/jbc.m112.401554] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Oxygen deprivation is accompanied by the coordinated expression of numerous hypoxia-responsive genes, many of which are controlled by hypoxia-inducible factor-1 (HIF-1). However, the cellular response to hypoxia is not likely to be mediated by HIF-1 alone, and little is known about HIF-1-independent hypoxia responses. To better establish the molecular mechanisms of HIF-1-independent hypoxia responses, we sought to characterize the molecular basis of the hypoxia response of the hsp-16.1 gene in the nematode Caenorhabditis elegans; this gene has been shown to be induced by hypoxia independently of hif-1. Using affinity purification followed by LC-MS/MS, we identified HMG-1.2 as a protein that binds to a specific promoter region under hypoxic conditions. By systematic prediction followed by validation of these interactions through RNAi, we identified the chromatin modifiers isw-1 and hda-1, histone H4, and NURF-1 chromatin-remodeling factors as new components of the hif-1-independent hypoxia response. These data suggest that the modulation of nucleosome positioning at the hsp-16.1 promoter may be important for the hypoxia response. In addition, we found that calcineurin acts independently of hif-1 to modulate the cellular response to hypoxia and that calcium ions are necessary for the induction of hsp-16.1 under hypoxic conditions.
Collapse
Affiliation(s)
- Jihyun Lee
- Institute of Molecular Biology and Genetics, Research Center for Cellulomics, Department of Biological Sciences, World Class University Department of Biophysics and Chemical Biology, Seoul National University, Seoul 151-742, South Korea
| | | |
Collapse
|
102
|
Nair SS, Kumar R. Chromatin remodeling in cancer: a gateway to regulate gene transcription. Mol Oncol 2012; 6:611-9. [PMID: 23127546 PMCID: PMC3538127 DOI: 10.1016/j.molonc.2012.09.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 09/30/2012] [Indexed: 01/01/2023] Open
Abstract
Cancer cells are remarkably adaptive to diverse survival strategies, probably due to its ability to interpret signaling cues differently than the normal cells. It appears as if cancer cells are constantly sampling, selecting and adapting signaling pathways to favor its proliferation. This process of successful adaptive evolution eventually renders a retractile nature to therapeutic regimens, fueling to the process of cancer progression. Based on plethora of available information, it is now evident that multiple signaling pathways eventually converge, perhaps, in a tempo-spatial manner, onto DNA template-dependent dynamic processes. Considering the complexity and packaging of eukaryotic genome, this process involves energy-dependent sub-events mediated by chromatin remodelers. Chromatin remodeler proteins function as gatekeepers and constitute a major determinant of accessibility of accessory factors to nucleosome DNA, allowing a wide repertoire of biological functions. And thus, aberrant expression or epigenetic modulation of remodeler proteins confers a unique ability to cancer cells to reprogram its genome for the maintenance of oncogenic phenotypes. Cancer cells can uniquely select a multi-subunit remodeler proteome for oncogenic advantage. This review summarizes our current understanding and importance of remodeler and chromatin proteins in cancer biology and also highlights the paradoxical role of proteins with or without dual-regulator functions. It is our hope that an in-depth understanding of these events is likely to provide a next set of opportunities for novel strategies for targeted cancer therapeutics.
Collapse
Affiliation(s)
- Sujit S Nair
- Department of Biochemistry and Molecular Biology, The McCormick Genomic and Proteomic Center, The School of Medicine & Health Sciences, The George Washington University, Washington, DC 20037, USA
| | | |
Collapse
|
103
|
Chiang C, Ayyanathan K. Snail/Gfi-1 (SNAG) family zinc finger proteins in transcription regulation, chromatin dynamics, cell signaling, development, and disease. Cytokine Growth Factor Rev 2012; 24:123-31. [PMID: 23102646 DOI: 10.1016/j.cytogfr.2012.09.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 09/24/2012] [Indexed: 12/12/2022]
Abstract
The Snail/Gfi-1 (SNAG) family of zinc finger proteins is a group of transcriptional repressors that have been intensively studied in mammals. SNAG family members are similarly structured with an N-terminal SNAG repression domain and a C-terminal zinc finger DNA binding domain, however, the spectrum of target genes they regulate and the ranges of biological functions they govern vary widely between them. They play active roles in transcriptional regulation, formation of repressive chromatin structure, cellular signaling and developmental processes. They can also result in disease states due to deregulation. We have performed a thorough investigation of the relevant literature and present a comprehensive mini-review. Based on the available information, we also propose a mechanism by which SNAG family members may function.
Collapse
Affiliation(s)
- Cindy Chiang
- Department of Biological Sciences, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA
| | | |
Collapse
|
104
|
Bayarmagnai B, Nicolay BN, Islam ABMMK, Lopez-Bigas N, Frolov MV. Drosophila GAGA factor is required for full activation of the dE2f1-Yki/Sd transcriptional program. Cell Cycle 2012; 11:4191-202. [PMID: 23070566 DOI: 10.4161/cc.22486] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The Hippo signaling pathway regulates organ size by controlling the activity of the transcriptional co-activator Yorkie (Yki). Yki is recruited to its target genes by DNA-binding proteins such as Scalloped (Sd). In addition, transcription factor dE2f1, of the Retinoblastoma (Rb) pathway, cooperates with Yki/Sd to synergistically activate a set of common cell cycle target genes. However, little is known about other factors that ensure the proper transcriptional output of Hippo signaling. In this report we identified the chromatin protein GAGA factor (GAF), which is encoded by the Trithorax-like (Trl) gene, as a novel and critical partner in transcriptional regulation by Yki/Sd and dE2f1. We show that GAF is required for the full activation of target genes by dE2f1 and Yki/Sd; while ablation of GAF compromises both normal and inappropriate cell proliferation driven by Yki and dE2f1 in multiple tissues. The importance of GAF is further supported by strong genetic interactions between GAF and the Rb and Hippo pathways. Additionally, we show that GAF directly interacts with RBF, a Drosophila pRB homolog, and partially co-localizes with RBF on polytene chromosomes. Collectively, our data provide a novel connection between a chromatin-binding protein and a transcriptional program governed by the Hippo and Rb pathways.
Collapse
Affiliation(s)
- Battuya Bayarmagnai
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | | | | | | | | |
Collapse
|
105
|
The emerging roles of ATP-dependent chromatin remodeling enzymes in nucleotide excision repair. Int J Mol Sci 2012; 13:11954-11973. [PMID: 23109894 PMCID: PMC3472786 DOI: 10.3390/ijms130911954] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 08/30/2012] [Accepted: 08/31/2012] [Indexed: 12/14/2022] Open
Abstract
DNA repair in eukaryotic cells takes place in the context of chromatin, where DNA, including damaged DNA, is tightly packed into nucleosomes and higher order chromatin structures. Chromatin intrinsically restricts accessibility of DNA repair proteins to the damaged DNA and impacts upon the overall rate of DNA repair. Chromatin is highly responsive to DNA damage and undergoes specific remodeling to facilitate DNA repair. How damaged DNA is accessed, repaired and restored to the original chromatin state, and how chromatin remodeling coordinates these processes in vivo, remains largely unknown. ATP-dependent chromatin remodelers (ACRs) are the master regulators of chromatin structure and dynamics. Conserved from yeast to humans, ACRs utilize the energy of ATP to reorganize packing of chromatin and control DNA accessibility by sliding, ejecting or restructuring nucleosomes. Several studies have demonstrated that ATP-dependent remodeling activity of ACRs plays important roles in coordination of spatio-temporal steps of different DNA repair pathways in chromatin. This review focuses on the role of ACRs in regulation of various aspects of nucleotide excision repair (NER) in the context of chromatin. We discuss current understanding of ATP-dependent chromatin remodeling by various subfamilies of remodelers and regulation of the NER pathway in vivo.
Collapse
|
106
|
Simonova OB, Modestova EA, Vorontsova JE, Cherezov RO. Screening of genomic regions affecting lawc/Trf2 gene expression during Drosophila melanogaster development. Russ J Dev Biol 2012. [DOI: 10.1134/s1062360412050086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
107
|
Abstract
Cellular reprogramming involves the artificial dedifferentiation of somatic cells to a pluripotent state. When affected by overexpressing specific transcription factors, the process is highly inefficient, as only 0.1-1% of cells typically undergo the transformation. This low efficiency has been attributed to high kinetic barriers that affect all cells equally and can only be overcome by rare stochastic events. The barriers to reprogramming are likely to involve transformations of chromatin state because (i) inhibitors of chromatin-modifying enzymes can enhance the efficiency of reprogramming and (ii) knockdown or knock-out of chromatin-modifying enzymes can lower the efficiency of reprogramming. Here, we review the relationship between chromatin state transformations (chromatin reprogramming) and cellular reprogramming, with an emphasis on transcription factors, chromatin remodeling factors, histone modifications and DNA methylation.
Collapse
|
108
|
Reilly MJ, Larsen JD, Sullivan MO. Histone H3 Tail Peptides and Poly(ethylenimine) Have Synergistic Effects for Gene Delivery. Mol Pharm 2012; 9:1031-40. [DOI: 10.1021/mp200372s] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Meghan J. Reilly
- Department
of Chemical Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - John D. Larsen
- Department
of Chemical Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Millicent O. Sullivan
- Department
of Chemical Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
109
|
Larsen JD, Reilly MJ, Sullivan MO. Using the Epigenetic Code To Promote the Unpackaging and Transcriptional Activation of DNA Polyplexes for Gene Delivery. Mol Pharm 2012; 9:1041-51. [DOI: 10.1021/mp200373p] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- John D. Larsen
- Department
of Chemical Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| | - Meghan J. Reilly
- Department
of Chemical Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| | - Millicent O. Sullivan
- Department
of Chemical Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| |
Collapse
|
110
|
Gilchrist DA, Adelman K. Coupling polymerase pausing and chromatin landscapes for precise regulation of transcription. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:700-6. [PMID: 22406341 DOI: 10.1016/j.bbagrm.2012.02.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 02/17/2012] [Accepted: 02/23/2012] [Indexed: 12/22/2022]
Abstract
Altering gene expression in response to stimuli is a pivotal mechanism through which organisms execute developmental programs and respond to changes in their environment. Packaging of promoter DNA into chromatin can greatly impact the ability of RNA polymerase II to access and transcribe a gene. Promoter chromatin environments thus play a central role in establishing transcriptional output appropriate for specific environmental conditions or developmental states. Recent genomic studies have illuminated general principles of chromatin organization and deepened our understanding of how promoter sequence and nucleosome architecture may impact gene expression. Concurrently, pausing of polymerase during early elongation has been recognized as an important event influencing transcription of genes within stimulus-responsive networks. Promoters regulated by pausing are now recognized to possess a distinct chromatin architecture that may facilitate the plasticity of gene expression in response to signaling events. Here we review advances in understanding chromatin and pausing, and explore how coupling Pol II pausing to distinct promoter architectures may help organisms achieve flexible yet precise transcriptional control. This article is part of a Special Issue entitled: Chromatin in time and space.
Collapse
Affiliation(s)
- Daniel A Gilchrist
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA.
| | | |
Collapse
|
111
|
Feller C, Prestel M, Hartmann H, Straub T, Söding J, Becker PB. The MOF-containing NSL complex associates globally with housekeeping genes, but activates only a defined subset. Nucleic Acids Res 2011; 40:1509-22. [PMID: 22039099 PMCID: PMC3287193 DOI: 10.1093/nar/gkr869] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The MOF (males absent on the first)-containing NSL (non-specific lethal) complex binds to a subset of active promoters in Drosophila melanogaster and is thought to contribute to proper gene expression. The determinants that target NSL to specific promoters and the circumstances in which the complex engages in regulating transcription are currently unknown. Here, we show that the NSL complex primarily targets active promoters and in particular housekeeping genes, at which it colocalizes with the chromatin remodeler NURF (nucleosome remodeling factor) and the histone methyltransferase Trithorax. However, only a subset of housekeeping genes associated with NSL are actually activated by it. Our analyses reveal that these NSL-activated promoters are depleted of certain insulator binding proteins and are enriched for the core promoter motif ‘Ohler 5’. Based on these results, it is possible to predict whether the NSL complex is likely to regulate a particular promoter. We conclude that the regulatory capacity of the NSL complex is highly context-dependent. Activation by the NSL complex requires a particular promoter architecture defined by combinations of chromatin regulators and core promoter motifs.
Collapse
Affiliation(s)
- Christian Feller
- Adolf-Butenandt-Institute and Center for Integrated Protein Science of the Ludwig-Maximilians-University, Schillerstraße 44, 80336 München, Germany
| | | | | | | | | | | |
Collapse
|
112
|
Alkhatib SG, Landry JW. The nucleosome remodeling factor. FEBS Lett 2011; 585:3197-207. [PMID: 21920360 PMCID: PMC4839296 DOI: 10.1016/j.febslet.2011.09.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 09/02/2011] [Accepted: 09/02/2011] [Indexed: 12/19/2022]
Abstract
An essential component of the chromatin remodeling machinery is NURF (Nucleosome Remodeling Factor), the founding member of the ISWI family of chromatin remodeling complexes. In vertebrates and invertebrates alike, NURF has many important functions in chromatin biology including regulating transcription, establishing boundary elements, and promoting higher order chromatin structure. Since NURF is essential to many aspects of chromatin biology, knowledge of its function is required to fully understand how the genome is regulated. This review will summarize what is currently known of its biological functions, conservation in the most prominent model organisms, biochemical functions as a nucleosome remodeling enzyme, and its possible relevance to human cancer.
Collapse
Affiliation(s)
- Suehyb G. Alkhatib
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, United States
| | - Joseph W. Landry
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, United States
| |
Collapse
|
113
|
Levine M. Paused RNA polymerase II as a developmental checkpoint. Cell 2011; 145:502-11. [PMID: 21565610 DOI: 10.1016/j.cell.2011.04.021] [Citation(s) in RCA: 220] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 02/18/2011] [Accepted: 04/25/2011] [Indexed: 11/18/2022]
Abstract
The textbook view of gene activation is that the rate-limiting step is the interaction of RNA polymerase II (Pol II) with the gene's promoter. However, studies in a variety of systems, including human embryonic stem cells and the early Drosophila embryo, have begun to challenge this view. There is increasing evidence that differential gene expression often depends on the regulation of transcription elongation via the release of Pol II from the proximal promoter. I review the implications of this mechanism of gene activation with respect to the orderly unfolding of complex gene networks governing animal development.
Collapse
Affiliation(s)
- Michael Levine
- Division of Genetics, Genomics, and Development, Department of Molecular and Cell Biology, Center for Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
114
|
Ruthenburg AJ, Li H, Milne TA, Dewell S, McGinty RK, Yuen M, Ueberheide B, Dou Y, Muir TW, Patel DJ, Allis CD. Recognition of a mononucleosomal histone modification pattern by BPTF via multivalent interactions. Cell 2011; 145:692-706. [PMID: 21596426 DOI: 10.1016/j.cell.2011.03.053] [Citation(s) in RCA: 264] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 09/07/2010] [Accepted: 03/30/2011] [Indexed: 12/13/2022]
Abstract
Little is known about how combinations of histone marks are interpreted at the level of nucleosomes. The second PHD finger of human BPTF is known to specifically recognize histone H3 when methylated on lysine 4 (H3K4me2/3). Here, we examine how additional heterotypic modifications influence BPTF binding. Using peptide surrogates, three acetyllysine ligands are indentified for a PHD-adjacent bromodomain in BPTF via systematic screening and biophysical characterization. Although the bromodomain displays limited discrimination among the three possible acetyllysines at the peptide level, marked selectivity is observed for only one of these sites, H4K16ac, in combination with H3K4me3 at the mononucleosome level. In support, these two histone marks constitute a unique trans-histone modification pattern that unambiguously resides within a single nucleosomal unit in human cells, and this module colocalizes with these marks in the genome. Together, our data call attention to nucleosomal patterning of covalent marks in dictating critical chromatin associations.
Collapse
Affiliation(s)
- Alexander J Ruthenburg
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Genome-wide characterization of chromatin binding and nucleosome spacing activity of the nucleosome remodelling ATPase ISWI. EMBO J 2011; 30:1766-77. [PMID: 21448136 DOI: 10.1038/emboj.2011.98] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 02/25/2011] [Indexed: 12/22/2022] Open
Abstract
The evolutionarily conserved ATP-dependent nucleosome remodelling factor ISWI can space nucleosomes affecting a variety of nuclear processes. In Drosophila, loss of ISWI leads to global transcriptional defects and to dramatic alterations in higher-order chromatin structure, especially on the male X chromosome. In order to understand if chromatin condensation and gene expression defects, observed in ISWI mutants, are directly correlated with ISWI nucleosome spacing activity, we conducted a genome-wide survey of ISWI binding and nucleosome positioning in wild-type and ISWI mutant chromatin. Our analysis revealed that ISWI binds both genic and intergenic regions. Remarkably, we found that ISWI binds genes near their promoters causing specific alterations in nucleosome positioning at the level of the Transcription Start Site, providing an important insights in understanding ISWI role in higher eukaryote transcriptional regulation. Interestingly, differences in nucleosome spacing, between wild-type and ISWI mutant chromatin, tend to accumulate on the X chromosome for all ISWI-bound genes analysed. Our study shows how in higher eukaryotes the activity of the evolutionarily conserved nucleosome remodelling factor ISWI regulates gene expression and chromosome organization genome-wide.
Collapse
|
116
|
Landry JW, Banerjee S, Taylor B, Aplan PD, Singer A, Wu C. Chromatin remodeling complex NURF regulates thymocyte maturation. Genes Dev 2011; 25:275-86. [PMID: 21289071 DOI: 10.1101/gad.2007311] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The maturation of T cells requires signaling from both cytokine and T-cell receptors to gene targets in chromatin, but how chromatin architecture influences this process is largely unknown. Here we show that thymocyte maturation post-positive selection is dependent on the nucleosome remodeling factor (NURF). Depletion of Bptf (bromodomain PHD finger transcription factor), the largest NURF subunit, in conditional mouse mutants results in developmental arrest beyond the CD4(+) CD8(int) stage without affecting cellular proliferation, cellular apoptosis, or coreceptor gene expression. In the Bptf mutant, specific subsets of genes important for thymocyte development show aberrant expression. We also observed defects in DNase I-hypersensitive chromatin structures at Egr1, a prototypical Bptf-dependent gene that is required for efficient thymocyte development. Moreover, chromatin binding of the sequence-specific factor Srf (serum response factor) to Egr1 regulatory sites is dependent on Bptf function. Physical interactions between NURF and Srf suggest a model in which Srf recruits NURF to facilitate transcription factor binding at Bptf-dependent genes. These findings provide evidence for causal connections between NURF, transcription factor occupancy, and gene regulation during thymocyte development.
Collapse
Affiliation(s)
- Joseph W Landry
- Laboratory of Biochemistry and Molecular Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
117
|
The Putzig-NURF nucleosome remodeling complex is required for ecdysone receptor signaling and innate immunity in Drosophila melanogaster. Genetics 2011; 188:127-39. [PMID: 21385730 DOI: 10.1534/genetics.111.127795] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Putzig (Pzg) was originally identified as being an integral component of the TRF2/DREF complex in Drosophila melanogaster, thereby regulating the transcriptional activation of replication-related genes. In a DREF-independent manner, Pzg was shown to mediate Notch target gene activation. This function of Pzg entails an association with the nucleosome remodeling factor complex NURF, which directly binds the ecdysone receptor EcR and coregulates targets of the EcR via the NURF-specific subunit Nurf-301. In contrast, Nurf-301 acts as a negative regulator of JAK/STAT signaling. Here, we provide evidence to show that Pzg is fundamental for these functions of NURF, apart from the regulation of Notch signaling activity. A jump-out mutagenesis provided us with a pzg null mutant displaying early larval lethality, defects in growth, and molting accompanied by aberrant feeding behavior. We show that Pzg is associated with EcR in vivo and required for the transcriptional induction of EcR target genes, whereas reduced ecdysteroid levels imply a NURF-independent function of Pzg. Moreover, pzg interferes with JAK/STAT-signaling activity by acting as a corepressor of Ken. Lamellocyte differentiation was consistently affected in a JAK/STAT mutant background and the expression level of defense response genes was elevated in pzg mutants, leading to the formation of melanotic tumors. Our results suggest that Pzg acts as an important partner of NURF in the regulation of EcR and JAK/STAT signaling.
Collapse
|
118
|
Chioda M, Vengadasalam S, Kremmer E, Eberharter A, Becker PB. Developmental role for ACF1-containing nucleosome remodellers in chromatin organisation. Development 2010; 137:3513-22. [PMID: 20843858 DOI: 10.1242/dev.048405] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The nucleosome remodelling complexes CHRAC and ACF of Drosophila are thought to play global roles in chromatin assembly and nucleosome dynamics. Disruption of the gene encoding the common ACF1 subunit compromises fly viability. Survivors show defects in chromatin assembly and chromatin-mediated gene repression at all developmental stages. We now show that ACF1 expression is under strict developmental control. The expression is strongly diminished during embryonic development and persists at high levels only in undifferentiated cells, including the germ cell precursors and larval neuroblasts. Constitutive expression of ACF1 is lethal. Cell-specific ectopic expression perturbs chromatin organisation and nuclear programmes. By monitoring heterochromatin formation during development, we have found that ACF1-containing factors are involved in the initial establishment of diversified chromatin structures, such as heterochromatin. Altering the levels of ACF1 leads to global and variegated deviations from normal chromatin organisation with pleiotropic defects.
Collapse
|
119
|
Abstract
The Putzig (Pzg) protein is associated with the NURF nucleosome remodeling complex, thereby promoting Notch target gene expression. Our findings suggest a novel Pzg-NURF complex that is responsible for the epigenetic regulation of Notch target genes. Drosophila putzig was identified as a member of the TRF2–DREF complex that is involved in core promoter selection. Additionally, putzig regulates Notch signaling, however independently of DREF. Here, we show that Putzig associates with the NURF complex. Loss of any NURF component including the NURF-specific subunit Nurf 301 impedes binding of Putzig to Notch target genes, suggesting that NURF recruits Putzig to these sites. Accordingly, Putzig can be copurified with any NURF member. Moreover, Nurf 301 mutants show reduced Notch target gene activity and enhance Notch mutant phenotypes. These data suggest a novel Putzig–NURF chromatin complex required for epigenetic activation of Notch targets.
Collapse
Affiliation(s)
- Sabrina J Kugler
- Institute of Genetics, University of Hohenheim, 70599 Stuttgart, Germany
| | | |
Collapse
|
120
|
Ye Y, Xiao Y, Wang W, Wang Q, Yearsley K, Wani AA, Yan Q, Gao JX, Shetuni BS, Barsky SH. Inhibition of Expression of the Chromatin Remodeling Gene, SNF2L, Selectively Leads to DNA Damage, Growth Inhibition, and Cancer Cell Death. Mol Cancer Res 2009; 7:1984-99. [DOI: 10.1158/1541-7786.mcr-09-0119] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
121
|
Boyle AP, Furey TS. High-resolution mapping studies of chromatin and gene regulatory elements. Epigenomics 2009; 1:319-329. [PMID: 20514362 DOI: 10.2217/epi.09.29] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Microarray and high-throughput sequencing technologies have enabled the development of comprehensive assays to identify locations of particular chromatin structures and regulatory elements. It is now possible to create genome-wide maps of DNA methylation, trans-factor binding sites, histone variants and histone tail modifications, nucleosome positions, regions of open chromatin, and chromosome locations and interactions. This review provides a summary of these new assays that are changing the way in which molecular biology research is being performed. While the generation of large amounts of data from these experiments is becoming increasingly easier, the development of corresponding analysis methods has progressed more slowly. It will likely be years before the full extent of the information contained in these data is fully appreciated.
Collapse
|
122
|
Stojanova A, Penn LZ. The role of INI1/hSNF5 in gene regulation and cancer. Biochem Cell Biol 2009; 87:163-77. [PMID: 19234532 DOI: 10.1139/o08-113] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The precise modulation of chromatin dynamics is an essential and complex process that ensures the integrity of transcriptional regulation and prevents the transition of a normal cell into a cancerous one. ATP-dependent chromatin remodeling enzymes are multisubunit complexes that play a pivotal role in this operation through the mobilization of nucleosomes to promote DNA accessibility. Chromatin remodeling is mediated by the interaction of DNA-binding factors and individual members of this complex, directing its targeted recruitment to specific regulatory regions. In this review, we discuss a core subunit of the SWI/SNF ATP-dependent chromatin remodeling complex, known as INI1/hSNF5, in the context of transcriptional regulation and impact on cancer biology. In particular, we review current knowledge of the diverse protein interactions between INI1/hSNF5 and viral and cellular factors, with a special emphasis on the potent oncogene c-Myc.
Collapse
Affiliation(s)
- Angelina Stojanova
- Department of Medical Biophysics, University of Toronto, Toronto, ONM5G2M9, Canada
| | | |
Collapse
|
123
|
Abstract
A rigorous biochemical analysis of chromatin structure and function requires the assembly of chromatin in vitro. A useful alternative to reconstituting nucleosomal arrays from pure or recombinant histones by salt gradient dialysis is the assembly of more complex chromatin from assembly extracts under physiological conditions. Extracts from preblastoderm embryos have proven to be particularly efficient, due to the presence of large stores of native complexes of histones, histone chaperones and ATP-dependent nucleosome spacing factors. The resulting chromatin is an excellent approximation of physiological chromatin in vivo. This chapter describes the preparation of chromatin assembly extracts and the chromatin assembly reaction.
Collapse
|
124
|
Nongkhlaw M, Dutta P, Hockensmith JW, Komath SS, Muthuswami R. Elucidating the mechanism of DNA-dependent ATP hydrolysis mediated by DNA-dependent ATPase A, a member of the SWI2/SNF2 protein family. Nucleic Acids Res 2009; 37:3332-41. [PMID: 19324887 PMCID: PMC2691824 DOI: 10.1093/nar/gkp178] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The active DNA-dependent ATPase A domain (ADAAD), a member of the SWI2/SNF2 family, has been shown to bind DNA in a structure-specific manner, recognizing DNA molecules possessing double-stranded to single-stranded transition regions leading to ATP hydrolysis. Extending these studies we have delineated the structural requirements of the DNA effector for ADAAD and have shown that the single-stranded and double-stranded regions both contribute to binding affinity while the double-stranded region additionally plays a role in determining the rate of ATP hydrolysis. We have also investigated the mechanism of interaction of DNA and ATP with ADAAD and shown that each can interact independently with ADAAD in the absence of the other. Furthermore, the protein can bind to dsDNA as well as ssDNA molecules. However, the conformation change induced by the ssDNA is different from the conformational change induced by stem-loop DNA (slDNA), thereby providing an explanation for the observed ATP hydrolysis only in the presence of the double-stranded:single-stranded transition (i.e. slDNA).
Collapse
Affiliation(s)
- Macmillan Nongkhlaw
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | | | | | | | | |
Collapse
|
125
|
Giresi PG, Lieb JD. Isolation of active regulatory elements from eukaryotic chromatin using FAIRE (Formaldehyde Assisted Isolation of Regulatory Elements). Methods 2009; 48:233-9. [PMID: 19303047 DOI: 10.1016/j.ymeth.2009.03.003] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 03/05/2009] [Accepted: 03/07/2009] [Indexed: 10/21/2022] Open
Abstract
The binding of sequence-specific regulatory factors and the recruitment of chromatin remodeling activities cause nucleosomes to be evicted from chromatin in eukaryotic cells. Traditionally, these active sites have been identified experimentally through their sensitivity to nucleases. Here we describe the details of a simple procedure for the genome-wide isolation of nucleosome-depleted DNA from human chromatin, termed FAIRE (Formaldehyde Assisted Isolation of Regulatory Elements). We also provide protocols for different methods of detecting FAIRE-enriched DNA, including use of PCR, DNA microarrays, and next-generation sequencing. FAIRE works on all eukaryotic chromatin tested to date. To perform FAIRE, chromatin is crosslinked with formaldehyde, sheared by sonication, and phenol-chloroform extracted. Most genomic DNA is crosslinked to nucleosomes and is sequestered to the interphase, whereas DNA recovered in the aqueous phase corresponds to nucleosome-depleted regions of the genome. The isolated regions are largely coincident with the location of DNaseI hypersensitive sites, transcriptional start sites, enhancers, insulators, and active promoters. Given its speed and simplicity, FAIRE has utility in establishing chromatin profiles of diverse cell types in health and disease, isolating DNA regulatory elements en masse for further characterization, and as a screening assay for the effects of small molecules on chromatin organization.
Collapse
Affiliation(s)
- Paul G Giresi
- Department of Biology and Carolina Center for the Genome Sciences, University of North Carolina at Chapel Hill, CB #3280, 408 Fordham Hall, Chapel Hill, NC 27599-3280, USA
| | | |
Collapse
|
126
|
Davidson ME, Kerepesi LA, Soto A, Chan VT. d-Serine exposure resulted in gene expression changes implicated in neurodegenerative disorders and neuronal dysfunction in male Fischer 344 rats. Arch Toxicol 2009; 83:747-62. [DOI: 10.1007/s00204-009-0405-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Accepted: 01/15/2009] [Indexed: 01/09/2023]
|
127
|
Essential role of chromatin remodeling protein Bptf in early mouse embryos and embryonic stem cells. PLoS Genet 2008; 4:e1000241. [PMID: 18974875 PMCID: PMC2570622 DOI: 10.1371/journal.pgen.1000241] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Accepted: 09/29/2008] [Indexed: 12/22/2022] Open
Abstract
We have characterized the biological functions of the chromatin remodeling protein Bptf (Bromodomain PHD-finger Transcription Factor), the largest subunit of NURF (Nucleosome Remodeling Factor) in a mammal. Bptf mutants manifest growth defects at the post-implantation stage and are reabsorbed by E8.5. Histological analyses of lineage markers show that Bptf−/− embryos implant but fail to establish a functional distal visceral endoderm. Microarray analysis at early stages of differentiation has identified Bptf-dependent gene targets including homeobox transcriptions factors and genes essential for the development of ectoderm, mesoderm, and both definitive and visceral endoderm. Differentiation of Bptf−/− embryonic stem cell lines into embryoid bodies revealed its requirement for development of mesoderm, endoderm, and ectoderm tissue lineages, and uncovered many genes whose activation or repression are Bptf-dependent. We also provide functional and physical links between the Bptf-containing NURF complex and the Smad transcription factors. These results suggest that Bptf may co-regulate some gene targets of this pathway, which is essential for establishment of the visceral endoderm. We conclude that Bptf likely regulates genes and signaling pathways essential for the development of key tissues of the early mouse embryo. While the chromatin of eukaryotes provides an efficient means to compact large amounts of DNA into a small nucleus, it renders the DNA relatively inaccessible. ATP-dependent chromatin remodeling complexes mobilize nucleosomes and provide a means to gain access to DNA in chromatin. While the biochemical functions of chromatin remodeling complexes is well-characterized, less is known of their biological functions. In this manuscript, we elucidate the biological functions of Bptf, a subunit of the NURF chromatin remodeling complex. Our studies show that Bptf is required for the establishment of the anterior–posterior axis of the mouse embryo during the earliest stages of development. To understand its functions in tissue differentiation, we generated and characterized Bptf-mutant ES cells. Mutant embryonic stem cells show significant defects in the differentiation of ectoderm, endoderm, and mesoderm. Genome-wide analysis of gene expression defects during differentiation has identified many Bptf-dependent pathways including key regulators of ectoderm, endoderm, and mesoderm differentiation. Moreover, we have identified critical functions for Bptf during the TGFβ/Smad-induced expression of visceral endoderm and mesoderm markers, an important signaling pathway in the early embryo. These results suggest that chromatin remodeling by Bptf regulates key signaling pathways in the early mouse embryo.
Collapse
|
128
|
Petesch SJ, Lis JT. Rapid, transcription-independent loss of nucleosomes over a large chromatin domain at Hsp70 loci. Cell 2008; 134:74-84. [PMID: 18614012 DOI: 10.1016/j.cell.2008.05.029] [Citation(s) in RCA: 260] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Revised: 04/13/2008] [Accepted: 05/19/2008] [Indexed: 11/26/2022]
Abstract
To efficiently transcribe genes, RNA Polymerase II (Pol II) must overcome barriers imposed by nucleosomes and higher-order chromatin structure. Many genes, including Drosophila melanogaster Hsp70, undergo changes in chromatin structure upon activation. To characterize these changes, we mapped the nucleosome landscape of Hsp70 after an instantaneous heat shock at high spatial and temporal resolution. Surprisingly, we find an initial disruption of nucleosomes across the entire gene within 30 s after activation, faster than the rate of Pol II transcription, followed by a second further disruption within 2 min. This initial change occurs independently of Pol II transcription. Furthermore, the rapid loss of nucleosomes extends beyond Hsp70 and halts at the scs and scs' insulating elements. An RNAi screen of 28 transcription and chromatin-related factors reveals that depletion of heat shock factor, GAGA Factor, or Poly(ADP)-Ribose Polymerase or its activity abolishes the loss of nucleosomes upon Hsp70 activation.
Collapse
Affiliation(s)
- Steven J Petesch
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
129
|
Magnani L, Lee K, Fodor WL, Machaty Z, Cabot RA. Developmental capacity of porcine nuclear transfer embryos correlate with levels of chromatin-remodeling transcripts in donor cells. Mol Reprod Dev 2008; 75:766-76. [PMID: 18246531 DOI: 10.1002/mrd.20818] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Somatic cell nuclear transfer (SCNT) still retains important limitations. Impaired epigenetic reprogramming is considered responsible for altered gene expression and developmental failure in SCNT-derived embryos. After nuclear transfer the donor cell nucleus undergoes extensive changes in gene expression that involve epigenetic modifications and chromatin remodeling. We hypothesized that SNF2-type ATP-dependent chromatin factors contribute to epigenetic reprogramming and the relative amount of these factors in the donor cell affects developmental potential of the reconstructed embryos. In order to test this hypothesis, we assessed the relative amount of SNF2-type ATPases (Brahma, Brg1, SNF2H, SNF2L, CHD3, and CHD5) in three different donor cells as well as in porcine metaphase II oocytes. We performed SCNT with fetal fibroblast cells, olfactory bulb (OB) progenitor cells, and porcine skin originating sphere stem cells (PSOS). We found that OB-NT embryos and PSOS-NT embryos resulted in a higher morulae/blastocysts ratio as compared to fibroblast-NT embryos (23.53%, 16.98%, and 11.63%, respectively; P < 0.05). Fibroblast cells contained a significantly higher amount of SNF2L and CHD3 transcripts while Brg1 and SNF2H were the most expressed transcripts in all the cell lines analyzed. Metaphase II oocyte expression profile appeared to be unique compared to the cell lines analyzed. This work supports our hypothesis that an array of chromatin-remodeling proteins on donor cells may influence the chromatin structure, effect epigenetic reprogramming, and developmental potential.
Collapse
Affiliation(s)
- Luca Magnani
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | |
Collapse
|
130
|
ATAC is a double histone acetyltransferase complex that stimulates nucleosome sliding. Nat Struct Mol Biol 2008; 15:364-72. [DOI: 10.1038/nsmb.1397] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Accepted: 02/01/2008] [Indexed: 12/22/2022]
|
131
|
Brown E, Malakar S, Krebs JE. How many remodelers does it take to make a brain? Diverse and cooperative roles of ATP-dependent chromatin-remodeling complexes in development. Biochem Cell Biol 2008; 85:444-62. [PMID: 17713580 DOI: 10.1139/o07-059] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The development of a metazoan from a single-celled zygote to a complex multicellular organism requires elaborate and carefully regulated programs of gene expression. However, the tight packaging of genomic DNA into chromatin makes genes inaccessible to the cellular machinery and must be overcome by the processes of chromatin remodeling; in addition, chromatin remodeling can preferentially silence genes when their expression is not required. One class of chromatin remodelers, ATP-dependent chromatin-remodeling enzymes, can slide nucleosomes along the DNA to make specific DNA sequences accessible or inaccessible to regulators at a particular stage of development. While all ATPases in the SWI2/SNF2 superfamily share the fundamental ability to alter DNA accessibility in chromatin, they do not act alone, but rather, are subunits of a large assortment of protein complexes. Recent studies illuminate common themes by which the subunit compositions of chromatin-remodeling complexes specify the developmental roles that chromatin remodelers play in specific tissues and at specific stages of development, in response to specific signaling pathways and transcription factors. In this review, we will discuss the known roles in metazoan development of 3 major subfamilies of chromatin-remodeling complexes: the SNF2, ISWI, and CHD subfamilies.
Collapse
Affiliation(s)
- Elvin Brown
- Department of Biological Sciences, University of Alaska Anchorage, 3211 Providence Drive, Anchorage, AK 99508, USA
| | | | | |
Collapse
|
132
|
Abstract
Chromodomain/helicase/DNA-binding domain (CHD) proteins have been identified in a variety of organisms. Despite common features, such as their chromodomain and helicase domain, they have been described as having multiple roles and interacting partners. However, a common theme for the main role of CHD proteins appears to be linked to their ATP-dependent chromatin-remodeling activity. Their actual activity as either repressor or activator, and their cell or gene specificity, is connected to their interacting partner(s). In this minireview, we attempt to match the members of the CHD family with the presence of structural domains, cofactors, and cellular roles in the regulation of gene expression, recombination, genome organization, and chromatin structure, as well as their potential activity in RNA processing.
Collapse
Affiliation(s)
- J Adam Hall
- Department of Biological Sciences, Marshall University, 1 John Marshall Drive, Huntington, WV 25755, USA
| | | |
Collapse
|
133
|
Pal S, Sif S. Interplay between chromatin remodelers and protein arginine methyltransferases. J Cell Physiol 2008; 213:306-15. [PMID: 17708529 DOI: 10.1002/jcp.21180] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chromatin modifying enzymes have emerged as key regulators of all DNA based processes, which control cell growth, development, and differentiation. Recently, it has become clear that different chromatin remodeling and histone-modifying activities are involved in transcriptional activation and repression. Among the enzymes involved in regulating chromatin structure is the family of protein arginine methyltransferases (PRMTs) that specializes in methylating both histones as well as key cellular proteins. There are eleven different PRMT genes (PRMT1-11) whose biological function remains under explored. PRMTs regulate various cellular processes such as DNA repair and transcription, RNA processing, signal transduction, and nucleo-cytoplasmic localization. Like histone lysine methylation, methylation of histone arginine residues can either induce or inhibit transcription depending on the residue being modified and the type of methylation being introduced. In this review, we will focus on the latest findings and biological roles of ATP-dependent chromatin remodeling complexes and PRMT enzymes, and how their aberrant expression is linked to cancer.
Collapse
Affiliation(s)
- Sharmistha Pal
- Department of Molecular and Cellular Biochemistry, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
134
|
Abstract
Chromodomain/helicase/DNA-binding domain (CHD) proteins have been identified in a variety of organisms. Despite common features, such as their chromodomain and helicase domain, they have been described as having multiple roles and interacting partners. However, a common theme for the main role of CHD proteins appears to be linked to their ATP-dependent chromatin-remodeling activity. Their actual activity as either repressor or activator, and their cell or gene specificity, is connected to their interacting partner(s). In this minireview, we attempt to match the members of the CHD family with the presence of structural domains, cofactors, and cellular roles in the regulation of gene expression, recombination, genome organization, and chromatin structure, as well as their potential activity in RNA processing.
Collapse
|
135
|
Carré C, Ciurciu A, Komonyi O, Jacquier C, Fagegaltier D, Pidoux J, Tricoire H, Tora L, Boros IM, Antoniewski C. The Drosophila NURF remodelling and the ATAC histone acetylase complexes functionally interact and are required for global chromosome organization. EMBO Rep 2007; 9:187-92. [PMID: 18084186 DOI: 10.1038/sj.embor.7401141] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 11/13/2007] [Accepted: 11/16/2007] [Indexed: 11/09/2022] Open
Abstract
Drosophila Gcn5 is the catalytic subunit of the SAGA and ATAC histone acetylase complexes. Here, we show that mutations in Gcn5 and the ATAC component Ada2a induce a decondensation of the male X chromosome, similar to that induced by mutations in the Iswi and Nurf301 subunits of the NURF nucleosome remodelling complex. Genetic studies as well as transcript profiling analysis indicate that ATAC and NURF regulate overlapping sets of target genes during development. In addition, we find that Ada2a chromosome binding and histone H4-Lys12 acetylation are compromised in Iswi and Nurf301 mutants. Our results strongly suggest that NURF is required for ATAC to access the chromatin and to regulate global chromosome organization.
Collapse
Affiliation(s)
- Clément Carré
- Department of Developmental Biology/CNRS URA 2578, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Guillebault D, Cotterill S. The Drosophila Df31 Protein Interacts with Histone H3 Tails and Promotes Chromatin Bridging In vitro. J Mol Biol 2007; 373:903-12. [PMID: 17889901 DOI: 10.1016/j.jmb.2007.07.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 07/11/2007] [Accepted: 07/24/2007] [Indexed: 10/23/2022]
Abstract
Df31 is a small hydrophilic protein from Drosophila melanogaster that can act as a histone chaperone in vitro. The protein is also detected as an integral component of chromatin, present at approximately the same level as histone H1. We have developed a simple assay to measure protein binding to oligonucleosomes and used it to characterise the DF31-oligonucleosome interaction. DF31 bound to chromatin in vitro at a level comparable to that observed in vivo. The DF31-chromatin interaction required the presence of core histone tails but binding was independent of the presence of H1 in the chromatin. Multiple regions of DF31 contributed to the interaction. Df31-chromatin binding still occurred on chromatin containing only H3/4, and cross-linking experiments showed that Df31 made intimate contact with H3, suggesting that this might be the primary contact site. Finally, using immobilised chromatin templates, we showed that DF31 promoted interstrand bridging between two independent oligonucleosome chains. These results provide strong evidence for a structural role of DF31 in chromatin folding and give an indication of the mechanism involved.
Collapse
Affiliation(s)
- Delphine Guillebault
- Department of Basic Medical Sciences, St. Georges University London, London SW17 0RE, UK
| | | |
Collapse
|
137
|
Taverna SD, Li H, Ruthenburg AJ, Allis CD, Patel DJ. How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat Struct Mol Biol 2007; 14:1025-1040. [PMID: 17984965 PMCID: PMC4691843 DOI: 10.1038/nsmb1338] [Citation(s) in RCA: 1095] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Histones comprise the major protein component of chromatin, the scaffold in which the eukaryotic genome is packaged, and are subject to many types of post-translational modifications (PTMs), especially on their flexible tails. These modifications may constitute a 'histone code' and could be used to manage epigenetic information that helps extend the genetic message beyond DNA sequences. This proposed code, read in part by histone PTM-binding 'effector' modules and their associated complexes, is predicted to define unique functional states of chromatin and/or regulate various chromatin-templated processes. A wealth of structural and functional data show how chromatin effector modules target their cognate covalent histone modifications. Here we summarize key features in molecular recognition of histone PTMs by a diverse family of 'reader pockets', highlighting specific readout mechanisms for individual marks, common themes and insights into the downstream functional consequences of the interactions. Changes in these interactions may have far-reaching implications for human biology and disease, notably cancer.
Collapse
Affiliation(s)
- Sean D Taverna
- Laboratory of Chromatin Biology, The Rockefeller University, New York, New York 10021, USA
| | - Haitao Li
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | - Alexander J Ruthenburg
- Laboratory of Chromatin Biology, The Rockefeller University, New York, New York 10021, USA
| | - C David Allis
- Laboratory of Chromatin Biology, The Rockefeller University, New York, New York 10021, USA
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| |
Collapse
|
138
|
Nightingale KP, Baumann M, Eberharter A, Mamais A, Becker PB, Boyes J. Acetylation increases access of remodelling complexes to their nucleosome targets to enhance initiation of V(D)J recombination. Nucleic Acids Res 2007; 35:6311-21. [PMID: 17881376 PMCID: PMC2094086 DOI: 10.1093/nar/gkm650] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Targeted chromatin remodelling is essential for many nuclear processes, including the regulation of V(D)J recombination. ATP-dependent nucleosome remodelling complexes are important players in this process whose activity must be tightly regulated. We show here that histone acetylation regulates nucleosome remodelling complex activity to boost RAG cutting during the initiation of V(D)J recombination. RAG cutting requires nucleosome mobilization from recombination signal sequences. Histone acetylation does not stimulate nucleosome mobilization per se by CHRAC, ACF or their catalytic subunit, ISWI. Instead, we find the more open structure of acetylated chromatin regulates the ability of nucleosome remodelling complexes to access their nucleosome templates. We also find that bromodomain/acetylated histone tail interactions can contribute to this targeting at limited concentrations of remodelling complex. We therefore propose that the changes in higher order chromatin structure associated with histone acetylation contribute to the correct targeting of nucleosome remodelling complexes and this is a novel way in which histone acetylation can modulate remodelling complex activity.
Collapse
Affiliation(s)
- Karl P. Nightingale
- Institute of Biomedical Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK, Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK, Adolf Butenandt Institute for Molecular Biology, Schillerstrasse 44, D-80336 Munich, Germany and Institute of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Matthias Baumann
- Institute of Biomedical Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK, Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK, Adolf Butenandt Institute for Molecular Biology, Schillerstrasse 44, D-80336 Munich, Germany and Institute of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Anton Eberharter
- Institute of Biomedical Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK, Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK, Adolf Butenandt Institute for Molecular Biology, Schillerstrasse 44, D-80336 Munich, Germany and Institute of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Adamantios Mamais
- Institute of Biomedical Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK, Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK, Adolf Butenandt Institute for Molecular Biology, Schillerstrasse 44, D-80336 Munich, Germany and Institute of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Peter B. Becker
- Institute of Biomedical Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK, Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK, Adolf Butenandt Institute for Molecular Biology, Schillerstrasse 44, D-80336 Munich, Germany and Institute of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Joan Boyes
- Institute of Biomedical Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK, Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK, Adolf Butenandt Institute for Molecular Biology, Schillerstrasse 44, D-80336 Munich, Germany and Institute of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
- *To whom correspondence should be addressed. 44 113 343 314744 113 343 3167
| |
Collapse
|
139
|
Kugler SJ, Nagel AC. putzig is required for cell proliferation and regulates notch activity in Drosophila. Mol Biol Cell 2007; 18:3733-40. [PMID: 17634285 PMCID: PMC1995712 DOI: 10.1091/mbc.e07-03-0263] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We have identified the gene putzig (pzg) as a key regulator of cell proliferation and of Notch signaling in Drosophila. pzg encodes a Zn-finger protein that was found earlier within a macromolecular complex, including TATA-binding protein-related factor 2 (TRF2)/DNA replication-related element factor (DREF). This complex is involved in core promoter selection, where DREF functions as a transcriptional activator of replication-related genes. Here, we provide the first in vivo evidence that pzg is required for the expression of cell cycle and replication-related genes, and hence for normal developmental growth. Independent of its role in the TRF2/DREF complex, pzg acts as a positive regulator of Notch signaling that may occur by chromatin activation. Down-regulation of pzg activity inhibits Notch target gene activation, whereas Hedgehog (Hh) signal transduction and growth regulation are unaffected. Our findings uncover different modes of operation of pzg during imaginal development of Drosophila, and they provide a novel mechanism of Notch regulation.
Collapse
Affiliation(s)
- Sabrina J. Kugler
- Institute of Genetics (240), University of Hohenheim, 70599 Stuttgart, Germany
| | - Anja C. Nagel
- Institute of Genetics (240), University of Hohenheim, 70599 Stuttgart, Germany
| |
Collapse
|
140
|
Zhao Y, Lu J, Sun H, Chen X, Huang B. Roles of histone acetylation modification in basal and inducible expression of hsp26 gene in D. melanogaster. Mol Cell Biochem 2007; 306:1-8. [PMID: 17619947 DOI: 10.1007/s11010-007-9547-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Accepted: 06/21/2007] [Indexed: 10/23/2022]
Abstract
The promoter of the Drosophila hsp26 gene contains two DNase I-hypersensitive (DH) sites and a positioned nucleosome, and this open chromatin structure is required for heat-inducible expression. Histone acetylation modification participates in transcriptional regulation of genes by affecting the status of chromatin remodeling. In this study, we investigated the roles of histone acetylation modification on hsp26 expression in Drosophila. We showed that the histone deacetylase inhibitor (HDI) treatments of Drosophila larvae induced the histone H3 hyperacetylation at the promoter DH sites, which facilitated the binding of heat shock factor (HSF) to heat shock element (HSE). This resulted in a promoted transcription of hsp26 gene following the heat shock, and further increased the inducible expression of hsp26 gene. On the contrary, the HDI-induced histone H3 hyperacetylation in the middle nucleosome decreased the basal expression of hsp26 gene under the normal growth conditions. In addition, by following up the heat-shock time course, we showed that the histone acetylation level at the DH sites exhibited a drop-raise-drop change, while that at the positioned nucleosome underwent a raise-drop-raise-drop switchover. These results demonstrated the distinct roles played by histone acetylation modification in hsp26 gene basal and inducible expression regulation in D. melanogaster.
Collapse
Affiliation(s)
- Yanmei Zhao
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, PR China
| | | | | | | | | |
Collapse
|
141
|
Stephens GE, Xiao H, Lankenau DH, Wu C, Elgin SCR. Heterochromatin protein 2 interacts with Nap-1 and NURF: a link between heterochromatin-induced gene silencing and the chromatin remodeling machinery in Drosophila. Biochemistry 2007; 45:14990-9. [PMID: 17154536 PMCID: PMC2534143 DOI: 10.1021/bi060983y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heterochromatin protein 2 (HP2) is a nonhistone chromosomal protein from Drosophila melanogaster that binds to heterochromatin protein 1 (HP1) and has been implicated in heterochromatin-induced gene silencing. Heretofore, HP1 has been the only known binding partner of HP2, a large protein devoid of sequence motifs other than a pair of AT hooks. In an effort to identify proteins that interact with HP2 and assign functions to its various domains, nuclear proteins were fractionated under nondenaturing conditions. On separation of nuclear proteins, nucleosome assembly protein 1 (Nap-1) has an overlapping elution profile with HP2 (assayed by Western blot) and has been identified by mass spectrometry in fractions with HP2. Upon probing fractions in which HP2 and Nap-1 are both present, we find that the nucleosome remodeling factor (NURF), an ISWI-dependent chromatin remodeling complex, is also present. Results from coimmunoprecipitation experiments suggest that HP2 interacts with Nap-1 as well as with NURF; NURF appears to interact directly with both HP2 and Nap-1. Three distinct domains within HP2 mediate the interaction with NURF, allowing us to assign NURF binding domains in addition to the AT hooks and HP1 binding domains already mapped in HP2. Mutations in Nap-1 are shown to suppress position effect variegation, suggesting that Nap-1 functions to help to assemble chromatin into a closed form, as does HP2. On the basis of these interactions, we speculate that HP2 may cooperate with these factors in the remodeling of chromatin for silencing.
Collapse
Affiliation(s)
- Gena E. Stephens
- Department of Biology, Washington University, CB-1229, St. Louis, MO 63130
- Correspondence to be sent to: Gena E. Stephens, Telephone: 314-935-6837, Fax: 314-935-5125, E-mail:
| | - Hua Xiao
- Laboratory of Molecular Cell Biology, National Cancer Institute, Building 37, Room 6068, National Institutes of Health, Bethesda, Maryland 20892
| | - Dirk-H. Lankenau
- University of Heidelberg, Institute of Zoology, Im Neuenheimer Feld 230, D-69120 Heidelberg, Germany
| | - Carl Wu
- Laboratory of Molecular Cell Biology, National Cancer Institute, Building 37, Room 6068, National Institutes of Health, Bethesda, Maryland 20892
| | - Sarah C. R. Elgin
- Department of Biology, Washington University, CB-1229, St. Louis, MO 63130
| |
Collapse
|
142
|
van Vugt JJFA, Ranes M, Campsteijn C, Logie C. The ins and outs of ATP-dependent chromatin remodeling in budding yeast: biophysical and proteomic perspectives. ACTA ACUST UNITED AC 2007; 1769:153-71. [PMID: 17395283 DOI: 10.1016/j.bbaexp.2007.01.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Revised: 01/22/2007] [Accepted: 01/29/2007] [Indexed: 11/30/2022]
Abstract
ATP-dependent chromatin remodeling is performed by multi-subunit protein complexes. Over the last years, the identity of these factors has been unveiled in yeast and many parallels have been drawn with animal and plant systems, indicating that sophisticated chromatin transactions evolved prior to their divergence. Here we review current knowledge pertaining to the molecular mode of action of ATP-dependent chromatin remodeling, from single molecule studies to genome-wide genetic and proteomic studies. We focus on the budding yeast versions of SWI/SNF, RSC, DDM1, ISWI, CHD1, INO80 and SWR1.
Collapse
Affiliation(s)
- Joke J F A van Vugt
- Department of Molecular Biology, NCMLS, Radboud University, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
143
|
Gangaraju VK, Bartholomew B. Dependency of ISW1a chromatin remodeling on extranucleosomal DNA. Mol Cell Biol 2007; 27:3217-25. [PMID: 17283061 PMCID: PMC1899934 DOI: 10.1128/mcb.01731-06] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The nucleosome remodeling activity of ISW1a was dependent on whether ISW1a was bound to one or both extranucleosomal DNAs. ISW1a preferentially bound nucleosomes with an optimal length of approximately 33 to 35 bp of extranucleosomal DNA at both the entry and exit sites over nucleosomes with extranucleosomal DNA at only one entry or exit site. Nucleosomes with extranucleosomal DNA at one of the entry/exit sites were readily remodeled by ISW1a and stimulated the ATPase activity of ISW1a, while conversely, nucleosomes with extranucleosomal DNA at both entry/exit sites were unable either to stimulate the ATPase activity of ISW1a or to be mobilized. DNA footprinting revealed that a major conformational difference between the nucleosomes was the lack of ISW1a binding to nucleosomal DNA two helical turns from the dyad axis in nucleosomes with extranucleosomal DNA at both entry/exit sites. The Ioc3 subunit of ISW1a was found to be the predominant subunit associated with extranucleosomal DNA when ISW1a is bound either to one or to both extranucleosomal DNAs. These two conformations of the ISW1a-nucleosome complex are suggested to be the molecular basis for the nucleosome spacing activity of ISW1a on nucleosomal arrays. ISW1b, the other isoform of ISW1, does not have the same dependency for extranucleosomal DNA as ISW1a and, likewise, is not able to space nucleosomes.
Collapse
Affiliation(s)
- Vamsi K Gangaraju
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, 1245 Lincoln Dr., Neckers Bldg. Room 229, Carbondale, IL 62901-4413, USA
| | | |
Collapse
|
144
|
Rickards B, Flint SJ, Cole MD, LeRoy G. Nucleolin is required for RNA polymerase I transcription in vivo. Mol Cell Biol 2007; 27:937-48. [PMID: 17130237 PMCID: PMC1800701 DOI: 10.1128/mcb.01584-06] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2006] [Revised: 10/04/2006] [Accepted: 11/14/2006] [Indexed: 11/20/2022] Open
Abstract
Eukaryotic genomes are packaged with histones and accessory proteins in the form of chromatin. RNA polymerases and their accessory proteins are sufficient for transcription of naked DNA, but not of chromatin, templates in vitro. In this study, we purified and identified nucleolin as a protein that allows RNA polymerase II to transcribe nucleosomal templates in vitro. As immunofluorescence confirmed that nucleolin localizes primarily to nucleoli with RNA polymerase I, we demonstrated that nucleolin allows RNA polymerase I transcription of chromatin templates in vitro. The results of chromatin immunoprecipitation experiments established that nucleolin is associated with chromatin containing rRNA genes transcribed by RNA polymerase I but not with genes transcribed by RNA polymerase II or III. Knockdown of nucleolin by RNA interference resulted in specific inhibition of RNA polymerase I transcription. We therefore propose that an important function of nucleolin is to permit RNA polymerase I to transcribe nucleolar chromatin.
Collapse
Affiliation(s)
- Brenden Rickards
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | | | |
Collapse
|
145
|
Gangaraju VK, Bartholomew B. Mechanisms of ATP dependent chromatin remodeling. Mutat Res 2007; 618:3-17. [PMID: 17306844 PMCID: PMC2584342 DOI: 10.1016/j.mrfmmm.2006.08.015] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Accepted: 08/14/2006] [Indexed: 11/21/2022]
Abstract
The inter-relationship between DNA repair and ATP dependent chromatin remodeling has begun to become very apparent with recent discoveries. ATP dependent remodeling complexes mobilize nucleosomes along DNA, promote the exchange of histones, or completely displace nucleosomes from DNA. These remodeling complexes are often categorized based on the domain organization of their catalytic subunit. The biochemical properties and structural information of several of these remodeling complexes are reviewed. The different models for how these complexes are able to mobilize nucleosomes and alter nucleosome structure are presented incorporating several recent findings. Finally the role of histone tails and their respective modifications in ATP-dependent remodeling are discussed.
Collapse
Affiliation(s)
- Vamsi K Gangaraju
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL. 62901-4413, USA
| | | |
Collapse
|
146
|
Adkins NL, Hagerman TA, Georgel P. GAGA protein: a multi-faceted transcription factor. Biochem Cell Biol 2007; 84:559-67. [PMID: 16936828 DOI: 10.1139/o06-062] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The transition from transcription activation to repression is regulated at multiple levels by the DNA sequence and DNA modification to its compaction through chromatin packaging. The GAGA factor (GAF) is one of a few transcription factors that can regulate gene expression at multiple levels. It displays both activator/antirepressor and repressor activity, depending on its target genomic location. The GAF-mediated modulation of expression appears to be intimately linked with modifications of the chromatin structure. The GAF can associate with highly compacted heterochromatin, contributing to gene repression, or participate in nucleosome remodeling to activate specific genes. In this review, we are attempting to elucidate the contribution(s) of the various domains of the GAF to the recruitment of its functional partners, leading to seemingly opposite functions. We surveyed the current scientific literature for evidence of GAF involvement in regulatory events associated with changes of chromatin composition or conformation.
Collapse
Affiliation(s)
- Nicholas L Adkins
- Department of Biological Sciences, Marshall University, 1 John Marshall Drive, Huntington, WV, 25755, USA
| | | | | |
Collapse
|
147
|
Giresi PG, Kim J, McDaniell RM, Iyer VR, Lieb JD. FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) isolates active regulatory elements from human chromatin. Genome Res 2006; 17:877-85. [PMID: 17179217 PMCID: PMC1891346 DOI: 10.1101/gr.5533506] [Citation(s) in RCA: 689] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
DNA segments that actively regulate transcription in vivo are typically characterized by eviction of nucleosomes from chromatin and are experimentally identified by their hypersensitivity to nucleases. Here we demonstrate a simple procedure for the isolation of nucleosome-depleted DNA from human chromatin, termed FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements). To perform FAIRE, chromatin is crosslinked with formaldehyde in vivo, sheared by sonication, and phenol-chloroform extracted. The DNA recovered in the aqueous phase is fluorescently labeled and hybridized to a DNA microarray. FAIRE performed in human cells strongly enriches DNA coincident with the location of DNaseI hypersensitive sites, transcriptional start sites, and active promoters. Evidence for cell-type-specific patterns of FAIRE enrichment is also presented. FAIRE has utility as a positive selection for genomic regions associated with regulatory activity, including regions traditionally detected by nuclease hypersensitivity assays.
Collapse
Affiliation(s)
- Paul G. Giresi
- Department of Biology and the Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3280, USA
| | - Jonghwan Kim
- Institute for Cellular and Molecular Biology and Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, Texas 78712-0159, USA
| | - Ryan M. McDaniell
- Institute for Cellular and Molecular Biology and Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, Texas 78712-0159, USA
| | - Vishwanath R. Iyer
- Institute for Cellular and Molecular Biology and Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, Texas 78712-0159, USA
| | - Jason D. Lieb
- Department of Biology and the Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3280, USA
- Corresponding author.E-mail ; fax (919) 962-1625
| |
Collapse
|
148
|
Vicent GP, Ballaré C, Zaurin R, Saragüeta P, Beato M. Chromatin Remodeling and Control of Cell Proliferation by Progestins via Cross Talk of Progesterone Receptor with the Estrogen Receptors and Kinase Signaling Pathways. Ann N Y Acad Sci 2006; 1089:59-72. [PMID: 17261755 DOI: 10.1196/annals.1386.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Transcription from the mouse mammary tumor virus (MMTV) promoter can be induced by glucocorticoids or progestins. Progesterone treatment of cultured cells carrying an integrated single copy of an MMTV transgene leads to recruitment of progesterone receptor (PR), SWI/SNF, and SNF2h-related complexes to MMTV promoter. Recruitment is accompanied by selective displacement of histones H2A and H2B from the nucleosome B. In nucleosomes assembled on promoter sequences, SWI/SNF displaces histones H2A and H2B from MMTV nucleosome B, but not from other MMTV nucleosomes or from an rDNA promoter nucleosome. Thus, the outcome of nucleosome remodeling by purified SWI/SNF depends on the DNA sequence. On the other hand, 5 min after hormone treatment, the cytoplasmic signaling cascade Src/Ras/Erk is activated via an interaction of PR with the estrogen receptor, which activates Src. As a consequence of Erk activation PR is phosphorylated, Msk1 is activated, and a ternary complex PR-Erk-Msk1 is recruited to MMTV nucleosome B. Msk1 phosphorylates H3 at serine 10, which is followed by acetylation at lysine 14, displacement of HP1gamma, and recruitment of Brg1, PCAF, and RNA polymerase II. Blocking Erk activation or Msk1 activity prevents induction of the MMTV transgene. Thus, the rapid nongenomic effects of progestins are essential for their transcriptional effects on certain progestin target genes. In rat endometrial stromal cells, picomolar concentrations of progestins trigger the cross talk of PR with ERbeta that activates the Erk and Akt kinase pathways leading to cell proliferation in the absence of direct transcriptional effects of the ligand-activated PR. Thus, depending on the cellular context rapid kinase activation and transcriptional effect play different roles in the physiological response to progestins.
Collapse
Affiliation(s)
- Guillermo P Vicent
- Centre de Regulació Genómica (CRG), Universitat Pompeu Fabra (UPF), PRBB, Dr Aiguader 88, 08003 Barcelona, Spain
| | | | | | | | | |
Collapse
|
149
|
Abstract
The regulation of chromatin structure is of fundamental importance for many DNA-based processes in eukaryotes. Activation or repression of gene transcription or DNA replication depends on enzymes which can generate the appropriate chromatin environment. Several of these enzymes utilize the energy of ATP hydrolysis to alter nucleosome structure. In recent years our understanding of the multisubunit complexes within which they function, their mechanisms of action, their regulation and their in-vivo roles has increased. Much of what we have learned has been gleaned from studies in Drosophila melanogaster. Here we will review what we know about the main classes of ATP-dependent chromatin remodelers in Drosophila.
Collapse
Affiliation(s)
- Karim Bouazoune
- Massachusetts General Hospital, Department of Molecular Biology, Harvard Medical School, Department of Genetics, 185 Cambridge Street, Boston, MA 02114, USA
| | | |
Collapse
|
150
|
Dürr H, Flaus A, Owen-Hughes T, Hopfner KP. Snf2 family ATPases and DExx box helicases: differences and unifying concepts from high-resolution crystal structures. Nucleic Acids Res 2006; 34:4160-7. [PMID: 16935875 PMCID: PMC1616948 DOI: 10.1093/nar/gkl540] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Proteins with sequence similarity to the yeast Snf2 protein form a large family of ATPases that act to alter the structure of a diverse range of DNA–protein structures including chromatin. Snf2 family enzymes are related in sequence to DExx box helicases, yet they do not possess helicase activity. Recent biochemical and structural studies suggest that the mechanism by which these enzymes act involves ATP-dependent translocation on DNA. Crystal structures suggest that these enzymes travel along the minor groove, a process that can generate the torque or energy in remodelling processes. We review the recent structural and biochemical findings which suggest a common mechanistic basis underlies the action of many of both Snf2 family and DExx box helicases.
Collapse
Affiliation(s)
- Harald Dürr
- Gene Center, University of MunichFeodor-Lynen-Strasse 25, D-81377 Munich, Germany
- Department of Chemistry and Biochemistry, University of MunichFeodor-Lynen-Strasse 25, D-81377 Munich, Germany
| | - Andrew Flaus
- Division of Gene Regulation and Expression, School of Life Sciences, University of DundeeDundee DD1 5EH, UK
| | - Tom Owen-Hughes
- Division of Gene Regulation and Expression, School of Life Sciences, University of DundeeDundee DD1 5EH, UK
- To whom correspondence should be addressed. Tel: +49 89 218076953; Fax: +49 89 218076999;
| | - Karl-Peter Hopfner
- Gene Center, University of MunichFeodor-Lynen-Strasse 25, D-81377 Munich, Germany
- Department of Chemistry and Biochemistry, University of MunichFeodor-Lynen-Strasse 25, D-81377 Munich, Germany
- Correspondence may also be addressed to: Tom Owen-Hughes.Tel: +44 1382 385796; Fax: +44 1382 388072;
| |
Collapse
|