101
|
Pharmacological benefits of selective modulation of cannabinoid receptor type 2 (CB2) in experimental Alzheimer's disease. Pharmacol Biochem Behav 2015; 140:39-50. [PMID: 26577751 DOI: 10.1016/j.pbb.2015.11.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 10/09/2015] [Accepted: 11/10/2015] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that pervasively affects the population across the world. Currently, there is no effective treatment available for this and existing drugs merely slow the progression of cognitive function decline. Thus, massive effort is required to find an intended therapeutic target to overcome this condition. The present study has been framed to investigate the ameliorative role of selective modulator of cannabinoid receptor type 2 (CB2), 1-phenylisatin in experimental AD condition. We have induced experimental AD in mice by using two induction models viz., intracerebroventricular (i.c.v.) administration of streptozotocin (STZ) and aluminum trichloride (AlCl3)+d-galactose. Morris water maze (MWM) and attentional set shifting test (ASST) were used to assess learning and memory. Hematoxylin-eosin and Congo red staining were used to examine the structural variation in brain. Brain oxidative stress (thiobarbituric acid reactive substance and glutathione), nitric oxide levels (nitrites/nitrates), acetyl cholinesterase activity, myeloperoxidase and calcium levels were also estimated. i.c.v. STZ as well as AlCl3+d-galactose have impaired spatial and reversal learning with executive functioning, increased brain oxidative and nitrosative stress, cholinergic activity, inflammation and calcium levels. Furthermore, these agents have also enhanced the burden of Aβ plaque in the brain. Treatment with 1-phenylisatin and donepezil attenuated i.c.v. STZ as well as AlCl3+d-galactose induced impairment of learning-memory, brain biochemistry and brain damage. Hence, this study concludes that CB2 receptor modulation can be a potential therapeutic target for the management of AD.
Collapse
|
102
|
Anthony Jalin AMA, Rajasekaran M, Prather PL, Kwon JS, Gajulapati V, Choi Y, Kim C, Pahk K, Ju C, Kim WK. Non-Selective Cannabinoid Receptor Antagonists, Hinokiresinols Reduce Infiltration of Microglia/Macrophages into Ischemic Brain Lesions in Rat via Modulating 2-Arachidonolyglycerol-Induced Migration and Mitochondrial Activity. PLoS One 2015; 10:e0141600. [PMID: 26517721 PMCID: PMC4627794 DOI: 10.1371/journal.pone.0141600] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 10/09/2015] [Indexed: 11/19/2022] Open
Abstract
Growing evidence suggests that therapeutic strategies to modulate the post-ischemic inflammatory responses are promising approaches to improve stroke outcome. Although the endocannabinoid system has been emerged as an endogenous therapeutic target to regulate inflammation after stroke insult, the downstream mechanisms and their potentials for therapeutic intervention remain controversial. Here we identified trans- and cis-hinokiresinols as novel non-selective antagonists for two G-protein-coupled cannabinoid receptors, cannabinoid receptor type 1 and type 2. The Electric Cell-substrate Impedance Sensing and Boyden chamber migration assays using primary microglial cultures revealed that both hinokiresinols significantly inhibited an endocannabinoid, 2-arachidonoylglycerol-induced migration. Hinokiresinols modulated 2-arachidonoylglycerol-induced mitochondrial bioenergetics in microglia as evidenced by inhibition of ATP turnover and reduction in respiratory capacity, thereby resulting in impaired migration activity. In rats subjected to transient middle cerebral artery occlusion (1.5-h) followed by 24-h reperfusion, post-ischemic treatment with hinokiresinols (2 and 7-h after the onset of ischemia, 10 mg/kg) significantly reduced cerebral infarct and infiltration of ED1-positive microglial/macrophage cells into cerebral ischemic lesions in vivo. Co-administration of exogenous 2-AG (1 mg/kg, i.v., single dose at 2 h after starting MCAO) abolished the protective effect of trans-hinokiresionol. These results suggest that hinokiresinols may serve as stroke treatment by targeting the endocannabinoid system. Alteration of mitochondrial bioenergetics and consequent inhibition of inflammatory cells migration may be a novel mechanism underlying anti-ischemic effects conferred by cannabinoid receptor antagonists.
Collapse
Affiliation(s)
| | - Maheswari Rajasekaran
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Paul L. Prather
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Jin Sun Kwon
- Department of Biotechnology, School of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Veeraswamy Gajulapati
- Department of Biotechnology, School of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Yongseok Choi
- Department of Biotechnology, School of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Chunsook Kim
- Department of Nursing, Kyungdong University, Wonju, Kangwon-do, Republic of Korea
| | - Kisoo Pahk
- Department of Neuroscience, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Chung Ju
- Department of Neuroscience, College of Medicine, Korea University, Seoul, Republic of Korea
- * E-mail: (W-KK); (CJ)
| | - Won-Ki Kim
- Department of Neuroscience, College of Medicine, Korea University, Seoul, Republic of Korea
- * E-mail: (W-KK); (CJ)
| |
Collapse
|
103
|
Diversity and plasticity of microglial cells in psychiatric and neurological disorders. Pharmacol Ther 2015; 154:21-35. [PMID: 26129625 DOI: 10.1016/j.pharmthera.2015.06.010] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 06/25/2015] [Indexed: 02/07/2023]
|
104
|
Hiebel C, Behl C. The complex modulation of lysosomal degradation pathways by cannabinoid receptors 1 and 2. Life Sci 2015; 138:3-7. [DOI: 10.1016/j.lfs.2015.03.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 02/26/2015] [Accepted: 03/04/2015] [Indexed: 01/05/2023]
|
105
|
Wang D, Zhang R, Zhou X, Ma S, Qin X, Wang J, Gao H, Wang Q, Li C, Chen Y, Xiong L, Cao F. Electroacupuncture pre-treatment ameliorates myocardial ischaemia/reperfusion injury through regulation of cannabinoid receptor type 2. Eur Heart J Suppl 2015. [DOI: 10.1093/eurheartj/suv050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
106
|
Ran QQ, Chen HL, Liu YL, Yu HX, Shi F, Wang MS. Electroacupuncture preconditioning attenuates ischemic brain injury by activation of the adenosine monophosphate-activated protein kinase signaling pathway. Neural Regen Res 2015; 10:1069-75. [PMID: 26330828 PMCID: PMC4541236 DOI: 10.4103/1673-5374.160095] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2015] [Indexed: 01/16/2023] Open
Abstract
Electroacupuncture has therapeutic effects on ischemic brain injury, but its mechanism is still poorly understood. In this study, mice were stimulated by electroacupuncture at the Baihui (GV20) acupoint for 30 minutes at 1 mA and 2/15 Hz for 5 consecutive days. A cerebral ischemia model was established by ligating the bilateral common carotid artery for 15 minutes. At 72 hours after injury, neuronal injury in the mouse hippocampus had lessened, and the number of terminal deoxynucleotide transferase-mediated dUTP nick-end labeling-positive cells reduced after electroacupuncture treatment. Moreover, expression of adenosine monophosphate-activated protein kinase α (AMPKα) and phosphorylated AMPKα was up-regulated. Intraperitoneal injection of the AMPK antagonist, compound C, suppressed this phenomenon. Our findings suggest that electroacupuncture preconditioning alleviates ischemic brain injury via AMPK activation.
Collapse
Affiliation(s)
- Qiang-Qiang Ran
- Department of Anesthesiology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Huai-Long Chen
- Department of Anesthesiology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Yan-Li Liu
- Department of Anesthesiology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Hai-Xia Yu
- Department of Anesthesiology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Fei Shi
- Department of Anesthesiology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Ming-Shan Wang
- Department of Anesthesiology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong Province, China
| |
Collapse
|
107
|
Wu S, Yue Y, Li J, Li Z, Li X, Niu Y, Xiang J, Ding H. Procyanidin B2 attenuates neurological deficits and blood-brain barrier disruption in a rat model of cerebral ischemia. Mol Nutr Food Res 2015; 59:1930-41. [PMID: 26228251 DOI: 10.1002/mnfr.201500181] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 07/12/2015] [Accepted: 07/14/2015] [Indexed: 01/08/2023]
Abstract
SCOPE Disruption of the blood-brain barrier (BBB) is a major pathogenic mechanism of neurological dysfunction and death after ischemic stroke. The aim of our study was to investigate the effect of procyanidin B2 (PB), a bioactive food compound, on BBB disruption induced by ischemic stroke and explore the underlying mechanism. METHODS AND RESULTS PB was administrated intragastrically once a day starting at 3 h after transient middle cerebral artery occlusion (MCAO). PB treatment significantly decreased the infarction volume, brain edema, and neurological deficits after MCAO. PB prevented BBB disruption against ischemic stroke, as indicated by the reduction of Evans blue leakage and IgG levels. These results were also corroborated by immunofluorescence staining and Western blot analysis of ZO-1. Additionally, levels of reactive oxygen species and malondialdehyde were lessened in the ipsilateral ischemic area of brain by PB. The activities of antioxidant enzymes were elevated. Meanwhile, PB reversed the suppression of NF-E2-related factor nuclear translocation, and increased the protein expression of HO-1, GSTα, and NQO1 in the ipsilateral ischemic area of brain. CONCLUSION PB attenuates neurological deficits and BBB disruption in a rat model of cerebral ischemia, and the neuroprotection of PB is associated with activation of NF-E2-related factor pathway.
Collapse
Affiliation(s)
- Shuangchan Wu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, P. R. China
| | - Yuan Yue
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, P. R. China
| | - Jian Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, P. R. China
| | - Zhike Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, P. R. China
| | - Xiaofei Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, P. R. China
| | - Yunhui Niu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, P. R. China
| | - Jin Xiang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, P. R. China
| | - Hong Ding
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, P. R. China
| |
Collapse
|
108
|
Yue Y, Wu S, Li Z, Li J, Li X, Xiang J, Ding H. Wild jujube polysaccharides protect against experimental inflammatory bowel disease by enabling enhanced intestinal barrier function. Food Funct 2015; 6:2568-77. [PMID: 26114600 DOI: 10.1039/c5fo00378d] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dietary polysaccharides provide various beneficial effects for our health. We investigated the protective effects of wild jujube (Ziziphus jujuba Mill. var. spinosa (Bunge) Hu ex H. F. Chou) sarcocarp polysaccharides (WJPs) against experimental inflammatory bowel disease (IBD) by enabling enhanced intestinal barrier function. Colitis was induced in rats by the intrarectal administration of TNBS. We found that WJPs markedly ameliorated the colitis severity, including less weight loss, decreased disease activity index scores, and improved mucosal damage in colitis rats. Moreover, WJPs suppressed the inflammatory response via attenuation of TNF-α, IL-1β, IL-6 and MPO activity in colitis rats. And then, to determine the effect of WJPs on the intestinal barrier, we measured the effect of WJPs on the transepithelial electrical resistance (TER) and FITC-conjugated dextran permeability in Caco-2 cell stimulation with TNF-α. We further demonstrated that the alleviation of WJPs to colon injury was associated with barrier function by assembly of tight junction proteins. Moreover, the effect of WJPs on TER was eliminated by the specific inhibitor of AMPK. AMPK activity was also up-regulated by WJPs in Caco-2 cell stimulation with TNF-α and in colitis rats. This study demonstrates that WJPs protect against IBD by enabling enhanced intestinal barrier function involving the activation of AMPK.
Collapse
Affiliation(s)
- Yuan Yue
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, China.
| | | | | | | | | | | | | |
Collapse
|
109
|
Prenderville JA, Kelly ÁM, Downer EJ. The role of cannabinoids in adult neurogenesis. Br J Pharmacol 2015; 172:3950-63. [PMID: 25951750 DOI: 10.1111/bph.13186] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 04/17/2015] [Accepted: 04/22/2015] [Indexed: 12/17/2022] Open
Abstract
The processes underpinning post-developmental neurogenesis in the mammalian brain continue to be defined. Such processes involve the proliferation of neural stem cells and neural progenitor cells (NPCs), neuronal migration, differentiation and integration into a network of functional synapses within the brain. Both intrinsic (cell signalling cascades) and extrinsic (neurotrophins, neurotransmitters, cytokines, hormones) signalling molecules are intimately associated with adult neurogenesis and largely dictate the proliferative activity and differentiation capacity of neural cells. Cannabinoids are a unique class of chemical compounds incorporating plant-derived cannabinoids (the active components of Cannabis sativa), the endogenous cannabinoids and synthetic cannabinoid ligands, and these compounds are becoming increasingly recognized for their roles in neural developmental processes. Indeed, cannabinoids have clear modulatory roles in adult neurogenesis, probably through activation of both CB1 and CB2 receptors. In recent years, a large body of literature has deciphered the signalling networks involved in cannabinoid-mediated regulation of neurogenesis. This timely review summarizes the evidence that the cannabinoid system is intricately associated with neuronal differentiation and maturation of NPCs and highlights intrinsic/extrinsic signalling mechanisms that are cannabinoid targets. Overall, these findings identify the central role of the cannabinoid system in adult neurogenesis in the hippocampus and the lateral ventricles and hence provide insight into the processes underlying post-developmental neurogenesis in the mammalian brain.
Collapse
Affiliation(s)
- Jack A Prenderville
- Department of Physiology, School of Medicine, Trinity College, Dublin, Ireland.,Trinity College Institute of Neuroscience, University of Dublin, Trinity College, Dublin, Ireland
| | - Áine M Kelly
- Department of Physiology, School of Medicine, Trinity College, Dublin, Ireland.,Trinity College Institute of Neuroscience, University of Dublin, Trinity College, Dublin, Ireland
| | - Eric J Downer
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
110
|
Tang J, Chen Q, Guo J, Yang L, Tao Y, Li L, Miao H, Feng H, Chen Z, Zhu G. Minocycline Attenuates Neonatal Germinal-Matrix-Hemorrhage-Induced Neuroinflammation and Brain Edema by Activating Cannabinoid Receptor 2. Mol Neurobiol 2015; 53:1935-1948. [PMID: 25833102 DOI: 10.1007/s12035-015-9154-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/19/2015] [Indexed: 01/10/2023]
Abstract
Germinal matrix hemorrhage (GMH) is the most common neurological disease of premature newborns leading to detrimental neurological sequelae. Minocycline has been reported to play a key role in neurological inflammatory diseases by controlling some mechanisms that involve cannabinoid receptor 2 (CB2R). The current study investigated whether minocycline reduces neuroinflammation and protects the brain from injury in a rat model of collagenase-induced GMH by regulating CB2R activity. To test this hypothesis, the effects of minocycline and a CB2R antagonist (AM630) were evaluated in male rat pups that were post-natal day 7 (P7) after GMH. We found that minocycline can lead to increased CB2R mRNA expression and protein expression in microglia. Minocycline significantly reduced GMH-induced brain edema, microglial activation, and lateral ventricular volume. Additionally, minocycline enhanced cortical thickness after injury. All of these neuroprotective effects of minocycline were prevented by AM630. A cannabinoid CB2 agonist (JWH133) was used to strengthen the hypothesis, which showed the identical neuroprotective effects of minocycline. Our study demonstrates, for the first time, that minocycline attenuates neuroinflammation and brain injury in a rat model of GMH, and activation of CBR2 was partially involved in these processes.
Collapse
Affiliation(s)
- Jun Tang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, No.30, Gaotanyan Street, Chongqing, 400038, People's Republic of China
| | - Qianwei Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, No.30, Gaotanyan Street, Chongqing, 400038, People's Republic of China
| | - Jing Guo
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, No.30, Gaotanyan Street, Chongqing, 400038, People's Republic of China
| | - Liming Yang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, No.30, Gaotanyan Street, Chongqing, 400038, People's Republic of China
| | - Yihao Tao
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, No.30, Gaotanyan Street, Chongqing, 400038, People's Republic of China
| | - Lin Li
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, No.30, Gaotanyan Street, Chongqing, 400038, People's Republic of China
| | - Hongping Miao
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, No.30, Gaotanyan Street, Chongqing, 400038, People's Republic of China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, No.30, Gaotanyan Street, Chongqing, 400038, People's Republic of China
| | - Zhi Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, No.30, Gaotanyan Street, Chongqing, 400038, People's Republic of China.
| | - Gang Zhu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, No.30, Gaotanyan Street, Chongqing, 400038, People's Republic of China.
| |
Collapse
|
111
|
Tao Y, Tang J, Chen Q, Guo J, Li L, Yang L, Feng H, Zhu G, Chen Z. Cannabinoid CB2 receptor stimulation attenuates brain edema and neurological deficits in a germinal matrix hemorrhage rat model. Brain Res 2015; 1602:127-35. [DOI: 10.1016/j.brainres.2015.01.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/09/2015] [Accepted: 01/16/2015] [Indexed: 12/29/2022]
|
112
|
Wang LY, Liu J, Li Y, Li B, Zhang YY, Jing ZW, Yu YN, Li HX, Guo SS, Zhao YJ, Wang Z, Wang YY. Time-dependent variation of pathways and networks in a 24-hour window after cerebral ischemia-reperfusion injury. BMC SYSTEMS BIOLOGY 2015; 9:11. [PMID: 25884595 PMCID: PMC4355473 DOI: 10.1186/s12918-015-0152-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 02/17/2015] [Indexed: 12/04/2022]
Abstract
Background Cerebral ischemia-reperfusion injury may simultaneously result in functional variation of multiple genes/pathways. However, most prior time-sequence studies on its pathomechanism only focused on a single gene or pathway. Our study aimed to systematically analyze the time-dependent variation in the expression of multiple pathways and networks within 24 h after cerebral ischemia-reperfusion injury. Results By uploading 374 ischemia-related genes into the MetaCore software, the variation in the expression of multiple pathways and networks in 3 h, 12 h, and 24 h after cerebral ischemia-reperfusion injury had been analyzed. The conserved TNFR1-signaling pathway, among the top 10 pathways, was consistently enriched in 3 h, 12 h, and 24 h groups. Three overlapping pathways were found between 3 h and 12 h groups; 2 between 12 h and 24 h groups; and 1 between 3 h and 24 h groups. Five, 4, and 6 non-overlapping pathways were observed in 3 h, 12 h, and 24 h groups, respectively. Apart from pathways reported by earlier studies, we identified a novel pathway related to the time-dependent development of cerebral ischemia pathogenesis. The process of apoptosis stimulation by external signals, among the top 10 processes, was consistently enriched in 3 h, 12 h, and 24 h groups; 2, 1, and 2 processes overlapped between 3 h and 12 h groups, 12 h and 24 h groups, and 3 h and 24 h groups, respectively. Four, 5, and 5 non-overlapping processes were found in 3 h, 12 h and 24 h groups, respectively. The presence of apoptotic processes was observed in all the 3 groups; while anti-apoptotic processes only existed in 3 h and 12 h groups. Additionally, according to node degree, network comparison identified 1, 8,and 5 important genes or proteins (e.g. Pyk2, PKC, E2F1, and VEGF-A) in 3 h, 12 h, and 24 h groups, respectively. The Jaccard similarity index revealed a higher level of similarity between 12 h and 24 h groups than that between 3 h and 12 h groups. Conclusion Time-dependent treatment can be utilized to reduce apoptosis, which may activate anti-apoptotic pathways within 12 h after cerebral ischemia-reperfusion injury. Pathway and network analyses may help identify novel pathways and genes implicated in disease pathogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s12918-015-0152-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Li-Ying Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Dongzhimennei Nanxiaojie 16#, Beijing, 100700, China.
| | - Jun Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Dongzhimennei Nanxiaojie 16#, Beijing, 100700, China.
| | - Yuan Li
- Beijing University of Chinese Medicine, No. 11 East Road, North of 3rd Ring Road, Beijing, 100029, China.
| | - Bing Li
- Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Dongzhimennei Nanxiaojie 16#, Beijing, 100700, China.
| | - Ying-Ying Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Dongzhimennei Nanxiaojie 16#, Beijing, 100700, China.
| | - Zhi-Wei Jing
- China Academy of Chinese Medical Sciences, Dongzhimennei Nanxiaojie 16#, Beijing, 100700, China.
| | - Ya-Nan Yu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Dongzhimennei Nanxiaojie 16#, Beijing, 100700, China.
| | - Hai-Xia Li
- Guang'anmen Hospital, China Academy of China Medical Sciences, No.5 Beixiange, Beijing, 100053, China.
| | - Shan-Shan Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dongzhimennei Nanxiaojie 16#, Beijing, 100700, China.
| | - Yi-Jun Zhao
- China Academy of Chinese Medical Sciences, Dongzhimennei Nanxiaojie 16#, Beijing, 100700, China.
| | - Zhong Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Dongzhimennei Nanxiaojie 16#, Beijing, 100700, China.
| | - Yong-Yan Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Dongzhimennei Nanxiaojie 16#, Beijing, 100700, China.
| |
Collapse
|
113
|
Rousset CI, Leiper FC, Kichev A, Gressens P, Carling D, Hagberg H, Thornton C. A dual role for AMP-activated protein kinase (AMPK) during neonatal hypoxic-ischaemic brain injury in mice. J Neurochem 2015; 133:242-52. [PMID: 25598140 PMCID: PMC4855681 DOI: 10.1111/jnc.13034] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 12/23/2014] [Accepted: 01/05/2015] [Indexed: 02/03/2023]
Abstract
Perinatal hypoxic–ischaemic encephalopathy (HIE) occurs in 1–2 in every 1000 term infants and the devastating consequences range from cerebral palsy, epilepsy and neurological deficit to death. Cellular damage post insult occurs after a delay and is mediated by a secondary neural energy failure. AMP‐activated protein kinase (AMPK) is a sensor of cellular stress resulting from ATP depletion and/or calcium dysregulation, hallmarks of the neuronal cell death observed after HIE. AMPK activation has been implicated in the models of adult ischaemic injury but, as yet, there have been no studies defining its role in neonatal asphyxia. Here, we find that in an in vivo model of neonatal hypoxia–ischaemic and in oxygen/glucose deprivation in neurons, there is pathological activation of the calcium/calmodulin‐dependent protein kinase kinase β (CaMKKβ)‐AMPKα1 signalling pathway. Pharmacological inhibition of AMPK during the insult promotes neuronal survival but, conversely, inhibiting AMPK activity prior to the insult sensitizes neurons, exacerbating cell death. Our data have pathological relevance for neonatal HIE as prior sensitization such as exposure to bacterial infection (reported to reduce AMPK activity) produces a significant increase in injury.
![]() We show that in an in vivo model of neonatal hypoxia–ischaemic and in oxygen/glucose deprivation in neurons, there is a pathological activation of the CaMKKβ‐AMPKα1 signalling pathway. Inhibiting AMPK during OGD promotes neuronal survival; conversely, inhibiting AMPK prior to OGD exacerbates cell death. Our data have clinical relevance as prior sensitization (e.g. exposure to bacterial infection reducing AMPK activity) increases injury. AMPK, AMP‐activated protein kinase; HI, hypoxia–ischaemia; OGD, oxygen–glucose deprivation.
Collapse
Affiliation(s)
- Catherine I Rousset
- Division of Imaging Sciences and Biomedical Engineering, Centre for the Developing Brain, King's College London, King's Health Partners, St. Thomas' Hospital, London, UK
| | | | | | | | | | | | | |
Collapse
|
114
|
Priestley RS, Nickolls SA, Alexander SPH, Kendall DA. A potential role for cannabinoid receptors in the therapeutic action of fenofibrate. FASEB J 2014; 29:1446-55. [PMID: 25550466 DOI: 10.1096/fj.14-263053] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 12/01/2014] [Indexed: 01/26/2023]
Abstract
Cannabinoids are reported to have actions through peroxisome proliferator-activated receptors (PPARs), which led us to investigate PPAR agonists for activity at the cannabinoid receptors. Radio-ligand binding and functional assays were conducted using human recombinant cannabinoid type 1 (CB1) or cannabinoid type 2 (CB2) receptors, as well as the guinea pig isolated ileum, using the full agonist CP55940 as a positive control. The PPAR-α agonist fenofibrate exhibited submicromolar affinity for both receptors (pKi CB1, 6.3 ± 0.1; CB2, 7.7 ± 0.1). Functionally, fenofibrate acted as an agonist at the CB2 receptor (pEC50, 7.7 ± 0.1) and a partial agonist at the CB1 receptor, although with a decrease in functional response at higher concentrations, producing bell-shaped concentration-response curves. High concentrations of fenofibrate were able to increase the dissociation rate constant for [(3)H]-CP55940 at the CB1 receptor, (kfast without: 1.2 ± 0.2/min; with: 3.8 ± 0.1 × 10(-2)/min) and decrease the maximal response to CP55940 (Rmax, 86 ± 2%), which is consistent with a negative allosteric modulator. Fenofibrate also reduced electrically induced contractions in isolated guinea pig ileum via CB1 receptors (pEC50, 6.0 ± 0.4). Fenofibrate is thus identified as an example of a new class of cannabinoid receptor ligand and allosteric modulator, with the potential to interact therapeutically with cannabinoid receptors in addition to its primary PPAR target.
Collapse
Affiliation(s)
- Richard S Priestley
- *School of Life Sciences, University of Nottingham Medical School, Nottingham, United Kingdom; and Neusentis-Pfizer Limited, Great Abington, Cambridge, United Kingdom
| | - Sarah A Nickolls
- *School of Life Sciences, University of Nottingham Medical School, Nottingham, United Kingdom; and Neusentis-Pfizer Limited, Great Abington, Cambridge, United Kingdom
| | - Stephen P H Alexander
- *School of Life Sciences, University of Nottingham Medical School, Nottingham, United Kingdom; and Neusentis-Pfizer Limited, Great Abington, Cambridge, United Kingdom
| | - David A Kendall
- *School of Life Sciences, University of Nottingham Medical School, Nottingham, United Kingdom; and Neusentis-Pfizer Limited, Great Abington, Cambridge, United Kingdom
| |
Collapse
|
115
|
Nakagawa Y, Chiba K. Role of microglial m1/m2 polarization in relapse and remission of psychiatric disorders and diseases. Pharmaceuticals (Basel) 2014; 7:1028-48. [PMID: 25429645 PMCID: PMC4276905 DOI: 10.3390/ph7121028] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/14/2014] [Accepted: 11/14/2014] [Indexed: 12/27/2022] Open
Abstract
Psychiatric disorders such as schizophrenia and major depressive disorder were thought to be caused by neurotransmitter abnormalities. Patients with these disorders often experience relapse and remission; however the underlying molecular mechanisms of relapse and remission still remain unclear. Recent advanced immunological analyses have revealed that M1/M2 polarization of macrophages plays an important role in controlling the balance between promotion and suppression in inflammation. Microglial cells share certain characteristics with macrophages and contribute to immune-surveillance in the central nervous system (CNS). In this review, we summarize immunoregulatory functions of microglia and discuss a possible role of microglial M1/M2 polarization in relapse and remission of psychiatric disorders and diseases. M1 polarized microglia can produce pro-inflammatory cytokines, reactive oxygen species, and nitric oxide, suggesting that these molecules contribute to dysfunction of neural network in the CNS. Alternatively, M2 polarized microglia express cytokines and receptors that are implicated in inhibiting inflammation and restoring homeostasis. Based on these aspects, we propose a possibility that M1 and M2 microglia are related to relapse and remission, respectively in psychiatric disorders and diseases. Consequently, a target molecule skewing M2 polarization of microglia may provide beneficial therapies for these disorders and diseases in the CNS.
Collapse
Affiliation(s)
- Yutaka Nakagawa
- Research Strategy and Planning Department, Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama 227-0033, Japan.
| | - Kenji Chiba
- Advanced Medical Research Laboratories, Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama 227-0033, Japan.
| |
Collapse
|
116
|
Liu H, Song Z, Liao D, Zhang T, Liu F, Zhuang K, Luo K, Yang L. Neuroprotective Effects of Trans-Caryophyllene Against Kainic Acid Induced Seizure Activity and Oxidative Stress in Mice. Neurochem Res 2014; 40:118-23. [DOI: 10.1007/s11064-014-1474-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 11/03/2014] [Indexed: 11/28/2022]
|
117
|
Kobashigawa LC, Xu YC, Padbury JF, Tseng YT, Yano N. Metformin protects cardiomyocyte from doxorubicin induced cytotoxicity through an AMP-activated protein kinase dependent signaling pathway: an in vitro study. PLoS One 2014; 9:e104888. [PMID: 25127116 PMCID: PMC4134245 DOI: 10.1371/journal.pone.0104888] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 07/18/2014] [Indexed: 12/16/2022] Open
Abstract
Doxorubicin (Dox) is one of the most widely used antitumor drugs, but its cumulative cardiotoxicity have been major concerns in cancer therapeutic practice for decades. Recent studies established that metformin (Met), an oral anti-diabetic drug, provides protective effects in Dox-induced cardiotoxicity. Met has been shown to increase fatty acid oxidation, an effect mediated by AMP activated protein kinase (AMPK). Here we delineate the intracellular signaling factors involved in Met mediated protection against Dox-induced cardiotoxicity in the H9c2 cardiomyoblast cell line. Treatment with low dose Met (0.1 mM) increased cell viabilities and Ki-67 expressions while decreasing LDH leakages, ROS generations and [Ca2+]i. The protective effect was reversed by a co-treatment with compound-C, an AMPK specific inhibitor, or by an over expression of a dominant-negative AMPKα cDNA. Inhibition of PKA with H89 or a suppression of Src kinase by a small hairpin siRNA also abrogated the protective effect of the low dose Met. Whereas, with a higher dose of Met (1.0 mM), the protective effects were abolished regardless of the enhanced AMPK, PKA/CREB1 and Src kinase activity. In high dose Met treated cells, expression of platelet-derived growth factor receptor (PDGFR) was significantly suppressed. Furthermore, the protective effect of low dose Met was totally reversed by co-treatment with AG1296, a PDGFR specific antagonist. These data provide in vitro evidence supporting a signaling cascade by which low dose Met exerts protective effects against Dox via sequential involvement of AMPK, PKA/CREB1, Src and PDGFR. Whereas high dose Met reverses the effect by suppressing PDGFR expression.
Collapse
Affiliation(s)
- Laura C. Kobashigawa
- Department of Pediatrics, Women & Infants Hospital, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Yan Chun Xu
- Department of Pediatrics, Women & Infants Hospital, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - James F. Padbury
- Department of Pediatrics, Women & Infants Hospital, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Yi-Tang Tseng
- Department of Pediatrics, Women & Infants Hospital, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
- * E-mail: (YT); (NY)
| | - Naohiro Yano
- Department of Pediatrics, Women & Infants Hospital, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
- * E-mail: (YT); (NY)
| |
Collapse
|
118
|
Han L, Yang L, Liu B, Cheng X. Trans-caryophyllene suppresses tumor necrosis factor (TNFα)-induced inflammation in human chondrocytes. Eur Food Res Technol 2014. [DOI: 10.1007/s00217-014-2302-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
119
|
Synergistic Effects of CO2 and LED Lighting on Accumulation of Terpenes in Roots of Gynura bicolor. CHINESE HERBAL MEDICINES 2014. [DOI: 10.1016/s1674-6384(14)60033-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
120
|
Fujii M, Sherchan P, Soejima Y, Hasegawa Y, Flores J, Doycheva D, Zhang JH. Cannabinoid receptor type 2 agonist attenuates apoptosis by activation of phosphorylated CREB-Bcl-2 pathway after subarachnoid hemorrhage in rats. Exp Neurol 2014; 261:396-403. [PMID: 25058046 DOI: 10.1016/j.expneurol.2014.07.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 06/27/2014] [Accepted: 07/10/2014] [Indexed: 11/18/2022]
Abstract
Early brain injury (EBI) which comprises of vasogenic edema and apoptotic cell death is an important component of subarachnoid hemorrhage (SAH) pathophysiology. This study evaluated whether cannabinoid receptor type 2 (CB2R) agonist, JWH133, attenuates EBI after SAH and whether CB2R stimulation reduces pro-apoptotic caspase-3 via up-regulation of cAMP response element-binding protein (CREB)-Bcl-2 signaling pathway. Male Sprague-Dawley rats (n=123) were subjected to SAH by endovascular perforation. Rats received vehicle or JWH133 at 1h after SAH. Neurological deficits and brain water content were evaluated at 24h after SAH. Western blot was performed to quantify phosphorylated CREB (pCREB), Bcl-2, and cleaved caspase-3 levels. Neuronal cell death was evaluated with terminal deoxynucleotidyl transferase-mediated uridine 5'-triphosphate-biotin nick end-labeling staining. Additionally, CREB siRNA was administered to manipulate the proposed pathway. JWH133 (1.0mg/kg) improved neurological deficits and reduced brain water content in left hemisphere 24h after SAH. JWH133 significantly increased activated CREB (pCREB) and Bcl-2 levels and significantly decreased cleaved caspase-3 levels in left hemisphere 24h after SAH. CREB siRNA reversed the effects of treatment. TUNEL positive neurons in the cortex were reduced with JWH133 treatment. Thus, CB2R stimulation attenuated EBI after SAH possibly through activation of pCREB-Bcl-2 pathway.
Collapse
Affiliation(s)
- Mutsumi Fujii
- Department of Physiology, Loma Linda University, Loma Linda, CA, USA
| | - Prativa Sherchan
- Department of Physiology, Loma Linda University, Loma Linda, CA, USA
| | - Yoshiteru Soejima
- Department of Physiology, Loma Linda University, Loma Linda, CA, USA
| | - Yu Hasegawa
- Department of Physiology, Loma Linda University, Loma Linda, CA, USA
| | - Jerry Flores
- Department of Physiology, Loma Linda University, Loma Linda, CA, USA
| | | | - John H Zhang
- Department of Physiology, Loma Linda University, Loma Linda, CA, USA; Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA; Department of Anesthesiology, Loma Linda University, Loma Linda, CA, USA.
| |
Collapse
|
121
|
Chicca A, Caprioglio D, Minassi A, Petrucci V, Appendino G, Taglialatela-Scafati O, Gertsch J. Functionalization of β-caryophyllene generates novel polypharmacology in the endocannabinoid system. ACS Chem Biol 2014; 9:1499-507. [PMID: 24831513 DOI: 10.1021/cb500177c] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The widespread dietary plant sesquiterpene hydrocarbon β-caryophyllene (1) is a CB2 cannabinoid receptor-specific agonist showing anti-inflammatory and analgesic effects in vivo. Structural insights into the pharmacophore of this hydrocarbon, which lacks functional groups other than double bonds, are missing. A structure-activity study provided evidence for the existence of a well-defined sesquiterpene hydrocarbon binding site in CB2 receptors, highlighting its exquisite sensitivity to modifications of the strained endocyclic double bond of 1. While most changes on this element were detrimental for activity, ring-opening cross metathesis of 1 with ethyl acrylate followed by amide functionalization generated a series of new monocyclic amides (11a, 11b, 11c) that not only retained the CB2 receptor functional agonism of 1 but also reversibly inhibited fatty acid amide hydrolase (FAAH), the major endocannabinoid degrading enzyme, without affecting monoacylglycerol lipase (MAGL) and α,β hydrolases 6 and 12. Intriguingly, further modification of this monocyclic scaffold generated the FAAH- and endocannabinoid substrate-specific cyclooxygenase-2 (COX-2) dual inhibitors 11e and 11f, which are probes with a novel pharmacological profile. Our study shows that by removing the conformational constraints induced by the medium-sized ring and by introducing functional groups in the sesquiterpene hydrocarbon 1, a new scaffold with pronounced polypharmacological features within the endocannabinoid system could be generated. The structural and functional repertoire of cannabimimetics and their yet poorly understood intrinsic promiscuity may be exploited to generate novel probes and ultimately more effective drugs.
Collapse
Affiliation(s)
- Andrea Chicca
- Institute
of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bühlstrasse 28, CH-3012 Bern, Switzerland
| | - Diego Caprioglio
- Dipartimento
di Scienze del Farmaco, Università degli Studi del Piemonte Orientale “Amedeo Avogadro”, Largo Donegani 2, 28100 Novara, Italy
| | - Alberto Minassi
- Dipartimento
di Scienze del Farmaco, Università degli Studi del Piemonte Orientale “Amedeo Avogadro”, Largo Donegani 2, 28100 Novara, Italy
| | - Vanessa Petrucci
- Institute
of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bühlstrasse 28, CH-3012 Bern, Switzerland
| | - Giovanni Appendino
- Dipartimento
di Scienze del Farmaco, Università degli Studi del Piemonte Orientale “Amedeo Avogadro”, Largo Donegani 2, 28100 Novara, Italy
| | - Orazio Taglialatela-Scafati
- Dipartimento
di Farmacia, Università degli Studi di Napoli Federico II, Via Montesano 49, 80131 Napoli, Italy
| | - Jürg Gertsch
- Institute
of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bühlstrasse 28, CH-3012 Bern, Switzerland
| |
Collapse
|
122
|
Abstract
Recent discoveries of AMPK activators point to the large number of therapeutic candidates that can be transformed to successful designs of novel drugs. AMPK is a universal energy sensor and influences almost all physiological processes in the cells. Thus, regulation of the cellular energy metabolism can be achieved in selective tissues via the artificial activation of AMPK by small molecules. Recently, special attention has been given to direct activators of AMPK that are regulated by several nonspecific upstream factors. The direct activation of AMPK, by definition, should lead to more specific biological activities and as a result minimize possible side effects.
Collapse
|
123
|
Dysregulation of neurotrophic and inflammatory systems accompanied by decreased CREB signaling in ischemic rat retina. Exp Eye Res 2014; 125:156-63. [PMID: 24954538 DOI: 10.1016/j.exer.2014.06.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 05/30/2014] [Accepted: 06/03/2014] [Indexed: 12/22/2022]
Abstract
Although permanent bilateral common carotid artery occlusion (2VO) has been demonstrated to induce retinal injury, there is still a lack of systematic research on the complex processing of retinal degeneration. In the present study, time-dependent (at three, 14, 60 days after 2VO surgery) changes of neurotrophic and inflammatory systems, as well as cAMP-responsive element binding protein (CREB) signaling, which has been previously reported to effectively regulate these two systems, were evaluated. First, a morphological study confirmed that 2VO surgery progressively induced severe inner retinal degeneration and down-regulation of synaptic proteins, PSD95 and synaptophysin. The mRNA or protein levels of neurotrophic factors (NGF, BDNF, NT-3 and GDNF) and their receptors (TrkA, TrkB and TrkC) showed marked and persistent down-regulation in the rat retina since three days after 2VO surgery, whereas the gene transcription levels of CNTF were increased and p75(NTR) mRNA levels remained unchanged. In contrast to inner retinal degeneration, retinal Müller cells displayed rapid and prolonged activation since three days after 2VO lesion, whereas the microglia cell number, and TNF-α and IL-1β levels showed a robust increase with a maximal effect at three days and returned to levels that were slightly over baseline at 14 and 60 days after 2VO lesion. Interestingly, the gene expression levels of iNOS significantly decreased in the rat retina at both three and 14 days after 2VO surgery. Finally, as we hypothesized, remarkable reduction of CREB and extracellular signal-regulated kinase (ERK) phosphorylation levels were observed in the rat retina at three days after 2VO surgery. Thus, for the first time, our study demonstrated that chronic ischemia induced long-term aberrant CREB signaling and time-dependent progressive dysregulation of neurotrophic and inflammatory systems in the retina, which may provide important clues for a better understanding of the pathogenesis of retinal ischemic damage.
Collapse
|
124
|
Gabryel B, Kost A, Kasprowska D, Liber S, Machnik G, Wiaderkiewicz R, Łabuzek K. AMP-activated protein kinase is involved in induction of protective autophagy in astrocytes exposed to oxygen-glucose deprivation. Cell Biol Int 2014; 38:1086-97. [PMID: 24798185 DOI: 10.1002/cbin.10299] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 04/14/2014] [Indexed: 01/12/2023]
Abstract
AMP-activated kinase (AMPK) acts as the intracellular ATP depletion sensor, which detects and limits increases in the AMP/ATP ratio. AMPK may be significantly activated under stress conditions that deplete cellular ATP levels such as ischemia/hypoxia or glucose deprivation. Recent studies strongly suggest that AMPK participates in autophagy regulation, but it is not known whether AMPK activated by ischemia regulates autophagy in astrocytes and the consequence of autophagy activation in ischemic astrocytes are unclear. We have investigated the contribution of AMPK to autophagy activation in rat primary astrocyte cultures subjected to ischemia-simulating conditions (combined oxygen glucose deprivation, OGD) and its potential effects on astrocyte damage induced by OGD (1-12 h). The evidence supports the conclusion that AMPK activation at early stages of OGD is involved in induction of protective autophagy in astrocytes. Inhibition of AMPK, either by siAMPKα1 or by compound C, significantly attenuated the expression of autophagy-related proteins and decrease of astrocyte viability following OGD. The findings provide additional data about the role of AMPK in ischemic astrocytes and downstream responses that may be involved in OGD-induced protective autophagy.
Collapse
Affiliation(s)
- Bożena Gabryel
- Department of Pharmacology, Medical University of Silesia, Medyków 18, PL 40-752 Katowice, Poland
| | | | | | | | | | | | | |
Collapse
|
125
|
Bahi A, Al Mansouri S, Al Memari E, Al Ameri M, Nurulain SM, Ojha S. β-Caryophyllene, a CB2 receptor agonist produces multiple behavioral changes relevant to anxiety and depression in mice. Physiol Behav 2014; 135:119-24. [PMID: 24930711 DOI: 10.1016/j.physbeh.2014.06.003] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 05/29/2014] [Accepted: 06/04/2014] [Indexed: 11/24/2022]
Abstract
Recent evidence suggests that the cannabinoid receptor subtype 2 (CB2) is implicated in anxiety and depression disorders, although few systematic studies in laboratory animals have been reported. The aim of the current experiments was to test the effects of the CB2 receptor potent-selective agonist β-caryophyllene (BCP) in animals subjected to models of anxiolytic- and antidepressant-like effects. Therefore effects of BCP (50mg/kg) on anxiety were assessed using the elevated plus maze (EPM), open field (OF), and marble burying test (MBT). However for depression, the novelty-suppressed feeding (NSF), tail suspension test (TST), and forced swim tests (FST) were used. Results indicated that adult mice receiving BCP showed amelioration of all the parameters observed in the EPM test. Also, BCP significantly increased the time spent in the center of the arena without altering the general motor activity in the OF test. This dose was also able to decrease the number of buried marbles and time spent digging in the MBT, suggesting an anti-compulsive-like effect. In addition, the systemic administration of BCP reduced immobility time in the TST and the FST. Finally, BCP treatment decreased feeding latency in the NSF test. Most importantly, pre-administration of the CB2 receptor antagonist AM630, fully abrogated the anxiolytic and the anti-depressant effects of BCP. Taken together, these preclinical results suggest that CB2 receptors may provide alternative therapeutic targets for the treatment of anxiety and depression. The possibility that BCP may ameliorate the symptoms of these mood disorders offers exciting prospects for future studies.
Collapse
Affiliation(s)
- Amine Bahi
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| | - Shamma Al Mansouri
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Elyazia Al Memari
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mouza Al Ameri
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Syed M Nurulain
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Shreesh Ojha
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
126
|
Marchalant Y, Brownjohn PW, Bonnet A, Kleffmann T, Ashton JC. Validating Antibodies to the Cannabinoid CB2 Receptor: Antibody Sensitivity Is Not Evidence of Antibody Specificity. J Histochem Cytochem 2014; 62:395-404. [PMID: 24670796 PMCID: PMC4174627 DOI: 10.1369/0022155414530995] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Antibody-based methods for the detection and quantification of membrane integral proteins, in particular, the G protein-coupled receptors (GPCRs), have been plagued with issues of primary antibody specificity. In this report, we investigate one of the most commonly utilized commercial antibodies for the cannabinoid CB2 receptor, a GPCR, using immunoblotting in combination with mass spectrometry. In this way, we were able to develop powerful negative and novel positive controls. By doing this, we are able to demonstrate that it is possible for an antibody to be sensitive for a protein of interest—in this case CB2—but still cross-react with other proteins and therefore lack specificity. Specifically, we were able to use western blotting combined with mass spectrometry to unequivocally identify CB2 protein in over-expressing cell lines. This shows that a common practice of validating antibodies with positive controls only is insufficient to ensure antibody reliability. In addition, our work is the first to develop a label-free method of protein detection using mass spectrometry that, with further refinement, could provide unequivocal identification of CB2 receptor protein in native tissues.
Collapse
Affiliation(s)
- Yannick Marchalant
- Aix-Marseille University, Neurobiologie des Interactions Cellulaires et Neurophysiopathologie, Marseille, France (YM,AB)Department of Pharmacology and Toxicology (PWB,JCA)Centre for Protein Research, Biochemistry Department, University of Otago, Dunedin, New Zealand (TK)
| | - Philip W Brownjohn
- Aix-Marseille University, Neurobiologie des Interactions Cellulaires et Neurophysiopathologie, Marseille, France (YM,AB)Department of Pharmacology and Toxicology (PWB,JCA)Centre for Protein Research, Biochemistry Department, University of Otago, Dunedin, New Zealand (TK)
| | - Amandine Bonnet
- Aix-Marseille University, Neurobiologie des Interactions Cellulaires et Neurophysiopathologie, Marseille, France (YM,AB)Department of Pharmacology and Toxicology (PWB,JCA)Centre for Protein Research, Biochemistry Department, University of Otago, Dunedin, New Zealand (TK)
| | - Torsten Kleffmann
- Aix-Marseille University, Neurobiologie des Interactions Cellulaires et Neurophysiopathologie, Marseille, France (YM,AB)Department of Pharmacology and Toxicology (PWB,JCA)Centre for Protein Research, Biochemistry Department, University of Otago, Dunedin, New Zealand (TK)
| | - John C Ashton
- Aix-Marseille University, Neurobiologie des Interactions Cellulaires et Neurophysiopathologie, Marseille, France (YM,AB)Department of Pharmacology and Toxicology (PWB,JCA)Centre for Protein Research, Biochemistry Department, University of Otago, Dunedin, New Zealand (TK)
| |
Collapse
|
127
|
Fagan SG, Campbell VA. The influence of cannabinoids on generic traits of neurodegeneration. Br J Pharmacol 2014; 171:1347-60. [PMID: 24172185 PMCID: PMC3954477 DOI: 10.1111/bph.12492] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 09/14/2013] [Accepted: 09/16/2013] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED In an increasingly ageing population, the incidence of neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and Huntington's disease are rising. While the aetiologies of these disorders are different, a number of common mechanisms that underlie their neurodegenerative components have been elucidated; namely neuroinflammation, excitotoxicity, mitochondrial dysfunction and reduced trophic support. Current therapies focus on treatment of the symptoms and attempt to delay the progression of these diseases but there is currently no cure. Modulation of the endogenous cannabinoid system is emerging as a potentially viable option in the treatment of neurodegeneration. Endocannabinoid signalling has been found to be altered in many neurodegenerative disorders. To this end, pharmacological manipulation of the endogenous cannabinoid system, as well as application of phytocannabinoids and synthetic cannabinoids have been investigated. Signalling from the CB1 and CB2 receptors are known to be involved in the regulation of Ca(2+) homeostasis, mitochondrial function, trophic support and inflammatory status, respectively, while other receptors gated by cannabinoids such as PPARγ, are gaining interest in their anti-inflammatory properties. Through multiple lines of evidence, this evolutionarily conserved neurosignalling system has shown neuroprotective capabilities and is therefore a potential target for neurodegenerative disorders. This review details the mechanisms of neurodegeneration and highlights the beneficial effects of cannabinoid treatment. LINKED ARTICLES This article is part of a themed section on Cannabinoids 2013. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-6.
Collapse
Affiliation(s)
- S G Fagan
- Trinity College Institute of Neuroscience, Department of Physiology, School of Medicine, University of Dublin, Trinity CollegeDublin 2, Ireland
| | - V A Campbell
- Trinity College Institute of Neuroscience, Department of Physiology, School of Medicine, University of Dublin, Trinity CollegeDublin 2, Ireland
| |
Collapse
|
128
|
Guo K, Mou X, Huang J, Xiong N, Li H. Trans-Caryophyllene Suppresses Hypoxia-Induced Neuroinflammatory Responses by Inhibiting NF-κB Activation in Microglia. J Mol Neurosci 2014; 54:41-8. [DOI: 10.1007/s12031-014-0243-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 01/15/2014] [Indexed: 12/18/2022]
|
129
|
Suijun W, Zhen Y, Ying G, Yanfang W. A role for trans-caryophyllene in the moderation of insulin secretion. Biochem Biophys Res Commun 2014; 444:451-4. [PMID: 24486541 DOI: 10.1016/j.bbrc.2013.11.136] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 11/18/2013] [Indexed: 10/25/2022]
Abstract
Glucose-stimulated insulin secretion (GSIS) is essential for the control of metabolic fuel homeostasis and its impairment is a key element in the failure of β-cells in type 2 diabetes. Trans-caryophyllene (TC), an important constituent of the essential oil of several species of plants, has been reported to activate the type 2 cannabinoid receptor (CB2R). The effects of TC on GSIS are still unknown. Our results demonstrate that administration of TC in MIN6 cells promotes GSIS in a dose dependent manner. However, inhibition of CB2R by a specific inhibitor or specific RNA interference abolished the effects of TC on GSIS, which suggests that the effects of TC on GSIS are dependent on activation of CB2R. Further study demonstrated that treatment with TC leads to the activation of small G protein Arf6 as well as Rac1 and Cdc42. Importantly, Arf6 silencing abolished the effects of TC on GSIS, which suggests that Arf6 participates in mediating the effects of TC on GSIS. We conclude from these data that TC has a novel role in regulating GSIS in pancreatic β-cells.
Collapse
Affiliation(s)
- Wang Suijun
- Department of Endocrinology and Metabolism, Henan Provincial People's Hospital, Zhengzhou University, PR China.
| | - Yang Zhen
- Department of Endocrinology and Metabolism, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, PR China
| | - Gao Ying
- Neonatal Intensive Care Unit, Henan Provincial People's Hospital, Zhengzhou University, PR China
| | - Wang Yanfang
- Department of Endocrinology and Metabolism, Henan Provincial People's Hospital, Zhengzhou University, PR China
| |
Collapse
|
130
|
Cheng Y, Dong Z, Liu S. �-Caryophyllene Ameliorates the Alzheimer-Like Phenotype in APP/PS1 Mice through CB2 Receptor Activation and the PPARγ Pathway. Pharmacology 2014; 94:1-12. [DOI: 10.1159/000362689] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 04/04/2014] [Indexed: 11/19/2022]
|
131
|
García-Gutiérrez MS, Ortega-Álvaro A, Busquets-García A, Pérez-Ortiz JM, Caltana L, Ricatti MJ, Brusco A, Maldonado R, Manzanares J. Synaptic plasticity alterations associated with memory impairment induced by deletion of CB2 cannabinoid receptors. Neuropharmacology 2013; 73:388-96. [PMID: 23796670 DOI: 10.1016/j.neuropharm.2013.05.034] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 05/15/2013] [Accepted: 05/17/2013] [Indexed: 01/19/2023]
Abstract
In this study, the role of CB₂r on aversive memory consolidation was further evaluated. Mice lacking CB₂r (CB2KO) and their corresponding littermates (WT) were exposed to the step-down inhibitory avoidance test (SDIA). MAP2, NF200 and synaptophysin (SYN)-immunoreactive fibers were studied in the hippocampus (HIP) of both genotypes. The number of synapses, postsynaptic density thickness and the relation between the synaptic length across the synaptic cleft and the distance between the synaptic ends were evaluated in the HIP (dentate gyrus (DG) and CA1 fields) by electron microscopy. Brain-derived neurotrophic factor (BDNF), glucocorticoid receptor (NR3C1) gene expressions and mTOR/p70S6K signaling cascade were evaluated in the HIP and prefrontal cortex (PFC). Finally, the effects of acute administration of CB₂r-agonist JWH133 or CB2r-antagonist AM630 on memory consolidation were evaluated in WT mice by using the SDIA. The lack of CB₂r impaired aversive memory consolidation, reduced MAP2, NF200 and SYN-immunoreactive fibers and also reduced the number of synapses in DG of CB2KO mice. BDNF and NR3C1 gene expression were reduced in the HIP of CB2KO mice. An increase of p-p70S6K (T389 and S424) and p-AKT protein expression was observed in the HIP and PFC of CB2KO mice. Interestingly, administration of AM630 impaired aversive memory consolidation, whereas JWH133 enhanced it. Further functional and molecular assessments would have been helpful to further support our conclusions. These results revealed that CB₂r are involved in memory consolidation, suggesting that this receptor could be a promising target for developing novel treatments for different cognitive impairment-related disorders.
Collapse
Affiliation(s)
- María S García-Gutiérrez
- Instituto de Neurociencias, Campus de San Juan, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Alicante, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Zheng X, Sun T, Wang X. Activation of type 2 cannabinoid receptors (CB2R) promotes fatty acid oxidation through the SIRT1/PGC-1α pathway. Biochem Biophys Res Commun 2013; 436:377-81. [PMID: 23747418 DOI: 10.1016/j.bbrc.2013.05.108] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 05/25/2013] [Indexed: 10/26/2022]
Abstract
Abnormal fatty acid oxidation has been associated with obesity and type 2 diabetes. At the transcriptional level, peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α) has been reported to strongly increase the ability of hormone nuclear receptors PPARα and ERRα to drive transcription of fatty acid oxidation enzymes. In this study, we report that a specific agonist of the type 2 cannabinoid receptor (CB2R) can lead to fatty acid oxidation through the PGC-1α pathway. We have found that CB2R is expressed in differentiated C2C12 myotubes, and that use of the specific agonist trans-caryophyllene (TC) stimulates sirtuin 1 (SIRT1) deacetylase activity by increasing the phosphorylation of cAMP response element-binding protein (CREB), thus leading to increased levels of PGC-1α deacetylation. This use of TC treatment increases the expression of genes linked to the fatty acid oxidation pathway in a SIRT1/PGC-1α-dependent mechanism and also drastically accelerates the rate of complete fatty acid oxidation in C2C12 myotubes, neither of which occur when CB2R mRNA is knocked down using siRNA. These results reveal that activation of CB2R by a selective agonist promotes lipid oxidation through a signaling/transcriptional pathway. Our findings imply that pharmacological manipulation of CB2R may provide therapeutic possibilities to treat metabolic diseases associated with lipid dysregulation.
Collapse
Affiliation(s)
- Xuqin Zheng
- Department of Endocrinology, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| | | | | |
Collapse
|