101
|
Mullins R, Reiter D, Kapogiannis D. Magnetic resonance spectroscopy reveals abnormalities of glucose metabolism in the Alzheimer's brain. Ann Clin Transl Neurol 2018; 5:262-272. [PMID: 29560372 PMCID: PMC5846391 DOI: 10.1002/acn3.530] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/07/2017] [Accepted: 12/13/2017] [Indexed: 01/28/2023] Open
Abstract
Objective Brain glucose hypometabolism is a prominent feature of Alzheimer's disease (AD), and in this case-control study we used Magnetic Resonance Spectroscopy (MRS) to assess AD-related differences in the posterior cingulate/precuneal ratio of glucose, lactate, and other metabolites. Methods J-modulated Point-Resolved Spectroscopy (J-PRESS) and Prior-Knowledge Fitting (ProFit) software was used to measure glucose and other metabolites in the posterior cingulate/precuneus of 25 AD, 27 older controls, and 27 younger control participants. Clinical assessments for AD participants included cognitive performance measures, insulin resistance metrics and CSF biomarkers. Results AD participants showed substantially elevated glucose, lactate, and ascorbate levels compared to older (and younger) controls. In addition, the precuneal glucose elevation discriminated well between AD participants and older controls. Myo-inositol correlated with CSF p-Tau181P, total Tau, and the Clinical Dementia Rating (CDR) sum-of-boxes score within the AD group. Interpretation Higher glucose to creatine ratios in the AD brain likely reflect lower glucose utilization. Our findings reveal pronounced metabolic abnormalities in the AD brain and strongly suggest that brain glucose merits further investigation as a candidate AD biomarker.
Collapse
Affiliation(s)
- Roger Mullins
- Laboratory of NeurosciencesIntramural Research ProgramNational Institute on Aging/National Institutes of Health (NIA/NIH)BaltimoreMaryland
| | - David Reiter
- Laboratory of Clinical InvestigationNational Institute on Aging Intramural Research Program (NIA‐IRP)BaltimoreMaryland
| | - Dimitrios Kapogiannis
- Laboratory of NeurosciencesIntramural Research ProgramNational Institute on Aging/National Institutes of Health (NIA/NIH)BaltimoreMaryland
| |
Collapse
|
102
|
Kovalchuk A, Nersisyan L, Mandal R, Wishart D, Mancini M, Sidransky D, Kolb B, Kovalchuk O. Growth of Malignant Non-CNS Tumors Alters Brain Metabolome. Front Genet 2018. [PMID: 29515623 PMCID: PMC5826252 DOI: 10.3389/fgene.2018.00041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Cancer survivors experience numerous treatment side effects that negatively affect their quality of life. Cognitive side effects are especially insidious, as they affect memory, cognition, and learning. Neurocognitive deficits occur prior to cancer treatment, arising even before cancer diagnosis, and we refer to them as "tumor brain." Metabolomics is a new area of research that focuses on metabolome profiles and provides important mechanistic insights into various human diseases, including cancer, neurodegenerative diseases, and aging. Many neurological diseases and conditions affect metabolic processes in the brain. However, the tumor brain metabolome has never been analyzed. In our study we used direct flow injection/mass spectrometry (DI-MS) analysis to establish the effects of the growth of lung cancer, pancreatic cancer, and sarcoma on the brain metabolome of TumorGraft™ mice. We found that the growth of malignant non-CNS tumors impacted metabolic processes in the brain, affecting protein biosynthesis, and amino acid and sphingolipid metabolism. The observed metabolic changes were similar to those reported for neurodegenerative diseases and brain aging, and may have potential mechanistic value for future analysis of the tumor brain phenomenon.
Collapse
Affiliation(s)
- Anna Kovalchuk
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada.,Leaders in Medicine Program, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Lilit Nersisyan
- Group of Bioinformatics, Institute of Molecular Biology, National Academy of Sciences, Yerevan, Armenia
| | - Rupasri Mandal
- The Metabolomics Innovation Center, Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - David Wishart
- The Metabolomics Innovation Center, Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Maria Mancini
- Department of Oncology, Champions Oncology, Baltimore, MD, United States
| | - David Sidransky
- Department of Oncology, Champions Oncology, Baltimore, MD, United States.,Department of Otolaryngology and Oncology, Johns Hopkins University, Baltimore, MD, United States
| | - Bryan Kolb
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
103
|
Griffin JWD, Liu Y, Bradshaw PC, Wang K. In Silico Preliminary Association of Ammonia Metabolism Genes GLS, CPS1, and GLUL with Risk of Alzheimer's Disease, Major Depressive Disorder, and Type 2 Diabetes. J Mol Neurosci 2018; 64:385-396. [PMID: 29441491 DOI: 10.1007/s12031-018-1035-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/31/2018] [Indexed: 12/28/2022]
Abstract
Ammonia is a toxic by-product of protein catabolism and is involved in changes in glutamate metabolism. Therefore, ammonia metabolism genes may link a range of diseases involving glutamate signaling such as Alzheimer's disease (AD), major depressive disorder (MDD), and type 2 diabetes (T2D). We analyzed data from a National Institute on Aging study with a family-based design to determine if 45 single nucleotide polymorphisms (SNPs) in glutaminase (GLS), carbamoyl phosphate synthetase 1 (CPS1), or glutamate-ammonia ligase (GLUL) genes were associated with AD, MDD, or T2D using PLINK software. HAPLOVIEW software was used to calculate linkage disequilibrium measures for the SNPs. Next, we analyzed the associated variations for potential effects on transcriptional control sites to identify possible functional effects of the SNPs. Of the SNPs that passed the quality control tests, four SNPs in the GLS gene were significantly associated with AD, two SNPs in the GLS gene were associated with T2D, and one SNP in the GLUL gene and three SNPs in the CPS1 gene were associated with MDD before Bonferroni correction. The in silico bioinformatic analysis suggested probable functional roles for six associated SNPs. Glutamate signaling pathways have been implicated in all these diseases, and other studies have detected similar brain pathologies such as cortical thinning in AD, MDD, and T2D. Taken together, these data potentially link GLS with AD, GLS with T2D, and CPS1 and GLUL with MDD and stimulate the generation of testable hypotheses that may help explain the molecular basis of pathologies shared by these disorders.
Collapse
Affiliation(s)
- Jeddidiah W D Griffin
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.
| | - Ying Liu
- Department of Biostatistics and Epidemiology, College of Public Health, East Tennessee State University, Johnson City, TN, USA
| | - Patrick C Bradshaw
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Kesheng Wang
- Department of Biostatistics and Epidemiology, College of Public Health, East Tennessee State University, Johnson City, TN, USA
| |
Collapse
|
104
|
Polis B, Samson AO. Arginase as a Potential Target in the Treatment of Alzheimer’s Disease. ACTA ACUST UNITED AC 2018. [DOI: 10.4236/aad.2018.74009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
105
|
Xu J, Church SJ, Patassini S, Begley P, Waldvogel HJ, Curtis MA, Faull RLM, Unwin RD, Cooper GJS. Evidence for widespread, severe brain copper deficiency in Alzheimer's dementia. Metallomics 2017; 9:1106-1119. [PMID: 28654115 DOI: 10.1039/c7mt00074j] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Datasets comprising simultaneous measurements of many essential metals in Alzheimer's disease (AD) brain are sparse, and available studies are not entirely in agreement. To further elucidate this matter, we employed inductively-coupled-plasma mass spectrometry to measure post-mortem levels of 8 essential metals and selenium, in 7 brain regions from 9 cases with AD (neuropathological severity Braak IV-VI), and 13 controls who had normal ante-mortem mental function and no evidence of brain disease. Of the regions studied, three undergo severe neuronal damage in AD (hippocampus, entorhinal cortex and middle-temporal gyrus); three are less-severely affected (sensory cortex, motor cortex and cingulate gyrus); and one (cerebellum) is relatively spared. Metal concentrations in the controls differed among brain regions, and AD-associated perturbations in most metals occurred in only a few: regions more severely affected by neurodegeneration generally showed alterations in more metals, and cerebellum displayed a distinctive pattern. By contrast, copper levels were substantively decreased in all AD-brain regions, to 52.8-70.2% of corresponding control values, consistent with pan-cerebral copper deficiency. This copper deficiency could be pathogenic in AD, since levels are lowered to values approximating those in Menkes' disease, an X-linked recessive disorder where brain-copper deficiency is the accepted cause of severe brain damage. Our study reinforces others reporting deficient brain copper in AD, and indicates that interventions aimed at safely and effectively elevating brain copper could provide a new experimental-therapeutic approach.
Collapse
Affiliation(s)
- Jingshu Xu
- School of Biological Sciences, Faculty of Science, and the Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand. and Centre for Advanced Discovery and Experimental Therapeutics, Central Manchester University Hospitals NHS Foundation Trust (CMFT), Manchester M13 9WL, UK and Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Stephanie J Church
- Centre for Advanced Discovery and Experimental Therapeutics, Central Manchester University Hospitals NHS Foundation Trust (CMFT), Manchester M13 9WL, UK and Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, and Manchester Academic Health Science Centre, Manchester M13 9NT, UK
| | - Stefano Patassini
- School of Biological Sciences, Faculty of Science, and the Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand. and Centre for Advanced Discovery and Experimental Therapeutics, Central Manchester University Hospitals NHS Foundation Trust (CMFT), Manchester M13 9WL, UK and Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Paul Begley
- Centre for Advanced Discovery and Experimental Therapeutics, Central Manchester University Hospitals NHS Foundation Trust (CMFT), Manchester M13 9WL, UK and Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, and Manchester Academic Health Science Centre, Manchester M13 9NT, UK
| | - Henry J Waldvogel
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Maurice A Curtis
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Richard L M Faull
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Richard D Unwin
- Centre for Advanced Discovery and Experimental Therapeutics, Central Manchester University Hospitals NHS Foundation Trust (CMFT), Manchester M13 9WL, UK and Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, and Manchester Academic Health Science Centre, Manchester M13 9NT, UK
| | - Garth J S Cooper
- School of Biological Sciences, Faculty of Science, and the Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand. and Centre for Advanced Discovery and Experimental Therapeutics, Central Manchester University Hospitals NHS Foundation Trust (CMFT), Manchester M13 9WL, UK and Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand and Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, and Manchester Academic Health Science Centre, Manchester M13 9NT, UK
| |
Collapse
|
106
|
Pan Y, Choy KHC, Marriott PJ, Chai SY, Scanlon MJ, Porter CJH, Short JL, Nicolazzo JA. Reduced blood-brain barrier expression of fatty acid-binding protein 5 is associated with increased vulnerability of APP/PS1 mice to cognitive deficits from low omega-3 fatty acid diets. J Neurochem 2017; 144:81-92. [DOI: 10.1111/jnc.14249] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/18/2017] [Accepted: 10/25/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Yijun Pan
- Drug Delivery, Disposition and Dynamics; Monash Institute of Pharmaceutical Sciences; Monash University; Parkville Vic. Australia
| | - Kwok H. C. Choy
- Drug Discovery Biology; Monash Institute of Pharmaceutical Sciences; Monash University; Parkville Vic. Australia
| | - Philip J. Marriott
- Australian Centre for Research on Separation Science; School of Chemistry; Monash University; Vic. Australia
| | - Siew Y. Chai
- Department of Physiology; Biomedicine Discovery Institute; Monash University; Clayton Vic. Australia
| | - Martin J. Scanlon
- Medicinal Chemistry; Monash Institute of Pharmaceutical Sciences; Monash University; Parkville Vic. Australia
| | - Christopher J. H. Porter
- Drug Delivery, Disposition and Dynamics; Monash Institute of Pharmaceutical Sciences; Monash University; Parkville Vic. Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology; Monash Institute of Pharmaceutical Sciences; Monash University; Parkville Vic. Australia
| | - Jennifer L. Short
- Drug Discovery Biology; Monash Institute of Pharmaceutical Sciences; Monash University; Parkville Vic. Australia
| | - Joseph A. Nicolazzo
- Drug Delivery, Disposition and Dynamics; Monash Institute of Pharmaceutical Sciences; Monash University; Parkville Vic. Australia
| |
Collapse
|
107
|
Brain urea increase is an early Huntington's disease pathogenic event observed in a prodromal transgenic sheep model and HD cases. Proc Natl Acad Sci U S A 2017; 114:E11293-E11302. [PMID: 29229845 DOI: 10.1073/pnas.1711243115] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The neurodegenerative disorder Huntington's disease (HD) is typically characterized by extensive loss of striatal neurons and the midlife onset of debilitating and progressive chorea, dementia, and psychological disturbance. HD is caused by a CAG repeat expansion in the Huntingtin (HTT) gene, translating to an elongated glutamine tract in the huntingtin protein. The pathogenic mechanism resulting in cell dysfunction and death beyond the causative mutation is not well defined. To further delineate the early molecular events in HD, we performed RNA-sequencing (RNA-seq) on striatal tissue from a cohort of 5-y-old OVT73-line sheep expressing a human CAG-expansion HTT cDNA transgene. Our HD OVT73 sheep are a prodromal model and exhibit minimal pathology and no detectable neuronal loss. We identified significantly increased levels of the urea transporter SLC14A1 in the OVT73 striatum, along with other important osmotic regulators. Further investigation revealed elevated levels of the metabolite urea in the OVT73 striatum and cerebellum, consistent with our recently published observation of increased urea in postmortem human brain from HD cases. Extending that finding, we demonstrate that postmortem human brain urea levels are elevated in a larger cohort of HD cases, including those with low-level neuropathology (Vonsattel grade 0/1). This elevation indicates increased protein catabolism, possibly as an alternate energy source given the generalized metabolic defect in HD. Increased urea and ammonia levels due to dysregulation of the urea cycle are known to cause neurologic impairment. Taken together, our findings indicate that aberrant urea metabolism could be the primary biochemical disruption initiating neuropathogenesis in HD.
Collapse
|
108
|
González-Domínguez R, Sayago A, Fernández-Recamales Á. Metabolomics in Alzheimer’s disease: The need of complementary analytical platforms for the identification of biomarkers to unravel the underlying pathology. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1071:75-92. [DOI: 10.1016/j.jchromb.2017.02.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 01/27/2017] [Accepted: 02/05/2017] [Indexed: 12/14/2022]
|
109
|
Tomasi DG, Shokri-Kojori E, Wiers CE, Kim SW, Demiral ŞB, Cabrera EA, Lindgren E, Miller G, Wang GJ, Volkow ND. Dynamic brain glucose metabolism identifies anti-correlated cortical-cerebellar networks at rest. J Cereb Blood Flow Metab 2017; 37:3659-3670. [PMID: 28534658 PMCID: PMC5718328 DOI: 10.1177/0271678x17708692] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
It remains unclear whether resting state functional magnetic resonance imaging (rfMRI) networks are associated with underlying synchrony in energy demand, as measured by dynamic 2-deoxy-2-[18F]fluoroglucose (FDG) positron emission tomography (PET). We measured absolute glucose metabolism, temporal metabolic connectivity (t-MC) and rfMRI patterns in 53 healthy participants at rest. Twenty-two rfMRI networks emerged from group independent component analysis (gICA). In contrast, only two anti-correlated t-MC emerged from FDG-PET time series using gICA or seed-voxel correlations; one included frontal, parietal and temporal cortices, the other included the cerebellum and medial temporal regions. Whereas cerebellum, thalamus, globus pallidus and calcarine cortex arose as the strongest t-MC hubs, the precuneus and visual cortex arose as the strongest rfMRI hubs. The strength of the t-MC linearly increased with the metabolic rate of glucose suggesting that t-MC measures are strongly associated with the energy demand of the brain tissue, and could reflect regional differences in glucose metabolism, counterbalanced metabolic network demand, and/or differential time-varying delivery of FDG. The mismatch between metabolic and functional connectivity patterns computed as a function of time could reflect differences in the temporal characteristics of glucose metabolism as measured with PET-FDG and brain activation as measured with rfMRI.
Collapse
Affiliation(s)
- Dardo G Tomasi
- 1 National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Ehsan Shokri-Kojori
- 1 National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Corinde E Wiers
- 1 National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Sunny W Kim
- 1 National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Şukru B Demiral
- 1 National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Elizabeth A Cabrera
- 1 National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Elsa Lindgren
- 1 National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Gregg Miller
- 1 National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Gene-Jack Wang
- 1 National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Nora D Volkow
- 1 National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA.,2 National Institutes of Health, National Institute on Drug Abuse, Bethesda, MD, USA
| |
Collapse
|
110
|
Urinary Urea, Uric Acid and Hippuric Acid as Potential Biomarkers in Multiple Sclerosis Patients. Indian J Clin Biochem 2017; 33:163-170. [PMID: 29651206 DOI: 10.1007/s12291-017-0661-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/04/2017] [Indexed: 10/19/2022]
Abstract
Urine is a proven source of metabolite biomarkers and has the potential to be a rapid, noninvasive, inexpensive, and efficient diagnostic tool for various human diseases. Despite these advantages, urine is an under-investigated source of biomarkers for multiple sclerosis (MS). The objective was to investigate the level of some urinary metabolites (urea, uric acid and hippuric acid) in patients with MS and correlate their levels to the severity of the disease, MS subtypes and MS treatment. The urine samples were collected from 73 MS patients-48 with RRMS and 25 with SPMS- and age matched 75 healthy controls. The values of urinary urea, uric acid and hippuric acid in MS patients were significantly decreased, and these metabolites in SPMS pattern showed significantly decrease than RRMS pattern. Also showed significant inverse correlation with expanded disability status scale and number of relapses. Accordingly, they may act as a potential urinary biomarkers for MS, and correlate to disease progression.
Collapse
|
111
|
van Gijsel-Bonnello M, Baranger K, Benech P, Rivera S, Khrestchatisky M, de Reggi M, Gharib B. Metabolic changes and inflammation in cultured astrocytes from the 5xFAD mouse model of Alzheimer's disease: Alleviation by pantethine. PLoS One 2017; 12:e0175369. [PMID: 28410378 PMCID: PMC5391924 DOI: 10.1371/journal.pone.0175369] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/26/2017] [Indexed: 12/14/2022] Open
Abstract
Astrocytes play critical roles in central nervous system homeostasis and support of neuronal function. A better knowledge of their response may both help understand the pathophysiology of Alzheimer's disease (AD) and implement new therapeutic strategies. We used the 5xFAD transgenic mouse model of AD (Tg thereafter) to generate astrocyte cultures and investigate the impact of the genotype on metabolic changes and astrocytes activation. Metabolomic analysis showed that Tg astrocytes exhibited changes in the glycolytic pathway and tricarboxylic acid (TCA) cycle, compared to wild type (WT) cells. Tg astrocytes displayed also a prominent basal inflammatory status, with accentuated reactivity and increased expression of the inflammatory cytokine interleukin-1 beta (IL-1β). Compensatory mechanisms were activated in Tg astrocytes, including: i) the hexose monophosphate shunt with the consequent production of reducing species; ii) the induction of hypoxia inducible factor-1 alpha (HIF-1α), known to protect against amyloid-β (Aβ) toxicity. Such events were associated with the expression by Tg astrocytes of human isoforms of both amyloid precursor protein (APP) and presenilin-1 (PS1). Similar metabolic and inflammatory changes were induced in WT astrocytes by exogenous Aβ peptide. Pantethine, the vitamin B5 precursor, known to be neuroprotective and anti-inflammatory, alleviated the pathological pattern in Tg astrocytes as well as WT astrocytes treated with Aß. In conclusion, our data enlighten the dual pathogenic/protective role of astrocytes in AD pathology and the potential protective role of pantethine.
Collapse
Affiliation(s)
| | | | | | | | | | - Max de Reggi
- Aix Marseille Univ, CNRS, NICN, Marseille, France
| | | |
Collapse
|
112
|
He J, Zhu Y, Aa J, Smith PF, De Ridder D, Wang G, Zheng Y. Brain Metabolic Changes in Rats following Acoustic Trauma. Front Neurosci 2017; 11:148. [PMID: 28392756 PMCID: PMC5364180 DOI: 10.3389/fnins.2017.00148] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 03/09/2017] [Indexed: 12/14/2022] Open
Abstract
Acoustic trauma is the most common cause of hearing loss and tinnitus in humans. However, the impact of acoustic trauma on system biology is not fully understood. It has been increasingly recognized that tinnitus caused by acoustic trauma is unlikely to be generated by a single pathological source, but rather a complex network of changes involving not only the auditory system but also systems related to memory, emotion and stress. One obvious and significant gap in tinnitus research is a lack of biomarkers that reflect the consequences of this interactive "tinnitus-causing" network. In this study, we made the first attempt to analyse brain metabolic changes in rats following acoustic trauma using metabolomics, as a pilot study prior to directly linking metabolic changes to tinnitus. Metabolites in 12 different brain regions collected from either sham or acoustic trauma animals were profiled using a gas chromatography mass spectrometry (GC/MS)-based metabolomics platform. After deconvolution of mass spectra and identification of the molecules, the metabolomic data were processed using multivariate statistical analysis. Principal component analysis showed that metabolic patterns varied among different brain regions; however, brain regions with similar functions had a similar metabolite composition. Acoustic trauma did not change the metabolite clusters in these regions. When analyzed within each brain region using the orthogonal projection to latent structures discriminant analysis sub-model, 17 molecules showed distinct separation between control and acoustic trauma groups in the auditory cortex, inferior colliculus, superior colliculus, vestibular nucleus complex (VNC), and cerebellum. Further metabolic pathway impact analysis and the enrichment overview with network analysis suggested the primary involvement of amino acid metabolism, including the alanine, aspartate and glutamate metabolic pathways, the arginine and proline metabolic pathways and the purine metabolic pathway. Our results provide the first metabolomics evidence that acoustic trauma can induce changes in multiple metabolic pathways. This pilot study also suggests that the metabolomic approach has the potential to identify acoustic trauma-specific metabolic shifts in future studies where metabolic changes are correlated with the animal's tinnitus status.
Collapse
Affiliation(s)
- Jun He
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University Nanjing, Jiangsu, China
| | - Yejin Zhu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University Nanjing, Jiangsu, China
| | - Jiye Aa
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University Nanjing, Jiangsu, China
| | - Paul F Smith
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of OtagoDunedin, New Zealand; Brain Health Research Centre, University of OtagoDunedin, New Zealand; Brain Research New ZealandDunedin, New Zealand; Eisdell Moore Centre for Hearing and Balance Research, University of AucklandAuckland, New Zealand
| | - Dirk De Ridder
- Brain Health Research Centre, University of OtagoDunedin, New Zealand; Brain Research New ZealandDunedin, New Zealand; Eisdell Moore Centre for Hearing and Balance Research, University of AucklandAuckland, New Zealand; Department of Neurosurgery, Dunedin Medical School, University of OtagoOtago, New Zealand
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University Nanjing, Jiangsu, China
| | - Yiwen Zheng
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of OtagoDunedin, New Zealand; Brain Health Research Centre, University of OtagoDunedin, New Zealand; Brain Research New ZealandDunedin, New Zealand; Eisdell Moore Centre for Hearing and Balance Research, University of AucklandAuckland, New Zealand
| |
Collapse
|
113
|
Snowden SG, Ebshiana AA, Hye A, An Y, Pletnikova O, O’Brien R, Troncoso J, Legido-Quigley C, Thambisetty M. Association between fatty acid metabolism in the brain and Alzheimer disease neuropathology and cognitive performance: A nontargeted metabolomic study. PLoS Med 2017; 14:e1002266. [PMID: 28323825 PMCID: PMC5360226 DOI: 10.1371/journal.pmed.1002266] [Citation(s) in RCA: 217] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 02/15/2017] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The metabolic basis of Alzheimer disease (AD) pathology and expression of AD symptoms is poorly understood. Omega-3 and -6 fatty acids have previously been linked to both protective and pathogenic effects in AD. However, to date little is known about how the abundance of these species is affected by differing levels of disease pathology in the brain. METHODS AND FINDINGS We performed metabolic profiling on brain tissue samples from 43 individuals ranging in age from 57 to 95 y old who were stratified into three groups: AD (N = 14), controls (N = 14) and "asymptomatic Alzheimer's disease" (ASYMAD), i.e., individuals with significant AD neuropathology at death but without evidence for cognitive impairment during life (N = 15) from the autopsy sample of the Baltimore Longitudinal Study of Aging (BLSA). We measured 4,897 metabolite features in regions both vulnerable in the middle frontal and inferior temporal gyri (MFG and ITG) and resistant (cerebellum) to classical AD pathology. The levels of six unsaturated fatty acids (UFAs) in whole brain were compared in controls versus AD, and the differences were as follows: linoleic acid (p = 8.8 x 10-8, FC = 0.52, q = 1.03 x 10-6), linolenic acid (p = 2.5 x 10-4, FC = 0.84, q = 4.03 x 10-4), docosahexaenoic acid (p = 1.7 x 10-7, FC = 1.45, q = 1.24 x 10-6), eicosapentaenoic acid (p = 4.4 x 10-4, FC = 0.16, q = 6.48 x 10-4), oleic acid (p = 3.3 x 10-7, FC = 0.34, q = 1.46 x 10-6), and arachidonic acid (p = 2.98 x 10-5, FC = 0.75, q = 7.95 x 10-5). These fatty acids were strongly associated with AD when comparing the groups in the MFG and ITG, respectively: linoleic acid (p < 0.0001, p = 0.0006), linolenic acid (p < 0.0001, p = 0.002), docosahexaenoic acid (p < 0.0001, p = 0.0024), eicosapentaenoic acid (p = 0.0002, p = 0.0008), oleic acid (p < 0.0001, p = 0.0003), and arachidonic acid (p = 0.0001, p = 0.001). Significant associations were also observed between the abundance of these UFAs with neuritic plaque and neurofibrillary tangle burden as well as domain-specific cognitive performance assessed during life. Based on the regional pattern of differences in brain tissue levels of these metabolites, we propose that alterations in UFA metabolism represent both global metabolic perturbations in AD as well as those related to specific features of AD pathology. Within the middle frontal gyrus, decrements in linoleic acid, linolenic acid, and arachidonic acid (control>ASYMAD>AD) and increases in docosahexanoic acid (AD>ASYMAD>control) may represent regionally specific threshold levels of these metabolites beyond which the accumulation of AD pathology triggers the expression of clinical symptoms. The main limitation of this study is the relatively small sample size. There are few cohorts with extensive longitudinal cognitive assessments during life and detailed neuropathological assessments at death, such as the BLSA. CONCLUSIONS The findings of this study suggest that unsaturated fatty acid metabolism is significantly dysregulated in the brains of patients with varying degrees of Alzheimer pathology.
Collapse
Affiliation(s)
- Stuart G. Snowden
- Institute of Pharmaceutical Science, King’s College London, London, United Kingdom
| | - Amera A. Ebshiana
- Institute of Pharmaceutical Science, King’s College London, London, United Kingdom
| | - Abdul Hye
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Yang An
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, Maryland, United States of America
| | - Olga Pletnikova
- Division of Neuropathology, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Richard O’Brien
- Department of Neurology, Duke University Medical School, Duke University, Durham, North Carolina, United States of America
| | - John Troncoso
- Division of Neuropathology, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | | | - Madhav Thambisetty
- Clinical and Translational Neuroscience Unit, Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, Maryland, United States of America
| |
Collapse
|
114
|
Amino Acid Catabolism in Alzheimer's Disease Brain: Friend or Foe? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:5472792. [PMID: 28261376 PMCID: PMC5316456 DOI: 10.1155/2017/5472792] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 12/04/2016] [Accepted: 01/04/2017] [Indexed: 01/08/2023]
Abstract
There is a dire need to discover new targets for Alzheimer's disease (AD) drug development. Decreased neuronal glucose metabolism that occurs in AD brain could play a central role in disease progression. Little is known about the compensatory neuronal changes that occur to attempt to maintain energy homeostasis. In this review using the PubMed literature database, we summarize evidence that amino acid oxidation can temporarily compensate for the decreased glucose metabolism, but eventually altered amino acid and amino acid catabolite levels likely lead to toxicities contributing to AD progression. Because amino acids are involved in so many cellular metabolic and signaling pathways, the effects of altered amino acid metabolism in AD brain are far-reaching. Possible pathological results from changes in the levels of several important amino acids are discussed. Urea cycle function may be induced in endothelial cells of AD patient brains, possibly to remove excess ammonia produced from increased amino acid catabolism. Studying AD from a metabolic perspective provides new insights into AD pathogenesis and may lead to the discovery of dietary metabolite supplements that can partially compensate for alterations of enzymatic function to delay AD or alleviate some of the suffering caused by the disease.
Collapse
|
115
|
Corso G, Cristofano A, Sapere N, la Marca G, Angiolillo A, Vitale M, Fratangelo R, Lombardi T, Porcile C, Intrieri M, Di Costanzo A. Serum Amino Acid Profiles in Normal Subjects and in Patients with or at Risk of Alzheimer Dementia. Dement Geriatr Cogn Dis Extra 2017; 7:143-159. [PMID: 28626469 PMCID: PMC5471778 DOI: 10.1159/000466688] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/20/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND/AIMS Abnormalities in the plasma amino acid profile have been reported in Alzheimer disease (AD), but no data exist for the prodromal phase characterized by subjective memory complaint (SMC). It was our aim to understand if serum amino acid levels change along the continuum from normal to AD, and to identify possible diagnostic biomarkers. METHODS Serum levels of 15 amino acids and 2 organic acids were determined in 4 groups of participants - 29 with probable AD, 18 with mild cognitive impairment (MCI), 24 with SMC, and 46 cognitively healthy subjects (HS) - by electrospray tandem mass spectrometry. RESULTS Glutamate, aspartate, and phenylalanine progressively decreased, while citrulline, argi-ninosuccinate, and homocitrulline progressively increased, from HS over SMC and MCI to AD. The panel including these 6 amino acids and 4 ratios (glutamate/citrulline, citrulline/phenylalanine, leucine plus isoleucine/phenylalanine, and arginine/phenylalanine) discriminated AD from HS with about 96% accuracy. Other panels including 20 biomarkers discriminated SMC or MCI from AD or HS with an accuracy ranging from 88 to 75%. CONCLUSION Amino acids contribute to a characteristic metabotype during the progression of AD along the continuum from health to frank dementia, and their monitoring in elderly individuals might help to detect at-risk subjects.
Collapse
Affiliation(s)
- Gaetano Corso
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Adriana Cristofano
- Centre for Research and Training in Medicine for Aging, Department of Medicine and Health Sciences “Vincenzo Tiberio,” University of Molise, Campobasso, Italy
| | - Nadia Sapere
- Centre for Research and Training in Medicine for Aging, Department of Medicine and Health Sciences “Vincenzo Tiberio,” University of Molise, Campobasso, Italy
| | - Giancarlo la Marca
- Newborn Screening, Biochemistry and Pharmacology Laboratories, Clinic of Pediatric Neurology, Meyer Children's Hospital, Florence, Italy
- Department of Neurosciences, Psychology, Pharmacology, and Child Health, University of Florence, Florence, Italy
| | - Antonella Angiolillo
- Centre for Research and Training in Medicine for Aging, Department of Medicine and Health Sciences “Vincenzo Tiberio,” University of Molise, Campobasso, Italy
| | - Michela Vitale
- Centre for Research and Training in Medicine for Aging, Department of Medicine and Health Sciences “Vincenzo Tiberio,” University of Molise, Campobasso, Italy
| | - Roberto Fratangelo
- Centre for Research and Training in Medicine for Aging, Department of Medicine and Health Sciences “Vincenzo Tiberio,” University of Molise, Campobasso, Italy
| | - Teresa Lombardi
- Centre for Research and Training in Medicine for Aging, Department of Medicine and Health Sciences “Vincenzo Tiberio,” University of Molise, Campobasso, Italy
| | - Carola Porcile
- Centre for Research and Training in Medicine for Aging, Department of Medicine and Health Sciences “Vincenzo Tiberio,” University of Molise, Campobasso, Italy
| | - Mariano Intrieri
- Centre for Research and Training in Medicine for Aging, Department of Medicine and Health Sciences “Vincenzo Tiberio,” University of Molise, Campobasso, Italy
| | - Alfonso Di Costanzo
- Centre for Research and Training in Medicine for Aging, Department of Medicine and Health Sciences “Vincenzo Tiberio,” University of Molise, Campobasso, Italy
| |
Collapse
|
116
|
Patassini S, Begley P, Xu J, Church SJ, Reid SJ, Kim EH, Curtis MA, Dragunow M, Waldvogel HJ, Snell RG, Unwin RD, Faull RLM, Cooper GJS. Metabolite mapping reveals severe widespread perturbation of multiple metabolic processes in Huntington's disease human brain. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1862:1650-62. [PMID: 27267344 DOI: 10.1016/j.bbadis.2016.06.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 01/01/2023]
Abstract
Huntington's disease (HD) is a genetically-mediated neurodegenerative disorder wherein the aetiological defect is a mutation in the Huntington's gene (HTT), which alters the structure of the huntingtin protein (Htt) through lengthening of its polyglutamine tract, thus initiating a cascade that ultimately leads to premature death. However, neurodegeneration typically manifests in HD only in middle age, and mechanisms linking the causative mutation to brain disease are poorly understood. Brain metabolism is severely perturbed in HD, and some studies have indicated a potential role for mutant Htt as a driver of these metabolic aberrations. Here, our objective was to determine the effects of HD on brain metabolism by measuring levels of polar metabolites in regions known to undergo varying degrees of damage. We performed gas-chromatography/mass spectrometry-based metabolomic analyses in a case-control study of eleven brain regions in short post-mortem-delay human tissue from nine well-characterized HD patients and nine matched controls. In each patient, we measured metabolite content in representative tissue-samples from eleven brain regions that display varying degrees of damage in HD, thus identifying the presence and abundance of 63 different metabolites from several molecular classes, including carbohydrates, amino acids, nucleosides, and neurotransmitters. Robust alterations in regional brain-metabolite abundances were observed in HD patients: these included changes in levels of small molecules that play important roles as intermediates in the tricarboxylic-acid and urea cycles, and amino-acid metabolism. Our findings point to widespread disruption of brain metabolism and indicate a complex phenotype beyond the gradient of neuropathologic damage observed in HD brain.
Collapse
Affiliation(s)
- Stefano Patassini
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand; Centre for Brain Research and Department of Anatomy with Radiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK; Institute of Human Development, Faculty of Medical and Human Sciences, The University of Manchester, Manchester, UK.
| | - Paul Begley
- Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK; Institute of Human Development, Faculty of Medical and Human Sciences, The University of Manchester, Manchester, UK
| | - Jingshu Xu
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand; Centre for Brain Research and Department of Anatomy with Radiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK; Institute of Human Development, Faculty of Medical and Human Sciences, The University of Manchester, Manchester, UK; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Stephanie J Church
- Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK; Institute of Human Development, Faculty of Medical and Human Sciences, The University of Manchester, Manchester, UK
| | - Suzanne J Reid
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Eric H Kim
- Centre for Brain Research and Department of Anatomy with Radiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, United States
| | - Maurice A Curtis
- Centre for Brain Research and Department of Anatomy with Radiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Mike Dragunow
- Centre for Brain Research and Department of Anatomy with Radiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Henry J Waldvogel
- Centre for Brain Research and Department of Anatomy with Radiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Russell G Snell
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand; Centre for Brain Research and Department of Anatomy with Radiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Richard D Unwin
- Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK; Institute of Human Development, Faculty of Medical and Human Sciences, The University of Manchester, Manchester, UK
| | - Richard L M Faull
- Centre for Brain Research and Department of Anatomy with Radiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Garth J S Cooper
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand; Centre for Brain Research and Department of Anatomy with Radiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK; Institute of Human Development, Faculty of Medical and Human Sciences, The University of Manchester, Manchester, UK; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.
| |
Collapse
|