101
|
Sen S, Parishar P, Pundir AS, Reiner A, Iyengar S. The expression of tyrosine hydroxylase and DARPP-32 in the house crow (Corvus splendens) brain. J Comp Neurol 2019; 527:1801-1836. [PMID: 30697741 DOI: 10.1002/cne.24649] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 01/27/2023]
Abstract
Birds of the family Corvidae which includes diverse species such as crows, rooks, ravens, magpies, jays, and jackdaws are known for their amazing abilities at problem-solving. Since the catecholaminergic system, especially the neurotransmitter dopamine, plays a role in cognition, we decided to study the distribution of tyrosine hydroxylase (TH), the rate-limiting enzyme in the synthesis of catecholamines in the brain of house crows (Corvus splendens). We also studied the expression of DARPP-32 (dopamine and cAMP-regulated phosphoprotein), which is expressed in dopaminoceptive neurons. Our results demonstrated that as in other avian species, the expression of both TH and DARPP-32 was highest in the house crow striatum. The caudolateral nidopallium (NCL, the avian analogue of the mammalian prefrontal cortex) could be differentiated from the surrounding pallial regions based on a larger number of TH-positive "baskets" of fibers around neurons in this region and greater intensity of DARPP-32 staining in the neuropil in this region. House crows also possessed distinct nuclei in their brains which corresponded to song control regions in other songbirds. Whereas immunoreactivity for TH was higher in the vocal control region Area X compared to the surrounding MSt (medial striatum) in house crows, staining in RA and HVC was not as prominent. Furthermore, the arcopallial song control regions RA (nucleus robustus arcopallialis) and AId (intermediate arcopallium) were strikingly negative for DARPP-32 staining, in contrast to the surrounding arcopallium. Patterns of immunoreactivity for TH and DARPP-32 in "limbic" areas such as the hippocampus, septum, and extended amygdala have also been described.
Collapse
Affiliation(s)
- Shankhamala Sen
- Division of Systems Neuroscience, National Brain Research Centre, Gurugram, Haryana, India
| | - Pooja Parishar
- Division of Systems Neuroscience, National Brain Research Centre, Gurugram, Haryana, India
| | - Arvind Singh Pundir
- Division of Systems Neuroscience, National Brain Research Centre, Gurugram, Haryana, India
| | - Anton Reiner
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States.,Department of Ophthalmology, University of Tennessee, Memphis, Tennessee, United States
| | - Soumya Iyengar
- Division of Systems Neuroscience, National Brain Research Centre, Gurugram, Haryana, India
| |
Collapse
|
102
|
Centrifugal Innervation of the Olfactory Bulb: A Reappraisal. eNeuro 2019; 6:eN-NRS-0390-18. [PMID: 30740517 PMCID: PMC6366934 DOI: 10.1523/eneuro.0390-18.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/14/2019] [Accepted: 01/19/2019] [Indexed: 12/11/2022] Open
Abstract
The inter-regional connectivity of sensory structures in the brain allows for the modulation of sensory processing in manners important for perception. In the olfactory system, odor representations in the olfactory bulb (OB) are modulated by feedback centrifugal innervation from several olfactory cortices, including the piriform cortex (PCX) and anterior olfactory nucleus (AON). Previous studies reported that an additional olfactory cortex, the olfactory tubercle (OT), also centrifugally innervates the OB and may even shape the activity of OB output neurons. In an attempt to identify the cell types of this centrifugal innervation, we performed retrograde tracing experiments in mice utilizing three unique strategies, including retrobeads, retrograde adeno-associated virus (AAV) driving a fluorescent reporter, and retrograde AAV driving Cre-expression in the Ai9-floxed transgenic reporter line. Our results replicated the standing literature and uncovered robustly labeled neurons in the ipsilateral PCX, AON, and numerous other structures known to innervate the OB. Surprisingly, consistent throughout all of our approaches, no labeled soma were observed in the OT. These findings indicate that the OT is unique among other olfactory cortices in that it does not innervate the OB, which refines our understanding of the centrifugal modulation of the OB.
Collapse
|
103
|
Fox AS, Shackman AJ. The central extended amygdala in fear and anxiety: Closing the gap between mechanistic and neuroimaging research. Neurosci Lett 2019; 693:58-67. [PMID: 29195911 PMCID: PMC5976525 DOI: 10.1016/j.neulet.2017.11.056] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 09/30/2017] [Accepted: 11/26/2017] [Indexed: 12/19/2022]
Abstract
Anxiety disorders impose a staggering burden on public health, underscoring the need to develop a deeper understanding of the distributed neural circuits underlying extreme fear and anxiety. Recent work highlights the importance of the central extended amygdala, including the central nucleus of the amygdala (Ce) and neighboring bed nucleus of the stria terminalis (BST). Anatomical data indicate that the Ce and BST form a tightly interconnected unit, where different kinds of threat-relevant information can be integrated to assemble states of fear and anxiety. Neuroimaging studies show that the Ce and BST are engaged by a broad spectrum of potentially threat-relevant cues. Mechanistic work demonstrates that the Ce and BST are critically involved in organizing defensive responses to a wide range of threats. Studies in rodents have begun to reveal the specific molecules, cells, and microcircuits within the central extended amygdala that underlie signs of fear and anxiety, but the relevance of these tantalizing discoveries to human experience and disease remains unclear. Using a combination of focal perturbations and whole-brain imaging, a new generation of nonhuman primate studies is beginning to close this gap. This work opens the door to discovering the mechanisms underlying neuroimaging measures linked to pathological fear and anxiety, to understanding how the Ce and BST interact with one another and with distal brain regions to govern defensive responses to threat, and to developing improved intervention strategies.
Collapse
Affiliation(s)
- Andrew S Fox
- Department of Psychology and University of California, Davis, CA 95616, United States; California National Primate Research Center, University of California, Davis, CA 95616, United States.
| | - Alexander J Shackman
- Department of Psychology, University of Maryland, College Park, MD 20742, United States; Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD 20742, United States; Maryland Neuroimaging Center, University of Maryland,College Park, MD 20742, United States.
| |
Collapse
|
104
|
Kovner R, Fox AS, French DA, Roseboom PH, Oler JA, Fudge JL, Kalin NH. Somatostatin Gene and Protein Expression in the Non-human Primate Central Extended Amygdala. Neuroscience 2019; 400:157-168. [PMID: 30610938 DOI: 10.1016/j.neuroscience.2018.12.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/04/2018] [Accepted: 12/20/2018] [Indexed: 12/26/2022]
Abstract
Alterations in central extended amygdala (EAc) function have been linked to anxiety, depression, and anxious temperament (AT), the early-life risk to develop these disorders. The EAc is composed of the central nucleus of the amygdala (Ce), the bed nucleus of the stria terminalis (BST), and the sublenticular extended amygdala (SLEA). Using a non-human primate model of AT and multimodal neuroimaging, the Ce and the BST were identified as key AT-related regions. Both areas are primarily comprised of GABAergic neurons and the lateral Ce (CeL) and lateral BST (BSTL) have among the highest expression of neuropeptides in the brain. Somatostatin (SST) is of particular interest because mouse studies demonstrate that SST neurons, along with corticotropin-releasing factor (CRF) neurons, contribute to a threat-relevant EAc microcircuit. Although the distribution of CeL and BSTL SST neurons has been explored in rodents, this system is not well described in non-human primates. In situ hybridization demonstrated an anterior-posterior gradient of SST mRNA in the CeL but not the BSTL of non-human primates. Triple-labeling immunofluorescence staining revealed that SST protein-expressing cell bodies are a small proportion of the total CeL and BSTL neurons and have considerable co-labeling with CRF. The SLEA exhibited strong SST mRNA and protein expression, suggesting a role for SST in mediating information transfer between the CeL and BSTL. These data provide the foundation for mechanistic non-human primate studies focused on understanding EAc function in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Rothem Kovner
- Department of Psychiatry, University of Wisconsin, Madison, WI, USA; Neuroscience Training Program, University of Wisconsin, Madison, WI, USA; HealthEmotions Research Institute, University of Wisconsin, Madison, WI, USA.
| | - Andrew S Fox
- Department of Psychology, University of California, Davis, CA, USA; California National Primate Research Center, University of California, Davis, CA, USA
| | - Delores A French
- Department of Psychiatry, University of Wisconsin, Madison, WI, USA; HealthEmotions Research Institute, University of Wisconsin, Madison, WI, USA
| | - Patrick H Roseboom
- Department of Psychiatry, University of Wisconsin, Madison, WI, USA; HealthEmotions Research Institute, University of Wisconsin, Madison, WI, USA
| | - Jonathan A Oler
- Department of Psychiatry, University of Wisconsin, Madison, WI, USA; HealthEmotions Research Institute, University of Wisconsin, Madison, WI, USA
| | - Julie L Fudge
- Department of Psychiatry, Rochester, NY, USA; Department of Neuroscience, Rochester, NY, USA
| | - Ned H Kalin
- Department of Psychiatry, University of Wisconsin, Madison, WI, USA; Neuroscience Training Program, University of Wisconsin, Madison, WI, USA; HealthEmotions Research Institute, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
105
|
Neurobiological processes during the Cambridge gambling task. Behav Brain Res 2019; 356:295-304. [DOI: 10.1016/j.bbr.2018.08.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/17/2018] [Accepted: 08/18/2018] [Indexed: 11/22/2022]
|
106
|
Torres-Berrio A, Cuesta S, Lopez-Guzman S, Nava-Mesa MO. Interaction Between Stress and Addiction: Contributions From Latin-American Neuroscience. Front Psychol 2018; 9:2639. [PMID: 30622500 PMCID: PMC6308142 DOI: 10.3389/fpsyg.2018.02639] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/07/2018] [Indexed: 12/12/2022] Open
Abstract
Drug addiction is a chronic neuropsychiatric disorder that escalates from an initial exposure to drugs of abuse, such as cocaine, cannabis, or heroin, to compulsive drug-seeking and intake, reduced ability to inhibit craving-induced behaviors, and repeated cycles of abstinence and relapse. It is well-known that chronic changes in the brain’s reward system play an important role in the neurobiology of addiction. Notably, environmental factors such as acute or chronic stress affect this system, and increase the risk for drug consumption and relapse. Indeed, the HPA axis, the autonomic nervous system, and the extended amygdala, among other brain stress systems, interact with the brain’s reward circuit involved in addictive behaviors. There has been a growing interest in studying the molecular, cellular, and behavioral mechanisms of stress and addiction in Latin-America over the last decade. Nonetheless, these contributions may not be as strongly acknowledged by the broad scientific audience as studies coming from developed countries. In this review, we compile for the first time a series of studies conducted by Latin American-based neuroscientists, who have devoted their careers to studying the interaction between stress and addiction, from a neurobiological and clinical perspective. Specific contributions about this interaction include the study of CRF receptors in the lateral septum, investigations on the neural mechanisms of cross-sensitization for psychostimulants and ethanol, the identification of the Wnt/β-catenin pathway as a critical neural substrate for stress and addiction, and the emergence of the cannabinoid system as a promising therapeutic target. We highlight animal and human studies, including for instance, reports coming from Latin American laboratories on single nucleotide polymorphisms in stress-related genes and potential biomarkers of vulnerability to addiction, that aim to bridge the knowledge from basic science to clinical research.
Collapse
Affiliation(s)
- Angélica Torres-Berrio
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Santiago Cuesta
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Silvia Lopez-Guzman
- Neuroscience Research Group, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Mauricio O Nava-Mesa
- Neuroscience Research Group, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
107
|
Ch'ng S, Fu J, Brown RM, McDougall SJ, Lawrence AJ. The intersection of stress and reward: BNST modulation of aversive and appetitive states. Prog Neuropsychopharmacol Biol Psychiatry 2018; 87:108-125. [PMID: 29330137 DOI: 10.1016/j.pnpbp.2018.01.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/27/2017] [Accepted: 01/08/2018] [Indexed: 12/13/2022]
Abstract
The bed nucleus of the stria terminalis (BNST) is widely acknowledged as a brain structure that regulates stress and anxiety states, as well as aversive and appetitive behaviours. The diverse roles of the BNST are afforded by its highly modular organisation, neurochemical heterogeneity, and complex intrinsic and extrinsic circuitry. There has been growing interest in the BNST in relation to psychopathologies such as anxiety and addiction. Although research on the human BNST is still in its infancy, there have been extensive preclinical studies examining the molecular signature and hodology of the BNST and their involvement in stress and reward seeking behaviour. This review examines the neurochemical phenotype and connectivity of the BNST, as well as electrophysiological correlates of plasticity in the BNST mediated by stress and/or drugs of abuse.
Collapse
Affiliation(s)
- Sarah Ch'ng
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Jingjing Fu
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Robyn M Brown
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Stuart J McDougall
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Andrew J Lawrence
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia.
| |
Collapse
|
108
|
Modaberi S, Shahbazi M, Dehghan M, Naghdi N. The role of mild treadmill exercise on spatial learning and memory and motor activity in animal models of ibotenic acid-induced striatum lesion. SPORT SCIENCES FOR HEALTH 2018. [DOI: 10.1007/s11332-018-0467-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
109
|
Serra C, Akeret K, Maldaner N, Staartjes VE, Regli L, Baltsavias G, Krayenbühl N. A White Matter Fiber Microdissection Study of the Anterior Perforated Substance and the Basal Forebrain: A Gateway to the Basal Ganglia? Oper Neurosurg (Hagerstown) 2018; 17:311-320. [DOI: 10.1093/ons/opy345] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 10/02/2018] [Indexed: 11/12/2022] Open
Abstract
Abstract
BACKGROUND
Studies detailing the anatomy of the basal forebrain (BF) from a neurosurgical perspective are missing.
OBJECTIVE
To describe the anatomy of the BF and of the anterior perforated substance (APS), the BF emphasizing surgical useful anatomical relationship between surface landmarks and deep structures.
METHODS
White matter fiber microdissection was performed on 5 brain specimens to analyze the topographic anatomy of the APS and expose layer-by-layer fiber tracts and nuclei of the BF.
RESULTS
The APS, as identified anatomically, surgically, and neuroradiologically, has clear borders measured 23.3 ± 3.4 mm (19-27) in the mediolateral and 12.5 ± 1.2 mm (11-14) in the anteroposterior directions. A detailed stratigraphy of the BF was performed from the APS up to basal ganglia and thalamus allowing identification and dissection of the main components of the BF (septum, nucleus accumbens, amygdala, innominate substance) and its white matter tracts (band of Broca, extracapsular thalamic peduncle, ventral amygdalohypothalamic fibers). The olfactory trigone together with diagonal gyrus and the APS proper is a relevant superficial landmark for the basal ganglia (inferior to the nucleus accumbens, lateral to the caudate head, and medial to the lentiform nucleus).
CONCLUSION
The findings in our study supplement available anatomic knowledge of APS and BF, providing reliable landmarks for precise topographic diagnosis of BF lesions and for intraoperative orientation. Surgically relevant relationships between surface and deep anatomic structures are highlighted offering thus a contribution to neurosurgeons willing to perform surgery in this delicate area.
Collapse
Affiliation(s)
- Carlo Serra
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Kevin Akeret
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Nicolai Maldaner
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Victor E Staartjes
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Luca Regli
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Gerasimos Baltsavias
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Niklaus Krayenbühl
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
110
|
Meloni EG, Kaye KT, Venkataraman A, Carlezon WA. PACAP increases Arc/Arg 3.1 expression within the extended amygdala after fear conditioning in rats. Neurobiol Learn Mem 2018; 157:24-34. [PMID: 30458282 DOI: 10.1016/j.nlm.2018.11.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 11/09/2018] [Accepted: 11/16/2018] [Indexed: 11/24/2022]
Abstract
The stress-related neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) is implicated in neuromodulation of learning and memory. PACAP can alter synaptic plasticity and has direct actions on neurons in the amygdala and hippocampus that could contribute to its acute and persistent effects on the consolidation and expression of conditioned fear. We recently demonstrated that intracerebroventricular (ICV) infusion of PACAP prior to fear conditioning (FC) results in initial amnestic-like effects followed by hyper-expression of conditioned freezing with repeated testing, and analyses of immediate-early gene c-Fos expression suggested that the central nucleus of the amygdala (CeA), but not the lateral/basolateral amygdala (LA/BLA) or hippocampus, are involved in these PACAP effects. Here, we extend that work by examining the expression of the synaptic plasticity marker activity-regulated cytoskeleton-associated protein (Arc/Arg 3.1) after PACAP administration and FC. Male Sprague-Dawley rats were implanted with cannula for ICV infusion of PACAP-38 (1.5 µg) or vehicle followed by FC and tests for conditioned freezing. One hour after FC, Arc protein expression was significantly elevated in the CeA and bed nucleus of the stria terminalis (BNST), interconnected structures that are key elements of the extended amygdala, in rats that received the combination of PACAP + FC. In contrast, Arc expression within the subdivisions of the hippocampus, or the LA/BLA, were unchanged. A subpopulation of Arc-positive cells in both the CeA and BNST also express PKCdelta, an intracellular marker that has been used to identify microcircuits that gate conditioned fear in the CeA. Consistent with our previous findings, on the following day conditioned freezing behavior was reduced in rats that had been given the combination of PACAP + FC-an amnestic-like effect-and Arc expression levels had returned to baseline. Given the established role of Arc in modifying synaptic plasticity and memory formation, our findings suggest that PACAP-induced overexpression of Arc following fear conditioning may disrupt neuroplastic changes within populations of CeA and BNST neurons normally responsible for encoding fear-related cues that, in this case, results in altered fear memory consolidation. Hence, PACAP systems may represent an axis on which stress and experience-driven neurotransmission converge to alter emotional memory, and mediate pathologies that are characteristic of psychiatric illnesses such as post-traumatic stress disorder.
Collapse
Affiliation(s)
- Edward G Meloni
- Department of Psychiatry, Harvard Medical School and McLean Hospital, Belmont, MA 02478, United States.
| | - Karen T Kaye
- Department of Psychiatry, Harvard Medical School and McLean Hospital, Belmont, MA 02478, United States
| | - Archana Venkataraman
- Department of Psychiatry, Harvard Medical School and McLean Hospital, Belmont, MA 02478, United States
| | - William A Carlezon
- Department of Psychiatry, Harvard Medical School and McLean Hospital, Belmont, MA 02478, United States
| |
Collapse
|
111
|
Logrip ML, Milivojevic V, Bertholomey ML, Torregrossa MM. Sexual dimorphism in the neural impact of stress and alcohol. Alcohol 2018; 72:49-59. [PMID: 30227988 PMCID: PMC6148386 DOI: 10.1016/j.alcohol.2018.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/07/2018] [Accepted: 02/19/2018] [Indexed: 12/18/2022]
Abstract
Alcohol use disorder is a widespread mental illness characterized by periods of abstinence followed by recidivism, and stress is the primary trigger of relapse. Despite the higher prevalence of alcohol use disorder in males, the relationship between stress and behavioral features of relapse, such as craving, is stronger in females. Given the greater susceptibility of females to stress-related psychiatric disorders, understanding sexual dimorphism in the relationship between stress and alcohol use is essential to identifying better treatments for both male and female alcoholics. This review addresses sex differences in the impact of stressors on alcohol drinking and seeking in rodents and humans. As these behavioral differences in alcohol use and relapse originate from sexual dimorphism in neuronal function, the impact of stressors and alcohol, and their interaction, on molecular adaptations and neural activity in males and females will also be discussed. Together, the data reviewed herein, arising from a symposium titled "Sex matters in stress-alcohol interactions" presented at the Fourth Volterra Conference on Stress and Alcohol, will highlight the importance of identifying sex differences to improve treatments for comorbid stress and alcohol use disorder in both sexes.
Collapse
Affiliation(s)
- Marian L Logrip
- Department of Psychology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, United States.
| | - Verica Milivojevic
- The Yale Stress Center, Yale University School of Medicine, New Haven, CT 06519, United States
| | - Megan L Bertholomey
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA 15219, United States
| | - Mary M Torregrossa
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA 15219, United States
| |
Collapse
|
112
|
Organization of dopamine and serotonin system: Anatomical and functional mapping of monosynaptic inputs using rabies virus. Pharmacol Biochem Behav 2018; 174:9-22. [DOI: 10.1016/j.pbb.2017.05.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 04/17/2017] [Accepted: 05/01/2017] [Indexed: 11/21/2022]
|
113
|
Yamauchi N, Takahashi D, Sugimura YK, Kato F, Amano T, Minami M. Activation of the neural pathway from the dorsolateral bed nucleus of the stria terminalis to the central amygdala induces anxiety-like behaviors. Eur J Neurosci 2018; 48:3052-3061. [PMID: 30240530 DOI: 10.1111/ejn.14165] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 09/02/2018] [Accepted: 09/17/2018] [Indexed: 12/24/2022]
Abstract
The bed nucleus of the stria terminalis (BNST) and the central amygdala (CeA) comprise a forebrain unit that has been described as the "extended amygdala". These two nuclei send dense projections to each other and have been implicated in the regulation of negative emotional states, including anxiety and fear. The present study employed an optogenetic technique to examine whether stimulation of CeA-projecting dorsolateral BNST (dlBNST) neuron terminals would influence anxiety-like behaviors in male Sprague-Dawley rats. Photostimulation of CeA-projecting dlBNST neuron terminals produced anxiogenic effects in an elevated plus maze test. This finding is inconsistent with previous reports showing that optogenetic stimulation of BNST neurons projecting to the lateral hypothalamus (LH) and ventral tegmental area (VTA) produces anxiolytic rather than anxiogenic effects. To address this issue, electrophysiological analyses were conducted to characterize dlBNST neurons projecting to the CeA, LH, and VTA. dlBNST neurons can be electrophysiologically classified into three distinct cell types (types I-III) according to their responses to depolarizing and hyperpolarizing current injections. Whole-cell patch-clamp recordings revealed that more than 60% of the CeA-projecting dlBNST neurons were type II, whereas approximately 80% of the LH- and VTA-projecting dlBNST neurons were type III. These electrophysiological results will help elucidate the mechanisms underlying the heterogeneity of BNST neurons during the regulation of anxiety-like behaviors.
Collapse
Affiliation(s)
- Naoki Yamauchi
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Daiki Takahashi
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yae K Sugimura
- Department of Neuroscience, The Jikei University School of Medicine, Tokyo, Japan
| | - Fusao Kato
- Department of Neuroscience, The Jikei University School of Medicine, Tokyo, Japan
| | - Taiju Amano
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Masabumi Minami
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
114
|
Ide S, Yamamoto R, Suzuki H, Takeda H, Minami M. Roles of noradrenergic transmission within the ventral part of the bed nucleus of the stria terminalis in bidirectional brain-intestine interactions. Neuropsychopharmacol Rep 2018; 38:182-188. [PMID: 30264532 PMCID: PMC7292287 DOI: 10.1002/npr2.12032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 08/29/2018] [Accepted: 08/30/2018] [Indexed: 02/06/2023] Open
Abstract
Aims The bed nucleus of the stria terminalis (BNST) is a limbic structure mediating autonomic and neuroendocrine responses and negative affective states such as anxiety and fear. We previously demonstrated that noradrenergic transmission via β‐adrenoceptors within the ventral part of BNST (vBNST) is involved in bidirectional interactions between the brain and the upper gastrointestinal (GI) tract. The present study aimed to examine the roles of intra‐vBNST noradrenergic transmission via β‐adrenoceptors in bidirectional interactions between the brain and lower GI tract. Methods In vivo microdialysis experiments were performed to examine colorectal distention (CRD)‐induced noradrenaline release within the vBNST of freely moving male Sprague‐Dawley rats. Colonic transit and abdominal pain perception were examined following intra‐vBNST injections of isoproterenol, a β‐adrenoceptor agonist, with and without co‐administration of timolol, a β‐adrenoceptor antagonist. Results CRD increased extracellular noradrenaline levels within the vBNST and evoked abdominal contractions in a pressure‐dependent manner (30‐60 mm Hg). Bilateral intra‐vBNST injections of isoproterenol (30 nmol/side) significantly increased CRD (30 mm Hg)‐induced abdominal contractions. Intra‐vBNST injections of isoproterenol (30 nmol/side) significantly increased colonic transit, which was reversed by co‐administration of timolol (30 nmol/side). Conclusion The results of this study suggest (a) the existence of a positive feedback loop between intra‐vBNST noradrenaline release and abdominal pain perception, and (b) the modulation of colonic motility by intra‐vBNST noradrenergic transmission via β‐adrenoceptors. Dysfunction of the lower GI tract may increase noradrenaline release within the vBNST, which, in turn, may exacerbate impairment of its motility and pain perception. In vivo microdialysis experiments demonstrated that colorectal distention (CRD) increased extracellular levels of noradrenaline within the vBNST. Intra‐vBNST injections of isoproterenol, a β‐adrenoceptor agonist, induced visceral hypersensitivity to CRD and increased colonic transit, and the increase in colonic transit was reversed by co‐administration of timolol, a β‐adrenoceptor antagonist. The present findings demonstrated important roles of noradrenergic transmission via β‐adrenoceptors within the vBNST in bidirectional brain‐intestine interactions.
![]()
Collapse
Affiliation(s)
- Soichiro Ide
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.,Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Ryuta Yamamoto
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Hacchi Suzuki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Hiroshi Takeda
- Laboratory of Pathophysiology and Therapeutics, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Masabumi Minami
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
115
|
Harris NA, Winder DG. Synaptic Plasticity in the Bed Nucleus of the Stria Terminalis: Underlying Mechanisms and Potential Ramifications for Reinstatement of Drug- and Alcohol-Seeking Behaviors. ACS Chem Neurosci 2018; 9:2173-2187. [PMID: 29851347 PMCID: PMC6146063 DOI: 10.1021/acschemneuro.8b00169] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The bed nucleus of the stria terminalis (BNST) is a component of the extended amygdala that shows significant changes in activity and plasticity through chronic exposure to drugs and stress. The region is critical for stress- and cue-induced reinstatement of drug-seeking behaviors and is thus a candidate region for the plastic changes that occur in abstinence that prime addicted patients for reinstatement behaviors. Here, we discuss the various forms of long-term potentiation (LTP) and long-term depression (LTD) in the rodent BNST and highlight the way that these changes in excitatory transmission interact with exposure to alcohol and other drugs of abuse, as well as other stressors. In addition, we highlight potential areas for future research in this area, including investigating input- and cell-specific bidirectional changes in activity. As we continue to accrue foundational knowledge in the mechanisms and effects of plasticity in the BNST, molecular targets and treatment strategies that are relevant to reinstatement behaviors will also begin to emerge. Here, we briefly discuss the effects of catecholamine receptor modulators on synaptic plasticity in the BNST due to the role of norepinephrine in LTD and dopamine on the short-term component of LTP as well as the role that signaling at these receptors plays in reinstatement of drug- and alcohol-seeking behaviors. We hope that insights gained on the specific changes in plasticity that occur within the BNST during abstinence from alcohol and other drugs of abuse will provide insight into the biological underpinnings of relapse behavior in human addicts and inform future treatment modalities for addiction that tackle this complex biological problem.
Collapse
Affiliation(s)
- Nicholas A. Harris
- Vanderbilt Center for Addiction Research
- Department of Molecular Physiology & Biophysics
| | - Danny G. Winder
- Vanderbilt Center for Addiction Research
- Department of Molecular Physiology & Biophysics
- Vanderbilt J.F. Kennedy Center for Research on Human Development
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
116
|
Pituitary Adenylate Cyclase-Activating Peptide (PACAP) Signaling and the Dark Side of Addiction. J Mol Neurosci 2018; 68:453-464. [PMID: 30074172 DOI: 10.1007/s12031-018-1147-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/27/2018] [Indexed: 12/15/2022]
Abstract
While addiction to drugs of abuse represents a significant health problem worldwide, the behavioral and neural mechanisms that underlie addiction and relapse are largely unclear. The concept of the dark side of addiction, developed and explored by George Koob and colleagues, describes a systematic decrease in reward-related processing following drug self-administration and subsequent recruitment of anti-reward (i.e., stress) systems. Indeed, the activation of central nervous system (CNS) stress-response systems by drugs of abuse is contributory not only to mood and anxiety-related disorders but critical to both the maintenance of addiction and relapse following abstinence. In both human and animal studies, compounds that activate the bed nucleus of the stria terminalis (BNST) have roles in stress-related behaviors and addiction processes. The activation of pituitary adenylate cyclase-activating peptide (PACAP) systems in the BNST mediates many consequences of chronic stressor exposure that may engage in part downstream corticotropin-releasing hormone (CRH) signaling. Similar to footshock stress, the BNST administration of PACAP or the PAC1 receptor-specific agonist maxadilan can facilitate relapse following extinction of cocaine-seeking behavior. Further, in the same paradigm, the footshock-induced relapse could be attenuated following BNST pretreatment with PAC1 receptor antagonist PACAP6-38, implicating PACAP systems as critical components underlying stress-induced reinstatement. In congruence with previous work, the PAC1 receptor internalization and endosomal MEK/ERK signaling appear contributory mechanisms to the addiction processes. The studies offer new insights and approaches to addiction and relapse therapeutics.
Collapse
|
117
|
Erikson CM, Wei G, Walker BM. Maladaptive behavioral regulation in alcohol dependence: Role of kappa-opioid receptors in the bed nucleus of the stria terminalis. Neuropharmacology 2018; 140:162-173. [PMID: 30075159 DOI: 10.1016/j.neuropharm.2018.07.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/27/2018] [Accepted: 07/28/2018] [Indexed: 12/15/2022]
Abstract
There is an important emerging role for the endogenous opioid dynorphin (DYN) and the kappa-opioid receptor (KOR) in the treatment of alcohol dependence. Evidence suggests that the DYN/KOR system in the bed nucleus of the stria terminalis (BNST) contributes to maladaptive behavioral regulation during withdrawal in alcohol dependence. The current experiments were designed to assess dysregulation of the BNST DYN/KOR system by evaluating alcohol dependence-induced changes in DYN/KOR gene expression (Pdyn and Oprk1, respectively), and the sensitivity of alcohol self-administration, negative affective-like behavior and physiological withdrawal to intra-BNST KOR antagonism during acute withdrawal. Wistar rats trained to self-administer alcohol, or not trained, were subjected to an alcohol dependence induction procedure (14 h alcohol vapor/10 h air) or air-exposure. BNST micropunches from air- and vapor-exposed animals were analyzed using RT-qPCR to quantify dependence-induced changes in Pdyn and Oprk1 mRNA expression. In addition, vapor- and air-exposed groups received an intra-BNST infusion of a KOR antagonist or vehicle prior to measurement of alcohol self-administration. A separate cohort of vapor-exposed rats was assessed for physiological withdrawal and negative affective-like behavior signs following intra-BNST KOR antagonism. During acute withdrawal, following alcohol dependence induction, there was an upregulation in Oprk1 mRNA expression in alcohol self-administering animals, but not non-alcohol self-administering animals, that confirmed dysregulation of the KOR/DYN system within the BNST. Furthermore, intra-BNST KOR antagonism attenuated escalated alcohol self-administration and negative affective-like behavior during acute withdrawal without reliably impacting physiological symptoms of withdrawal. The results confirm KOR system dysregulation in the BNST in alcohol dependence, illustrating the therapeutic potential of targeting the KOR to treat alcohol dependence.
Collapse
Affiliation(s)
- Chloe M Erikson
- Laboratory of Alcoholism and Addictions Neuroscience, Department of Psychology, Alcohol and Drug Abuse Research Program, Translational Addiction Research Center, Washington State University, Pullman, WA, 99164-4820, USA
| | - Gengze Wei
- Laboratory of Alcoholism and Addictions Neuroscience, Department of Psychology, Alcohol and Drug Abuse Research Program, Translational Addiction Research Center, Washington State University, Pullman, WA, 99164-4820, USA
| | - Brendan M Walker
- Laboratory of Alcoholism and Addictions Neuroscience, Department of Psychology, Alcohol and Drug Abuse Research Program, Translational Addiction Research Center, Washington State University, Pullman, WA, 99164-4820, USA.
| |
Collapse
|
118
|
Functional Connectivity within the Primate Extended Amygdala Is Heritable and Associated with Early-Life Anxious Temperament. J Neurosci 2018; 38:7611-7621. [PMID: 30061190 DOI: 10.1523/jneurosci.0102-18.2018] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/23/2018] [Accepted: 07/07/2018] [Indexed: 02/08/2023] Open
Abstract
Children with an extremely inhibited, anxious temperament (AT) are at increased risk for anxiety disorders and depression. Using a rhesus monkey model of early-life AT, we previously demonstrated that metabolism in the central extended amygdala (EAc), including the central nucleus of the amygdala (Ce) and bed nucleus of the stria terminalis (BST), is associated with trait-like variation in AT. Here, we use fMRI to examine relationships between Ce-BST functional connectivity and AT in a large multigenerational family pedigree of rhesus monkeys (n = 170 females and 208 males). Results demonstrate that Ce-BST functional connectivity is heritable, accounts for a significant but modest portion of the variance in AT, and is coheritable with AT. Interestingly, Ce-BST functional connectivity and AT-related BST metabolism were not correlated and accounted for non-overlapping variance in AT. Exploratory analyses suggest that Ce-BST functional connectivity is associated with metabolism in the hypothalamus and periaqueductal gray. Together, these results suggest the importance of coordinated function within the EAc for determining individual differences in AT and metabolism in brain regions associated with its behavioral and neuroendocrine components.SIGNIFICANCE STATEMENT Anxiety disorders directly impact the lives of nearly one in five people, accounting for substantial worldwide suffering and disability. Here, we use a nonhuman primate model of anxious temperament (AT) to understand the neurobiology underlying the early-life risk to develop anxiety disorders. Leveraging the same kinds of neuroimaging measures routinely used in human studies, we demonstrate that coordinated activation between the central nucleus of the amygdala and the bed nucleus of the stria terminalis is correlated with, and coinherited with, early-life AT. Understanding how these central extended amygdala regions work together to produce extreme anxiety provides a neural target for early-life interventions with the promise of preventing lifelong disability in at-risk children.
Collapse
|
119
|
Oldoni C, Luz Veronez DAD, Piedade GS, Santos ECD, Almeida DBD, Meneses MSD. Morphometric Analysis of the Nucleus Accumbens Using the Mulligan Staining Method. World Neurosurg 2018; 118:e223-e228. [PMID: 29966792 DOI: 10.1016/j.wneu.2018.06.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND There is a need to further anatomically describe the nucleus accumbens (NA), as there is a growing neurosurgical interest in this locus but a limited understanding of its structure. In this study, we evaluated quantitative NA parameters and spatial relationships with adjacent structures found in the telencephalon. METHODS A total of 155 NA specimens from coronal sections and 3 NA specimens from transverse sections were stained using the Mulligan technique as modified by Barnard et al. The distance from the NA to other structures was then measured. RESULTS The mean radius of the 155 NAs in the coronal sections was 6.23 ± 0.964 mm, averaging 8.99 ± 2.02 mm from midline (coordinate x), 27.09 ± 3.15 mm from the insula, 12.95 ± 3.21 mm from the outer border of the putamen, 10.52 ± 2.66 mm from the upper border of the caudate, and 8.84 ± 2.93 mm from the midline of the lateral ventricle. The mean distance from the NA center of gravity to the middle of the intercommissural line parallel to the midline (coordinate y) was 17.08 ±3.61 mm, and the mean vertical distance from the intercommissural line to the NA was 8.12 ± 1.265 mm. CONCLUSIONS We obtained the stereotactic coordinates of (x, y, z) = (8, 17, -8) for the NA. From this and other delineations of the described position of the NA, it is possible to contribute to stereotactic surgical atlases, improving neurosurgical interventions in this structure.
Collapse
Affiliation(s)
- Carolina Oldoni
- Department of Anatomy, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | - Guilherme Santos Piedade
- Department of Neurosurgery, Düsseldorf University Hospital, Düsseldorf, Nordrhein-Westfalen, Germany
| | | | | | | |
Collapse
|
120
|
Pessoa L. Emotion and the Interactive Brain: Insights From Comparative Neuroanatomy and Complex Systems. EMOTION REVIEW 2018; 10:204-216. [PMID: 31537985 PMCID: PMC6752744 DOI: 10.1177/1754073918765675] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Although emotion is closely associated with motivation, and interacts with perception, cognition, and action, many conceptualizations still treat emotion as separate from these domains. Here, a comparative/evolutionary anatomy framework is presented to motivate the idea that long-range, distributed circuits involving the midbrain, thalamus, and forebrain are central to emotional processing. It is proposed that emotion can be understood in terms of large-scale network interactions spanning the neuroaxis that form "functionally integrated systems." At the broadest level, the argument is made that we need to move beyond a Newtonian view of causation to one involving complex systems where bidirectional influences and nonlinearities abound. Therefore, understanding interactions between subsystems and signal integration becomes central to unraveling the organization of the emotional brain.
Collapse
Affiliation(s)
- Luiz Pessoa
- Department of Psychology and Maryland Neuroimaging Center, University of Maryland, USA
| |
Collapse
|
121
|
Subramanian S, Reichard RA, Stevenson HS, Schwartz ZM, Parsley KP, Zahm DS. Lateral preoptic and ventral pallidal roles in locomotion and other movements. Brain Struct Funct 2018; 223:2907-2924. [PMID: 29700637 PMCID: PMC5997555 DOI: 10.1007/s00429-018-1669-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/19/2018] [Indexed: 12/31/2022]
Abstract
The lateral preoptic area (LPO) and ventral pallidum (VP) are structurally and functionally distinct territories in the subcommissural basal forebrain. It was recently shown that unilateral infusion of the GABAA receptor antagonist, bicuculline, into the LPO strongly invigorates exploratory locomotion, whereas bicuculline infused unilaterally into the VP has a negligible locomotor effect, but when infused bilaterally, produces vigorous, abnormal pivoting and gnawing movements and compulsive ingestion. This study was done to further characterize these responses. We observed that bilateral LPO infusions of bicuculline activate exploratory locomotion only slightly more potently than unilateral infusions and that unilateral and bilateral LPO injections of the GABAA receptor agonist muscimol potently suppress basal locomotion, but only modestly inhibit locomotion invigorated by amphetamine. In contrast, unilateral infusions of muscimol into the VP affect basal and amphetamine-elicited locomotion negligibly, but bilateral VP muscimol infusions profoundly suppress both. Locomotor activation elicited from the LPO by bicuculline was inhibited modestly and profoundly by blockade of dopamine D2 and D1 receptors, respectively, but was not entirely abolished even under combined blockade of dopamine D1 and D2 receptors. That is, infusing the LPO with bic caused instances of near normal, even if sporadic, invigoration of locomotion in the presence of saturating dopamine receptor blockade, indicating that LPO can stimulate locomotion in the absence of dopamine signaling. Pivoting following bilateral VP bicuculline infusions was unaffected by dopamine D2 receptor blockade, but was completely suppressed by D1 receptor blockade. The present results are discussed in a context of neuroanatomical and functional organization underlying exploratory locomotion and adaptive movements.
Collapse
Affiliation(s)
- Suriya Subramanian
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S. Grand Blvd, Saint Louis, MO, 63104, USA
| | - Rhett A Reichard
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S. Grand Blvd, Saint Louis, MO, 63104, USA
| | - Hunter S Stevenson
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S. Grand Blvd, Saint Louis, MO, 63104, USA
| | - Zachary M Schwartz
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S. Grand Blvd, Saint Louis, MO, 63104, USA
| | - Kenneth P Parsley
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S. Grand Blvd, Saint Louis, MO, 63104, USA
| | - Daniel S Zahm
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S. Grand Blvd, Saint Louis, MO, 63104, USA.
| |
Collapse
|
122
|
A Central Extended Amygdala Circuit That Modulates Anxiety. J Neurosci 2018; 38:5567-5583. [PMID: 29844022 DOI: 10.1523/jneurosci.0705-18.2018] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 04/22/2018] [Accepted: 05/11/2018] [Indexed: 12/21/2022] Open
Abstract
Both the amygdala and the bed nucleus of the stria terminalis (BNST) have been implicated in maladaptive anxiety characteristics of anxiety disorders. However, the underlying circuit and cellular mechanisms have remained elusive. Here we show that mice with Erbb4 gene deficiency in somatostatin-expressing (SOM+) neurons exhibit heightened anxiety as measured in the elevated plus maze test and the open field test, two assays commonly used to assess anxiety-related behaviors in rodents. Using a combination of electrophysiological, molecular, genetic, and pharmacological techniques, we demonstrate that the abnormal anxiety in the mutant mice is caused by enhanced excitatory synaptic inputs onto SOM+ neurons in the central amygdala (CeA), and the resulting reduction in inhibition onto downstream SOM+ neurons in the BNST. Notably, our results indicate that an increase in dynorphin signaling in SOM+ CeA neurons mediates the paradoxical reduction in inhibition onto SOM+ BNST neurons, and that the consequent enhanced activity of SOM+ BNST neurons is both necessary for and sufficient to drive the elevated anxiety. Finally, we show that the elevated anxiety and the associated synaptic dysfunctions and increased dynorphin signaling in the CeA-BNST circuit of the Erbb4 mutant mice can be recapitulated by stress in wild-type mice. Together, our results unravel previously unknown circuit and cellular processes in the central extended amygdala that can cause maladaptive anxiety.SIGNIFICANCE STATEMENT The central extended amygdala has been implicated in anxiety-related behaviors, but the underlying mechanisms are unclear. Here we found that somatostatin-expressing neurons in the central amygdala (CeA) controls anxiety through modulation of the stria terminalis, a process that is mediated by an increase in dynorphin signaling in the CeA. Our results reveal circuit and cellular dysfunctions that may account for maladaptive anxiety.
Collapse
|
123
|
|
124
|
Tillman RM, Stockbridge MD, Nacewicz BM, Torrisi S, Fox AS, Smith JF, Shackman AJ. Intrinsic functional connectivity of the central extended amygdala. Hum Brain Mapp 2018; 39:1291-1312. [PMID: 29235190 PMCID: PMC5807241 DOI: 10.1002/hbm.23917] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/03/2017] [Accepted: 12/04/2017] [Indexed: 12/16/2022] Open
Abstract
The central extended amygdala (EAc)-including the bed nucleus of the stria terminalis (BST) and central nucleus of the amygdala (Ce)-plays a critical role in triggering fear and anxiety and is implicated in the development of a range of debilitating neuropsychiatric disorders. Although it is widely believed that these disorders reflect the coordinated activity of distributed neural circuits, the functional architecture of the EAc network and the degree to which the BST and the Ce show distinct patterns of functional connectivity is unclear. Here, we used a novel combination of imaging approaches to trace the connectivity of the BST and the Ce in 130 healthy, racially diverse, community-dwelling adults. Multiband imaging, high-precision registration techniques, and spatially unsmoothed data maximized anatomical specificity. Using newly developed seed regions, whole-brain regression analyses revealed robust functional connectivity between the BST and Ce via the sublenticular extended amygdala, the ribbon of subcortical gray matter encompassing the ventral amygdalofugal pathway. Both regions displayed coupling with the ventromedial prefrontal cortex (vmPFC), midcingulate cortex (MCC), insula, and anterior hippocampus. The BST showed stronger connectivity with the thalamus, striatum, periaqueductal gray, and several prefrontal territories. The only regions showing stronger functional connectivity with the Ce were neighboring regions of the dorsal amygdala, amygdalohippocampal area, and anterior hippocampus. These observations provide a baseline against which to compare a range of special populations, inform our understanding of the role of the EAc in normal and pathological fear and anxiety, and showcase image registration techniques that are likely to be useful for researchers working with "deidentified" neuroimaging data.
Collapse
Affiliation(s)
| | - Melissa D. Stockbridge
- Department of Hearing and Speech SciencesUniversity of MarylandCollege ParkMaryland20742
| | - Brendon M. Nacewicz
- Department of PsychiatryUniversity of Wisconsin—Madison, 6001 Research Park BoulevardMadisonWisconsin53719
| | - Salvatore Torrisi
- Section on the Neurobiology of Fear and AnxietyNational Institute of Mental HealthBethesdaMaryland20892
| | - Andrew S. Fox
- Department of PsychologyUniversity of CaliforniaDavisCalifornia95616
- California National Primate Research CenterUniversity of CaliforniaDavisCalifornia95616
| | - Jason F. Smith
- Department of PsychologyUniversity of MarylandCollege ParkMaryland20742
| | - Alexander J. Shackman
- Department of PsychologyUniversity of MarylandCollege ParkMaryland20742
- Neuroscience and Cognitive Science ProgramUniversity of MarylandCollege ParkMaryland20742
- Maryland Neuroimaging CenterUniversity of MarylandCollege ParkMaryland20742
| |
Collapse
|
125
|
Anteroventral bed nuclei of the stria terminalis neurocircuitry: Towards an integration of HPA axis modulation with coping behaviors - Curt Richter Award Paper 2017. Psychoneuroendocrinology 2018; 89:239-249. [PMID: 29395488 PMCID: PMC5878723 DOI: 10.1016/j.psyneuen.2017.12.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/19/2017] [Accepted: 12/11/2017] [Indexed: 12/15/2022]
Abstract
A network of interconnected cell groups in the limbic forebrain regulates hypothalamic-pituitary-adrenal (HPA) axis activation and behavioral responses to emotionally stressful experiences, and chronic disruption of these systems chronically is implicated in the pathogenesis of psychiatric illnesses. A significant challenge has been to unravel the circuitry and mechanisms providing for regulation of HPA activity, as these limbic forebrain regions do not provide any direct innervation of HPA effector cell groups in the paraventricular hypothalamus (PVH). Moreover, information regarding how endocrine and behavioral responses are integrated has remained obscure. Here we summarize work from our laboratory showing that anteroventral (av) bed nuclei of the stria terminalis (BST) acts as a point of convergence between the limbic forebrain and PVH, receiving and coordinating upstream influences, and restraining HPA axis output in response to inescapable stressors. Recent studies highlight a more expansive modulatory role for avBST as one that coordinates HPA-inhibitory influences while concurrently suppressing passive behavioral responses via divergent pathways. avBST is uniquely positioned to convey endocrine and behavioral alterations resulting from chronic stress exposure, such as HPA axis hyperactivity and increased passive coping strategies, that may result from synaptic reorganization in upstream limbic cortical regions. We discuss how these studies give new insights into understanding the systems-level organization of stress response circuitry, the neurobiology of coping styles, and BST circuit dysfunction in stress-related psychiatric disorders.
Collapse
|
126
|
Verma D, Tasan R, Sperk G, Pape HC. Neuropeptide Y2 receptors in anteroventral BNST control remote fear memory depending on extinction training. Neurobiol Learn Mem 2018; 149:144-153. [PMID: 29408468 DOI: 10.1016/j.nlm.2018.01.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/15/2017] [Accepted: 01/23/2018] [Indexed: 12/12/2022]
Abstract
The anterior bed nucleus of stria terminalis (BNST) is involved in reinstatement of extinguished fear, and neuropeptide Y2 receptors influence local synaptic signaling. Therefore, we hypothesized that Y2 receptors in anteroventral BNST (BNSTav) interfere with remote fear memory and that previous fear extinction is an important variable. C57BL/6NCrl mice were fear-conditioned, and a Y2 receptor-specific agonist (NPY3-36) or antagonist (JNJ-5207787) was applied in BNSTav before fear retrieval at the following day. Remote fear memory was tested on day 16 in two groups of mice, which had (experiment 1) or had not (experiment 2) undergone extinction training after conditioning. In the group with extinction training, tests of remote fear memory revealed partial retrieval of extinction, which was prevented after blockade of Y2 receptors in BNSTav. No such effect was observed in the group with no extinction training, but stimulation of Y2 receptors in BNSTav mimicked the influence of extinction during tests of remote fear memory. Pharmacological manipulation of Y2 receptors in BNSTav before fear acquisition (experiment 3) had no effect on fear memory retrieval, extinction or remote fear memory. Furthermore, partial retrieval of extinction during tests of remote fear memory was associated with changes in number of c-Fos expressing neurons in BNSTav, which was prevented or mimicked upon Y2 blockade or stimulation in BNSTav. These results indicate that Y2 receptor manipulation in BNSTav interferes with fear memory and extinction retrieval at remote stages, likely through controlling neuronal activity in BNSTav during extinction training.
Collapse
Affiliation(s)
- Dilip Verma
- Institute of Physiology 1, Westfälische Wilhelms-University, D-48149 Münster, Germany
| | - Ramon Tasan
- Institute of Pharmacology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Guenther Sperk
- Institute of Pharmacology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Hans-Christian Pape
- Institute of Physiology 1, Westfälische Wilhelms-University, D-48149 Münster, Germany.
| |
Collapse
|
127
|
Grothe MJ, Kilimann I, Grinberg L, Heinsen H, Teipel S. In Vivo Volumetry of the Cholinergic Basal Forebrain. NEUROMETHODS 2018. [DOI: 10.1007/978-1-4939-7674-4_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
128
|
Maruyama C, Deyama S, Nagano Y, Ide S, Kaneda K, Yoshioka M, Minami M. Suppressive effects of morphine injected into the ventral bed nucleus of the stria terminalis on the affective, but not sensory, component of pain in rats. Eur J Neurosci 2017; 47:40-47. [PMID: 29131433 DOI: 10.1111/ejn.13776] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/31/2017] [Accepted: 11/06/2017] [Indexed: 10/18/2022]
Abstract
Pain is a complex experience with both sensory and affective components. Clinical and preclinical studies have shown that the affective component of pain can be reduced by doses of morphine lower than those necessary to reduce the sensory component. Although the neural mechanisms underlying the effects of morphine on the sensory component of pain have been investigated extensively, those influencing the affective component remain to be elucidated. The bed nucleus of the stria terminalis (BNST) has been implicated in the regulation of various negative emotional states, including aversion, anxiety and fear. Thus, this study aimed to clarify the role of the ventral part of the BNST (vBNST) in the actions of morphine on the affective and sensory components of pain. First, the effects of intra-vBNST injections of morphine on intraplantar formalin-induced conditioned place aversion (CPA) and nociceptive behaviors were investigated. Intra-vBNST injections of morphine reduced CPA without affecting nociceptive behaviors, which suggests that intra-vBNST morphine alters the affective, but not sensory, component of pain. Next, to examine the effects of morphine on neuronal excitability in type II vBNST neurons, whole-cell patch-clamp recordings were performed in brain slices. Bath application of morphine hyperpolarized type II vBNST neurons. Thus, the suppressive effects of intra-vBNST morphine on pain-induced aversion may be due to its inhibitory effects on neuronal excitability in type II vBNST neurons. These results suggest that the vBNST is a key brain region involved in the suppressive effects of morphine on the affective component of pain.
Collapse
Affiliation(s)
- Chikashi Maruyama
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, 060-0812, Japan
| | - Satoshi Deyama
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, 060-0812, Japan.,Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Yusuke Nagano
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, 060-0812, Japan
| | - Soichiro Ide
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, 060-0812, Japan.,Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Katsuyuki Kaneda
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, 060-0812, Japan.,Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Mitsuhiro Yoshioka
- Department of Neuropharmacology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masabumi Minami
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, 060-0812, Japan
| |
Collapse
|
129
|
Kaye JT, Bradford DE, Magruder KP, Curtin JJ. Probing for Neuroadaptations to Unpredictable Stressors in Addiction: Translational Methods and Emerging Evidence. J Stud Alcohol Drugs 2017; 78:353-371. [PMID: 28499100 DOI: 10.15288/jsad.2017.78.353] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Stressors clearly contribute to addiction etiology and relapse in humans, but our understanding of specific mechanisms remains limited. Rodent models of addiction offer the power, flexibility, and precision necessary to delineate the causal role and specific mechanisms through which stressors influence alcohol and other drug use. This review describes a program of research using startle potentiation to unpredictable stressors that is well positioned to translate between animal models and clinical research with humans on stress neuroadaptations in addiction. This research rests on a solid foundation provided by three separate pillars of evidence from (a) rodent behavioral neuroscience on stress neuroadaptations in addiction, (b) rodent affective neuroscience on startle potentiation, and (c) human addiction and affective science with startle potentiation. Rodent stress neuroadaptation models implicate adaptations in corticotropin-releasing factor and norepinephrine circuits within the central extended amygdala following chronic alcohol and other drug use that mediate anxious behaviors and stress-induced reinstatement among drug-dependent rodents. Basic affective neuroscience indicates that these same neural mechanisms are involved in startle potentiation to unpredictable stressors in particular (vs. predictable stressors). We believe that synthesis of these evidence bases should focus us on the role of unpredictable stressors in addiction etiology and relapse. Startle potentiation in unpredictable stressor tasks is proposed to provide an attractive and flexible test bed to encourage tight translation and reverse translation between animal models and human clinical research on stress neuroadaptations. Experimental therapeutics approaches focused on unpredictable stressors hold high promise to identify, repurpose, or refine pharmacological and psychosocial interventions for addiction.
Collapse
Affiliation(s)
- Jesse T Kaye
- University of Wisconsin-Madison, Madison, Wisconsin
| | | | | | | |
Collapse
|
130
|
Role of orexin type-1 receptors in paragiganto-coerulear modulation of opioid withdrawal and tolerance: A site specific focus. Neuropharmacology 2017; 126:25-37. [DOI: 10.1016/j.neuropharm.2017.08.024] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 08/13/2017] [Accepted: 08/16/2017] [Indexed: 11/21/2022]
|
131
|
Sanna F, Bratzu J, Argiolas A, Melis MR. Oxytocin induces penile erection and yawning when injected into the bed nucleus of the stria terminalis: Involvement of glutamic acid, dopamine, and nitric oxide. Horm Behav 2017; 96:52-61. [PMID: 28916137 DOI: 10.1016/j.yhbeh.2017.09.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 08/19/2017] [Accepted: 09/09/2017] [Indexed: 02/02/2023]
Abstract
Oxytocin (5-100ng), but not Arg8-vasopressin (100ng), injected unilaterally into the bed nucleus of the stria terminalis (BNST) induces penile erection and yawning in a dose-dependent manner in male rats. The minimal effective dose was 20ng for penile erection and 5ng for yawning. Oxytocin responses were abolished not only by the oxytocin receptor antagonist d(CH2)5Tyr(Me)2-Orn8-vasotocin (1μg), but also by (+) MK-801 (1μg), an excitatory amino acid receptor antagonist of the N-methyl-d-aspartic acid (NMDA) subtype, SCH 23390 (1μg), a D1 receptor antagonist, but not haloperidol (1μg), a D2 receptor antagonist, and SMTC (40μg), an inhibitor of neuronal nitric oxide synthase, injected into the BNST 15min before oxytocin. Oxytocin-induced penile erection, but not yawning, was also abolished by CNQX (1μg), an excitatory amino acid receptor antagonist of the AMPA subtype. In contrast, oxytocin responses were not reduced by bicuculline (20ng), a GABAA receptor antagonist, phaclofen (5μg), a GABAB receptor antagonist, CP 376395, a CRF receptor-1 antagonist (5μg), or astressin 2B, a CRF receptor-2 antagonist (150ng). Considering the ability of NMDA (100ng) to induce penile erection and yawning when injected into the BNST and the available evidence showing possible interaction among oxytocin, glutamic acid, and dopamine in the BNST, oxytocin possibly activates glutamatergic neurotransmission in the BNST. This in turn leads to the activation of neural pathways projecting back to the paraventricular nucleus, medial preoptic area, ventral tegmental area, and/or ventral subiculum/amygdala, thereby inducing penile erection and yawning.
Collapse
Affiliation(s)
- Fabrizio Sanna
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, SS 554, km 4,500, 09042 Monserrato, Cagliari, Italy.
| | - Jessica Bratzu
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, SS 554, km 4,500, 09042 Monserrato, Cagliari, Italy
| | - Antonio Argiolas
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, SS 554, km 4,500, 09042 Monserrato, Cagliari, Italy; Centre of Excellence for the Neurobiology of Addictions, University of Cagliari, SS 554, km 4,500, 09042 Monserrato, Cagliari, Italy; Institute of Neuroscience, National Research Council, Cagliari Section, Cittadella Universitaria, SS 554, km 4,500, 09042 Monserrato, Cagliari, Italy
| | - Maria Rosaria Melis
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, SS 554, km 4,500, 09042 Monserrato, Cagliari, Italy; Centre of Excellence for the Neurobiology of Addictions, University of Cagliari, SS 554, km 4,500, 09042 Monserrato, Cagliari, Italy
| |
Collapse
|
132
|
Zahm DS, Root DH. Review of the cytology and connections of the lateral habenula, an avatar of adaptive behaving. Pharmacol Biochem Behav 2017; 162:3-21. [PMID: 28647565 PMCID: PMC5659881 DOI: 10.1016/j.pbb.2017.06.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 05/02/2017] [Accepted: 06/13/2017] [Indexed: 12/21/2022]
Abstract
The cytology and connections of the lateral habenula (LHb) are reviewed. The habenula is first introduced, after which the cytology of the LHb is discussed mainly with reference to cell types, general topography and descriptions of subnuclei. An overview of LHb afferent connections is given followed by some details about the projections to LHb from a number of structures. An overview of lateral habenula efferent connections is given followed by some details about the projections from LHb to a number of structures. In considering the afferent and efferent connections of the LHb some attention is given to the relative validity of regarding it as a bi-partite structure featuring 'limbic' and 'pallidal' parts. The paper ends with some concluding remarks about the relative place of the LHb in adaptive behaving.
Collapse
Affiliation(s)
- Daniel S Zahm
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S. Grand Blvd., Saint Louis, MO 63104, United States.
| | - David H Root
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, United States.
| |
Collapse
|
133
|
Goode TD, Maren S. Role of the bed nucleus of the stria terminalis in aversive learning and memory. Learn Mem 2017; 24:480-491. [PMID: 28814474 PMCID: PMC5580527 DOI: 10.1101/lm.044206.116] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 06/30/2017] [Indexed: 02/06/2023]
Abstract
Surviving threats in the environment requires brain circuits for detecting (or anticipating) danger and for coordinating appropriate defensive responses (e.g., increased cardiac output, stress hormone release, and freezing behavior). The bed nucleus of the stria terminalis (BNST) is a critical interface between the "affective forebrain"-including the amygdala, ventral hippocampus, and medial prefrontal cortex-and the hypothalamic and brainstem areas that have been implicated in neuroendocrine, autonomic, and behavioral responses to actual or anticipated threats. However, the precise contribution of the BNST to defensive behavior is unclear, both in terms of the antecedent stimuli that mobilize BNST activity and the consequent defensive reactions. For example, it is well known that the BNST is essential for contextual fear conditioning, but dispensable for fear conditioning to discrete conditioned stimuli (CSs), at least as indexed by freezing behavior. However, recent evidence suggests that there are circumstances in which contextual freezing may persist independent of the BNST. Furthermore, the BNST is involved in the reinstatement (or relapse) of conditioned freezing to extinguished discrete CSs. As such, there are critical gaps in understanding how the BNST contributes to fundamental processes involved in Pavlovian fear conditioning. Here, we attempt to provide an integrative account of BNST function in fear conditioning. We discuss distinctions between unconditioned stress and conditioned fear and the role of BNST circuits in organizing behaviors associated with these states. We propose that the BNST mediates conditioned defensive responses-not based on the modality or duration of the antecedent threat or the duration of the behavioral response to the threat-but rather as consequence the ability of an antecedent stimulus to predict when an aversive outcome will occur (i.e., its temporal predictability). We argue that the BNST is not uniquely mobilized by sustained threats or uniquely involved in organizing sustained fear responses. In contrast, we argue that the BNST is involved in organizing fear responses to stimuli that poorly predict when danger will occur, no matter the duration, modality, or complexity of those stimuli. The concepts discussed in this review are critical to understanding the contribution of the human BNST to fear and anxiety disorders.
Collapse
Affiliation(s)
- Travis D Goode
- Institute for Neuroscience and the Department of Psychology, Texas A&M University, College Station, Texas 77843-3474, USA
| | - Stephen Maren
- Institute for Neuroscience and the Department of Psychology, Texas A&M University, College Station, Texas 77843-3474, USA
| |
Collapse
|
134
|
Warlow SM, Robinson MJF, Berridge KC. Optogenetic Central Amygdala Stimulation Intensifies and Narrows Motivation for Cocaine. J Neurosci 2017; 37:8330-8348. [PMID: 28751460 PMCID: PMC5577851 DOI: 10.1523/jneurosci.3141-16.2017] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 06/03/2017] [Accepted: 06/09/2017] [Indexed: 01/09/2023] Open
Abstract
Addiction is often characterized by intense motivation for a drug, which may be narrowly focused at the expense of other rewards. Here, we examined the role of amygdala-related circuitry in the amplification and narrowing of motivation focus for intravenous cocaine. We paired optogenetic channelrhodopsin (ChR2) stimulation in either central nucleus of amygdala (CeA) or basolateral amygdala (BLA) of female rats with one particular nose-poke porthole option for earning cocaine infusions (0.3 mg/kg, i.v.). A second alternative porthole earned identical cocaine but without ChR2 stimulation. Consequently, CeA rats quickly came to pursue their CeA ChR2-paired cocaine option intensely and exclusively, elevating cocaine intake while ignoring their alternative cocaine alone option. By comparison, BLA ChR2 pairing failed to enhance cocaine motivation. CeA rats also emitted consummatory bites toward their laser-paired porthole, suggesting that higher incentive salience made that cue more attractive. A separate progressive ratio test of incentive motivation confirmed that CeA ChR2 amplified rats' motivation, raising their breakpoint effort price for cocaine by 10-fold. However, CeA ChR2 laser on its own lacked any reinforcement value: laser by itself was never self-stimulated, not even by the same rats in which it amplified motivation for cocaine. Conversely, CeA inhibition by muscimol/baclofen microinjections prevented acquisition of cocaine self-administration and laser preference, whereas CeA inhibition by optogenetic halorhodopsin suppressed cocaine intake, indicating that CeA circuitry is needed for ordinary cocaine motivation. We conclude that CeA ChR2 excitation paired with a cocaine option specifically focuses and amplifies motivation to produce intense pursuit and consumption focused on that single target.SIGNIFICANCE STATEMENT In addiction, intense incentive motivation often becomes narrowly focused on a particular drug of abuse. Here we show that pairing central nucleus of amygdala (CeA) optogenetic stimulation with one option for earning intravenous cocaine makes that option almost the exclusive focus of intense pursuit and consumption. CeA stimulation also elevated the effort cost rats were willing to pay for cocaine and made associated cues become intensely attractive. However, we also show that CeA laser had no reinforcing properties at all when given alone for the same rats. Therefore, CeA laser pairing makes its associated cocaine option and cues become powerfully attractive in a nearly addictive fashion.
Collapse
Affiliation(s)
- Shelley M Warlow
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109, and
| | - Mike J F Robinson
- Department of Psychology, Wesleyan University, Middletown, Connecticut 06459
| | - Kent C Berridge
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109, and
| |
Collapse
|
135
|
A Functional Switch in Tonic GABA Currents Alters the Output of Central Amygdala Corticotropin Releasing Factor Receptor-1 Neurons Following Chronic Ethanol Exposure. J Neurosci 2017; 36:10729-10741. [PMID: 27798128 DOI: 10.1523/jneurosci.1267-16.2016] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/10/2016] [Indexed: 01/01/2023] Open
Abstract
The corticotropin releasing factor (CRF) system in the central amygdala (CeA) has been implicated in the effects of acute ethanol and the development of alcohol dependence. We previously demonstrated that CRF receptor 1 (CRF1) neurons comprise a specific component of the CeA microcircuitry that is selectively engaged by acute ethanol. To investigate the impact of chronic ethanol exposure on inhibitory signaling in CRF1+ CeA neurons, we used CRF1:GFP mice subjected to chronic intermittent ethanol (CIE) inhalation and examined changes in local inhibitory control, the effects of acute ethanol, and the output of these neurons from the CeA. Following CIE, CRF1+ neurons displayed decreased phasic inhibition and a complete loss of tonic inhibition that persisted into withdrawal. CRF1- neurons showed a cell type-specific upregulation of both phasic and tonic signaling with CIE, the latter of which persists into withdrawal and is likely mediated by δ subunit-containing GABAA receptors. The loss of tonic inhibition with CIE was seen in CRF1+ and CRF1- neurons that project out of the CeA and into the bed nucleus of the stria terminalis. CRF1+ projection neurons displayed an increased baseline firing rate and loss of sensitivity to acute ethanol following CIE. These data demonstrate that chronic ethanol exposure produces profound and long-lasting changes in local inhibitory control of the CeA, resulting in an increase in the output of the CeA and the CRF1 receptor system, in particular. These cellular changes could underlie the behavioral manifestations of alcohol dependence and potentially contribute to the pathology of addiction. SIGNIFICANCE STATEMENT The corticotropin releasing factor (CRF) system in the central amygdala (CeA) has been implicated in the effects of acute and chronic ethanol. We showed previously that CRF receptor 1-expressing (CRF1+) neurons in the CeA are under tonic inhibitory control and are differentially regulated by acute ethanol (Herman et al., 2013). Here we show that the inhibitory control of CRF1+ CeA neurons is lost with chronic ethanol exposure, likely by a functional switch in local tonic signaling. The loss of tonic inhibition is seen in CRF1+ projection neurons, suggesting that a critical consequence of chronic ethanol exposure is an increase in the output of the CeA CRF1 system, a neuroadaptation that may contribute to the behavioral consequences of alcohol dependence.
Collapse
|
136
|
Seigneur E, Südhof TC. Cerebellins are differentially expressed in selective subsets of neurons throughout the brain. J Comp Neurol 2017; 525:3286-3311. [PMID: 28714144 DOI: 10.1002/cne.24278] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/15/2017] [Accepted: 06/27/2017] [Indexed: 12/13/2022]
Abstract
Cerebellins are secreted hexameric proteins that form tripartite complexes with the presynaptic cell-adhesion molecules neurexins or 'deleted-in-colorectal-cancer', and the postsynaptic glutamate-receptor-related proteins GluD1 and GluD2. These tripartite complexes are thought to regulate synapses. However, cerebellins are expressed in multiple isoforms whose relative distributions and overall functions are not understood. Three of the four cerebellins, Cbln1, Cbln2, and Cbln4, autonomously assemble into homohexamers, whereas the Cbln3 requires Cbln1 for assembly and secretion. Here, we show that Cbln1, Cbln2, and Cbln4 are abundantly expressed in nearly all brain regions, but exhibit strikingly different expression patterns and developmental dynamics. Using newly generated knockin reporter mice for Cbln2 and Cbln4, we find that Cbln2 and Cbln4 are not universally expressed in all neurons, but only in specific subsets of neurons. For example, Cbln2 and Cbln4 are broadly expressed in largely non-overlapping subpopulations of excitatory cortical neurons, but only sparse expression was observed in excitatory hippocampal neurons of the CA1- or CA3-region. Similarly, Cbln2 and Cbln4 are selectively expressed, respectively, in inhibitory interneurons and excitatory mitral projection neurons of the main olfactory bulb; here, these two classes of neurons form dendrodendritic reciprocal synapses with each other. A few brain regions, such as the nucleus of the lateral olfactory tract, exhibit astoundingly high Cbln2 expression levels. Viewed together, our data show that cerebellins are abundantly expressed in relatively small subsets of neurons, suggesting specific roles restricted to subsets of synapses.
Collapse
Affiliation(s)
- Erica Seigneur
- Department of Molecular & Cellular Physiology and Howard Hughes Medical Institute, Stanford University Medical School, Stanford, California
| | - Thomas C Südhof
- Department of Molecular & Cellular Physiology and Howard Hughes Medical Institute, Stanford University Medical School, Stanford, California
| |
Collapse
|
137
|
Fudge JL, Kelly EA, Pal R, Bedont JL, Park L, Ho B. Beyond the Classic VTA: Extended Amygdala Projections to DA-Striatal Paths in the Primate. Neuropsychopharmacology 2017; 42:1563-1576. [PMID: 28220796 PMCID: PMC5518904 DOI: 10.1038/npp.2017.38] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 02/08/2017] [Accepted: 02/12/2017] [Indexed: 01/06/2023]
Abstract
The central extended amygdala (CEA) has been conceptualized as a 'macrosystem' that regulates various stress-induced behaviors. Consistent with this, the CEA highly expresses corticotropin-releasing factor (CRF), an important modulator of stress responses. Stress alters goal-directed responses associated with striatal paths, including maladaptive responses such as drug seeking, social withdrawal, and compulsive behavior. CEA inputs to the midbrain dopamine (DA) system are positioned to influence striatal functions through mesolimbic DA-striatal pathways. However, the structure of this amygdala-CEA-DA neuron path to the striatum has been poorly characterized in primates. In primates, we combined neuronal tracer injections into various arms of the circuit through specific DA subpopulations to assess: (1) whether the circuit connecting amygdala, CEA, and DA cells follows CEA intrinsic organization, or a more direct topography involving bed nucleus vs central nucleus divisions; (2) CRF content of the CEA-DA path; and (3) striatal subregions specifically involved in CEA-DA-striatal loops. We found that the amygdala-CEA-DA path follows macrostructural subdivisions, with the majority of input/outputs converging in the medial central nucleus, the sublenticular extended amygdala, and the posterior lateral bed nucleus of the stria terminalis. The proportion of CRF+ outputs is >50%, and mainly targets the A10 parabrachial pigmented nucleus (PBP) and A8 (retrorubal field, RRF) neuronal subpopulations, with additional inputs to the dorsal A9 neurons. CRF-enriched CEA-DA projections are positioned to influence outputs to the 'limbic-associative' striatum, which is distinct from striatal regions targeted by DA cells lacking CEA input. We conclude that the concept of the CEA is supported on connectional grounds, and that CEA termination over the PBP and RRF neuronal populations can influence striatal circuits involved in associative learning.
Collapse
Affiliation(s)
- Julie L Fudge
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, USA
| | - Emily A Kelly
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
| | - Ria Pal
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
| | - Joseph L Bedont
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Lydia Park
- Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Brian Ho
- Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
138
|
[Oxytocin and the mechanisms of alcohol dependence]. NEUROPSYCHIATRIE : KLINIK, DIAGNOSTIK, THERAPIE UND REHABILITATION : ORGAN DER GESELLSCHAFT ÖSTERREICHISCHER NERVENÄRZTE UND PSYCHIATER 2017. [PMID: 28639210 DOI: 10.1007/s40211-017-0229-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
One of the crucial purposes of treating alcohol-dependent patients is to enhance their ability to stay abstinent after detoxification therapy. Anxiety and stress vulnerability are the main factors provoking alcohol craving and relapse. In the first months of abstinence, alcohol-dependent patients frequently show sleep disturbances, irritability and depression, indicating chronic activation of stress pathways. In addition, the loss of confidence in interpersonal interactions results in social withdrawal and reduced willingness to participate in therapeutic programs.Current research shows that the peptide hormone oxytocin exerts substantial anxiolytic effects and facilitates prosocial behavior. Oxytocin can be safely applied as intranasal preparation. Oxytocin acts by inhibiting the effects of the corticotropin-releasing factor on GABAergic interneurons in the amygdala and paraventricular nucleus of hypothalamus.Recent research strongly suggests that application of oxytocin may beneficially influence the mechanisms of relapse and craving by reduction of anxiety, stress vulnerability and social withdrawal in abstinent alcohol-dependent patients.This article reviews neurobiological mechanisms of oxytocin effects on stress-related pathways and discusses the potential use of oxytocin in the treatment of alcohol addiction.
Collapse
|
139
|
Park J, Wakabayashi KT, Szalkowski C, Bhimani RV. Heterogeneous extracellular dopamine regulation in the subregions of the olfactory tubercle. J Neurochem 2017; 142:365-377. [PMID: 28498499 DOI: 10.1111/jnc.14069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/04/2017] [Accepted: 04/26/2017] [Indexed: 12/01/2022]
Abstract
Recent studies show that dense dopamine (DA) innervation from the ventral tegmental area to the olfactory tubercle (OT) may play an important role in processing multisensory information pertaining to arousal and reward, yet little is known about DA regulation in the OT. This is mainly due to the anatomical limitations of conventional methods of determining DA dynamics in small heterogeneous OT subregions located in the ventral most part of the brain. Additionally, there is increasing awareness that anteromedial and anterolateral subregions of the OT have distinct functional roles in natural and psychostimulant drug reinforcement as well as in regulating other types of behavioral responses, such as aversion. Here, we compared extracellular DA regulation (release and clearance) in three subregions (anteromedial, anterolateral, and posterior) of the OT of urethane-anesthetized rats, using in vivo fast-scan cyclic voltammetry following electrical stimulation of ventral tegmental area dopaminergic cell bodies. The neurochemical, anatomical, and pharmacological evidence confirmed that the major electrically evoked catecholamine in the OT was DA across both its anteroposterior and mediolateral extent. While both D2 autoreceptors and DA transporters play important roles in regulating DA evoked in OT subregions, DA in the anterolateral OT was regulated less by the D2 receptors when compared to other OT subregions. Comparing previous data from other DA rich ventral striatum regions, the slow DA clearance across the OT subregions may lead to a high extracellular DA concentration and contribute towards volume transmission. These differences in DA regulation in the terminals of OT subregions and other limbic structures will help us understand the neural regulatory mechanisms of DA in the OT, which may elucidate its distinct functional contribution in the ventral striatum towards mediating aversion, reward and addiction processes.
Collapse
Affiliation(s)
- Jinwoo Park
- Department of Biotechnical and Clinical Laboratory Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA.,Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA.,Neuroscience Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Ken T Wakabayashi
- Department of Biotechnical and Clinical Laboratory Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA.,Research Institute on Addictions, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Caitlin Szalkowski
- Department of Biotechnical and Clinical Laboratory Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Rohan V Bhimani
- Neuroscience Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| |
Collapse
|
140
|
Sawyer KS, Oscar-Berman M, Barthelemy OJ, Papadimitriou GM, Harris GJ, Makris N. Gender dimorphism of brain reward system volumes in alcoholism. Psychiatry Res 2017; 263:15-25. [PMID: 28285206 PMCID: PMC5415444 DOI: 10.1016/j.pscychresns.2017.03.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 03/01/2017] [Accepted: 03/03/2017] [Indexed: 11/27/2022]
Abstract
The brain's reward network has been reported to be smaller in alcoholic men compared to nonalcoholic men, but little is known about the volumes of reward regions in alcoholic women. Morphometric analyses were performed on magnetic resonance brain scans of 60 long-term chronic alcoholics (ALC; 30 men) and 60 nonalcoholic controls (NC; 29 men). We derived volumes of total brain, and cortical and subcortical reward-related structures including the dorsolateral prefrontal (DLPFC), orbitofrontal, and cingulate cortices, and the temporal pole, insula, amygdala, hippocampus, nucleus accumbens septi (NAc), and ventral diencephalon (VDC). We examined the relationships of the volumetric findings to drinking history. Analyses revealed a significant gender interaction for the association between alcoholism and total reward network volumes, with ALC men having smaller reward volumes than NC men and ALC women having larger reward volumes than NC women. Analyses of a priori subregions revealed a similar pattern of reward volume differences with significant gender interactions for DLPFC and VDC. Overall, the volume of the cerebral ventricles in ALC participants was negatively associated with duration of abstinence, suggesting decline in atrophy with greater length of sobriety.
Collapse
Affiliation(s)
- Kayle S Sawyer
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA; VA Boston Healthcare System, Boston, MA 02130, USA.
| | - Marlene Oscar-Berman
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA; VA Boston Healthcare System, Boston, MA 02130, USA; Departments of Neurology and Psychiatry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Olivier J Barthelemy
- Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215, USA
| | - George M Papadimitriou
- Center for Morphometric Analysis, and Athinoula A. Martinos Center, Departments of Neurology, Psychiatry, and Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Gordon J Harris
- Radiology Computer Aided Diagnostics Laboratory, and Center for Morphometric Analysis, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Nikos Makris
- Center for Morphometric Analysis, and Athinoula A. Martinos Center, Departments of Neurology, Psychiatry, and Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
141
|
Gonzáles MA, Miranda AP, Orrego H, Silva R, Forray MI. Enduring attenuation of norepinephrine synaptic availability and augmentation of the pharmacological and behavioral effects of desipramine by repeated immobilization stress. Neuropharmacology 2017; 117:249-259. [PMID: 28232061 DOI: 10.1016/j.neuropharm.2017.02.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 02/16/2017] [Accepted: 02/16/2017] [Indexed: 01/16/2023]
Abstract
Here we provide evidence that repeated immobilization stress (RIS) in rats induces a persistent increase in noradrenergic activity in the anterior aspects of the anterolateral bed nucleus of the stria terminalis (alBNST). This increase in noradrenergic activity results from both enhanced synthesis and reuptake of norepinephrine (NE). It leads to a decrease in the synaptic availability of NE, which elicits an augmented noradrenergic response to the inhibitors of NE reuptake (NRIs), such as desipramine (DMI), an antidepressant. The enduring depression-like behavior and the augmentation of the climbing behavior seen in repeatedly stressed rats following subchronic administration of DMI in the forced swimming test (FST) might be explained by a dysregulation of noradrenergic transmission observed in alBNST. Taken together, we propose that dysregulation of noradrenergic transmission such as the one described in the present work may represent a mechanism underlying major depressive disorders (MDD) with melancholic features in humans.
Collapse
Affiliation(s)
- Marco A Gonzáles
- Departamento de Farmacia, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ana Pamela Miranda
- Departamento de Farmacia, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Horacio Orrego
- Departamento de Farmacia, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodolfo Silva
- Departamento de Farmacia, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María Inés Forray
- Departamento de Farmacia, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
142
|
Reichard RA, Subramanian S, Desta MT, Sura T, Becker ML, Ghobadi CW, Parsley KP, Zahm DS. Abundant collateralization of temporal lobe projections to the accumbens, bed nucleus of stria terminalis, central amygdala and lateral septum. Brain Struct Funct 2017; 222:1971-1988. [PMID: 27704219 PMCID: PMC5378696 DOI: 10.1007/s00429-016-1321-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/28/2016] [Indexed: 10/20/2022]
Abstract
Behavioral flexibility is subserved in part by outputs from the cerebral cortex to telencephalic subcortical structures. In our earlier evaluation of the organization of the cortical-subcortical output system (Reynolds and Zahm, J Neurosci 25:11757-11767, 2005), retrograde double-labeling was evaluated in the prefrontal cortex following tracer injections into pairs of the following subcortical telencephalic structures: caudate-putamen, core and shell of the accumbens (Acb), bed nucleus of stria terminalis (BST) and central nucleus of the amygdala (CeA). The present study was done to assess patterns of retrograde labeling in the temporal lobe after similar paired tracer injections into most of the same telencephalic structures plus the lateral septum (LS). In contrast to the modest double-labeling observed in the prefrontal cortex in the previous study, up to 60-80 % of neurons in the basal and accessory basal amygdaloid nuclei and amygdalopiriform transition area exhibited double-labeling in the present study. The most abundant double-labeling was generated by paired injections into structures affiliated with the extended amygdala, including the CeA, BST and Acb shell. Injections pairing the Acb core with the BST or CeA produced significantly fewer double-labeled neurons. The ventral subiculum exhibited modest amounts of double-labeling associated with paired injections into the Acb, BST, CeA and LS. The results raise the issue of how an extraordinarily collateralized output from the temporal lobe may contribute to behavioral flexibility.
Collapse
Affiliation(s)
- Rhett A Reichard
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, 1402 S, Grand Blvd., Saint Louis, MO, 63104, USA
| | - Suriya Subramanian
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, 1402 S, Grand Blvd., Saint Louis, MO, 63104, USA
| | - Mikiyas T Desta
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, 1402 S, Grand Blvd., Saint Louis, MO, 63104, USA
| | - Tej Sura
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, 1402 S, Grand Blvd., Saint Louis, MO, 63104, USA
| | - Mary L Becker
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, 1402 S, Grand Blvd., Saint Louis, MO, 63104, USA
| | - Comeron W Ghobadi
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, 1402 S, Grand Blvd., Saint Louis, MO, 63104, USA
| | - Kenneth P Parsley
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, 1402 S, Grand Blvd., Saint Louis, MO, 63104, USA
| | - Daniel S Zahm
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, 1402 S, Grand Blvd., Saint Louis, MO, 63104, USA.
| |
Collapse
|
143
|
Saga Y, Hoshi E, Tremblay L. Roles of Multiple Globus Pallidus Territories of Monkeys and Humans in Motivation, Cognition and Action: An Anatomical, Physiological and Pathophysiological Review. Front Neuroanat 2017; 11:30. [PMID: 28442999 PMCID: PMC5385466 DOI: 10.3389/fnana.2017.00030] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/23/2017] [Indexed: 12/11/2022] Open
Abstract
The globus pallidus (GP) communicates with widespread cortical areas that support various functions, including motivation, cognition and action. Anatomical tract-tracing studies revealed that the anteroventral GP communicates with the medial prefrontal and orbitofrontal cortices, which are involved in motivational control; the anterodorsal GP communicates with the lateral prefrontal cortex, which is involved in cognitive control; and the posterior GP communicates with the frontal motor cortex, which is involved in action control. This organization suggests that distinct subdivisions within the GP play specific roles. Neurophysiological studies examining GP neurons in monkeys during behavior revealed that the types of information coding performed within these subdivisions differ greatly. The anteroventral GP is characterized by activities related to motivation, such as reward seeking and aversive avoidance; the anterodorsal GP is characterized by activity that reflects cognition, such as goal decision and action selection; and the posterior GP is characterized by activity associated with action preparation and execution. Pathophysiological studies have shown that GABA-related substances or GP lesions result in abnormal activity in the GP, which causes site-specific behavioral and motor symptoms. The present review article discusses the anatomical organization, physiology and pathophysiology of the three major GP territories in nonhuman primates and humans.
Collapse
Affiliation(s)
- Yosuke Saga
- Institute of Cognitive Science Marc Jeannerod, UMR-5229 CNRSBron, France
| | - Eiji Hoshi
- Frontal Lobe Function Project, Tokyo Metropolitan Institute of Medical ScienceTokyo, Japan.,AMED-CREST, Japan Agency for Medical Research and DevelopmentTokyo, Japan
| | - Léon Tremblay
- Institute of Cognitive Science Marc Jeannerod, UMR-5229 CNRSBron, France
| |
Collapse
|
144
|
Abstract
Addiction has been conceptualized as a three-stage cycle—binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation—that worsens over time and involves allostatic changes in hedonic function via changes in the brain reward and stress systems. Using the withdrawal/negative affect stage and negative reinforcement as an important source of motivation for compulsive drug seeking, we outline the neurobiology of the stress component of the withdrawal/negative affect stage and relate it to a derivative of the Research Domain Criteria research construct for the study of psychiatric disease, known as the Addictions Neuroclinical Assessment. Using the Addictions Neuroclinical Assessment, we outline five subdomains of negative emotional states that can be operationally measured in human laboratory settings and paralleled by animal models. We hypothesize that a focus on negative emotionality and stress is closely related to the acute neurobiological alterations that are experienced in addiction and may serve as a bridge to a reformulation of the addiction nosology to better capture individual differences in patients for whom the withdrawal/negative affect stage drives compulsive drug taking.
Collapse
Affiliation(s)
- Laura E Kwako
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - George F Koob
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
145
|
Pessoa L. A Network Model of the Emotional Brain. Trends Cogn Sci 2017; 21:357-371. [PMID: 28363681 DOI: 10.1016/j.tics.2017.03.002] [Citation(s) in RCA: 213] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/20/2017] [Accepted: 03/01/2017] [Indexed: 01/13/2023]
Abstract
Emotion is often understood in terms of a circumscribed set of cortical and subcortical brain regions. I propose, instead, that emotion should be understood in terms of large-scale network interactions spanning the entire neuroaxis. I describe multiple anatomical and functional principles of brain organization that lead to the concept of 'functionally integrated systems', cortical-subcortical systems that anchor the organization of emotion in the brain. The proposal is illustrated by describing the cortex-amygdala integrated system and how it intersects with systems involving the ventral striatum/accumbens, septum, hippocampus, hypothalamus, and brainstem. The important role of the thalamus is also highlighted. Overall, the model clarifies why the impact of emotion is wide-ranging, and how emotion is interlocked with perception, cognition, motivation, and action.
Collapse
Affiliation(s)
- Luiz Pessoa
- Department of Psychology and Maryland Neuroimaging Center, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
146
|
Oler JA, Tromp DPM, Fox AS, Kovner R, Davidson RJ, Alexander AL, McFarlin DR, Birn RM, E Berg B, deCampo DM, Kalin NH, Fudge JL. Connectivity between the central nucleus of the amygdala and the bed nucleus of the stria terminalis in the non-human primate: neuronal tract tracing and developmental neuroimaging studies. Brain Struct Funct 2017; 222:21-39. [PMID: 26908365 PMCID: PMC4995160 DOI: 10.1007/s00429-016-1198-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 01/30/2016] [Indexed: 01/10/2023]
Abstract
The lateral division of the bed nucleus of the stria terminalis (BSTL) and central nucleus of the amygdala (Ce) form the two poles of the 'central extended amygdala', a theorized subcortical macrostructure important in threat-related processing. Our previous work in nonhuman primates, and humans, demonstrating strong resting fMRI connectivity between the Ce and BSTL regions, provides evidence for the integrated activity of these structures. To further understand the anatomical substrates that underlie this coordinated function, and to investigate the integrity of the central extended amygdala early in life, we examined the intrinsic connectivity between the Ce and BSTL in non-human primates using ex vivo neuronal tract tracing, and in vivo diffusion-weighted imaging and resting fMRI techniques. The tracing studies revealed that BSTL receives strong input from Ce; however, the reciprocal pathway is less robust, implying that the primate Ce is a major modulator of BSTL function. The sublenticular extended amygdala (SLEAc) is strongly and reciprocally connected to both Ce and BSTL, potentially allowing the SLEAc to modulate information flow between the two structures. Longitudinal early-life structural imaging in a separate cohort of monkeys revealed that extended amygdala white matter pathways are in place as early as 3 weeks of age. Interestingly, resting functional connectivity between Ce and BSTL regions increases in coherence from 3 to 7 weeks of age. Taken together, these findings demonstrate a time period during which information flow between Ce and BSTL undergoes postnatal developmental changes likely via direct Ce → BSTL and/or Ce ↔ SLEAc ↔ BSTL projections.
Collapse
Affiliation(s)
- Jonathan A Oler
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, USA.
- HealthEmotions Research Institute, Wisconsin Psychiatric Institute and Clinics, 6001 Research Park Blvd., Madison, WI, 53719, USA.
| | - Do P M Tromp
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, USA
- HealthEmotions Research Institute, Wisconsin Psychiatric Institute and Clinics, 6001 Research Park Blvd., Madison, WI, 53719, USA
| | - Andrew S Fox
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, USA
- Department of Psychology, University of Wisconsin-Madison, Madison, USA
- HealthEmotions Research Institute, Wisconsin Psychiatric Institute and Clinics, 6001 Research Park Blvd., Madison, WI, 53719, USA
| | - Rothem Kovner
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, USA
- HealthEmotions Research Institute, Wisconsin Psychiatric Institute and Clinics, 6001 Research Park Blvd., Madison, WI, 53719, USA
| | - Richard J Davidson
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, USA
- Department of Psychology, University of Wisconsin-Madison, Madison, USA
| | - Andrew L Alexander
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, USA
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, USA
| | - Daniel R McFarlin
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, USA
- HealthEmotions Research Institute, Wisconsin Psychiatric Institute and Clinics, 6001 Research Park Blvd., Madison, WI, 53719, USA
| | - Rasmus M Birn
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, USA
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, USA
| | | | - Danielle M deCampo
- Department of Neuroscience, University of Rochester Medical Center, Rochester, USA
| | - Ned H Kalin
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, USA
- Department of Psychology, University of Wisconsin-Madison, Madison, USA
- HealthEmotions Research Institute, Wisconsin Psychiatric Institute and Clinics, 6001 Research Park Blvd., Madison, WI, 53719, USA
| | - Julie L Fudge
- Department of Neuroscience, University of Rochester Medical Center, Rochester, USA
- Department of Psychiatry, University of Rochester Medical Center, Rochester, USA
| |
Collapse
|
147
|
Contoreggi C, Chrousos GP, Mascio MD. Chronic distress and the vulnerable host: a new target for HIV treatment and prevention? NEUROBEHAVIORAL HIV MEDICINE 2016; 7:53-75. [PMID: 34295195 PMCID: PMC8293862 DOI: 10.2147/nbhiv.s86309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pathologic stress (distress) disturbs immune, cardiovascular, metabolic, and behavioral homeostasis. Individuals living with HIV and those at risk are vulnerable to stress disorders. Corticotropin-releasing hormone (CRH) is critical in neuroendocrine immune regulation. CRH, a neuropeptide, is distributed in the central and peripheral nervous systems and acts principally on CRH receptor type 1 (CRHR1). CRH in the brain modulates neuropsychiatric disorders. CRH and stress modulation of immunity is two-pronged; there is a direct action on hypothalamic-pituitary-adrenal secretion of glucocorticoids and through immune organ sympathetic innervation. CRH is a central and systemic proinflammatory cytokine. Glucocorticoids and their receptors have gene regulatory actions on viral replication and cause central and systemic immune suppression. CRH and stress activation contributes to central nervous system (CNS) viral entry important in HIV-associated neurocognitive disorders and HIV-associated dementia. CNS CRH overproduction short-circuits reward, executive, and emotional control, leading to addiction, cognitive impairment, and psychiatric comorbidity. CRHR1 is an important therapeutic target for medication development. CRHR1 antagonist clinical trials have focused on psychiatric disorders with little attention paid to neuroendocrine immune disorders. Studies of those with HIV and those at risk show that concurrent stress-related disorders contribute to higher morbidity and mortality; stress-related conditions, addiction, immune dysfunction, and comorbid psychiatric illness all increase HIV transmission. Neuropsychiatric disease, chronic inflammation, and substance abuse are endemic, and chronic distress is a pathologic factor. It is being understood that stress and CRH are fundamental to neuroendocrine immunity; therapeutic interventions with existing and novel agents hold promise for restoring homeostasis, reducing morbidity and mortality for those with HIV and possibly reducing future disease transmission.
Collapse
Affiliation(s)
- Carlo Contoreggi
- Intramural Research Program (IRP), National Institute on Drug Abuse (NIDA), National Institutes of Health (NIH), Baltimore, MD, USA
| | - George P Chrousos
- Department of Pediatrics, Aghia Sophia Children’s Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Michele Di Mascio
- AIDS Imaging Research Section, Division of Clinical Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
148
|
Kaneko T, Kaneda K, Ohno A, Takahashi D, Hara T, Amano T, Ide S, Yoshioka M, Minami M. Activation of adenylate cyclase-cyclic AMP-protein kinase A signaling by corticotropin-releasing factor within the dorsolateral bed nucleus of the stria terminalis is involved in pain-induced aversion. Eur J Neurosci 2016; 44:2914-2924. [PMID: 27690274 DOI: 10.1111/ejn.13419] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 09/22/2016] [Accepted: 09/26/2016] [Indexed: 01/23/2023]
Abstract
Pain is a complex experience involving sensory and affective components. Although the neuronal mechanisms underlying the sensory component of pain have been extensively studied, those underlying its affective component have yet to be elucidated. Recently, we reported that corticotrophin-releasing factor (CRF)-induced depolarization in type II neurons within the dorsolateral bed nucleus of the stria terminalis (dlBNST) is critical for pain-induced aversive responses in rats. However, the intracellular signaling underlying the excitatory effects of CRF and the contribution of such signaling to the induction of pain-induced aversion remain unclear. In the present study, we addressed these issues by conducting whole-cell patch-clamp recordings in rat brain slices and by undertaking behavioral pharmacological analyses. Intracellular perfusion of protein kinase A (PKA) inhibitor Rp-cyclic adenosine monophosphorothioate (Rp-cAMPS) or KT5720 suppressed the excitatory effects of CRF in type II dlBNST neurons, and bath application of Rp-cAMPS also suppressed it. In addition, bath application of forskolin, an adenylate cyclase (AC) activator, mimicked the effects of CRF, and pretreatment with forskolin diminished the excitatory effects of CRF. Furthermore, a conditioned place aversion (CPA) test showed that co-administration of Rp-cAMPS with CRF into the dlBNST suppressed CRF-induced CPA. Intra-dlBNST injection of Rp-cAMPS also suppressed pain-induced CPA. These results suggest that CRF increases excitability of type II dlBNST neurons through activation of the AC-cAMP-PKA pathway, thereby causing pain-induced aversive responses. The present findings shed light on the neuronal mechanisms underlying the negative affective component of pain and may provide therapeutic targets for treating intractable pain accompanied by psychological factors.
Collapse
Affiliation(s)
- Tomoyuki Kaneko
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Katsuyuki Kaneda
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Atsushi Ohno
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Daiki Takahashi
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Taiki Hara
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Taiju Amano
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Soichiro Ide
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Mitsuhiro Yoshioka
- Department of Neuropharmacology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masabumi Minami
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| |
Collapse
|
149
|
Hamed A, Daszczuk P, Kursa MB, Turzyńska D, Sobolewska A, Lehner M, Boguszewski PM, Szyndler J. Non-parametric analysis of neurochemical effects and Arc expression in amphetamine-induced 50-kHz ultrasonic vocalization. Behav Brain Res 2016; 312:174-85. [DOI: 10.1016/j.bbr.2016.05.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 05/16/2016] [Accepted: 05/19/2016] [Indexed: 11/30/2022]
|
150
|
Baydin S, Yagmurlu K, Tanriover N, Gungor A, Rhoton AL. Microsurgical and Fiber Tract Anatomy of the Nucleus Accumbens. Oper Neurosurg (Hagerstown) 2016; 12:269-288. [DOI: 10.1227/neu.0000000000001133] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 10/04/2015] [Indexed: 11/19/2022] Open
|