101
|
He XY, Liu BY, Xu C, Zhuo RX, Cheng SX. A multi-functional macrophage and tumor targeting gene delivery system for the regulation of macrophage polarity and reversal of cancer immunoresistance. NANOSCALE 2018; 10:15578-15587. [PMID: 30090893 DOI: 10.1039/c8nr05294h] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
To achieve effective tumor eradication using anti-tumor immunotherapies, a fusion peptide functionalized gene delivery system for macrophage and tumor targeting delivery of the plasmid DNA encoding the IL-12 gene (pDNA IL-12) was prepared for macrophage re-polarization as well as reversal of cancer immunosuppression. A fusion peptide containing the tuftsin sequence that can interact with Fc receptors and neuropilin-1, and hyaluronic acid (HA) that can interact with CD44 were introduced into the delivery system by self-assembly to form peptide/hyaluronic acid/protamine/CaCO3/DNA nanoparticles (PHNP) with both macrophage targeting and tumor targeting capabilities. PHNP provides an efficient immunoregulation on J774A.1 cells to shift the anti-inflammatory M2 phenotype to the anti-tumor M1 phenotype with enhanced secretion of pro-inflammatory cytokines and increased expression of M1 markers. Owing to the improved delivery efficiency caused by the fusion peptide and HA, the transfection mediated by multi-functional PHNP can up-regulate IL-12 as well as down-regulate IL-10 and IL-4 more effectively as compared with the nanoparticles without HA and/or peptide decoration. More importantly, the gene delivery system can also deliver pDNA IL-12 to targeted cancerous HeLa cells to realize the secretion of IL-12. PHNP not only enables tumorous cells to produce pDNA IL-12, but also down-regulates CD47 and up-regulate CD80 and HLA-1 in the malignant cells, indicating that the gene delivery system can effectively reverse tumor induced immunosuppression.
Collapse
Affiliation(s)
- Xiao-Yan He
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China.
| | | | | | | | | |
Collapse
|
102
|
Piotto C, Julier Z, Martino MM. Immune Regulation of Tissue Repair and Regeneration via miRNAs-New Therapeutic Target. Front Bioeng Biotechnol 2018; 6:98. [PMID: 30057898 PMCID: PMC6053520 DOI: 10.3389/fbioe.2018.00098] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 06/26/2018] [Indexed: 12/13/2022] Open
Abstract
The importance of immunity in tissue repair and regeneration is now evident. Thus, promoting tissue healing through immune modulation is a growing and promising field. Targeting microRNAs (miRNAs) is an appealing option since they regulate immunity through post-transcriptional gene fine-tuning in immune cells. Indeed, miRNAs are involved in inflammation as well as in its resolution by controlling immune cell phenotypes and functions. In this review, we first discuss the immunoregulatory role of miRNAs during the restoration of tissue homeostasis after injury, focusing mainly on neutrophils, macrophages and T lymphocytes. As tissue examples, we present the immunoregulatory function of miRNAs during the repair and regeneration of the heart, skeletal muscles, skin and liver. Secondly, we discuss recent technological advances for designing therapeutic strategies which target miRNAs. Specifically, we highlight the possible use of miRNAs and anti-miRNAs for promoting tissue regeneration via modulation of the immune system.
Collapse
Affiliation(s)
- Celeste Piotto
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Ziad Julier
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Mikaël M Martino
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
103
|
Sun H, Zhang Y, Zhong Z. Reduction-sensitive polymeric nanomedicines: An emerging multifunctional platform for targeted cancer therapy. Adv Drug Deliv Rev 2018; 132:16-32. [PMID: 29775625 DOI: 10.1016/j.addr.2018.05.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/21/2018] [Accepted: 05/12/2018] [Indexed: 01/08/2023]
Abstract
The development of smart delivery systems that are robust in circulation and quickly release drugs following selective internalization into target cancer cells is a key to precision cancer therapy. Interestingly, reduction-sensitive polymeric nanomedicines showing high plasma stability and triggered cytoplasmic drug release behavior have recently emerged as one of the most exciting platforms for targeted delivery of various anticancer drugs including small chemical drugs, proteins, and nucleic acids. In vivo studies in varying tumor models reveal that these reduction-sensitive multifunctional nanomedicines outperform the currently used clinical formulations and reduction-insensitive counterparts, bringing about not only significantly enhanced tumor selectivity, accumulation and inhibition efficacy but also markedly reduced systemic toxicity and improved therapeutic index. In this review, we will highlight the cutting-edge advancement with a focus on in vivo performances as well as future perspectives on reduction-sensitive polymeric nanomedicines for targeted cancer therapy.
Collapse
Affiliation(s)
- Huanli Sun
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, PR China
| | - Yifan Zhang
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, PR China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, PR China.
| |
Collapse
|
104
|
Liu L, He H, Liang R, Yi H, Meng X, Chen Z, Pan H, Ma Y, Cai L. ROS-Inducing Micelles Sensitize Tumor-Associated Macrophages to TLR3 Stimulation for Potent Immunotherapy. Biomacromolecules 2018; 19:2146-2155. [PMID: 29669207 DOI: 10.1021/acs.biomac.8b00239] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
One approach to cancer immunotherapy is the repolarization of immunosuppressive tumor-associated macrophages (TAMs) to antitumor M1 macrophages. The present study developed galactose-functionalized zinc protoporphyrin IX (ZnPP) grafted poly(l-lysine)- b-poly(ethylene glycol) polypeptide micelles (ZnPP PM) for TAM-targeted immunopotentiator delivery, which aimed at in vivo repolarization of TAMs to antitumor M1 macrophages. The outcomes revealed that ROS-inducing ZnPP PM demonstrated specificity for the in vitro and in vivo targeting of macrophages, elevated the level of ROS, and lowered STAT3 expression in BM-TAMs. Poly I:C (PIC, a TLR3 agonist)-loaded ZnPP PM (ZnPP PM/PIC) efficiently repolarized TAMs to M1 macrophages, which were reliant on ROS generation. Further, ZnPP PM/PIC substantially elevated the activated NK cells and T lymphocytes in B16-F10 melanoma tumors, which caused vigorous tumor regression. Therefore, the TAM-targeted transport of an immunologic adjuvant with ZnPP-grafted nanovectors may be a potential strategy to repolarize TAMs to M1 macrophages in situ for effective cancer immunotherapy.
Collapse
Affiliation(s)
- Lanlan Liu
- Guangdong Key Laboratory of Nanomedicine, CAS Key Lab for Health Informatics, Institute of Biomedicine and Biotechnology , Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences , Shenzhen 518055 , People's Republic of China.,University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Huamei He
- Guangdong Key Laboratory of Nanomedicine, CAS Key Lab for Health Informatics, Institute of Biomedicine and Biotechnology , Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences , Shenzhen 518055 , People's Republic of China
| | - Ruijing Liang
- Guangdong Key Laboratory of Nanomedicine, CAS Key Lab for Health Informatics, Institute of Biomedicine and Biotechnology , Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences , Shenzhen 518055 , People's Republic of China
| | - Huqiang Yi
- Guangdong Key Laboratory of Nanomedicine, CAS Key Lab for Health Informatics, Institute of Biomedicine and Biotechnology , Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences , Shenzhen 518055 , People's Republic of China
| | - Xiaoqing Meng
- Guangdong Key Laboratory of Nanomedicine, CAS Key Lab for Health Informatics, Institute of Biomedicine and Biotechnology , Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences , Shenzhen 518055 , People's Republic of China.,University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Zhikuan Chen
- Guangdong Key Laboratory of Nanomedicine, CAS Key Lab for Health Informatics, Institute of Biomedicine and Biotechnology , Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences , Shenzhen 518055 , People's Republic of China.,University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Hong Pan
- Guangdong Key Laboratory of Nanomedicine, CAS Key Lab for Health Informatics, Institute of Biomedicine and Biotechnology , Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences , Shenzhen 518055 , People's Republic of China.,University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Yifan Ma
- Guangdong Key Laboratory of Nanomedicine, CAS Key Lab for Health Informatics, Institute of Biomedicine and Biotechnology , Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences , Shenzhen 518055 , People's Republic of China
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, CAS Key Lab for Health Informatics, Institute of Biomedicine and Biotechnology , Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences , Shenzhen 518055 , People's Republic of China
| |
Collapse
|
105
|
Li L, Hu S, Chen X. Non-viral delivery systems for CRISPR/Cas9-based genome editing: Challenges and opportunities. Biomaterials 2018; 171:207-218. [PMID: 29704747 DOI: 10.1016/j.biomaterials.2018.04.031] [Citation(s) in RCA: 262] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 04/13/2018] [Accepted: 04/14/2018] [Indexed: 02/06/2023]
Abstract
In recent years, CRISPR (clustered regularly interspaced short palindromic repeat)/Cas (CRISPR-associated) genome editing systems have become one of the most robust platforms in basic biomedical research and therapeutic applications. To date, efficient in vivo delivery of the CRISPR/Cas9 system to the targeted cells remains a challenge. Although viral vectors have been widely used in the delivery of the CRISPR/Cas9 system in vitro and in vivo, their fundamental shortcomings, such as the risk of carcinogenesis, limited insertion size, immune responses and difficulty in large-scale production, severely limit their further applications. Alternative non-viral delivery systems for CRISPR/Cas9 are urgently needed. With the rapid development of non-viral vectors, lipid- or polymer-based nanocarriers have shown great potential for CRISPR/Cas9 delivery. In this review, we analyze the pros and cons of delivering CRISPR/Cas9 systems in the form of plasmid, mRNA, or protein and then discuss the limitations and challenges of CRISPR/Cas9-based genome editing. Furthermore, current non-viral vectors that have been applied for CRISPR/Cas9 delivery in vitro and in vivo are outlined in details. Finally, critical obstacles for non-viral delivery of CRISPR/Cas9 system are highlighted and promising strategies to overcome these barriers are proposed.
Collapse
Affiliation(s)
- Ling Li
- Department of PET Center, Xiangya Hospital, Central South University, Changsha, 410008, China; Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Shuo Hu
- Department of PET Center, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| |
Collapse
|
106
|
Harrison EB, Azam SH, Pecot CV. Targeting Accessories to the Crime: Nanoparticle Nucleic Acid Delivery to the Tumor Microenvironment. Front Pharmacol 2018; 9:307. [PMID: 29670528 PMCID: PMC5893903 DOI: 10.3389/fphar.2018.00307] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/16/2018] [Indexed: 12/18/2022] Open
Abstract
Nucleic acid delivery for cancer holds extraordinary promise. Increasing expression of tumor suppressor genes or inhibition of oncogenes in cancer cells has important therapeutic potential. However, several barriers impair progress in cancer gene delivery. These include effective delivery to cancer cells and relevant intracellular compartments. Although viral gene delivery can be effective, it has the disadvantages of being immuno-stimulatory, potentially mutagenic and lacking temporal control. Various nanoparticle (NP) platforms have been developed to overcome nucleic acid delivery hurdles, but several challenges still exist. One such challenge has been the accumulation of NPs in non-cancer cells within the tumor microenvironment (TME) as well as the circulation. While uptake by these cancer-associated cells is considered to be an off-target effect in some contexts, several strategies have now emerged to utilize NP-mediated gene delivery to intentionally alter the TME. For example, the similarity of NPs in shape and size to pathogens promotes uptake by antigen presenting cells, which can be used to increase immune stimulation and promote tumor killing by T-lymphocytes. In the era of immunotherapy, boosting the ability of the immune system to eliminate cancer cells has proven to be an exciting new area in cancer nanotechnology. Given the importance of cancer-associated cells in tumor growth and metastasis, targeting these cells in the TME opens up new therapeutic applications for NPs. This review will cover evidence for non-cancer cell accumulation of NPs in animal models and patients, summarize characteristics that promote NP delivery to different cell types, and describe several therapeutic strategies for gene modification within the TME.
Collapse
Affiliation(s)
- Emily B. Harrison
- Center for Nanotechnology in Drug Delivery, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Salma H. Azam
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Chad V. Pecot
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Division of Hematology/Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
107
|
Sun Y, Zhao Y, Zhao X, Lee RJ, Teng L, Zhou C. Enhancing the Therapeutic Delivery of Oligonucleotides by Chemical Modification and Nanoparticle Encapsulation. Molecules 2017; 22:E1724. [PMID: 29027965 PMCID: PMC6158866 DOI: 10.3390/molecules22101724] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 09/22/2017] [Accepted: 10/09/2017] [Indexed: 12/30/2022] Open
Abstract
Oligonucleotide (ON) drugs, including small interfering RNA (siRNA), microRNA (miRNA) and antisense oligonucleotides, are promising therapeutic agents. However, their low membrane permeability and sensitivity to nucleases present challenges to in vivo delivery. Chemical modifications of the ON offer a potential solution to improve the stability and efficacy of ON drugs. Combined with nanoparticle encapsulation, delivery at the site of action and gene silencing activity of chemically modified ON drugs can be further enhanced. In the present review, several types of ON drugs, selection of chemical modification, and nanoparticle-based delivery systems to deliver these ON drugs are discussed.
Collapse
Affiliation(s)
- Yating Sun
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Yarong Zhao
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Xiuting Zhao
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Robert J Lee
- School of Life Sciences, Jilin University, Changchun 130012, China.
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA.
| | - Lesheng Teng
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | | |
Collapse
|