101
|
Gong J, Lu H. Regulator 1-Peroxisome Proliferator-Activated Receptor- γ Coactivator-1 α Signaling Pathway in Investigating the Pathological Characteristics and Molecular Mechanism of Liver Cirrhosis Complicated by Acute Kidney Injury. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.2859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The objective of this study was to investigate the molecular mechanism of the histopathological characteristics of liver cirrhosis (LC) complicated with acute kidney injury (AKI) and the signaling pathway of silent information regulator 1 (SIRT1)-peroxisome proliferator-activated receptor-γ
coactivator 1α (PGC-1α) during the pathogenesis of LC. 20 healthy male rats with AKI complicated by laparoscopic cholecystectomy were selected and divided randomly into control group (C group), lipopolysaccharide (LPS) group, bile duct ligation (BDL) group, and model
group (lipopolysaccharide+BDL) (D group). The indexes of all the rats were determined, including serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), sarcoplasmic enzyme (Scr), and blood urea nitrogen (BUN); the SIRT1 and PGC-1α expressions in renal tissues
of rats from each group was detected. Results showed that the AST and ALT levels in BDL group and D group were higher markedly than those before surgery (P < 0.05). The serum levels of Scr and BUN in D group 4 hours after LPS injection increased hugely compared with before injection
(P < 0.05). Compared with BDL group, the protein levels of SIRT1 and PGC-1α in renal tissue of group D were decreased sharply (P < 0.05), and the SIRT1 protein expression was positively correlated with PGC-1α (r = 0.836 and P < 0.01).
When LC were complicated with AKI, SIRT1 activity was reduced and PGC-1α expression was inhibited. Moreover, SIRT1-PGC-1α signaling pathway played a protective role in pathogenesis of LC complicated with AKI.
Collapse
Affiliation(s)
- Jieqi Gong
- Department of General Surgery, Qingpu Branch, Zhongshan Hospital, Fudan University, Qingpu District, Shanghai 201700, China
| | - Huanhua Lu
- Department of General Surgery, Qingpu Branch, Zhongshan Hospital, Fudan University, Qingpu District, Shanghai 201700, China
| |
Collapse
|
102
|
Shi PZ, Wang JW, Wang PC, Han B, Lu XH, Ren YX, Feng XM, Cheng XF, Zhang L. Urolithin a alleviates oxidative stress-induced senescence in nucleus pulposus-derived mesenchymal stem cells through SIRT1/PGC-1α pathway. World J Stem Cells 2021; 13:1928-1946. [PMID: 35069991 PMCID: PMC8727228 DOI: 10.4252/wjsc.v13.i12.1928] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/12/2021] [Accepted: 11/28/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In degenerative intervertebral disc (IVD), an unfavorable IVD environment leads to increased senescence of nucleus pulposus (NP)-derived mesenchymal stem cells (NPMSCs) and the inability to complete the differentiation from NPMSCs to NP cells, leading to further aggravation of IVD degeneration (IDD). Urolithin A (UA) has been proven to have obvious effects in delaying cell senescence and resisting oxidative stress.
AIM To explore whether UA can alleviate NPMSCs senescence and to elucidate the underlying mechanism.
METHODS In vitro, we harvested NPMSCs from rat tails, and divided NPMSCs into four groups: the control group, H2O2 group, H2O2 + UA group, and H2O2 + UA + SR-18292 group. Senescence-associated β-Galactosidase (SA-β-Gal) activity, cell cycle, cell proliferation ability, and the expression of senescence-related and silent information regulator of transcription 1/PPAR gamma coactivator-1α (SIRT1/ PGC-1α) pathway-related proteins and mRNA were used to evaluate the protective effects of UA. In vivo, an animal model of IDD was constructed, and X-rays, magnetic resonance imaging, and histological analysis were used to assess whether UA could alleviate IDD in vivo.
RESULTS We found that H2O2 can cause NPMSCs senescence changes, such as cell cycle arrest, reduced cell proliferation ability, increased SA-β-Gal activity, and increased expression of senescence-related proteins and mRNA. After UA pretreatment, the abovementioned senescence indicators were significantly alleviated. To further demonstrate the mechanism of UA, we evaluated the mitochondrial membrane potential and the SIRT1/PGC-1α pathway that regulates mitochondrial function. UA protected mitochondrial function and delayed NPMSCs senescence by activating the SIRT1/PGC-1α pathway. In vivo, we found that UA treatment alleviated an animal model of IDD by assessing the disc height index, Pfirrmann grade and the histological score.
CONCLUSION In summary, UA could activate the SIRT1/PGC-1α signaling pathway to protect mitochondrial function and alleviate cell senescence and IDD in vivo and vitro.
Collapse
Affiliation(s)
- Peng-Zhi Shi
- Department of Orthopedic, Dalian Medical University, Dalian 116000, Liaoning Province, China
| | - Jun-Wu Wang
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou 225000, Jiangsu Province, China
| | - Ping-Chuan Wang
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou 225000, Jiangsu Province, China
| | - Bo Han
- Department of Orthopedic, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Xu-Hua Lu
- Department of Orthopedics, Changzheng Hospital of The Second Military Medical University, Shanghai 200003, China
| | - Yong-Xin Ren
- Department of Orthopedics, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Xin-Min Feng
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou 225000, Jiangsu Province, China
| | - Xiao-Fei Cheng
- Department of Orthopedic Surgery, Shanghai Key Laboratory of Orthopedics Implants, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Liang Zhang
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou 225000, Jiangsu Province, China
| |
Collapse
|
103
|
Ala M, Ala M. Metformin for Cardiovascular Protection, Inflammatory Bowel Disease, Osteoporosis, Periodontitis, Polycystic Ovarian Syndrome, Neurodegeneration, Cancer, Inflammation and Senescence: What Is Next? ACS Pharmacol Transl Sci 2021; 4:1747-1770. [PMID: 34927008 DOI: 10.1021/acsptsci.1c00167] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Indexed: 12/15/2022]
Abstract
Diabetes is accompanied by several complications. Higher prevalence of cancers, cardiovascular diseases, chronic kidney disease (CKD), obesity, osteoporosis, and neurodegenerative diseases has been reported among patients with diabetes. Metformin is the oldest oral antidiabetic drug and can improve coexisting complications of diabetes. Clinical trials and observational studies uncovered that metformin can remarkably prevent or alleviate cardiovascular diseases, obesity, polycystic ovarian syndrome (PCOS), osteoporosis, cancer, periodontitis, neuronal damage and neurodegenerative diseases, inflammation, inflammatory bowel disease (IBD), tuberculosis, and COVID-19. In addition, metformin has been proposed as an antiaging agent. Numerous mechanisms were shown to be involved in the protective effects of metformin. Metformin activates the LKB1/AMPK pathway to interact with several intracellular signaling pathways and molecular mechanisms. The drug modifies the biologic function of NF-κB, PI3K/AKT/mTOR, SIRT1/PGC-1α, NLRP3, ERK, P38 MAPK, Wnt/β-catenin, Nrf2, JNK, and other major molecules in the intracellular signaling network. It also regulates the expression of noncoding RNAs. Thereby, metformin can regulate metabolism, growth, proliferation, inflammation, tumorigenesis, and senescence. Additionally, metformin modulates immune response, autophagy, mitophagy, endoplasmic reticulum (ER) stress, and apoptosis and exerts epigenetic effects. Furthermore, metformin protects against oxidative stress and genomic instability, preserves telomere length, and prevents stem cell exhaustion. In this review, the protective effects of metformin on each disease will be discussed using the results of recent meta-analyses, clinical trials, and observational studies. Thereafter, it will be meticulously explained how metformin reprograms intracellular signaling pathways and alters molecular and cellular interactions to modify the clinical presentations of several diseases.
Collapse
Affiliation(s)
- Moein Ala
- School of Medicine, Tehran University of Medical Sciences (TUMS), 1416753955 Tehran, Iran
| | - Mahan Ala
- School of Dentistry, Golestan University of Medical Sciences (GUMS), 4814565589 Golestan, Iran
| |
Collapse
|
104
|
The role of miRNA-339-5p in the function of vascular endothelial progenitor cells in patients with PCOS. Reprod Biomed Online 2021; 44:423-433. [PMID: 35151575 DOI: 10.1016/j.rbmo.2021.09.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 11/20/2022]
Abstract
RESEARCH QUESTION miRNA-339 participates in diseases with endothelial progenitor cell (EPC) dysfunction. What is the role of miRNA-339-5p in EPC of polycystic ovary syndrome (PCOS)? DESIGN Clinical data were collected from 76 controls and 84 PCOS patients. Noradrenaline, asymmetric dimethylarginine (ADMA), advanced glycation end products (AGE) and silent information regulator 1 (SIRT1) in the serum were measured. The functions of EPC and the expressions of PI3K, AKT, SIRT1 and PGC-1α in EPC before and after transfection with miRNA-339-5p mimic or miRNA-339-5p inhibitor were compared. RESULTS Serum concentrations of noradrenaline, ADMA and AGE were significantly higher (P = 0.009, P = 0.044, P < 0.001) and the SIRT1 concentration was significantly lower (P < 0.001) in PCOS patients, especially obese ones (P = 0.034, P = 0.032, P < 0.001, P = 0.023) than in the control group. When compared with the controls, proliferation of the EPC was slightly lower (without a significant difference), the migration and tubular formation were significantly decreased (P = 0.037, P = 0.011), the expression of miRNA-339-5p in EPC was significantly higher (P = 0.035) and the expressions of PI3K, AKT, SIRT1 and PGC-1α were significantly lower in the PCOS group (mRNA: P = 0.033, P = 0.027, P = 0.027, P = 0.032; protein: P = 0.036, P = 0.028, P = 0.039, P = 0.023). After transfection, the functions of EPC from PCOS patients were best in the miRNA-339-5p inhibitor group, and weakest in the miRNA-339-5p mimic group. The miRNA-339-5p inhibitor group had higher protein expressions of PI3K, AKT and SIRT1 but lower expression of PGC-1α in PCOS patients (P < 0.001, P = 0.030, P = 0.047, P = 0.003). Similar results were obtained from the controls after transfection. CONCLUSION Increased sympathetic excitation and damage to EPC were observed in PCOS patients, especially obese ones. Up-regulated miRNA-339-5p could inhibit the function of EPC by inhibiting the PI3K/AKT and SIRT1/PGC-1α signalling pathways.
Collapse
|
105
|
Luciani A, Denley MCS, Govers LP, Sorrentino V, Froese DS. Mitochondrial disease, mitophagy, and cellular distress in methylmalonic acidemia. Cell Mol Life Sci 2021; 78:6851-6867. [PMID: 34524466 PMCID: PMC8558192 DOI: 10.1007/s00018-021-03934-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/18/2021] [Accepted: 08/30/2021] [Indexed: 01/09/2023]
Abstract
Mitochondria—the intracellular powerhouse in which nutrients are converted into energy in the form of ATP or heat—are highly dynamic, double-membraned organelles that harness a plethora of cellular functions that sustain energy metabolism and homeostasis. Exciting new discoveries now indicate that the maintenance of this ever changing and functionally pleiotropic organelle is particularly relevant in terminally differentiated cells that are highly dependent on aerobic metabolism. Given the central role in maintaining metabolic and physiological homeostasis, dysregulation of the mitochondrial network might therefore confer a potentially devastating vulnerability to high-energy requiring cell types, contributing to a broad variety of hereditary and acquired diseases. In this Review, we highlight the biological functions of mitochondria-localized enzymes from the perspective of understanding—and potentially reversing—the pathophysiology of inherited disorders affecting the homeostasis of the mitochondrial network and cellular metabolism. Using methylmalonic acidemia as a paradigm of complex mitochondrial dysfunction, we discuss how mitochondrial directed-signaling circuitries govern the homeostasis and physiology of specialized cell types and how these may be disturbed in disease. This Review also provides a critical analysis of affected tissues, potential molecular mechanisms, and novel cellular and animal models of methylmalonic acidemia which are being used to develop new therapeutic options for this disease. These insights might ultimately lead to new therapeutics, not only for methylmalonic acidemia, but also for other currently intractable mitochondrial diseases, potentially transforming our ability to regulate homeostasis and health.
Collapse
Affiliation(s)
- Alessandro Luciani
- Mechanisms of Inherited Kidney Diseases Group, Institute of Physiology, University of Zurich, 8032, Zurich, Switzerland.
| | - Matthew C S Denley
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, University of Zurich, 8032, Zurich, Switzerland
| | - Larissa P Govers
- Mechanisms of Inherited Kidney Diseases Group, Institute of Physiology, University of Zurich, 8032, Zurich, Switzerland
| | - Vincenzo Sorrentino
- Department of Musculo-Skeletal Health, Nestlé Institute of Health Sciences, Nestlé Research, 1015, Lausanne, Switzerland.
| | - D Sean Froese
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, University of Zurich, 8032, Zurich, Switzerland.
| |
Collapse
|
106
|
Wang R, Xu Y, Niu X, Fang Y, Guo D, Chen J, Zhu H, Dong J, Zhao R, Wang Y, Qi B, Ren G, Li X, Liu L, Zhang M. MiR-22 Inhibition Alleviates Cardiac Dysfunction in Doxorubicin-Induced Cardiomyopathy by Targeting the sirt1/PGC-1α Pathway. Front Physiol 2021; 12:646903. [PMID: 33868015 PMCID: PMC8047466 DOI: 10.3389/fphys.2021.646903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/22/2021] [Indexed: 11/13/2022] Open
Abstract
Doxorubicin (DOX) cardiotoxicity is a life-threatening side effect that leads to a poor prognosis in patients receiving chemotherapy. We investigated the role of miR-22 in doxorubicin-induced cardiomyopathy and the underlying mechanism in vivo and in vitro. Specifically, we designed loss-of-function and gain-of-function experiments to identify the role of miR-22 in doxorubicin-induced cardiomyopathy. Our data suggested that inhibiting miR-22 alleviated cardiac fibrosis and cardiac dysfunction induced by doxorubicin. In addition, inhibiting miR-22 mitigated mitochondrial dysfunction through the sirt1/PGC-1α pathway. Knocking out miR-22 enhanced mitochondrial biogenesis, as evidenced by increased PGC-1α, TFAM, and NRF-1 expression in vivo. Furthermore, knocking out miR-22 rescued mitophagy, which was confirmed by increased expression of PINK1 and parkin and by the colocalization of LC3 and mitochondria. These protective effects were abolished by overexpressing miR-22. In conclusion, miR-22 may represent a new target to alleviate cardiac dysfunction in doxorubicin-induced cardiomyopathy and improve prognosis in patients receiving chemotherapy.
Collapse
Affiliation(s)
- Runze Wang
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China.,Department of Hematology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yuerong Xu
- Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Xiaolin Niu
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yexian Fang
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Dong Guo
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jiangwei Chen
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Hanzhao Zhu
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jiaying Dong
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Ran Zhao
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Ying Wang
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Bingchao Qi
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Gaotong Ren
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xue Li
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Li Liu
- Department of Hematology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Mingming Zhang
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
107
|
Hirabayashi T, Nakanishi R, Tanaka M, Nisa BU, Maeshige N, Kondo H, Fujino H. Reduced metabolic capacity in fast and slow skeletal muscle via oxidative stress and the energy-sensing of AMPK/SIRT1 in malnutrition. Physiol Rep 2021; 9:e14763. [PMID: 33650806 PMCID: PMC7923585 DOI: 10.14814/phy2.14763] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 11/24/2022] Open
Abstract
The effects of malnutrition on skeletal muscle result in not only the loss of muscle mass but also fatigue intolerance. It remains unknown whether the metabolic capacity is related to the fiber type composition of skeletal muscle under malnourished condition although malnutrition resulted in preferential atrophy in fast muscle. The purpose of the present study was to investigate the effects of metabolic capacity in fast and slow muscles via the energy-sensing of AMPK and SIRT1 in malnutrition. Wistar rats were randomly divided into control and malnutrition groups. The rats in the malnutrition group were provided with a low-protein diet, and daily food intake was limited to 50% for 12 weeks. Malnutrition with hypoalbuminemia decreased the body weight and induced the loss of plantaris muscle mass, but there was little change in the soleus muscle. An increase in the superoxide level in the plasma and a decrease in SOD-2 protein expression in both muscles were observed in the malnutrition group. In addition, the expression level of AMPK in the malnutrition group increased in both muscles. Conversely, the expression level of SIRT1 decreased in both muscles of the malnutrition group. In addition, malnutrition resulted in a decrease in the expression levels of PGC-1α and PINK protein, and induced a decrease in the levels of two key mitochondrial enzymes (succinate dehydrogenase and citrate synthase) and COX IV protein expression in both muscles. These results indicate that malnutrition impaired the metabolic capacity in both fast and slow muscles via AMPK-independent SIRT1 inhibition induced by increased oxidative stress.
Collapse
Affiliation(s)
- Takumi Hirabayashi
- Department of Rehabilitation ScienceKobe University Graduate School of Health SciencesKobeJapan
- Department of RehabilitationNose HospitalKobeJapan
| | - Ryosuke Nakanishi
- Department of Rehabilitation ScienceKobe University Graduate School of Health SciencesKobeJapan
- Faculty of RehabilitationKobe International UniversityKobeJapan
| | - Minoru Tanaka
- Department of Rehabilitation ScienceKobe University Graduate School of Health SciencesKobeJapan
- Department of Rehabilitation ScienceOsaka Health Science UniversityOsakaJapan
| | - Badur un Nisa
- Department of Rehabilitation ScienceKobe University Graduate School of Health SciencesKobeJapan
| | - Noriaki Maeshige
- Department of Rehabilitation ScienceKobe University Graduate School of Health SciencesKobeJapan
| | - Hiroyo Kondo
- Department of Rehabilitation ScienceKobe University Graduate School of Health SciencesKobeJapan
- Department of Food Science and NutritionNagoya Women’s UniversityNagoyaJapan
| | - Hidemi Fujino
- Department of Rehabilitation ScienceKobe University Graduate School of Health SciencesKobeJapan
| |
Collapse
|
108
|
Mirzaei S, Zarrabi A, Hashemi F, Zabolian A, Saleki H, Azami N, Hamzehlou S, Farahani MV, Hushmandi K, Ashrafizadeh M, Khan H, Kumar AP. Nrf2 Signaling Pathway in Chemoprotection and Doxorubicin Resistance: Potential Application in Drug Discovery. Antioxidants (Basel) 2021; 10:antiox10030349. [PMID: 33652780 PMCID: PMC7996755 DOI: 10.3390/antiox10030349] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 12/16/2022] Open
Abstract
Doxorubicin (DOX) is extensively applied in cancer therapy due to its efficacy in suppressing cancer progression and inducing apoptosis. After its discovery, this chemotherapeutic agent has been frequently used for cancer therapy, leading to chemoresistance. Due to dose-dependent toxicity, high concentrations of DOX cannot be administered to cancer patients. Therefore, experiments have been directed towards revealing underlying mechanisms responsible for DOX resistance and ameliorating its adverse effects. Nuclear factor erythroid 2-related factor 2 (Nrf2) signaling is activated to increase levels of reactive oxygen species (ROS) in cells to protect them against oxidative stress. It has been reported that Nrf2 activation is associated with drug resistance. In cells exposed to DOX, stimulation of Nrf2 signaling protects cells against cell death. Various upstream mediators regulate Nrf2 in DOX resistance. Strategies, both pharmacological and genetic interventions, have been applied for reversing DOX resistance. However, Nrf2 induction is of importance for alleviating side effects of DOX. Pharmacological agents with naturally occurring compounds as the most common have been used for inducing Nrf2 signaling in DOX amelioration. Furthermore, signaling networks in which Nrf2 is a key player for protection against DOX adverse effects have been revealed and are discussed in the current review.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran 1477893855, Iran;
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul, Turkey; (A.Z.); (M.A.)
| | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran 1417466191, Iran;
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1477893855, Iran; (A.Z.); (H.S.); (N.A.); (S.H.); (M.V.F.)
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1477893855, Iran; (A.Z.); (H.S.); (N.A.); (S.H.); (M.V.F.)
| | - Negar Azami
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1477893855, Iran; (A.Z.); (H.S.); (N.A.); (S.H.); (M.V.F.)
| | - Soodeh Hamzehlou
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1477893855, Iran; (A.Z.); (H.S.); (N.A.); (S.H.); (M.V.F.)
| | - Mahdi Vasheghani Farahani
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1477893855, Iran; (A.Z.); (H.S.); (N.A.); (S.H.); (M.V.F.)
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran 1417466191, Iran;
| | - Milad Ashrafizadeh
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul, Turkey; (A.Z.); (M.A.)
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla 34956, Istanbul, Turkey
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan;
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Correspondence:
| |
Collapse
|
109
|
Saito T, Ichikawa T, Numakura T, Yamada M, Koarai A, Fujino N, Murakami K, Yamanaka S, Sasaki Y, Kyogoku Y, Itakura K, Sano H, Takita K, Tanaka R, Tamada T, Ichinose M, Sugiura H. PGC-1α regulates airway epithelial barrier dysfunction induced by house dust mite. Respir Res 2021; 22:63. [PMID: 33607992 PMCID: PMC7893966 DOI: 10.1186/s12931-021-01663-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/11/2021] [Indexed: 12/20/2022] Open
Abstract
Background The airway epithelial barrier function is disrupted in the airways of asthmatic patients. Abnormal mitochondrial biogenesis is reportedly involved in the pathogenesis of asthma. However, the role of mitochondrial biogenesis in the airway barrier dysfunction has not been elucidated yet. This study aimed to clarify whether the peroxisome proliferator-activated receptor γ coactivator-1alpha (PGC-1α), a central regulator of mitochondrial biogenesis, is involved in the disruption of the airway barrier function induced by aeroallergens. Methods BEAS-2B cells were exposed to house dust mite (HDM) and the expressions of PGC-1α and E-cadherin, a junctional protein, were examined by immunoblotting. The effect of SRT1720, a PGC-1α activator, was investigated by immunoblotting, immunocytochemistry, and measuring the transepithelial electrical resistance (TEER) on the HDM-induced reduction in mitochondrial biogenesis markers and junctional proteins in airway bronchial epithelial cells. Furthermore,the effects of protease activated receptor 2 (PAR2) inhibitor, GB83, Toll-like receptor 4 (TLR4) inhibitor, lipopolysaccharide from Rhodobacter sphaeroides (LPS-RS), protease inhibitors including E64 and 4-(2-Aminoethyl) benzenesulfonyl fluoride hydrochloride (AEBSF) on the HDM-induced barrier dysfunction were investigated. Results The amounts of PGC-1α and E-cadherin in the HDM-treated cells were significantly decreased compared to the vehicle-treated cells. SRT1720 restored the expressions of PGC-1α and E-cadherin reduced by HDM in BEAS-2B cells. Treatment with SRT1720 also significantly ameliorated the HDM-induced reduction in TEER. In addition, GB83, LPS-RS, E64 and AEBSF prevented the HDM-induced reduction in the expression of PGC1α and E-cadherin. Conclusions The current study demonstrated that HDM disrupted the airway barrier function through the PAR2/TLR4/PGC-1α-dependent pathway. The modulation of this pathway could be a new approach for the treatment of asthma.
Collapse
Affiliation(s)
- Tsutomu Saito
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Tomohiro Ichikawa
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan.
| | - Tadahisa Numakura
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Mitsuhiro Yamada
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Akira Koarai
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Naoya Fujino
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Koji Murakami
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Shun Yamanaka
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Yusaku Sasaki
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Yorihiko Kyogoku
- Department of Respiratory Medicine, Sendai City Hospital, Sendai, Japan
| | - Koji Itakura
- Department of Respiratory Medicine, Osaki Citizen Hospital, Osaki, Miyagi, Japan
| | - Hirohito Sano
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Katsuya Takita
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Rie Tanaka
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Tsutomu Tamada
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Masakazu Ichinose
- Department of Respiratory Medicine, Osaki Citizen Hospital, Osaki, Miyagi, Japan
| | - Hisatoshi Sugiura
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| |
Collapse
|
110
|
Rottenberg H, Hoek JB. The Mitochondrial Permeability Transition: Nexus of Aging, Disease and Longevity. Cells 2021; 10:cells10010079. [PMID: 33418876 PMCID: PMC7825081 DOI: 10.3390/cells10010079] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/23/2020] [Accepted: 01/01/2021] [Indexed: 12/11/2022] Open
Abstract
The activity of the mitochondrial permeability transition pore, mPTP, a highly regulated multi-component mega-channel, is enhanced in aging and in aging-driven degenerative diseases. mPTP activity accelerates aging by releasing large amounts of cell-damaging reactive oxygen species, Ca2+ and NAD+. The various pathways that control the channel activity, directly or indirectly, can therefore either inhibit or accelerate aging or retard or enhance the progression of aging-driven degenerative diseases and determine lifespan and healthspan. Autophagy, a catabolic process that removes and digests damaged proteins and organelles, protects the cell against aging and disease. However, the protective effect of autophagy depends on mTORC2/SKG1 inhibition of mPTP. Autophagy is inhibited in aging cells. Mitophagy, a specialized form of autophagy, which retards aging by removing mitochondrial fragments with activated mPTP, is also inhibited in aging cells, and this inhibition leads to increased mPTP activation, which is a major contributor to neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. The increased activity of mPTP in aging turns autophagy/mitophagy into a destructive process leading to cell aging and death. Several drugs and lifestyle modifications that enhance healthspan and lifespan enhance autophagy and inhibit the activation of mPTP. Therefore, elucidating the intricate connections between pathways that activate and inhibit mPTP, in the context of aging and degenerative diseases, could enhance the discovery of new drugs and lifestyle modifications that slow aging and degenerative disease.
Collapse
Affiliation(s)
- Hagai Rottenberg
- New Hope Biomedical R&D, 23 W. Bridge street, New Hope, PA 18938, USA
- Correspondence: ; Tel.: +1-267-614-5588
| | - Jan B. Hoek
- MitoCare Center, Department of Anatomy, Pathology and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| |
Collapse
|
111
|
Her JY, Lee Y, Kim SJ, Heo G, Choo J, Kim Y, Howe C, Rhee SH, Yu HS, Chung HY, Pothoulakis C, Im E. Blockage of protease-activated receptor 2 exacerbates inflammation in high-fat environment partly through autophagy inhibition. Am J Physiol Gastrointest Liver Physiol 2021; 320:G30-G42. [PMID: 33146548 DOI: 10.1152/ajpgi.00203.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Protease-activated receptor 2 (PAR2) regulates inflammatory responses and lipid metabolism. However, its precise role in colitis remains unclear. In this study, we aimed to investigate the function of PAR2 in high-fat diet-fed mice with colitis and its potential role in autophagy. PAR2+/+ and PAR2-/- mice were fed a high-fat diet (HFD) for 7 days before colitis induction with dextran sodium sulfate. Deletion of PAR2 and an HFD significantly exacerbated colitis, as shown by increased mortality, body weight loss, diarrhea or bloody stools, colon length shortening, and mucosal damage. Proinflammatory cytokine levels were elevated in HFD-fed PAR2-/- mice and in cells treated with the PAR2 antagonist GB83, palmitic acid (PA), and a cytokine cocktail (CC). Damaging effects of PAR2 blockage were associated with autophagy regulation by reducing the levels of YAP1, SIRT1, PGC-1α, Atg5, and LC3A/B-I/II. In addition, mitochondrial dysfunction was demonstrated only in cells treated with GB83, PA, and CC. Reduced cell viability and greater induction of apoptosis, as shown by increased levels of cleaved caspase-9, cleaved caspase-3, and cleaved poly(ADP-ribose) polymerase (PARP), were observed in cells treated with GB83, PA, and CC but not in those treated with only PA and CC. Collectively, protective effects of PAR2 were elucidated during inflammation accompanied by a high-fat environment by promoting autophagy and inhibiting apoptosis, suggesting PAR2 as a therapeutic target for inflammatory bowel disease co-occurring with metabolic syndrome.NEW & NOTEWORTHY Deletion of PAR2 with high-fat diet feeding exacerbates colitis in a murine colitis model. Proinflammatory effects of PAR2 blockage in a high-fat environment were associated with an altered balance between autophagy and apoptosis. Increased colonic levels of PAR2 represent as a therapeutic strategy for IBD co-occurring with metabolic syndrome.
Collapse
Affiliation(s)
- Ji Yun Her
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Yunna Lee
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Su Jin Kim
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Gwangbeom Heo
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Jieun Choo
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Yuju Kim
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Cody Howe
- Department of Biological Sciences, Oakland University, Rochester, Michigan
| | - Sang Hoon Rhee
- Department of Biological Sciences, Oakland University, Rochester, Michigan
| | - Hak Sun Yu
- Department of Parasitology and Tropical Medicine, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Hae Young Chung
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Charalabos Pothoulakis
- Center for Inflammatory Bowel Diseases, Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Eunok Im
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
112
|
Liu N, Zeng L, Zhang YM, Pan W, Lai H. Astaxanthin alleviates pathological brain aging through the upregulation of hippocampal synaptic proteins. Neural Regen Res 2021; 16:1062-1067. [PMID: 33269751 PMCID: PMC8224122 DOI: 10.4103/1673-5374.300460] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Oxidative stress is currently considered to be the main cause of brain aging. Astaxanthin can improve oxidative stress under multiple pathological conditions. It is therefore hypothesized that astaxanthin might have therapeutic effects on brain aging. To validate this hypothesis and investigate the underlying mechanisms, a mouse model of brain aging was established by injecting amyloid beta (Aβ)25–35 (5 μM, 3 μL/injection, six injections given every other day) into the right lateral ventricle. After 3 days of Aβ25–35 injections, the mouse models were intragastrically administered astaxanthin (0.1 mL/d, 10 mg/kg) for 30 successive days. Astaxanthin greatly reduced the latency to find the platform in the Morris water maze, increased the number of crossings of the target platform, and increased the expression of brain-derived neurotrophic factor, synaptophysin, sirtuin 1, and peroxisome proliferator-activated receptor-γ coactivator 1α. Intraperitoneal injection of the sirtuin 1 inhibitor nicotinamide (500 μM/d) for 7 successive days after astaxanthin intervention inhibited these phenomena. These findings suggest that astaxanthin can regulate the expression of synaptic proteins in mouse hippocampus through the sirtuin 1/peroxisome proliferator-activated receptor-γ coactivator 1α signaling pathway, which leads to improvements in the learning, cognitive, and memory abilities of mice. The study was approved by the Animal Ethics Committee, China Medical University, China (approval No. CMU2019294) on January 15, 2019.
Collapse
Affiliation(s)
- Ning Liu
- 1Department of Human Anatomy, College of Basic Medicine, China Medical University, Shenyang; Department of Radiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Liang Zeng
- Department of Human Anatomy, College of Basic Medicine, Shenyang Medical College, Shenyang, Liaoning Province, China
| | - Yi-Ming Zhang
- Department of Human Anatomy, College of Basic Medicine, China Medical University, Shenyang, Liaoning Province, China
| | - Wang Pan
- Department of Neurobiology of Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Hong Lai
- Department of Human Anatomy, College of Basic Medicine, China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
113
|
Zhu X, Wang F, Lei X, Dong W. Resveratrol alleviates alveolar epithelial cell injury induced by hyperoxia by reducing apoptosis and mitochondrial dysfunction. Exp Biol Med (Maywood) 2020; 246:596-606. [PMID: 33215523 DOI: 10.1177/1535370220975106] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Bronchopulmonary dysplasia is a severe and long-term pulmonary disease in premature infants. Hyperoxia-induced acute lung injury plays a critical role in bronchopulmonary dysplasia. Resveratrol is a polyphenolic phytoalexin and a natural agonist of Sirtuin 1. Many studies have shown that resveratrol has a protective effect on hyperoxia-induced lung damage, but its specific protective mechanism is still not clear. Further exploration of the possible protective mechanism of resveratrol was the main goal of this study. In this study, human alveolar epithelial cells were used to establish a hyperoxia-induced acute lung injury cell model, and resveratrol (Res or R), the Sirtuin 1 activator SRT1720 (S) and the Sirtuin 1 inhibitor EX-527 (E) were administered to alveolar epithelial cells, which were then exposed to hyperoxia to investigate the role of Res in mitochondrial function and apoptosis. We divided human alveolar epithelial cells into the following groups: (1) the control group, (2) hyperoxia group, (3) hyperoxia+Res20 group, (4) hyperoxia+Res20+E5 group, (5) hyperoxia+Res20+E10 group, (6) hyperoxia+S2 group, (7) hyperoxia+S2+E5 group, and (8) hyperoxia+S2+E10 group. Hyperoxia-induced cell apoptosis and mitochondrial dysfunction were alleviated by Res and SRT1720. Res and SRT1720 upregulated Sirtuin 1, PGC-1α, NRF1, and TFAM but decreased the expression of acetyl-p53 in human alveolar epithelial cells that were exposed to hyperoxia. These findings revealed that Res may alleviated hyperoxia-induced mitochondrial dysfunction and apoptosis in alveolar epithelial cells through the SIRT1/PGC-1a signaling pathway. Thus, Sirtuin 1 upregulation plays an important role in lung protection.
Collapse
Affiliation(s)
- Xiaodan Zhu
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.,Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.,Sichuan Clinical Research Center for Birth Defects, Luzhou 646000, China
| | - Fan Wang
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.,Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.,Sichuan Clinical Research Center for Birth Defects, Luzhou 646000, China
| | - Xiaoping Lei
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.,Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.,Sichuan Clinical Research Center for Birth Defects, Luzhou 646000, China
| | - Wenbin Dong
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.,Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.,Sichuan Clinical Research Center for Birth Defects, Luzhou 646000, China
| |
Collapse
|
114
|
Qin L, Lu T, Qin Y, He Y, Cui N, Du A, Sun J. In Vivo Effect of Resveratrol-Loaded Solid Lipid Nanoparticles to Relieve Physical Fatigue for Sports Nutrition Supplements. Molecules 2020; 25:E5302. [PMID: 33202918 PMCID: PMC7696174 DOI: 10.3390/molecules25225302] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 01/13/2023] Open
Abstract
Resveratrol (RSV) is a natural flavonoid polyphenol compound extracted from the plants which shows various biological activities. However, the clinical application of RSV is limited by its poor aqueous solubility, rapid metabolism and poor bioavailability. In this study, resveratrol-loaded solid lipid nanoparticles (RSV- SLNs) was design as a nano-antioxidant against the physical fatigue. The resultant RSV-SLNs were characterized by photon correlation spectroscopy (PCS), transmission electron micrographs (TEM), zeta potential, differential scanning calorimetry (DSC) and Raman spectroscopy pattern. Furthermore, the in vivo anti-fatigue effect assays showed that RSV-SLNs prolonged the mice exhausted time and running distance. The biochemical parameters of blood related to fatigue suggested that RSV-SLNs have potential applications to improve the antioxidant defense of the mice after extensive exercise and confer anti-fatigue capability. Furthermore, the molecular mechanisms of antioxidant by RSV-SLNs supplementation was investigated through the analysis of silent information regulator 2 homolog 1 (SIRT1) protein expression, which demonstrated that it could downregulate the expression of SIRT1 and increase autophagy markers, microtubule-associated protein 1 light chain 3-II (LC3-II) and sequestosome-1 (SQSTM1/p62). These results reveal that the RSV-SLNs may have great potential used as a novel anti-fatigue sports nutritional supplement.
Collapse
Affiliation(s)
- Lili Qin
- Sports and Health Research Center, Department of Physical Education, Tongji University, Shanghai 200092, China; (L.Q.); (T.L.); (Y.Q.); (Y.H.); (N.C.)
| | - Tianfeng Lu
- Sports and Health Research Center, Department of Physical Education, Tongji University, Shanghai 200092, China; (L.Q.); (T.L.); (Y.Q.); (Y.H.); (N.C.)
| | - Yao Qin
- Sports and Health Research Center, Department of Physical Education, Tongji University, Shanghai 200092, China; (L.Q.); (T.L.); (Y.Q.); (Y.H.); (N.C.)
| | - Yiwei He
- Sports and Health Research Center, Department of Physical Education, Tongji University, Shanghai 200092, China; (L.Q.); (T.L.); (Y.Q.); (Y.H.); (N.C.)
| | - Ningxin Cui
- Sports and Health Research Center, Department of Physical Education, Tongji University, Shanghai 200092, China; (L.Q.); (T.L.); (Y.Q.); (Y.H.); (N.C.)
| | - Ai Du
- School of Physics Science and Engineering, Tongji University, Shanghai 200092, China;
| | - Jingyu Sun
- Sports and Health Research Center, Department of Physical Education, Tongji University, Shanghai 200092, China; (L.Q.); (T.L.); (Y.Q.); (Y.H.); (N.C.)
| |
Collapse
|
115
|
Li H, He Y, Zhang C, Ba T, Guo Z, Zhuo Y, He L, Dai H. NOX1 down-regulation attenuated the autophagy and oxidative damage in pig intestinal epithelial cell following transcriptome analysis of transport stress. Gene 2020; 763:145071. [PMID: 32827682 DOI: 10.1016/j.gene.2020.145071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/31/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023]
Abstract
The previous study indicated that transport stress resulted in oxidative damage and autophagy/mitophagy elevation, companied by NOX1 over- expression in the jejunal tissues of pigs. However, the transportation-related gene expression profile and NOX1 function in intestine remain to be explicated. In the current study, differentially expressed genes involved in PI3K-Akt and NF-κB pathways, oxidative stress and autophagy process have been identified in pig jejunal tissues after transcriptome analysis following transportation. The physiological functions of NOX1 down-regulation were explored against oxidative damage and excessive autophagy in porcine intestinal epithelial cells (IPEC-1) following NOX1 inhibitor ML171 and H2O2 treatments. NOX1 down-regulation could decrease the content of Malondialdehyde (MDA), Lactic dehydrogenase (LDH) activity and reactive oxygen species (ROS) level, and up-regulate superoxide dismutase (SOD) activity. Furthermore, mitochondrial membrane potential and content were restored, and the expressions of tight junction proteins (Claudin-1 and ZO-1) were also increased. Additionally, NOX1 inhibitior could down-regulate the expression of autophagy-associated proteins (ATG5, LC3, p62), accompanied by activating SIRT1/PGC-1α pathway. NOX1 down-regulation might alleviate oxidative stress-induced mitochondria damage and intestinal mucosal injury via modulating excessive autophagy and SIRT1/PGC-1α signaling pathway. The data will shed light on the molecular mechanism of NOX1 on intestine oxidative damage following pig transportation.
Collapse
Affiliation(s)
- Huari Li
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan 430070, Hubei, China
| | - Yulong He
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan 430070, Hubei, China
| | - Cheng Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan 430070, Hubei, China
| | - Tongtong Ba
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan 430070, Hubei, China
| | - Zeheng Guo
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan 430070, Hubei, China
| | - Yisha Zhuo
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan 430070, Hubei, China
| | - Lihua He
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan 430070, Hubei, China
| | - Hanchuan Dai
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan 430070, Hubei, China.
| |
Collapse
|
116
|
Shi L, Zhang J, Wang Y, Hao Q, Chen H, Cheng X. Sirt1 Regulates Oxidative Stress in Oxygen-Glucose Deprived Hippocampal Neurons. Front Pediatr 2020; 8:455. [PMID: 32923413 PMCID: PMC7456989 DOI: 10.3389/fped.2020.00455] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 06/30/2020] [Indexed: 12/19/2022] Open
Abstract
Oxidative stress is an important mechanism of neonatal hypoxic-ischemic brain damage. Sirtuin1 (Sirt1) is a deacetylase that depends on NAD+, which has an important role in antioxidant metabolism. Furthermore, peroxisome proliferator-activated receptor γ-co-activator 1α (PGC-1α) is a key regulator of mitochondrial oxidative stress, which is regulated by Sirt1. Here, we investigated the role of Sirt1 in the pathogenesis of brain injuries after modulating its activity in primary cultured hippocampal neurons. Our study shows that the expression of Sirt1 was downregulated after oxygen-glucose deprivation. Activation of Sirt1 with resveratrol improved cell's resistance to oxidative stress, whereas inhibition of Sirt1 with EX527 significantly reduced cell viability after cellular oxidative stress. Our study also shows that activation of Sirt1 with resveratrol exerts its antioxidant effect by regulating the expression of PGC-1α. In contrast, application of EX527 decreased the expression of PGC-1α. In summary, these results confirmed that Sirt1 is a potent protective factor for neurons subjected to oxidative stress, and the protective effect of Sirt1 is attributed to its regulation of PGC-1α.
Collapse
Affiliation(s)
- Lina Shi
- Department of Neonatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Zhang
- Department of Neonatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Wang
- Department of Pediatrics, Henan Medical College, Xinzheng, China
| | - Qingfei Hao
- Department of Neonatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haoming Chen
- Department of Neonatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiuyong Cheng
- Department of Neonatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
117
|
Zhu N, Yan X, Li H, Wang H. Clinical Significance of Serum PGC-1 Alpha Levels in Diabetes Mellitus with Myocardial Infarction Patients and Reduced ROS-Oxidative Stress in Diabetes Mellitus with Myocardial Infarction Model. Diabetes Metab Syndr Obes 2020; 13:4041-4049. [PMID: 33149643 PMCID: PMC7604475 DOI: 10.2147/dmso.s276163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/19/2020] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND In this study, we explored the clinical significance of serum peroxisome proliferator-activated receptor gamma co-activator 1 (PGC-1) alpha levels in diabetes mellitus with myocardial infarction (DMMI) patients and investigated the possible mechanism. MATERIALS AND METHODS Serum samples were obtained from patients with DMMI or normal volunteer in Baoding First Center Hospital. C57BL/6 mice were induced by a single intraperitoneal (i.p.) injection of 100 mg/kg STZ (streptozocin) for in vivo model. Human myocardial cell lines H9C2 cells were induced with high glucose medium (33 mmol/L glucose) for in vitro model. Western blot was used to analyze the protein expressions in this study. RESULTS Serum PGC-1 alpha levels were down-regulated in patients with DMMI. There was negative correlation between serum PGC-1 alpha levels and glycated hemoglobin, blood glucose or glucagon in DMMI patients. Recombination of PGC-1 alpha protein decreased the levels of glycated hemoglobin, blood glucose and glucagon, and inhibited oxidative stress and myocardial damage in mice of DMMI. Over-expression of PGC-1 alpha reduced reactive oxygen species (ROS)-oxidative stress, while down-regulation of PGC-1 alpha promoted ROS-oxidative stress via regulation of hemeoxygenase-1 (HO-1) expression in in vitro model of DMMI. The inhibition of HO-1 expression attenuated the anti-oxidation effects of PGC-1 alpha in vitro. CONCLUSION PGC-1 alpha attenuated ROS-oxidative stress in diabetic cardiomyopathy model, and PGC-1 alpha served as a potential intervention to alleviate DMMI in clinical applications.
Collapse
Affiliation(s)
- Ning Zhu
- Department 1 of Cardiology, Baoding First Center Hospital, Baoding071002, Hebei, People’s Republic of China
- Correspondence: Ning ZhuDepartment 1 of Cardiology, Baoding First Center Hospital, 320 Changchengbeidajie, Baoding071002, Hebei, People’s Republic of ChinaTel +86-312-5096409 Email
| | - Xue Yan
- Department 1 of Cardiology, Baoding First Center Hospital, Baoding071002, Hebei, People’s Republic of China
| | - Hongli Li
- Department 1 of Cardiology, Baoding First Center Hospital, Baoding071002, Hebei, People’s Republic of China
| | - Huiqin Wang
- Department 1 of Cardiology, Baoding First Center Hospital, Baoding071002, Hebei, People’s Republic of China
| |
Collapse
|