101
|
Diggle CP, Moore DJ, Mali G, zur Lage P, Ait-Lounis A, Schmidts M, Shoemark A, Garcia Munoz A, Halachev MR, Gautier P, Yeyati PL, Bonthron DT, Carr IM, Hayward B, Markham AF, Hope JE, von Kriegsheim A, Mitchison HM, Jackson IJ, Durand B, Reith W, Sheridan E, Jarman AP, Mill P. HEATR2 plays a conserved role in assembly of the ciliary motile apparatus. PLoS Genet 2014; 10:e1004577. [PMID: 25232951 PMCID: PMC4168999 DOI: 10.1371/journal.pgen.1004577] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 07/03/2014] [Indexed: 11/18/2022] Open
Abstract
Cilia are highly conserved microtubule-based structures that perform a variety of sensory and motility functions during development and adult homeostasis. In humans, defects specifically affecting motile cilia lead to chronic airway infections, infertility and laterality defects in the genetically heterogeneous disorder Primary Ciliary Dyskinesia (PCD). Using the comparatively simple Drosophila system, in which mechanosensory neurons possess modified motile cilia, we employed a recently elucidated cilia transcriptional RFX-FOX code to identify novel PCD candidate genes. Here, we report characterization of CG31320/HEATR2, which plays a conserved critical role in forming the axonemal dynein arms required for ciliary motility in both flies and humans. Inner and outer arm dyneins are absent from axonemes of CG31320 mutant flies and from PCD individuals with a novel splice-acceptor HEATR2 mutation. Functional conservation of closely arranged RFX-FOX binding sites upstream of HEATR2 orthologues may drive higher cytoplasmic expression of HEATR2 during early motile ciliogenesis. Immunoprecipitation reveals HEATR2 interacts with DNAI2, but not HSP70 or HSP90, distinguishing it from the client/chaperone functions described for other cytoplasmic proteins required for dynein arm assembly such as DNAAF1-4. These data implicate CG31320/HEATR2 in a growing intracellular pre-assembly and transport network that is necessary to deliver functional dynein machinery to the ciliary compartment for integration into the motile axoneme.
Collapse
Affiliation(s)
| | - Daniel J. Moore
- Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Girish Mali
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine at The University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Petra zur Lage
- Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Aouatef Ait-Lounis
- Department of Pathology and Immunology, Faculty of Medicine, Université de Genève, Geneva, Switzerland
| | - Miriam Schmidts
- Molecular Medicine Unit and Birth Defect Research Center, Institute of Child Health, University College London, London, United Kingdom
| | - Amelia Shoemark
- Paediatric Respiratory Department, Royal Brompton Hospital, London, United Kingdom
| | - Amaya Garcia Munoz
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland
| | - Mihail R. Halachev
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine at The University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Philippe Gautier
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine at The University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Patricia L. Yeyati
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine at The University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | | | - Ian M. Carr
- School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Bruce Hayward
- School of Medicine, University of Leeds, Leeds, United Kingdom
| | | | - Jilly E. Hope
- Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Alex von Kriegsheim
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland
| | - Hannah M. Mitchison
- Molecular Medicine Unit and Birth Defect Research Center, Institute of Child Health, University College London, London, United Kingdom
| | - Ian J. Jackson
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine at The University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Bénédicte Durand
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, UMR 5534 CNRS, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Walter Reith
- Department of Pathology and Immunology, Faculty of Medicine, Université de Genève, Geneva, Switzerland
| | - Eamonn Sheridan
- School of Medicine, University of Leeds, Leeds, United Kingdom
- * E-mail: (ES); (APJ); (PM)
| | - Andrew P. Jarman
- Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail: (ES); (APJ); (PM)
| | - Pleasantine Mill
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine at The University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
- * E-mail: (ES); (APJ); (PM)
| |
Collapse
|
102
|
Hjeij R, Onoufriadis A, Watson C, Slagle C, Klena N, Dougherty G, Kurkowiak M, Loges N, Diggle C, Morante N, Gabriel G, Lemke K, Li Y, Pennekamp P, Menchen T, Konert F, Marthin J, Mans D, Letteboer S, Werner C, Burgoyne T, Westermann C, Rutman A, Carr I, O’Callaghan C, Moya E, Chung E, Sheridan E, Nielsen K, Roepman R, Bartscherer K, Burdine R, Lo C, Omran H, Mitchison H, Mitchison HM. CCDC151 mutations cause primary ciliary dyskinesia by disruption of the outer dynein arm docking complex formation. Am J Hum Genet 2014; 95:257-74. [PMID: 25192045 PMCID: PMC4157146 DOI: 10.1016/j.ajhg.2014.08.005] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 08/14/2014] [Indexed: 11/30/2022] Open
Abstract
A diverse family of cytoskeletal dynein motors powers various cellular transport systems, including axonemal dyneins generating the force for ciliary and flagellar beating essential to movement of extracellular fluids and of cells through fluid. Multisubunit outer dynein arm (ODA) motor complexes, produced and preassembled in the cytosol, are transported to the ciliary or flagellar compartment and anchored into the axonemal microtubular scaffold via the ODA docking complex (ODA-DC) system. In humans, defects in ODA assembly are the major cause of primary ciliary dyskinesia (PCD), an inherited disorder of ciliary and flagellar dysmotility characterized by chronic upper and lower respiratory infections and defects in laterality. Here, by combined high-throughput mapping and sequencing, we identified CCDC151 loss-of-function mutations in five affected individuals from three independent families whose cilia showed a complete loss of ODAs and severely impaired ciliary beating. Consistent with the laterality defects observed in these individuals, we found Ccdc151 expressed in vertebrate left-right organizers. Homozygous zebrafish ccdc151ts272a and mouse Ccdc151Snbl mutants display a spectrum of situs defects associated with complex heart defects. We demonstrate that CCDC151 encodes an axonemal coiled coil protein, mutations in which abolish assembly of CCDC151 into respiratory cilia and cause a failure in axonemal assembly of the ODA component DNAH5 and the ODA-DC-associated components CCDC114 and ARMC4. CCDC151-deficient zebrafish, planaria, and mice also display ciliary dysmotility accompanied by ODA loss. Furthermore, CCDC151 coimmunoprecipitates CCDC114 and thus appears to be a highly evolutionarily conserved ODA-DC-related protein involved in mediating assembly of both ODAs and their axonemal docking machinery onto ciliary microtubules.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Hannah M Mitchison
- Genetics and Genomic Medicine Programme, University College London (UCL) Institute of Child Health, London WC1N 1EH, UK
| |
Collapse
|
103
|
Raidt J, Wallmeier J, Hjeij R, Onnebrink JG, Pennekamp P, Loges NT, Olbrich H, Häffner K, Dougherty GW, Omran H, Werner C. Ciliary beat pattern and frequency in genetic variants of primary ciliary dyskinesia. Eur Respir J 2014; 44:1579-88. [PMID: 25186273 DOI: 10.1183/09031936.00052014] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Primary ciliary dyskinesia (PCD) is a rare genetic disorder leading to recurrent respiratory tract infections. High-speed video-microscopy analysis (HVMA) of ciliary beating, currently the first-line diagnostic tool for PCD in most centres, is challenging because recent studies have expanded the spectrum of HVMA findings in PCD from grossly abnormal to very subtle. The objective of this study was to describe the diversity of HVMA findings in genetically confirmed PCD individuals. HVMA was performed as part of the routine work-up of individuals with suspected PCD. Subsequent molecular analysis identified biallelic mutations in the PCD-related genes of 66 individuals. 1072 videos of these subjects were assessed for correlation with the genotype. Biallelic mutations (19 novel) were found in 17 genes: DNAI1, DNAI2, DNAH5, DNAH11, CCDC103, ARMC4, KTU/DNAAF2, LRRC50/DNAAF1, LRRC6, DYX1C1, ZMYND10, CCDC39, CCDC40, CCDC164, HYDIN, RSPH4A and RSPH1. Ciliary beat pattern variations correlated well with the genetic findings, allowing the classification of typical HVMA findings for different genetic groups. In contrast, analysis of ciliary beat frequency did not result in additional diagnostic impact. In conclusion, this study provides detailed knowledge about the diversity of HVMA findings in PCD and may therefore be seen as a guide to the improvement of PCD diagnostics.
Collapse
Affiliation(s)
- Johanna Raidt
- University Children's Hospital Münster, Dept of General Pediatrics, Pediatric Pulmonology Unit, Münster, Germany
| | - Julia Wallmeier
- University Children's Hospital Münster, Dept of General Pediatrics, Pediatric Pulmonology Unit, Münster, Germany
| | - Rim Hjeij
- University Children's Hospital Münster, Dept of General Pediatrics, Pediatric Pulmonology Unit, Münster, Germany
| | - Jörg Große Onnebrink
- University Children's Hospital Münster, Dept of General Pediatrics, Pediatric Pulmonology Unit, Münster, Germany
| | - Petra Pennekamp
- University Children's Hospital Münster, Dept of General Pediatrics, Pediatric Pulmonology Unit, Münster, Germany
| | - Niki T Loges
- University Children's Hospital Münster, Dept of General Pediatrics, Pediatric Pulmonology Unit, Münster, Germany
| | - Heike Olbrich
- University Children's Hospital Münster, Dept of General Pediatrics, Pediatric Pulmonology Unit, Münster, Germany
| | - Karsten Häffner
- Dept of Pediatrics, University Hospital Freiburg, Freiburg, Germany
| | - Gerard W Dougherty
- University Children's Hospital Münster, Dept of General Pediatrics, Pediatric Pulmonology Unit, Münster, Germany
| | - Heymut Omran
- University Children's Hospital Münster, Dept of General Pediatrics, Pediatric Pulmonology Unit, Münster, Germany
| | - Claudius Werner
- University Children's Hospital Münster, Dept of General Pediatrics, Pediatric Pulmonology Unit, Münster, Germany
| |
Collapse
|
104
|
Abstract
Primary ciliary dyskinesia (PCD) is an inherited autosomal-recessive disorder of motile cilia characterised by chronic lung disease, rhinosinusitis, hearing impairment and subfertility. Nasal symptoms and respiratory distress usually start soon after birth, and by adulthood bronchiectasis is invariable. Organ laterality defects, usually situs inversus, occur in ∼50% of cases. The estimated prevalence of PCD is up to ∼1 per 10,000 births, but it is more common in populations where consanguinity is common. This review examines who to refer for diagnostic testing. It describes the limitations surrounding diagnosis using currently available techniques and considers whether recent advances to genotype patients with PCD will lead to genetic testing and screening to aid diagnosis in the near future. It discusses the challenges of monitoring and treating respiratory and ENT disease in children with PCD.
Collapse
Affiliation(s)
- Jane S Lucas
- Primary Ciliary Dyskinesia Centre, Southampton Children's Hospital, Southampton NHS Foundation Trust, Southampton, UK,Clinical and Experimental Sciences Academic Unit, University of Southampton Faculty of Medicine, Southampton, UK
| | - Andrea Burgess
- Primary Ciliary Dyskinesia Centre, Southampton Children's Hospital, Southampton NHS Foundation Trust, Southampton, UK
| | - Hannah M Mitchison
- Molecular Medicine Unit and Birth Defects Research Centre, University College London (UCL) Institute of Child Health, London, UK
| | - Eduardo Moya
- Division of Services for Women and Children, Women's and Newborn Unit, Primary Ciliary Dyskinesia Centre, Bradford Royal Infirmary, Bradford, UK
| | - Michael Williamson
- Primary Ciliary Dyskinesia Centre, Leicester Royal Infirmary, Leicester, UK
| | - Claire Hogg
- Department of Paediatrics, Primary Ciliary Dyskinesia Centre, Royal Brompton and Harefield Foundation Trust, London, UK
| | | |
Collapse
|
105
|
Unexpected genetic heterogeneity for primary ciliary dyskinesia in the Irish Traveller population. Eur J Hum Genet 2014; 23:210-7. [PMID: 24824133 DOI: 10.1038/ejhg.2014.79] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 03/22/2014] [Accepted: 04/04/2014] [Indexed: 02/07/2023] Open
Abstract
We present a study of five children from three unrelated Irish Traveller families presenting with primary ciliary dyskinesia (PCD). As previously characterized disorders in the Irish Traveller population are caused by common homozygous mutations, we hypothesised that all three PCD families shared the same recessive mutation. However, exome sequencing showed that there was no pathogenic homozygous mutation common to all families. This finding was supported by histology, which showed that each family has a different type of ciliary defect; transposition defect (family A), nude epithelium (family B) and absence of inner and outer dynein arms (family C). Therefore, each family was analysed independently using homozygosity mapping and exome sequencing. The affected siblings in family A share a novel 1 bp duplication in RSPH4A (NM_001161664.1:c.166dup; p.Arg56Profs*11), a radial-spoke head protein involved in ciliary movement. In family B, we identified three candidate genes (CCNO, KCNN3 and CDKN1C), with a 5-bp duplication in CCNO (NM_021147.3:c.258_262dup; p.Gln88Argfs*8) being the most likely cause of ciliary aplasia. This is the first study to implicate CCNO, a DNA repair gene reported to be involved in multiciliogenesis, in PCD. In family C, we identified a ∼3.5-kb deletion in DYX1C1, a neuronal migration gene previously associated with PCD. This is the first report of a disorder in the relatively small Irish Traveller population to be caused by >1 disease gene. Our study identified at least three different PCD genes in the Irish Traveller population, highlighting that one cannot always assume genetic homogeneity, even in small consanguineous populations.
Collapse
|
106
|
Knowles MR, Ostrowski LE, Leigh MW, Sears PR, Davis SD, Wolf WE, Hazucha MJ, Carson JL, Olivier KN, Sagel SD, Rosenfeld M, Ferkol TW, Dell SD, Milla CE, Randell SH, Yin W, Sannuti A, Metjian HM, Noone PG, Noone PJ, Olson CA, Patrone MV, Dang H, Lee HS, Hurd TW, Gee HY, Otto EA, Halbritter J, Kohl S, Kircher M, Krischer J, Bamshad MJ, Nickerson DA, Hildebrandt F, Shendure J, Zariwala MA. Mutations in RSPH1 cause primary ciliary dyskinesia with a unique clinical and ciliary phenotype. Am J Respir Crit Care Med 2014; 189:707-17. [PMID: 24568568 DOI: 10.1164/rccm.201311-2047oc] [Citation(s) in RCA: 180] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
RATIONALE Primary ciliary dyskinesia (PCD) is a genetically heterogeneous recessive disorder of motile cilia, but the genetic cause is not defined for all patients with PCD. OBJECTIVES To identify disease-causing mutations in novel genes, we performed exome sequencing, follow-up characterization, mutation scanning, and genotype-phenotype studies in patients with PCD. METHODS Whole-exome sequencing was performed using NimbleGen capture and Illumina HiSeq sequencing. Sanger-based sequencing was used for mutation scanning, validation, and segregation analysis. MEASUREMENTS AND MAIN RESULTS We performed exome sequencing on an affected sib-pair with normal ultrastructure in more than 85% of cilia. A homozygous splice-site mutation was detected in RSPH1 in both siblings; parents were carriers. Screening RSPH1 in 413 unrelated probands, including 325 with PCD and 88 with idiopathic bronchiectasis, revealed biallelic loss-of-function mutations in nine additional probands. Five affected siblings of probands in RSPH1 families harbored the familial mutations. The 16 individuals with RSPH1 mutations had some features of PCD; however, nasal nitric oxide levels were higher than in patients with PCD with other gene mutations (98.3 vs. 20.7 nl/min; P < 0.0003). Additionally, individuals with RSPH1 mutations had a lower prevalence (8 of 16) of neonatal respiratory distress, and later onset of daily wet cough than typical for PCD, and better lung function (FEV1), compared with 75 age- and sex-matched PCD cases (73.0 vs. 61.8, FEV1 % predicted; P = 0.043). Cilia from individuals with RSPH1 mutations had normal beat frequency (6.1 ± Hz at 25°C), but an abnormal, circular beat pattern. CONCLUSIONS The milder clinical disease and higher nasal nitric oxide in individuals with biallelic mutations in RSPH1 provides evidence of a unique genotype-phenotype relationship in PCD, and suggests that mutations in RSPH1 may be associated with residual ciliary function.
Collapse
|
107
|
Abstract
Severe congenital neutropenia (SCN) is characterized by low numbers of peripheral neutrophil granulocytes and a predisposition to life-threatening bacterial infections. We describe a novel genetic SCN type in 2 unrelated families associated with recessively inherited loss-of-function mutations in CSF3R, encoding the granulocyte colony-stimulating factor (G-CSF) receptor. Family A, with 3 affected children, carried a homozygous missense mutation (NM_000760.3:c.922C>T, NP_000751.1:p.Arg308Cys), which resulted in perturbed N-glycosylation and aberrant localization to the cell surface. Family B, with 1 affected infant, carried compound heterozygous deletions provoking frameshifts and premature stop codons (NM_000760.3:c.948_963del, NP_000751.1:p.Gly316fsTer322 and NM_000760.3:c.1245del, NP_000751.1:p.Gly415fsTer432). Despite peripheral SCN, all patients had morphologic evidence of full myeloid cell maturation in bone marrow. None of the patients responded to treatment with recombinant human G-CSF. Our study highlights the genetic and morphologic SCN variability and provides evidence both for functional importance and redundancy of G-CSF receptor-mediated signaling in human granulopoiesis.
Collapse
|
108
|
Gene mutations in primary ciliary dyskinesia related to otitis media. Curr Allergy Asthma Rep 2014; 14:420. [PMID: 24459089 DOI: 10.1007/s11882-014-0420-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Otitis media with effusion (OME) is the most common cause of conductive hearing loss in children and is strongly associated with primary ciliary dyskinesia (PCD). Approximately half of the children with PCD require otolaryngology care, posing a major problem in this population. Early diagnosis of PCD is critical in these patients to minimise the collateral damage related to OME. The current gold standard for PCD diagnosis requires determining ciliary structure defects by transmission electron microscopy (TEM) or clearly documenting ciliary dysfunction via digital high-speed video microscopy (DHSV). Although both techniques are useful for PCD diagnosis, they have limitations and need to be supported by new methodologies, including genetic analysis of genes related to PCD. In this article, we review classical and recently associated mutations related to ciliary alterations leading to PCD, which can be useful for early diagnosis of the disease and subsequent early management of OME.
Collapse
|
109
|
Onoufriadis A, Shoemark A, Schmidts M, Patel M, Jimenez G, Liu H, Thomas B, Dixon M, Hirst RA, Rutman A, Burgoyne T, Williams C, Scully J, Bolard F, Lafitte JJ, Beales PL, Hogg C, Yang P, Chung EMK, Emes RD, O'Callaghan C, Bouvagnet P, Mitchison HM. Targeted NGS gene panel identifies mutations in RSPH1 causing primary ciliary dyskinesia and a common mechanism for ciliary central pair agenesis due to radial spoke defects. Hum Mol Genet 2014; 23:3362-74. [PMID: 24518672 PMCID: PMC4049301 DOI: 10.1093/hmg/ddu046] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) is an inherited chronic respiratory obstructive disease with randomized body laterality and infertility, resulting from cilia and sperm dysmotility. PCD is characterized by clinical variability and extensive genetic heterogeneity, associated with different cilia ultrastructural defects and mutations identified in >20 genes. Next generation sequencing (NGS) technologies therefore present a promising approach for genetic diagnosis which is not yet in routine use. We developed a targeted panel-based NGS pipeline to identify mutations by sequencing of selected candidate genes in 70 genetically undefined PCD patients. This detected loss-of-function RSPH1 mutations in four individuals with isolated central pair (CP) agenesis and normal body laterality, from two unrelated families. Ultrastructural analysis in RSPH1-mutated cilia revealed transposition of peripheral outer microtubules into the ‘empty’ CP space, accompanied by a distinctive intermittent loss of the central pair microtubules. We find that mutations in RSPH1, RSPH4A and RSPH9, which all encode homologs of components of the ‘head’ structure of ciliary radial spoke complexes identified in Chlamydomonas, cause clinical phenotypes that appear to be indistinguishable except at the gene level. By high-resolution immunofluorescence we identified a loss of RSPH4A and RSPH9 along with RSPH1 from RSPH1-mutated cilia, suggesting RSPH1 mutations may result in loss of the entire spoke head structure. CP loss is seen in up to 28% of PCD cases, in whom laterality determination specified by CP-less embryonic node cilia remains undisturbed. We propose this defect could arise from instability or agenesis of the ciliary central microtubules due to loss of their normal radial spoke head tethering.
Collapse
Affiliation(s)
- Alexandros Onoufriadis
- Molecular Medicine Unit and Birth Defects Research Centre, Institute of Child Health, University College London, London WC1N 1EH, UK Present address: Department of Medical and Molecular Genetics, Division of Genetics and Molecular Medicine, King's College London School of Medicine, Guy's Hospital, London SE1 9RT, UK
| | - Amelia Shoemark
- Department of Paediatric Respiratory Medicine, Royal Brompton and Harefield NHS Trust, Sydney Street, London SW3 6NP, UK
| | - Miriam Schmidts
- Molecular Medicine Unit and Birth Defects Research Centre, Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Mitali Patel
- Molecular Medicine Unit and Birth Defects Research Centre, Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Gina Jimenez
- Laboratoire Cardiogénétique, Equipe d'Accueil 4173, Université Lyon 1, Hôpital Nord-Ouest, Villefranche sur Saône, Lyon, France Laboratoire Cardiogénétique, Hospices Civils de Lyon, Groupe Hospitalier Est, 69677 Bron, France
| | - Hui Liu
- Laboratoire Cardiogénétique, Equipe d'Accueil 4173, Université Lyon 1, Hôpital Nord-Ouest, Villefranche sur Saône, Lyon, France Laboratoire Cardiogénétique, Hospices Civils de Lyon, Groupe Hospitalier Est, 69677 Bron, France
| | - Biju Thomas
- Department of Infection, Immunity and Inflammation, Division of Child Health, CSB, University of Leicester, Leicester LE2 7LX, UK
| | - Mellisa Dixon
- Department of Paediatric Respiratory Medicine, Royal Brompton and Harefield NHS Trust, Sydney Street, London SW3 6NP, UK
| | - Robert A Hirst
- Department of Infection, Immunity and Inflammation, Division of Child Health, CSB, University of Leicester, Leicester LE2 7LX, UK
| | - Andrew Rutman
- Department of Infection, Immunity and Inflammation, Division of Child Health, CSB, University of Leicester, Leicester LE2 7LX, UK
| | - Thomas Burgoyne
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Christopher Williams
- Department of Infection, Immunity and Inflammation, Division of Child Health, CSB, University of Leicester, Leicester LE2 7LX, UK
| | - Juliet Scully
- Molecular Medicine Unit and Birth Defects Research Centre, Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Florence Bolard
- Service de Pneumologie, Centre Hospitalier Régional de Roubaix, Hôpital Victor Provo, Roubaix, France
| | - Jean-Jacques Lafitte
- Département de Pneumologie, Centre Hospitalier Régional Universitaire de Lille, Hôpital Albert Calmette, Université Lille 2, Lille, France
| | - Philip L Beales
- Molecular Medicine Unit and Birth Defects Research Centre, Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Claire Hogg
- Department of Paediatric Respiratory Medicine, Royal Brompton and Harefield NHS Trust, Sydney Street, London SW3 6NP, UK
| | - Pinfen Yang
- Department of Biology, Marquette University, Milwaukee, WI 53233, USA
| | - Eddie M K Chung
- General and Adolescent Paediatric Unit, Institute of Child Health, University College London, London, UK
| | - Richard D Emes
- School of Veterinary Medicine and Science, University of Nottingham, Leicestershire LE12 5RD, UK Advanced Data Analysis Centre, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, UK
| | - Christopher O'Callaghan
- Department of Infection, Immunity and Inflammation, Division of Child Health, CSB, University of Leicester, Leicester LE2 7LX, UK Department of Respiratory Medicine, Portex Unit, Institute of Child Health, University College London and Great Ormond Street Hospital, 30 Guilford Street, London WC1N 1EH, UK
| | | | - Patrice Bouvagnet
- Laboratoire Cardiogénétique, Equipe d'Accueil 4173, Université Lyon 1, Hôpital Nord-Ouest, Villefranche sur Saône, Lyon, France Laboratoire Cardiogénétique, Hospices Civils de Lyon, Groupe Hospitalier Est, 69677 Bron, France Service de Cardiologie Pédiatrique, Hospices Civils de Lyon, Groupe Hospitalier Est, 69677 Bron, France
| | - Hannah M Mitchison
- Molecular Medicine Unit and Birth Defects Research Centre, Institute of Child Health, University College London, London WC1N 1EH, UK
| |
Collapse
|
110
|
Ciliary genes are down-regulated in bronchial tissue of primary ciliary dyskinesia patients. PLoS One 2014; 9:e88216. [PMID: 24516614 PMCID: PMC3916409 DOI: 10.1371/journal.pone.0088216] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 01/05/2014] [Indexed: 11/19/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) is a rare, genetically heterogeneous disease characterized by recurrent respiratory tract infections, sinusitis, bronchiectasis and male infertility. The pulmonary phenotype in PCD is caused by the impaired motility of cilia in the respiratory epithelium, due to ultrastructural defects of these organelles. We hypothesized that defects of multi-protein ciliary complexes should be reflected by gene expression changes in the respiratory epithelium. We have previously found that large group of genes functionally related to cilia share highly correlated expression pattern in PCD bronchial tissue. Here we performed an explorative analysis of differential gene expression in the bronchial tissue from six PCD patients and nine non-PCD controls, using Illumina HumanRef-12 Whole Genome BeadChips. We observed 1323 genes with at least 2-fold difference in the mean expression level between the two groups (t-test p-value <0.05). Annotation analysis showed that the genes down-regulated in PCD biopsies (602) were significantly enriched for terms related to cilia, whereas the up-regulated genes (721) were significantly enriched for terms related to cell cycle and mitosis. We assembled a list of human genes predicted to encode ciliary proteins, components of outer dynein arms, inner dynein arms, radial spokes, and intraflagellar transport proteins. A significant down-regulation of the expression of genes from all the four groups was observed in PCD, compared to non-PCD biopsies. Our data suggest that a coordinated down-regulation of the ciliome genes plays an important role in the molecular pathomechanism of PCD.
Collapse
|