101
|
Torroglosa A, Villalba-Benito L, Fernández RM, Luzón-Toro B, Moya-Jiménez MJ, Antiñolo G, Borrego S. Identification of New Potential LncRNA Biomarkers in Hirschsprung Disease. Int J Mol Sci 2020; 21:ijms21155534. [PMID: 32748823 PMCID: PMC7432910 DOI: 10.3390/ijms21155534] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022] Open
Abstract
Hirschsprung disease (HSCR) is a neurocristopathy defined by intestinal aganglionosis due to alterations during the development of the Enteric Nervous System (ENS). A wide spectrum of molecules involved in different signaling pathways and mechanisms have been described in HSCR onset. Among them, epigenetic mechanisms are gaining increasing relevance. In an effort to better understand the epigenetic basis of HSCR, we have performed an analysis for the identification of long non-coding RNAs (lncRNAs) by qRT-PCR in enteric precursor cells (EPCs) from controls and HSCR patients. We aimed to test the presence of a set lncRNAs among 84 lncRNAs in human EPCs, which were previously related with crucial cellular processes for ENS development, as well as to identify the possible differences between HSCR patients and controls. As a result, we have determined a set of lncRNAs with positive expression in human EPCs that were screened for mutations using the exome data from our cohort of HSCR patients to identify possible variants related to this pathology. Interestingly, we identified three lncRNAs with different levels of their transcripts (SOCS2-AS, MEG3 and NEAT1) between HSCR patients and controls. We propose such lncRNAs as possible regulatory elements implicated in the onset of HSCR as well as potential biomarkers of this pathology.
Collapse
Affiliation(s)
- Ana Torroglosa
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain; (A.T.); (L.V.-B.); (R.M.F.); (B.L.-T.); (G.A.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Leticia Villalba-Benito
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain; (A.T.); (L.V.-B.); (R.M.F.); (B.L.-T.); (G.A.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Raquel María Fernández
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain; (A.T.); (L.V.-B.); (R.M.F.); (B.L.-T.); (G.A.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Berta Luzón-Toro
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain; (A.T.); (L.V.-B.); (R.M.F.); (B.L.-T.); (G.A.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - María José Moya-Jiménez
- Department of Pediatric Surgery, University Hospital Virgen del Rocío, 41013 Seville, Spain;
| | - Guillermo Antiñolo
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain; (A.T.); (L.V.-B.); (R.M.F.); (B.L.-T.); (G.A.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Salud Borrego
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain; (A.T.); (L.V.-B.); (R.M.F.); (B.L.-T.); (G.A.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
- Correspondence:
| |
Collapse
|
102
|
Cong C, Tian J, Gao T, Zhou C, Wang Y, Cui X, Zhu L. lncRNA GAS5 Is Upregulated in Osteoporosis and Downregulates miR-21 to Promote Apoptosis of Osteoclasts. Clin Interv Aging 2020; 15:1163-1169. [PMID: 32764903 PMCID: PMC7371557 DOI: 10.2147/cia.s235197] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 06/10/2020] [Indexed: 02/06/2023] Open
Abstract
Background It has been reported that lncRNA growth arrest-specific transcript 5 (GAS5) interacts with miR-21, which plays critical roles in osteoporosis. The involvement of GAS5 in osteoporosis was investigated in this study. Methods Expression levels of GAS5 and miR-21 in plasma of both osteoporosis patients and healthy controls were determined by RT-qPCR. Diagnostic values of GAS5 and miR-21 for osteoporosis were analyzed by ROC curve analysis. Overexpression experiments were used to assess the interactions between GAS5 and miR-21. The roles of GAS5 and miR-21 in the apoptosis of osteoclasts were investigated by cell apoptosis assay. Results The present study aimed to investigate the roles of GAS5 in osteoporosis. The results showed that GAS5 was upregulated, while miR-21 was downregulated in plasma of osteoporosis patients. Expression levels of GAS5 and miR-21 were inversely correlated across plasma samples from osteoporosis patients but not the plasma samples from the controls. Altered expression of GAS5 and miR-21 distinguished osteoporosis patients from the controls. In osteoclasts, overexpression of GAS5 led to downregulation of miR-21, while overexpression of miR-21 did not affect the expression of GAS5. Overexpression of GAS5 led to promoted apoptosis of osteoclasts, while overexpression of miR-21 led to suppressed apoptosis of osteoclasts. In addition, overexpression of miR-21 attenuated the enhancing effects of overexpressing GAS5 on cell apoptosis. Conclusion GAS5 is upregulated in osteoporosis and may downregulate miR-21 to promote the apoptosis of osteoclasts.
Collapse
Affiliation(s)
- Chunlei Cong
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin City, Heilongjiang Province 150001, People's Republic of China
| | - Jun Tian
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin City, Heilongjiang Province 150001, People's Republic of China
| | - Tianqi Gao
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin City, Heilongjiang Province 150001, People's Republic of China
| | - Changlin Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin City, Heilongjiang Province 150001, People's Republic of China
| | - Yuxiang Wang
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin City, Heilongjiang Province 150001, People's Republic of China
| | - Xintao Cui
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin City, Heilongjiang Province 150001, People's Republic of China
| | - Liyu Zhu
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin City, Heilongjiang Province 150001, People's Republic of China
| |
Collapse
|
103
|
Yu Y, Yao P, Wang Z, Xie W. Down-regulation of FTX promotes the differentiation of osteoclasts in osteoporosis through the Notch1 signaling pathway by targeting miR-137. BMC Musculoskelet Disord 2020; 21:456. [PMID: 32660465 PMCID: PMC7359489 DOI: 10.1186/s12891-020-03458-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 06/24/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Osteoporosis (OP) is one of the commonly seen bone diseases with low bone mineral densities and trauma fractures. Accumulative studies have demonstrated that the occurrence of OP is closely related to osteoclasts differentiation. LncRNA FTX has been demonstrated to inhibit the development of some human cancers. However, its potential functions in human OP remains to be elusive. METHODS The expressions of FTX and miR-137 in bone and serum samples of patients with or without OP were measured. Bioinformatics analysis, RIP assays and luciferase reporter assays were performed to examine the upstream and downstream transactional factors of miR-137. Functional assays were conducted to check the roles of the Notching1 signaling pathway OP. RESULTS FTX was suppressed in OP samples and serums, however, miR-137 was greatly elevated. FTX reduced osteoclast-genesis and inhibited osteogenic differentiation by targeting miR-137. This also inhibited the Notch1 signaling pathway. CONCLUSION Our experiments and results pointed out that lncRNA FTX up-regulated miR-137 in OP through the Notch1 signaling pathway.
Collapse
Affiliation(s)
- Yingfeng Yu
- Department of Orthopedics, the Third People's Hospital of Dongguan City, No.1 Xianglong Road, Huangzhou, Shilong Town, Dongguan, 523326, Guangdong Province, China
| | - Peiquan Yao
- Department of Orthopedics, the Third People's Hospital of Dongguan City, No.1 Xianglong Road, Huangzhou, Shilong Town, Dongguan, 523326, Guangdong Province, China
| | - Zhikun Wang
- Department of Orthopedics, the Third People's Hospital of Dongguan City, No.1 Xianglong Road, Huangzhou, Shilong Town, Dongguan, 523326, Guangdong Province, China
| | - Wenwei Xie
- Department of Orthopedics, the Third People's Hospital of Dongguan City, No.1 Xianglong Road, Huangzhou, Shilong Town, Dongguan, 523326, Guangdong Province, China.
| |
Collapse
|
104
|
Ko NY, Chen LR, Chen KH. The Role of Micro RNA and Long-Non-Coding RNA in Osteoporosis. Int J Mol Sci 2020; 21:4886. [PMID: 32664424 PMCID: PMC7402348 DOI: 10.3390/ijms21144886] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/08/2020] [Accepted: 07/08/2020] [Indexed: 12/14/2022] Open
Abstract
Osteoporosis is a major concern worldwide and can be attributed to an imbalance between osteoblastic bone formation and osteoclastic bone resorption due to the natural aging process. Heritable factors account for 60-80% of optimal bone mineralization; however, the finer details of pathogenesis remain to be elucidated. Micro RNA (miRNA) and long-non-coding RNA (lncRNA) are two targets that have recently come into the spotlight due to their ability to control gene expression at the post-transcriptional level and provide epigenetic modification. miRNAs are a class of non-coding RNAs that are approximately 18-25 nucleotides long. It is thought that up to 60% of human protein-coding genes may be regulated by miRNAs. They have been found to regulate gene expression that controls osteoblast-dependent bone formation and osteoclast-related bone remodeling. lncRNAs are highly structured RNA transcripts longer than 200 nucleotides that do not translate into proteins. They have very complex secondary and tertiary structures and the same degradation processes as messenger RNAs. The fact that they have a rapid turnover is due to their sponge function in binding the miRNAs that lead to a degradation of the lncRNA itself. They can act as signaling, decoy, and framework molecules, or as primers. Current evidence suggests that lncRNAs can act as chromatin and transcriptional as well as post-transcriptional regulators. With regards to osteoporosis, lncRNA is thought to be involved in the proliferation, apoptosis, and inflammatory response of the bone. This review, which is based on a systematic appraisal of the current literature, provides current molecular and genetic opinions on the roles of miRNAs and lncRNAs in osteoporosis. Further research into the epigenetic modification and the regulatory roles of these molecules will bring us closer to potential disease-modifying treatment for osteoporosis. However, more issues regarding the detailed actions of miRNAs and lncRNAs in osteoporosis remain unknown and controversial and warrant future investigation.
Collapse
Affiliation(s)
- Nai-Yu Ko
- Department of Physical Medicine and Rehabilitation, Mackay Memorial Hospital, Taipei 104, Taiwan; (N.-Y.K.); (L.-R.C.)
| | - Li-Ru Chen
- Department of Physical Medicine and Rehabilitation, Mackay Memorial Hospital, Taipei 104, Taiwan; (N.-Y.K.); (L.-R.C.)
- Department of Mechanical Engineering, National Chiao-Tung University, Hsinchu 300, Taiwan
| | - Kuo-Hu Chen
- Department of Obstetrics and Gynecology, Taipei Tzu-Chi Hospital, The Buddhist Tzu-Chi Medical Foundation, Taipei 231, Taiwan
- School of Medicine, Tzu-Chi University, Hualien 970, Taiwan
| |
Collapse
|
105
|
Liu J, Wu M, Feng G, Li R, Wang Y, Jiao J. Downregulation of LINC00707 promotes osteogenic differentiation of human bone marrow‑derived mesenchymal stem cells by regulating DKK1 via targeting miR‑103a‑3p. Int J Mol Med 2020; 46:1029-1038. [PMID: 32705245 PMCID: PMC7387089 DOI: 10.3892/ijmm.2020.4672] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 05/21/2020] [Indexed: 12/17/2022] Open
Abstract
Human bone marrow-derived mesenchymal stem cells (HBMSCs) have the potential of multidirectional differentiation and self-renewal, which is important for the formation of human bone. It has been reported that long non-coding RNAs (lncRNAs) serve important roles in HBMSC osteogenic differentiation. The current study aimed to investigate the roles of long intergenic non-protein coding RNA 00707 (LINC00707) and microRNA (miR)-103a-3p in the osteogenic differentiation of HBMSCs. Reverse transcription-quantitative PCR (RT-qPCR) was performed to detect the expression levels of LINC00707, miR-103a-3p and osteogenesis-related genes (Alkaline phosphatase, osteocalcin, osteopontin and RUNX family transcription factor 2) in HBMSCs cultured in proliferation medium (PM) and osteogenic medium (OM). Mineralized matrix deposition was measured using Alizarin Red S staining. The protein expression levels of osteogenesis-related genes were detected by western blotting. The relationships between LINC00707, miR-103a-3p and dickkopf WNT signaling pathway inhibitor 1 (DKK1) were predicted using Starbase and TargetScan7.2, and were further assessed with a dual-luciferase reporter assay. After 21 days of cell culture, the results indicated that expression of LINC00707 was downregulated, and those of miR-103a-3p and osteogenesis-related genes were upregulated in OM-cultured HBMSCs. However, there was no significant difference in the aforementioned gene expression levels in PM-cultured HBMSCs. Small interfering (si)LINC00707 increased the deposition of mineralized matrix and promoted the expression levels of osteogenesis-related proteins. Furthermore, miR-103a-3p was predicted to be a target gene of LINC00707, its expression was significantly upregulated by siLINC00707, while overexpression of miR-103a-3p increased the expression levels of osteogenesis-related proteins. DKK1 was also predicted to be a target gene of miR-103a-3p and could inhibit the expression levels of osteogenesis-related proteins, but such effect of DKK1 could be reversed by the miR-103a-3p mimic. In conclusion, the present results suggested that LINC00707 regulated DKK1 expression by targeting miR-103a-3p to regulate osteogenic differentiation.
Collapse
Affiliation(s)
- Jun Liu
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Minfei Wu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Guang Feng
- The Fourth Medical Center of PLA General Hospital, Beijing 100048, P.R. China
| | - Rui Li
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Yang Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Jianhang Jiao
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| |
Collapse
|
106
|
Wang S. Investigation of long non-coding RNA expression profiles in patients with post-menopausal osteoporosis by RNA sequencing. Exp Ther Med 2020; 20:1487-1497. [PMID: 32742382 PMCID: PMC7388310 DOI: 10.3892/etm.2020.8881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 12/02/2019] [Indexed: 12/15/2022] Open
Abstract
The present study aimed to investigate the implication of long non-coding RNA (lncRNA) expression profiles in post-menopausal osteoporosis (PMOP). A total of 10 patients with PMOP and 10 age-matched healthy post-menopausal females as controls were consecutively enrolled. Their peripheral blood mononuclear cells were obtained and lncRNA as well as mRNA expression profiles were detected by RNA sequencing, followed by bioinformatics analyses. The lncRNA expression profiles were able to distinguish patients with PMOP from controls based on principal component analysis and heatmap analysis. In total, 254 upregulated lncRNAs and 359 downregulated lncRNAs were identified in patients with PMOP vs. controls. The top 5 upregulated lncRNAs were RP11-704M14.1, RP11-754N21.1, RP11-408E5.5, ANKRD26P3 and TPTEP1. The top 5 downregulated lncRNAs were RP11-310E22.4, RP11-326K13.4, FABP5P1, SERPINB9P1 and RPL13P2. Based on the interaction of dysregulated lncRNAs and mRNAs by RNA sequencing, functional annotations were then performed. Gene Ontology enrichment analysis revealed that the dysregulated lncRNAs were enriched in terms including apoptotic process and positive regulation of NF-κB transaction, and Kyoto Encyclopedia of Genes and Genomes analysis suggested enrichment in PMOP-associated signaling pathways, including osteoclast differentiation, tumor necrosis factor signaling pathway and mitogen-activated protein kinase signaling pathway. In addition, the regulatory network and circos graph further indicated the implication of lncRNA expression profiles in PMOP via interactions with mRNAs. In conclusion, the present study suggested that aberrant lncRNA expression is deeply involved in the pathogenesis of PMOP by affecting osteoclast differentiation, inflammation and apoptotic processes.
Collapse
Affiliation(s)
- Shaohai Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430012, P.R. China
| |
Collapse
|
107
|
Jiang K, Teng GD, Chen YQ. MicroRNA-23 suppresses osteogenic differentiation of human bone marrow mesenchymal stem cells by targeting the MEF2C-mediated MAPK signaling pathway. J Gene Med 2020; 22:e3216. [PMID: 32410261 DOI: 10.1002/jgm.3216] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/21/2020] [Accepted: 04/21/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The present study aimed to determine the role and mechanism of miR-23 with respect to regulating the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). MATERIALS The expression of miR-23 and MEF2C was measured in osteoporosis (OP) patients and healthy controls by a quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). The correlation between miR-23 and MEF2C was determined by the Pearson correlation coefficient. Moreover, bioinformatic analysis was performed using public databases. Target gene function and potential pathways were further examined. Then, we used a miR-23 mimic or inhibitor to further explore the potential mechanism of miR-23. RESULTS miR-23 is found to be up-regulated and MEF2C is down-regulated in OP patients compared to healthy controls. miR-23 had a negative correlation with MEF2C (r = -0.937, p = 0.001). Bioinformatic analysis revealed that a total of 664 overlapping target genes were found in the TargetScan (http://www.targetscan.org), miRDB (http://mirdb.org) and miRanda (http://www.microrna.org/microrna/home.do) databases. Moreover, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that miR-23 may regulate the mitogan-activated protein kinase (MAPK) signaling pathway. miR-23 is down-regulated and MEF2C is significantly up-regulated in the osteogenic differentiation of hBMSCs. MEF2C was significantly up-regulated in the osteogenic differentiation of hBMSCs. Overexpression of miR-23 significantly down-regulated alkaline phosphatase (ALP) activity and calcium deposition, whereas the miR-23 inhibitor had the opposite effects. Moreover, overexpression of miR-23 significantly decreased osteoblast-related markers (Runx2, Osx, ALP and OCN). Further experiments confirmed that MEF2C is a direct target of miR-23. Moreover, the miR-23 mimic enhanced the expression of p-p38 but had no effect on p-JNK. CONCLUSIONS miR-23 decreases the osteogenic differentiation of hBMSCs through the MEF2C/MAPK signaling pathway.
Collapse
Affiliation(s)
- Kai Jiang
- Hand Surgery, 971th Hospital of PLA, Qingdao, Shandong, China
| | - Guo-Dong Teng
- Hand Surgery, 971th Hospital of PLA, Qingdao, Shandong, China
| | - Yan-Qing Chen
- Hand Surgery, 971th Hospital of PLA, Qingdao, Shandong, China
| |
Collapse
|
108
|
Wang M, Ge X, Zheng Y, Wang C, Zhang Y, Lin Y. Microarray analysis reveals that lncRNA PWRN1-209 promotes human bone marrow mesenchymal stem cell osteogenic differentiation on microtopography titanium surface in vitro. J Biomed Mater Res B Appl Biomater 2020; 108:2889-2902. [PMID: 32447825 DOI: 10.1002/jbm.b.34620] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 03/23/2020] [Accepted: 04/13/2020] [Indexed: 12/19/2022]
Abstract
Sandblasted, large-grit, and acid-etched (SLA) titanium (Ti) with microtopography is currently one of the most widely used implant materials to accelerate osseointegration. Numerous long noncoding RNAs (lncRNAs) have been involved in bone remodeling, with their role in osseointegration, and the underlying mechanisms remain largely unclear. Here, microarrays of human bone marrow mesenchymal stem cells (hBMSCs) were used to identify differentially expressed lncRNAs during early cell differentiation stages (0-7 days) on SLA Ti and polished Ti surfaces. The function of lncRNAs in the osteogenic differentiation of hBMSCs was identified by RNA silencing and overexpression assays. RT-PCR and Western blot were used to detect RNA and protein expression. Alkaline phosphatase (ALP) protein activity was tested by ALP staining. Altogether, 4112 differentially expressed lncRNAs were identified from day 0 to day 7 on SLA Ti with a novel lncRNA, Prader-willi region non-coding RNA 1-209 (PWRN1-209) upregulated. We then proved that PWRN1-209 promoted osteogenic differentiation in hBMSCs by genetic tools. The upregulation of PWRN1-209 was further confirmed to be related to the surface topography of Ti by comparing SLA Ti and polished Ti. Interestingly, this trend seems to have a certain correlation with the mRNA expression level of integrins (α2, αV, β1, β2) and the phosphorylation of focal adhesion kinase (FAK). Taken together, the lncRNA PWRN1-209 was upregulated by the SLA microtopography Ti surface, which may regulate osteogenic differentiation of hBMSCs through integrin-FAK-ALP signaling. Our results provide new insights into the relationship between surface topography and osseointergration.
Collapse
Affiliation(s)
- Mingyue Wang
- Department of Implantology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, People's Republic of China
| | - Xiyuan Ge
- Central Laboratory, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, People's Republic of China
| | - Yan Zheng
- Department of Implantology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, People's Republic of China
| | - Chenxi Wang
- Department of Implantology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, People's Republic of China
| | - Yu Zhang
- Department of Implantology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, People's Republic of China
| | - Ye Lin
- Department of Implantology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, People's Republic of China
| |
Collapse
|
109
|
Sun H, Peng G, Wu H, Liu M, Mao G, Ning X, Yang H, Deng J. Long non-coding RNA MEG3 is involved in osteogenic differentiation and bone diseases (Review). Biomed Rep 2020; 13:15-21. [PMID: 32494359 PMCID: PMC7257936 DOI: 10.3892/br.2020.1305] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 03/13/2020] [Indexed: 12/13/2022] Open
Abstract
Osteogenic differentiation originating from mesenchymal stem cells (MSCs) requires tight co-ordination of transcriptional factors, signaling pathways and biomechanical cues. Dysregulation of such reciprocal networks may influence the proliferation and apoptosis of MSCs and osteoblasts, thereby impairing bone metabolism and homeostasis. An increasing number of studies have shown that long non-coding (lnc)RNAs are involved in osteogenic differentiation and thus serve an important role in the initiation, development, and progression of bone diseases such as tumors, osteoarthritis and osteoporosis. It has been reported that the lncRNA, maternally expressed gene 3 (MEG3), regulates osteogenic differentiation of multiple MSCs and also acts as a critical mediator in the development of bone formation and associated diseases. In the present review, the proposed mechanisms underlying the roles of MEG3 in osteogenic differentiation and its potential effects on bone diseases are discussed. These discussions may help elucidate the roles of MEG3 in osteogenic differentiation and highlight potential biomarkers and therapeutic targets for the treatment of bone diseases.
Collapse
Affiliation(s)
- Hong Sun
- Department of Orthopaedics, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Guoxuan Peng
- Department of Emergency Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Hongbin Wu
- Department of Orthopaedics, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Miao Liu
- Department of Orthopaedics, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Guping Mao
- Department of Joint Surgery, Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xu Ning
- Department of Orthopaedics, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Hua Yang
- Department of Orthopaedics, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Jin Deng
- Department of Emergency Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
110
|
Zhang R, Li J, Li G, Jin F, Wang Z, Yue R, Wang Y, Wang X, Sun Y. LncRNA Nron regulates osteoclastogenesis during orthodontic bone resorption. Int J Oral Sci 2020; 12:14. [PMID: 32385254 PMCID: PMC7210890 DOI: 10.1038/s41368-020-0077-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 02/19/2020] [Accepted: 03/17/2020] [Indexed: 12/13/2022] Open
Abstract
Activation of osteoclasts during orthodontic tooth treatment is a prerequisite for alveolar bone resorption and tooth movement. However, the key regulatory molecules involved in osteoclastogenesis during this process remain unclear. Long noncoding RNAs (lncRNAs) are a newly identified class of functional RNAs that regulate cellular processes, such as gene expression and translation regulation. Recently, lncRNAs have been reported to be involved in osteogenesis and bone formation. However, as the most abundant noncoding RNAs in vivo, the potential regulatory role of lncRNAs in osteoclast formation and bone resorption urgently needs to be clarified. We recently found that the lncRNA Nron (long noncoding RNA repressor of the nuclear factor of activated T cells) is highly expressed in osteoclast precursors. Nron is downregulated during osteoclastogenesis and bone ageing. To further determine whether Nron regulates osteoclast activity during orthodontic treatment, osteoclastic Nron transgenic (Nron cTG) and osteoclastic knockout (Nron CKO) mouse models were generated. When Nron was overexpressed, the orthodontic tooth movement rate was reduced. In addition, the number of osteoclasts decreased, and the activity of osteoclasts was inhibited. Mechanistically, Nron controlled the maturation of osteoclasts by regulating NFATc1 nuclear translocation. In contrast, by deleting Nron specifically in osteoclasts, tooth movement speed increased in Nron CKO mice. These results indicate that lncRNAs could be potential targets to regulate osteoclastogenesis and orthodontic tooth movement speed in the clinic in the future.
Collapse
Affiliation(s)
- Ruilin Zhang
- Department of Implantology, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Junhui Li
- Department of Implantology, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Gongchen Li
- Department of Implantology, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Fujun Jin
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Zuolin Wang
- Department of Implantology, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Rui Yue
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yibin Wang
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiaogang Wang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China.
| | - Yao Sun
- Department of Implantology, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China.
| |
Collapse
|
111
|
Song W, Xie J, Li J, Bao C, Xiao Y. The Emerging Roles of Long Noncoding RNAs in Bone Homeostasis and Their Potential Application in Bone-Related Diseases. DNA Cell Biol 2020; 39:926-937. [PMID: 32352840 DOI: 10.1089/dna.2020.5391] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Increasing evidence has announced the emerging roles of long noncoding RNAs (lncRNAs) in modulating bone homeostasis due to their potential regulating effects on bone-related cells' proliferation, migration, differentiation and apoptosis. Thus, lncRNAs have been considered as a promising gene tool to facilitate the bone regeneration process and then to predict and cure bone-related diseases such as osteosarcoma, osteoporosis, and osteoarthritis. In this review, we first enumerated several kinds of dysregulated lncRNAs and concisely summarized their regulating role in bone formation as well as resorption process. The related mechanisms were also discussed, respectively. Then, the positive or negative behavior of these lncRNAs in bone-related diseases was elucidated. This review provides an in-depth sight about the lncRNA's clinical values and limitations, which is conducive to explore new gene targets and further establish new therapeutic strategies for bone-related disease.
Collapse
Affiliation(s)
- Wei Song
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiahui Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jingya Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chongyun Bao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu Xiao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
112
|
Li L, Fang J, Liu Y, Xiao L. LncRNA LOC100506178 promotes osteogenic differentiation via regulating miR-214-5p-BMP2 axis in human bone marrow mesenchymal stem cells. PeerJ 2020; 8:e8909. [PMID: 32328347 PMCID: PMC7166045 DOI: 10.7717/peerj.8909] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/14/2020] [Indexed: 02/05/2023] Open
Abstract
Osteogenic differentiation is an important role in dental implantation. Long no coding RNAs (lncRNAs) are a novel class of noncoding RNAs that have significant effects in a variety of diseases. However, the function and mechanisms of LOC100506178 in osteogenic differentiation and migration of bone morphogenetic protein 2 (BMP2)-induced osteogenic differentiation of human bone marrow mesenchymalstem cells (hBMSCs) remain largely unclear. BMP2 was used to induce osteogenic differentiation of hBMSCs. Quantitative real time PCR (qRT-PCR) was used to examine the expression of LOC100506178, miR-214-5p, Runt-related transcription factor 2 (RUNX2), Osterix (Osx), and Alkaline Phosphatase (ALP) in BMP2-induced osteogenic differentiation of hBMSCs. The function of LOC100506178 and miR-214-5p was explored in vitro using Alizarin Red S Staining, ALP activity, as well as in vivo ectopic bone formation. Luciferase reporter assay was performed to assess the association between LOC100506178 and miR-214-5p, as well as miR-214-5p and BMP2. The miR-214-5p sponging potential of LOC100506178 was evaluated by RNA immunoprecipitation. In the present study, the expression of LOC100506178 was found to be increased in BMP2-induced osteogenic differentiation of hBMSCs, accompanied with decreased miR-214-5p expression and increased RUNX2, Osx and ALP expression. LOC100506178 significantly induced, while miR-214-5p suppressed the BMP2-induced osteogenic differentiation of hBMSCs. Mechanistically, LOC100506178 was directly bound to miR-214-5p and miR-214-5p targeted the 3′-untranslated region of BMP2 to negatively regulate its expression. In conclusion, our data indicate a novel molecular pathway LOC100506178/miR-214-5p/BMP2 in relation to hBMSCs differentiation into osteoblasts, which may facilitate bone anabolism.
Collapse
Affiliation(s)
- Lina Li
- Geriatric & VIP Department, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Jie Fang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Liu
- Department of Stomatology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Li Xiao
- Department of Stomatology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| |
Collapse
|
113
|
Long non-coding RNA H19 promotes osteogenic differentiation of human bone marrow-derived mesenchymal stem cells by regulating microRNA-140-5p/SATB2 axis. J Biosci 2020. [DOI: 10.1007/s12038-020-0024-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
114
|
Qu B, He J, Zeng Z, Yang H, Liu Z, Cao Z, Yu H, Zhao W, Pan X. MiR-155 inhibition alleviates suppression of osteoblastic differentiation by high glucose and free fatty acids in human bone marrow stromal cells by upregulating SIRT1. Pflugers Arch 2020; 472:473-480. [PMID: 32248286 DOI: 10.1007/s00424-020-02372-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/21/2020] [Accepted: 03/20/2020] [Indexed: 12/20/2022]
Abstract
Diabetic osteoporosis is a severe and chronic complication of diabetes in the bone and joint system, and its pathogenesis is needed to be explored. In the present study, we examined the effect and underlying mechanism of miR-155 on osteogenic differentiation in human bone marrow-derived mesenchymal stem cells (hBMSCs) under high glucose and free fatty acids (HG-FFA) conditions. It was shown that miR-155 levels in hBMSCs increased corresponding to the time of exposure to HG-FFA treatment. MiR-155 expression was altered by transfecting miR-155 mimic or miR-155 inhibitor. HG-FFA exposure resulted in an obviously decrease in cell viability and alkaline phosphatase (ALP) activity, and downregulated the expressionof runt-related transcription factor 2 (Runx2) and osteocalcin (OCN) in hBMSCs. Transfection of miR-155 mimic further exacerbated HG-FFA-induced inhibitory effect on osteogenic differentiation, and miR-155 inhibitor neutralized this inhibitory effect. Luciferase assays confirmed that SIRT1 was a direct target of miR-155 and can be negatively modulated by miR-155. Furthermore, SIRT1 siRNA partially counteracted miR-155 inhibitor-induced upregulation of SIRT1in HG-FFA-treated hBMSCs. SIRT1 siRNA also reversed the promotional effect of the miR-155 inhibitor on ALP activity and expression of the Runx2 and OCN proteins under HG-FFA conditions. In conclusion, the results suggest that miR-155 suppression promoted osteogenic differentiation of hBMSCs under HG-FFA conditions by targeting SIRT1. Inhibition of MiR-155 may provide a new therapeutic method for the prevention and treatment of diabetic osteoporosis.
Collapse
Affiliation(s)
- Bo Qu
- Orthopaedics, The First Affiliated Hospital of Chengdu Medical College, No. 278 Baoguang Avenue, Xindu District, Chengdu, 610500, China
| | - Jun He
- Orthopaedics, The First Affiliated Hospital of Chengdu Medical College, No. 278 Baoguang Avenue, Xindu District, Chengdu, 610500, China
| | - Zhimou Zeng
- Orthopaedics, The First Affiliated Hospital of Chengdu Medical College, No. 278 Baoguang Avenue, Xindu District, Chengdu, 610500, China
| | - Hongsheng Yang
- Orthopaedics, The First Affiliated Hospital of Chengdu Medical College, No. 278 Baoguang Avenue, Xindu District, Chengdu, 610500, China
| | - Zhanli Liu
- Orthopaedics, The First Affiliated Hospital of Chengdu Medical College, No. 278 Baoguang Avenue, Xindu District, Chengdu, 610500, China
| | - Zongrui Cao
- Orthopaedics, The First Affiliated Hospital of Chengdu Medical College, No. 278 Baoguang Avenue, Xindu District, Chengdu, 610500, China
| | - Hua Yu
- Orthopaedics, The First Affiliated Hospital of Chengdu Medical College, No. 278 Baoguang Avenue, Xindu District, Chengdu, 610500, China
| | - Wen Zhao
- Orthopaedics, The First Affiliated Hospital of Chengdu Medical College, No. 278 Baoguang Avenue, Xindu District, Chengdu, 610500, China
| | - Xianming Pan
- Orthopaedics, The First Affiliated Hospital of Chengdu Medical College, No. 278 Baoguang Avenue, Xindu District, Chengdu, 610500, China.
| |
Collapse
|
115
|
Long Noncoding RNA FAM83H-AS1 Modulates SpA-Inhibited Osteogenic Differentiation in Human Bone Mesenchymal Stem Cells. Mol Cell Biol 2020; 40:MCB.00362-19. [PMID: 31871129 DOI: 10.1128/mcb.00362-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023] Open
Abstract
Osteomyelitis, an infection of the bone and bone marrow, imposes a heavy burden on public health care systems owing to its progressive bone destruction and sequestration. Human bone mesenchymal stem cells (hBMSCs) play a key role in the process of bone formation, and mounting evidence has confirmed that long noncoding RNAs (lncRNAs) are involved in hBMSC osteogenic differentiation. Nevertheless, the exact function and molecular mechanism of lncRNAs in osteogenic differentiation during osteomyelitis development remain to be explored. In this study, hBMSCs were treated with staphylococcal protein A (SpA) during osteogenic differentiation induction to mimic osteomyelitis in vitro The results of lncRNA microarray analysis revealed that FAM83H-AS1 presented the lowest expression among the significantly downregulated lncRNAs. Functionally, ectopic expression of FAM83H-AS1 contributed to osteogenic differentiation of SpA-induced hBMSCs. Additionally, our findings revealed that FAM83H-AS1 negatively regulated microRNA 541-3p (miR-541-3p), and WNT3A was validated as a target gene of miR-541-3p. Mechanically, FAM83H-AS1 elevated WNT3A expression by competitively binding with miR-541-3p. Lastly, it was demonstrated that FAM83H-AS1/miR-541-3p/WNT3A ameliorated SpA-mediated inhibition of the osteogenic differentiation of hBMSCs, which provided a novel therapeutic strategy for patients with osteomyelitis.
Collapse
|
116
|
Xiaoling G, Shuaibin L, Kailu L. MicroRNA-19b-3p promotes cell proliferation and osteogenic differentiation of BMSCs by interacting with lncRNA H19. BMC MEDICAL GENETICS 2020; 21:11. [PMID: 31918667 PMCID: PMC6953218 DOI: 10.1186/s12881-020-0948-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/31/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND To investigated the role of miR-19b-3p in regulating bone marrow mesenchymal stem cell (BMSC) proliferation and osteoblast differentiation. METHODS The expression of miR-19b-3p and lncRNA H19 were measured in postmenopausal osteoporosis patients and BMP-22 induced BMSCs using qRT-PCR. MiR-19b-3p mimic or inhibitor was transfected into BMP-2 induced BMSCs. Cell proliferation was measured by BrdU method. Protein expression of RUNX2 and COL1A1 were measured by western blot. PcDNA3.1-lncRNA H19 with or without miR-19b-3p mimic was transfected into BMP-2 induced BMSCs. RESULTS The expression of miR-19b-3p was significantly up-regulated in postmenopausal osteoporosis patients and BMP-2 induced BMSCs. MiR-19b-3p overexpression dramatically elevated, while miR-19b-3p inhibition decreased cell proliferation of BMSCs. Additionally, protein expression levels of RUNX2 and COL1A1, as well as ALP activity were significantly promoted by miR-19b-3p mimic transfection and inhibited by miR-19b-3p inhibitor transfection. LncRNA H19 was obviously down-regulated in postmenopausal osteoporosis patients. H19 overexpression significantly decreased cell proliferation and differentiation by down-regulating miR-19b-3p. Moreover, the expression of miR-19b-3p was inhibited, while H19 elvated in 17β-estradiol (E2) treated BMSCs in a dose-dependent manner. CONCLUSION These data were the first to reveal the critical role of H19/miR-19b-3p in postmenopausal osteoporosis, and provided a new therapeutic target for OP.
Collapse
Affiliation(s)
- Gan Xiaoling
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Liu Shuaibin
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Liang Kailu
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
117
|
Xiang S, Li Z, Weng X. Changed cellular functions and aberrantly expressed miRNAs and circRNAs in bone marrow stem cells in osteonecrosis of the femoral head. Int J Mol Med 2020; 45:805-815. [PMID: 31922208 PMCID: PMC7015133 DOI: 10.3892/ijmm.2020.4455] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/15/2019] [Indexed: 02/06/2023] Open
Abstract
The present study aimed to detect the correlations between altered cellular functions in bone marrow stem cells (BMSCs) and osteonecrosis of the femoral head (ONFH). By profiling the aberrant expression of miRNAs and circRNAs in BMSCs isolated from ONFH patients, the present study aimed to further explore the potential regulatory mechanisms of action of circRNAs in ONFH using integrated bioinfor-matics analysis. BMSCs were isolated from seven ONFH patients and seven controls. Cellular functions, including proliferation, apoptosis and differentiation, were compared. miRNA and circRNA sequencing were conducted using RNA samples of three ONFH patients and three controls to identify differentially expressed circRNAs and miRNAs. The expression of hsa_circ_0000219, hsa_circ_0004588 and hsa_circ_0005936 were validated by qPCR. Target miRNAs were also predicted and validated by qPCR and circRNA-miRNA co-expression networks were constructed. BMSCs of ONFH patients displayed decreased proliferation and increased apoptosis during in vitro culturing. In addition, reduced osteogenesis and enhanced adipogenesis were found in the ONFH group. A total of 129 miRNAs and 231 circRNAs were detected to be differentially expressed. The expression levels of hsa_circ_0000219, hsa_circ_0004588 and hsa_circ_0005936 were significantly decreased in BMSCs of ONFH patients. A number of target miRNAs related to cell proliferation, apoptosis and differentiation were predicted for hsa_circ_0000219 and hsa_circ_0005936. The expression levels of miR-144-3p and miR-1270 were found to be elevated in ONFH patients, which was consistent with miRNA sequencing data and competitive endogenous RNA hypothesis. Time-dependent expression patterns of hsa_circ_0000219, hsa_circ_0004588, hsa_circ_0005936, miR-144-3p and miR-1270 were also validated during osteogenic and adipogenic differentiation in BMSCs. The results of the present study substantiated the involvement of BMSCs in ONFH development. hsa_circ_0000219 and hsa_circ_0005936 may regulate the progression of ONFH by mediating the proliferation and differentiation of BMSCs by sponging miRNAs.
Collapse
Affiliation(s)
- Shuai Xiang
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing 100730, P.R. China
| | - Zeng Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing 100730, P.R. China
| | - Xisheng Weng
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing 100730, P.R. China
| |
Collapse
|
118
|
He S, Yang S, Zhang Y, Li X, Gao D, Zhong Y, Cao L, Ma H, Liu Y, Li G, Peng S, Shuai C. LncRNA ODIR1 inhibits osteogenic differentiation of hUC-MSCs through the FBXO25/H2BK120ub/H3K4me3/OSX axis. Cell Death Dis 2019; 10:947. [PMID: 31827076 PMCID: PMC6906393 DOI: 10.1038/s41419-019-2148-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/01/2019] [Accepted: 11/11/2019] [Indexed: 01/26/2023]
Abstract
Long noncoding RNAs (lncRNAs) have been demonstrated to be important regulators during the osteogenic differentiation of mesenchymal stem cells (MSCs). We analyzed the lncRNA expression profile during osteogenic differentiation of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) and identified a significantly downregulated lncRNA RP11-527N22.2, named osteogenic differentiation inhibitory lncRNA 1, ODIR1. In hUC-MSCs, ODIR1 knockdown significantly promoted osteogenic differentiation, whereas overexpression inhibited osteogenic differentiation in vitro and in vivo. Mechanistically, ODIR1 interacts with F-box protein 25 (FBXO25) and facilitates the proteasome-dependent degradation of FBXO25 by recruiting Cullin 3 (CUL3). FBXO25 increases the mono-ubiquitination of H2BK120 (H2BK120ub) which subsequently promotes the trimethylation of H3K4 (H3K4me3). Both H2BK120ub and H3K4me3 form a loose chromatin structure, inducing the transcription of the key transcription factor osterix (OSX) and increasing the expression of the downstream osteoblast markers, osteocalcin (OCN), osteopontin (OPN), and alkaline phosphatase (ALP). In summary, ODIR1 acts as a key negative regulator during the osteogenic differentiation of hUC-MSCs through the FBXO25/H2BK120ub/H3K4me3/OSX axis, which may provide a novel understanding of lncRNAs that regulate the osteogenesis of MSCs and a potential therapeutic strategy for the regeneration of bone defects.
Collapse
Affiliation(s)
- Shiwei He
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Tumor Hospital, Central South University, Changsha, 410013, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, China
- Hunan Key Laboratory of Non-resolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Sheng Yang
- Department of Obstetrics and Gynecology, General Hospital, Shenzhen University, Shenzhen, 518053, China
| | - Yanru Zhang
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Tumor Hospital, Central South University, Changsha, 410013, China
| | - Xiaoling Li
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Tumor Hospital, Central South University, Changsha, 410013, China
| | - Dan Gao
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Tumor Hospital, Central South University, Changsha, 410013, China
| | - Yancheng Zhong
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Tumor Hospital, Central South University, Changsha, 410013, China
| | - Lihua Cao
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Tumor Hospital, Central South University, Changsha, 410013, China
| | - Haotian Ma
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Tumor Hospital, Central South University, Changsha, 410013, China
| | - Ying Liu
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Tumor Hospital, Central South University, Changsha, 410013, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Tumor Hospital, Central South University, Changsha, 410013, China
| | - Shuping Peng
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Tumor Hospital, Central South University, Changsha, 410013, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, China.
- Hunan Key Laboratory of Non-resolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| | - Cijun Shuai
- Jiangxi University of Science and Technology, Ganzhou, 341000, China.
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha, 410083, China.
| |
Collapse
|
119
|
Han Y, Liu C, Lei M, Sun S, Zheng W, Niu Y, Xia X. LncRNA TUG1 was upregulated in osteoporosis and regulates the proliferation and apoptosis of osteoclasts. J Orthop Surg Res 2019; 14:416. [PMID: 31815638 PMCID: PMC6902601 DOI: 10.1186/s13018-019-1430-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022] Open
Abstract
Background Long non-coding RNA (LncRNA) TUG1 plays critical roles in the development of human cancers. Its inhibition has been proved to participate in ankylosing spondylitis, which is an inverse pathological procedure of osteoporosis. In the present study, we aim to investigate the role of lncRNA TUG1 in ankylosing spondylitis. Materials and methods Expressions of lncRNA TUG1 in plasma of 98 patients with osteoporosis and 60 healthy participants were detected by real-time quantitative PCR (RT-qPCR). Diagnostic values of lncRNA CASC11 for osteoclasts were performed by the ROC curve with osteoporosis patients as positive and healthy participants as negative. All experiments were repeated 3 times. Mean ± standard deviation was calculated. Results We found that plasma lncRNA TUG1 was upregulated in osteoporosis patients than in healthy participants. Upregulation of plasma lncRNA TUG1 distinguished osteoporosis patients from healthy participants. LncRNA TUG1 level increased with the advances of clinical stages. Over-expression of lncRNA TUG1 promoted the proliferation and inhibited the apoptosis of mice osteoclasts, while lncRNA TUG1 siRNA silencing played an opposite role. In addition, lncRNA TUG1 over-expression led to downregulated PTEN, while lncRNA TUG1 siRNA silencing played an opposite role. Conclusion Therefore, lncRNA TUG1 is upregulated in osteoporosis and regulates the proliferation and apoptosis of osteoclasts. lncRNA TUG1 knockdown may serve as a promising therapeutic target for osteoporosis by inhibiting the proliferation and promoting the apoptosis of osteoclasts through PTEN.
Collapse
Affiliation(s)
- Ye Han
- Department of Orthopaedics, Affiliated Hospital of Hebei University, Baoding City, 071000, Hebei Province, People's Republic of China
| | - Chunying Liu
- Department of Pharmacology, School of Clinical Medicine, Hebei University, Baoding City, 071000, Hebei Province, People's Republic of China
| | - Ming Lei
- Department of Orthopaedics, Affiliated Hospital of Hebei University, Baoding City, 071000, Hebei Province, People's Republic of China
| | - Shaosong Sun
- Department of Orthopaedics, Affiliated Hospital of Hebei University, Baoding City, 071000, Hebei Province, People's Republic of China
| | - Wenkui Zheng
- Department of Orthopaedics, Affiliated Hospital of Hebei University, Baoding City, 071000, Hebei Province, People's Republic of China
| | - Yanan Niu
- Department of Orthopaedics, Affiliated Hospital of Hebei University, Baoding City, 071000, Hebei Province, People's Republic of China
| | - Xi Xia
- Department of Orthopaedics, Baoding First Central Hospital, No. 320, Great Wall North Street, Baoding City, 071000, Hebei Province, People's Republic of China.
| |
Collapse
|
120
|
Abnormal expression of miR-135b-5p in bone tissue of patients with osteoporosis and its role and mechanism in osteoporosis progression. Exp Ther Med 2019; 19:1042-1050. [PMID: 32010267 PMCID: PMC6966120 DOI: 10.3892/etm.2019.8278] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 11/08/2019] [Indexed: 02/07/2023] Open
Abstract
Osteoporosis (OP) is an age-related bone disease occurring worldwide. Osteoporotic fracture is one of the leading causes of disability and death in elderly patients. MicroRNAs (miRNAs/miRs) are key molecular regulatory factors in bone remodeling processes. The present study investigated the expression and mechanism of miR-135b-5p in patients with osteoporosis. The present results suggested that miR-135b-5p was upregulated in bone tissue fragments of patients with osteoporosis compared with the control patients. MC3T3-E1 cells were used to perform osteogenic differentiation induction. Reverse transcription-quantitative PCR and western blot assay were used to detect the mRNA and protein expression levels of the osteogenic markers osteocalcin (OC), Osterix and alkaline phosphatase (ALP). A specific kit was used for detecting ALP activity. The present results indicated that the mRNA expression levels of OC, Osterix and ALP significantly increased on the 7 and 14th day after osteogenic differentiation induction compared with the control group. Protein expression levels of OC, Osterix and ALP also increased on the 7 and 14th day after induction. ALP assay showed that ALP activity was significantly increased on the 7 and 14th day after induction. In addition, the present study found that miR-135b-5p was downregulated in MC3T3-E1 cells 7 and 14 days after osteogenic differentiation induction. The results of TargetScan analysis and dual luciferase reporter gene assay indicated that runt-related transcription factor 2 (RUNX2) was a direct target gene of miR-135b-5p. RUNX2 was upregulated in MC3T3-E1 cells on the 7 and 14th day after induction. Moreover, the present study found that compared with the osteogenic differentiation induction group, miR-135b-5p mimic significantly decreased OC, Osterix and ALP expression, and reduced ALP activity in MC3T3-E1 cells. However, these reductions were reversed following overexpression of RUNX2. The present results showed that miR-135b-5p mimic significantly reduced cell viability in MC3T3-E1 cells and induced cell apoptosis, and these effects were significantly reversed following RUNX2 overexpression. In summary, the present results suggested that miR-135-5p participated in the occurrence and development of osteoporosis via inhibition of osteogenic differentiation and osteoblast growth by targeting RUNX2. The present study suggested a novel potential target that may faciliate the treatment of osteoporosis, and further study is required to examine this possibility.
Collapse
|
121
|
Li Z, Ma J, Li X, Chan MTV, Wu WKK, Wu Z, Shen J. Aberrantly expressed long non-coding RNAs in air pollution-induced congenital defects. J Cell Mol Med 2019; 23:7717-7725. [PMID: 31557384 PMCID: PMC6815773 DOI: 10.1111/jcmm.14645] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/07/2019] [Accepted: 08/18/2019] [Indexed: 12/20/2022] Open
Abstract
Air pollution has been a serious public health issue over the past few decades particularly in developing countries. Air pollution exposure during pregnancy poses potential threat to offspring as the deleterious substances might pass through placenta to alter foetal development. A growing number of studies have demonstrated that long non-coding RNAs (lncRNAs) participate in the development of many diseases, including congenital defects. Here, we used RNA sequencing to identify differentially expressed lncRNAs in air pollution-exposed rat embryos compared with control group. Our data suggested that 554 lncRNAs (216 up-regulated and 338 down-regulated) were significantly differentially expressed in the air pollution-exposed embryos. Moreover, potential cellular functions of these deregulated lncRNAs were predicted via KEGG signal pathway/GO enrichment analyses, which suggested the possible involvements of neurological process, sensory perception of smell and the G-protein signalling pathway. Furthermore, potential functional network of deregulated lncRNAs and their correlated mRNAs in the development of congenital spinal abnormality was established. Our data suggested that lncRNAs may play a vital role in the pathophysiology of air pollution-exposed congenital spinal malformation.
Collapse
Affiliation(s)
- Zheng Li
- Department of Orthopaedic SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jianqing Ma
- Department of Orthopedic SurgeryThe General Hospital of Xingtai Mining Industry Bloc.Orthopaedic Hospital of XingtaiXingtaiChina
| | - Xingye Li
- Department of Orthopedic SurgeryBeijing Jishuitan HospitalFourth Clinical College of Peking UniversityJishuitan Orthopaedic College of Tsinghua UniversityBeijingChina
| | - Matthew T. V. Chan
- Department of Anaesthesia and Intensive CareThe Chinese University of Hong KongHong KongChina
| | - William K. K. Wu
- Department of Anaesthesia and Intensive CareThe Chinese University of Hong KongHong KongChina
- State Key Laboratory of Digestive DiseasesLi Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong KongChina
| | - Zhanyong Wu
- Department of Orthopedic SurgeryThe General Hospital of Xingtai Mining Industry Bloc.Orthopaedic Hospital of XingtaiXingtaiChina
| | - Jianxiong Shen
- Department of Orthopaedic SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
122
|
Yang X, Yang J, Lei P, Wen T. LncRNA MALAT1 shuttled by bone marrow-derived mesenchymal stem cells-secreted exosomes alleviates osteoporosis through mediating microRNA-34c/SATB2 axis. Aging (Albany NY) 2019; 11:8777-8791. [PMID: 31659145 PMCID: PMC6834402 DOI: 10.18632/aging.102264] [Citation(s) in RCA: 218] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/02/2019] [Indexed: 02/06/2023]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as promising novel modulators during osteogenesis in mesenchymal stem cells (MSCs). Enhanced SATB2 has been demonstrated to promote osteogenic differentiation of bone marrow-derived mesenchymal stem cells (hBMSCs) in patients with osteonecrosis. Preliminary bioinformatic analysis identified putative binding sites between microRNA-34c (miR-34c) and metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) or miR-34c and SATB2 3'UTR. Thus, the current study aimed to clarify the potential functional relevance of MALAT1-containing exosomes from BMSCs in osteoporosis. The extracted exosomes from primary BMSCs were co-cultured with human osteoblasts (hFOB1.19), followed by evaluation of the hFOB1.19 cell proliferation, alkaline phosphatase (ALP) activity and mineralized nodules. The obtained findings indicated that BMSC-Exos promoted the expression of SATB2 in osteoblasts, and SATB2 silencing reduced the ALP activity of osteoblasts and mineralized nodules. MALAT1 acted as a sponge of miR-34c to promote the expression of SATB2. Additionally, BMSCs-derived exosomal MALAT1 promoted osteoblast activity. Moreover, in vivo experiments indicated that miR-34c reversed the effect of MALAT1, and SATB2 reversed the effect of miR-34c in ovariectomized mice. Taken together, this study demonstrates that BMSCs-derived exosomal MALAT1 enhances osteoblast activity in osteoporotic mice by mediating the miR-34c/SATB2 axis.
Collapse
Affiliation(s)
- Xucheng Yang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
| | - Junxiao Yang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
| | - Pengfei Lei
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
| | - Ting Wen
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
| |
Collapse
|
123
|
Wang X, Zhao D, Zhu Y, Dong Y, Liu Y. Long non-coding RNA GAS5 promotes osteogenic differentiation of bone marrow mesenchymal stem cells by regulating the miR-135a-5p/FOXO1 pathway. Mol Cell Endocrinol 2019; 496:110534. [PMID: 31398367 DOI: 10.1016/j.mce.2019.110534] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 08/02/2019] [Accepted: 08/04/2019] [Indexed: 01/08/2023]
Abstract
Studies have shown that promoting the differentiation of bone marrow mesenchymal stem cells (BMSCs) into osteoblasts could protect against osteoporosis. Increasing evidence demonstrates that long non-coding RNAs (lncRNAs) participate in BMSC osteogenic differentiation. This study aimed to investigate the role and underlying mechanism of growth arrest-specific transcript 5 (GAS5) in osteogenic differentiation. The mechanism was mainly focused on miR-135a-5p/FOXO1 pathway by gain- and loss-of function tests. GAS5 and FOXO1 expression was decreased, whereas miR-135a-5p expression was increased, in the BMSCs from osteoporotic mice. Levels of GAS5 and FOXO1 were increased and miR-135a-5p expression was decreased during osteogenic differentiation of BMSCs. Overexpression of GAS5 promoted, whereas knockdown of GAS5 suppressed, BMSC osteogenic differentiation. As for the mechanism, GAS5 functioned as a competing endogenous RNA for miR-135a-5p to regulate FOXO1 expression. In conclusion, GAS5 promoted osteogenesis of BMSCs by regulating the miR-135a-5p/FOXO1 axis. This finding suggests that targeting GAS5 may be a useful therapy for treating postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Xue Wang
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Ding Zhao
- Department of Orthopaedics, The First Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Yuzhu Zhu
- Department of Anesthesiology, Changchun Maternity Hospital, Changchun, 130000, Jilin, China
| | - Ying Dong
- The Third Department of Radiotherapy, Jilin Provincial Tumor Hospital, Changchun, 130012, Jilin, China
| | - Yijun Liu
- Department of Orthopaedics, The First Hospital of Jilin University, Changchun, 130000, Jilin, China.
| |
Collapse
|
124
|
Bellavia D, Salamanna F, Raimondi L, De Luca A, Carina V, Costa V, Alessandro R, Fini M, Giavaresi G. Deregulated miRNAs in osteoporosis: effects in bone metastasis. Cell Mol Life Sci 2019; 76:3723-3744. [PMID: 31147752 PMCID: PMC11105262 DOI: 10.1007/s00018-019-03162-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/22/2019] [Accepted: 05/28/2019] [Indexed: 12/19/2022]
Abstract
Starting from their role exerted on osteoblast and osteoclast differentiation and activity pathways, microRNAs (miRNAs) have been recently identified as regulators of different processes in bone homeostasis. For this purpose, in a recent review, we highlighted, as deregulated miRNAs could be involved in different bone diseases such as osteoporosis. In addition, recent studies supported the concept that osteoporosis-induced bone alterations might offer a receptive site for cancer cells to form bone metastases, However, to date, no data on specific-shared miRNAs between osteoporosis and bone metastases have been considered and described to clarify the evidence of this link. The main goal of this review is to underline as deregulated miRNAs in osteoporosis may have specific roles in the development of bone metastases. The review showed that several circulating osteoporotic miRNAs could facilitate tumor progression and bone-metastasis formation in several tumor types, i.e., breast cancer, prostate cancer, non-small-cell lung cancer, esophageal squamous cell carcinoma, and multiple myeloma. In detail, serum up-regulation of pro-osteoporotic miRNAs, as well as serum down-regulation of anti-osteoporotic miRNAs are common features of all these tumors and are able to promote bone metastasis. These results are of key importance and could help researcher and clinicians to establish new therapeutic strategies connected with deregulation of circulating miRNAs and able to interfere with pathogenic processes of osteoporosis, tumor progressions, and bone-metastasis formation.
Collapse
Affiliation(s)
| | - F Salamanna
- Laboratory of Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - L Raimondi
- IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - A De Luca
- IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - V Carina
- IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - V Costa
- IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - R Alessandro
- Section of Biology and Genetics, Department of BioMedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), University of Palermo, 90133, Palermo, Italy
- Institute of Biomedicine and Molecular Immunology (IBIM), National Research Council, Palermo, Italy
| | - M Fini
- Laboratory of Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - G Giavaresi
- Laboratory of Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
125
|
Wang J, Liu S, Li J, Zhao S, Yi Z. Roles for miRNAs in osteogenic differentiation of bone marrow mesenchymal stem cells. Stem Cell Res Ther 2019; 10:197. [PMID: 31253175 PMCID: PMC6599379 DOI: 10.1186/s13287-019-1309-7] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bone marrow mesenchymal stem cells (BMSCs), which were first discovered in bone marrow, are capable of differentiating into osteoblasts, chondrocytes, fat cells, and even myoblasts, and are considered multipotent cells. As a result of their potential for multipotential differentiation, self-renewal, immune regulation, and other effects, BMSCs have become an important source of seed cells for gene therapy, tissue engineering, cell replacement therapy, and regenerative medicine. MicroRNA (miRNA) is a highly conserved type of endogenous non-protein-encoding RNA of about 19-25 nucleotides in length, whose transcription process is independent of other genes. Generally, miRNA plays roles in regulating cell proliferation, differentiation, apoptosis, and development by binding to the 3' untranslated region of target mRNAs, whereby they can degrade or induce translational silencing. Although miRNAs play a regulatory role in various metabolic processes, they are not translated into proteins. Several studies have shown that miRNAs play an important role in the osteogenic differentiation of BMSCs. Herein, we describe in-depth studies of roles for miRNAs during the osteogenic differentiation of BMSCs, as they provide new theoretical and experimental rationales for bone tissue engineering and clinical treatment.
Collapse
Affiliation(s)
- Jicheng Wang
- Shaanxi Provincial People's Hospital, 256 Youyi West Road, Beilin, Xi'an, 710068, China.,Xi'an Medical University, Xi'an, 710068, China
| | - Shizhang Liu
- Shaanxi Provincial People's Hospital, 256 Youyi West Road, Beilin, Xi'an, 710068, China
| | - Jingyuan Li
- Shaanxi Provincial People's Hospital, 256 Youyi West Road, Beilin, Xi'an, 710068, China
| | - Song Zhao
- Shaanxi Provincial People's Hospital, 256 Youyi West Road, Beilin, Xi'an, 710068, China.,Xi'an Medical University, Xi'an, 710068, China
| | - Zhi Yi
- Shaanxi Provincial People's Hospital, 256 Youyi West Road, Beilin, Xi'an, 710068, China.
| |
Collapse
|
126
|
Bellavia D, De Luca A, Carina V, Costa V, Raimondi L, Salamanna F, Alessandro R, Fini M, Giavaresi G. Deregulated miRNAs in bone health: Epigenetic roles in osteoporosis. Bone 2019; 122:52-75. [PMID: 30772601 DOI: 10.1016/j.bone.2019.02.013] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 02/07/2023]
Abstract
MicroRNA (miRNA) has shown to enhance or inhibit cell proliferation, differentiation and activity of different cell types in bone tissue. The discovery of miRNA actions and their targets has helped to identify them as novel regulations actors in bone. Various studies have shown that miRNA deregulation mediates the progression of bone-related pathologies, such as osteoporosis. The present review intends to give an exhaustive overview of miRNAs with experimentally validated targets involved in bone homeostasis and highlight their possible role in osteoporosis development. Moreover, the review analyzes miRNAs identified in clinical trials and involved in osteoporosis.
Collapse
Affiliation(s)
- D Bellavia
- IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - A De Luca
- IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - V Carina
- IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - V Costa
- IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - L Raimondi
- IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - F Salamanna
- IRCCS Istituto Ortopedico Rizzoli, Laboratory of Preclinical and Surgical Studies, Bologna, Italy
| | - R Alessandro
- Department of Biopathology and Medical Biotechnologies, Section of Biology and Genetics, University of Palermo, Palermo 90133, Italy; Institute of Biomedicine and Molecular Immunology (IBIM), National Research Council, Palermo, Italy
| | - M Fini
- IRCCS Istituto Ortopedico Rizzoli, Laboratory of Preclinical and Surgical Studies, Bologna, Italy
| | - G Giavaresi
- IRCCS Istituto Ortopedico Rizzoli, Laboratory of Preclinical and Surgical Studies, Bologna, Italy
| |
Collapse
|
127
|
Ju C, Liu R, Zhang YW, Zhang Y, Zhou R, Sun J, Lv XB, Zhang Z. Mesenchymal stem cell-associated lncRNA in osteogenic differentiation. Biomed Pharmacother 2019; 115:108912. [PMID: 31048188 DOI: 10.1016/j.biopha.2019.108912] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/17/2019] [Accepted: 04/22/2019] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have the ability to differentiate into multiple cell types, including osteogenic, chondrogenic and adipogenic lineages. Osteogenic differentiation of MSCs plays a critical role in bone tissue engineering. Inducing MSC osteogenesis represents a potential treatment that promotes bone formation and bone regeneration. Recently, long non-coding RNA (lncRNA) was shown to participate in the occurrence and development of various diseases. Different lncRNA expression patterns can regulate the cell cycle, proliferation, metastasis, immunobiology and differentiation. With the recent extensive study of lncRNAs, an increasing number of lncRNAs are being studied in the MSC field. Furthermore, some lncRNAs have been confirmed to regulate MSC osteogenesis. Therefore, here, we review research concerning lncRNA in osteogenic differentiation of MSCs and highlight the importance of lncRNA in bone formation and bone regeneration.
Collapse
Affiliation(s)
- Cheng Ju
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Nanchang, China; Department of Orthopedics, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, China; Nanchang Key Laboratory of Orthopaedics, The Third Affiliated Hospital of Nanchang University, Nanchang, China; Medical Department of Graduate School, Nanchang University, Nanchang, Jiangxi 330006, China.
| | - Renfeng Liu
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Nanchang, China; Department of Orthopedics, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, China; Nanchang Key Laboratory of Orthopaedics, The Third Affiliated Hospital of Nanchang University, Nanchang, China; Medical Department of Graduate School, Nanchang University, Nanchang, Jiangxi 330006, China.
| | - Yuan-Wei Zhang
- Medical Department of Graduate School, Nanchang University, Nanchang, Jiangxi 330006, China.
| | - Yu Zhang
- Department of Orthopedics, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, China; Nanchang Key Laboratory of Orthopaedics, The Third Affiliated Hospital of Nanchang University, Nanchang, China.
| | - Ruihao Zhou
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Nanchang, China.
| | - Jun Sun
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Nanchang, China.
| | - Xiao-Bin Lv
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Nanchang, China.
| | - Zhiping Zhang
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Nanchang, China; Department of Orthopedics, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, China; Nanchang Key Laboratory of Orthopaedics, The Third Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
128
|
Silva AM, Moura SR, Teixeira JH, Barbosa MA, Santos SG, Almeida MI. Long noncoding RNAs: a missing link in osteoporosis. Bone Res 2019; 7:10. [PMID: 30937214 PMCID: PMC6437190 DOI: 10.1038/s41413-019-0048-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/19/2019] [Accepted: 02/25/2019] [Indexed: 02/07/2023] Open
Abstract
Osteoporosis is a systemic disease that results in loss of bone density and increased fracture risk, particularly in the vertebrae and the hip. This condition and associated morbidity and mortality increase with population ageing. Long noncoding (lnc) RNAs are transcripts longer than 200 nucleotides that are not translated into proteins, but play important regulatory roles in transcriptional and post-transcriptional regulation. Their contribution to disease onset and development is increasingly recognized. Herein, we present an integrative revision on the studies that implicate lncRNAs in osteoporosis and that support their potential use as therapeutic tools. Firstly, current evidence on lncRNAs involvement in cellular and molecular mechanisms linked to osteoporosis and its major complication, fragility fractures, is reviewed. We analyze evidence of their roles in osteogenesis, osteoclastogenesis, and bone fracture healing events from human and animal model studies. Secondly, the potential of lncRNAs alterations at genetic and transcriptomic level are discussed as osteoporosis risk factors and as new circulating biomarkers for diagnosis. Finally, we conclude debating the possibilities, persisting difficulties, and future prospects of using lncRNAs in the treatment of osteoporosis.
Collapse
Affiliation(s)
- Andreia Machado Silva
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, University of Porto, Porto, Portugal
| | - Sara Reis Moura
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, University of Porto, Porto, Portugal
| | - José Henrique Teixeira
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, University of Porto, Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Mário Adolfo Barbosa
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, University of Porto, Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Susana Gomes Santos
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, University of Porto, Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Maria Inês Almeida
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, University of Porto, Porto, Portugal
| |
Collapse
|
129
|
Xie ZY, Wang P, Wu YF, Shen HY. Long non-coding RNA: The functional regulator of mesenchymal stem cells. World J Stem Cells 2019; 11:167-179. [PMID: 30949295 PMCID: PMC6441937 DOI: 10.4252/wjsc.v11.i3.167] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/07/2019] [Accepted: 02/28/2019] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are a subset of multipotent stroma cells residing in various tissues of the body. Apart from supporting the hematopoietic stem cell niche, MSCs possess strong immunoregulatory ability and multiple differentiation potentials. These powerful capacities allow the extensive application of MSCs in clinical practice as an effective treatment for diseases. Therefore, illuminating the functional mechanism of MSCs will help to improve their curative effect and promote their clinical use. Long noncoding RNA (LncRNA) is a novel class of noncoding RNA longer than 200 nt. Recently, multiple studies have demonstrated that LncRNA is widely involved in growth and development through controlling the fate of cells, including MSCs. In this review, we highlight the role of LncRNA in regulating the functions of MSCs and discuss their participation in the pathogenesis of diseases and clinical use in diagnosis and treatment.
Collapse
Affiliation(s)
- Zhong-Yu Xie
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, Guangdong Province, China
| | - Peng Wang
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, Guangdong Province, China
| | - Yan-Feng Wu
- Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong Province, China
| | - Hui-Yong Shen
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, Guangdong Province, China
| |
Collapse
|
130
|
Abstract
Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nucleotides with limited coding potential, which have emerged as novel regulators in many biological and pathological processes, including growth, development, and oncogenesis. Accumulating evidence suggests that lncRNAs have a special role in the osteogenic differentiation of various types of cell, including stem cells from different sources such as embryo, bone marrow, adipose tissue and periodontal ligaments, and induced pluripotent stem cells. Involved in complex mechanisms, lncRNAs regulate osteogenic markers and key regulators and pathways in osteogenic differentiation. In this review, we provide insights into the functions and molecular mechanisms of lncRNAs in osteogenesis and highlight their emerging roles and clinical value in regenerative medicine and osteogenesis-related diseases. Cite this article: J. Zhang, X. Hao, M. Yin, T. Xu, F. Guo. Long non-coding RNA in osteogenesis: A new world to be explored. Bone Joint Res 2019;8:73–80. DOI: 10.1302/2046-3758.82.BJR-2018-0074.R1.
Collapse
Affiliation(s)
- J Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Biochemistery and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina, North Carolina, USA
| | - X Hao
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - M Yin
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - T Xu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - F Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
131
|
LncRNA-MEG3 protects against ganglion cell dysplasia in congenital intestinal atresia through directly regulating miR-211-5p/GDNF axis. Biomed Pharmacother 2019; 111:436-442. [DOI: 10.1016/j.biopha.2018.11.089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 11/07/2018] [Accepted: 11/25/2018] [Indexed: 12/20/2022] Open
|
132
|
LncRNA ZBTB40-IT1 modulated by osteoporosis GWAS risk SNPs suppresses osteogenesis. Hum Genet 2019; 138:151-166. [PMID: 30661131 DOI: 10.1007/s00439-019-01969-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/02/2019] [Indexed: 02/06/2023]
Abstract
Previous genome-wide linkage and association studies have identified an osteoporosis-associated locus at 1p36 that harbors SNPs rs34920465 and rs6426749. The 1p36 locus also comprises the WNT4 gene with known role in bone metabolism and functionally unknown ZBTB40/lncRNA ZBTB40-IT1 genes. How these might interact to contribute to osteoporosis susceptibility is not known. In this study, we show that lncRNA ZBTB40-IT1 is able to suppress osteogenesis and promote osteoclastogenesis by regulating the expression of WNT4, RUNX2, OSX, ALP, COL1A1, OPG and RANKL in U-2OS and hFOB1.19 cell lines, whereas ZBTB40 plays an opposite role in bone metabolism. Treatment with parathyroid hormone significantly downregulates the expression of ZBTB40-IT1 in U-2OS cell lines. ZBTB40 can suppress ZBTB40-IT1 expression but has no response to parathyroid hormone treatment. Dual-luciferase assay and biotin pull-down assay demonstrate that osteoporosis GWAS lead SNPs rs34920465-G and rs6426749-C alleles can respectively bind transcription factors JUN::FOS and CREB1, and upregulate ZBTB40 and ZBTB40-IT1 expression. Our study discovers the critical role of ZBTB40 and lncRNA ZBTB40-IT1 in bone metabolism, and provides a mechanistic basis for osteoporosis GWAS lead SNPs rs34920465 and rs6426749.
Collapse
|
133
|
Yin C, Tian Y, Yu Y, Wang H, Wu Z, Huang Z, Zhang Y, Li D, Yang C, Wang X, Li Y, Qian A. A novel long noncoding RNA AK016739 inhibits osteoblast differentiation and bone formation. J Cell Physiol 2019; 234:11524-11536. [PMID: 30656695 DOI: 10.1002/jcp.27815] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 11/01/2018] [Indexed: 01/04/2023]
Abstract
The incidence of postmenopausal osteoporosis research 50% in middle-aged and older women, however, effects of existing therapy are not ideal. Emerging evidence have proved that long noncoding RNAs (lncRNAs) was correlated with multiple physiological and pathology processes including development, carcinogenesis, and osteogenesis. However, reports on lncRNAs regulating bone formation were relatively limited. In this study, we screened osteogenic lncRNAs through mRNA/lncRNA microarray combined with gene coexpression analysis. The biological function of the screened lncRNA was assessed both in vitro and in vivo. The effects of the lncRNA on osteogenic transcription factors were also evaluated. We identified AK016739, which was correlated with osteogenic differentiation and enriched in skeletal tissues of mice. The expression levels of AK016739 in bone-derived mesenchymal stem cells were increased with age and negatively correlated with osteogenic differentiation marker genes. Experiments showed that AK016739 inhibited osteoblast differentiation, and in vivo inhibition of AK016739 by its small interfering RNA would rescue bone formation in ovariectomized osteoporosis mice model. In addition, AK016739 suppressed both expression levels and activities of osteogenic transcription factors. This newly identified lncRNA AK016739 has revealed a new mechanism of osteogenic differentiation and provided new targets for treatment of skeletal disorders.
Collapse
Affiliation(s)
- Chong Yin
- Laboratory for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Ye Tian
- Laboratory for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yang Yu
- Tianjin Key Laboratory on Technologies Enabling Development Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Haoyu Wang
- Department of Software Technology and Service Engineering, School of Software and Microelectronics, Peking University, Beijing, China
| | - Zhixiang Wu
- Laboratory for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Zizhan Huang
- Laboratory for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yan Zhang
- Laboratory for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Dijie Li
- Laboratory for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Chaofei Yang
- Laboratory for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Xue Wang
- Laboratory for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yu Li
- Laboratory for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Airong Qian
- Laboratory for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
134
|
Zhou P, Li Y, Di R, Yang Y, Meng S, Song F, Ma L. H19 and Foxc2 synergistically promotes osteogenic differentiation of BMSCs via Wnt-β-catenin pathway. J Cell Physiol 2019; 234:13799-13806. [PMID: 30633332 DOI: 10.1002/jcp.28060] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/07/2018] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To investigate the mechanism of H19 on the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). METHODS Ovariectomized (OVX) mouse model was established. RNA immunoprecipitation and RNA pull-down assays were performed to determine the correlation between H19 and forkhead box C2 (Foxc2). Chromatin immunoprecipitation assay was used to identify whether Foxc2 binds to the Wnt4 promoter region. Molecules expressions were measured by quantitative real-time polymerase chain reaction and western blot. RESULTS We found that H19 expression was reduced in the serum of patients with postmenopausal osteoporosis and BMSCs of OVX mice, and overexpression of H19 promoted osteogenic differentiation of BMSCs. Additionally, Foxc2 could bind to the Wnt4 promoter and promote its transcription. We also showed that H19 could bind to Foxc2, and H19/Foxc2 regulated Wnt promoter expression in a synergistic fashion, and H19/Foxc2 regulated osteogenic differentiation of BMSCs through Wnt-β-catenin pathway. CONCLUSION H19 and Foxc2 synergistically promoted osteogenic differentiation of BMSCs via Wnt-β-catenin pathway.
Collapse
Affiliation(s)
- Ping Zhou
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ying Li
- The Institute of Hard Tissue Development and Regeneration, Harbin Medical University, Harbin, Heilongjiang, China
| | - Ruolin Di
- Harbin Medical University, Harbin, Heilongjiang, China
| | - Yi Yang
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Songyan Meng
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Fangfang Song
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Lan Ma
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
135
|
Yang Q, Jia L, Li X, Guo R, Huang Y, Zheng Y, Li W. Long Noncoding RNAs: New Players in the Osteogenic Differentiation of Bone Marrow- and Adipose-Derived Mesenchymal Stem Cells. Stem Cell Rev Rep 2018; 14:297-308. [PMID: 29464508 DOI: 10.1007/s12015-018-9801-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Mesenchymal stem cells (MSCs) are an important population of multipotent stem cells that differentiate into multiple lineages and display great potential in bone regeneration and repair. Although the role of protein-coding genes in the osteogenic differentiation of MSCs has been extensively studied, the functions of noncoding RNAs in the osteogenic differentiation of MSCs are unclear. The recent application of next-generation sequencing to MSC transcriptomes has revealed that long noncoding RNAs (lncRNAs) are associated with the osteogenic differentiation of MSCs. LncRNAs are a class of non-coding transcripts of more than 200 nucleotides in length. Noncoding RNAs are thought to play a key role in osteoblast differentiation through various regulatory mechanisms including chromatin modification, transcription factor binding, competent endogenous mechanism, and other post-transcriptional mechanisms. Here, we review the roles of lncRNAs in the osteogenic differentiation of bone marrow- and adipose-derived stem cells and provide a theoretical foundation for future research.
Collapse
Affiliation(s)
- Qiaolin Yang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, People's Republic of China
| | - Lingfei Jia
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
| | - Xiaobei Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, People's Republic of China
| | - Runzhi Guo
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, People's Republic of China
| | - Yiping Huang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, People's Republic of China
| | - Yunfei Zheng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, People's Republic of China.
| | - Weiran Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, People's Republic of China.
| |
Collapse
|
136
|
Chen X, Yang L, Ge D, Wang W, Yin Z, Yan J, Cao X, Jiang C, Zheng S, Liang B. Long non-coding RNA XIST promotes osteoporosis through inhibiting bone marrow mesenchymal stem cell differentiation. Exp Ther Med 2018; 17:803-811. [PMID: 30651866 PMCID: PMC6307375 DOI: 10.3892/etm.2018.7033] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 11/01/2018] [Indexed: 12/31/2022] Open
Abstract
The purpose of the present study was to identify the key long non-coding (lnc)RNAs in the occurrence and development of osteoporosis (OP) and to explore the associated molecular mechanism. First, the Gene Expression Omnibus (GEO) datasets, with key words ‘osteoporosis’ and ‘HG-133A’, were screened. RankProd R package was used to calculate the dysregulated lncRNAs in OP. Following this, bone marrow mesenchymal stem cells (BM-MSCs) harvested from 3-week-old Sprague Dawley rats were employed for detection of osteoblast differentiation. Following overexpression or interference with X-inactive specific transcript (XIST), osteogenesis-associated genes and proteins in BM-MSCs were detected using reverse transcription-quantitative polymerase chain reaction and western blot analysis. Alkaline phosphatase (ALP) and Alizarin Red S staining were also performed to measure the osteogenic ability of BM-MSCs. Results from the two datasets indicated that 6 lncRNAs were dysregulated in OP. Notably, XIST is key lncRNA in diverse diseases, and was subsequently selected for analysis. It was revealed that XIST was significantly upregulated in plasma and monocytes from patients with OP compared with the normal controls. Furthermore, results indicated that overexpression of XIST significantly inhibited osteoblast differentiation in BM-MSCs, as evidenced by the decreased expression of ALP, bone γ-carboxyglutamic acid-containing protein and runt related transcription factor 2, reduced ALP activity and a decreased number of calcium deposits. However, interference of XIST exhibited the opposite biological effects in BM-MSCs. Taken together, XIST was highly expressed in the serum and monocytes of patients with OP. In addition, the findings suggested that XIST could inhibit osteogenic differentiation of BM-MSCs.
Collapse
Affiliation(s)
- Xi Chen
- Department of Orthopedic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Lei Yang
- Department of Orthopedic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Dawei Ge
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Weiwei Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Zhaowei Yin
- Department of Orthopedic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Junwei Yan
- Department of Orthopedic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Xiaojian Cao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Chunzhi Jiang
- Department of Orthopedic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Shengnai Zheng
- Department of Orthopedic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Bin Liang
- Department of Orthopedic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| |
Collapse
|
137
|
Liu W, Huang L, Zhang C, Liu Z. lncRNA MEG3 is downregulated in ankylosing spondylitis and associated with disease activity, hospitalization time and disease duration. Exp Ther Med 2018; 17:291-297. [PMID: 30651794 PMCID: PMC6307436 DOI: 10.3892/etm.2018.6921] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 09/13/2018] [Indexed: 12/23/2022] Open
Abstract
Long non-coding (lnc)RNA maternally expressed gene 3 (MEG3) has been proved to participate in osteoporosis, which features inverse pathological changes to those associated with spondylosis. The present study aimed to investigate the involvement of lncRNA MEG3 in ankylosing spondylitis. Blood and open sacroiliac joint biopsies were obtained from ankylosing spondylitis patients and healthy controls, and the expression of MEG3 in those tissues was detected by reverse-transcription-quantitative polymerase chain reaction analysis. Disease activity was evaluated according to the Ankylosing Spondylitis Disease Activity Score established by the International Association of Ankylosing Spondylitis. The diagnostic value of MEG3 expression for ankylosing spondylitis was evaluated by receiver operating characteristic curve analysis. The correlation between MEG3 expression and disease activity was assessed using Pearson correlation analysis. Furthermore, according to the median expression level of MEG3, patients were divided into high-level and low-level groups. The hospitalization time and re-hospitalization rate within 2 years after discharge were compared between these two groups and differences in clinicopathological parameters between the two groups were analyzed using the chi-square test. The results indicated that MEG3 was downregulated in ankylosing spondylitis patients compared with that in healthy controls. Furthermore, MEG3 expression levels may be used to effectively distinguish ankylosing spondylitis patients from healthy controls. The serum levels of MEG3 were not associated with the patients' age, sex or alcohol/tobacco consumption, but closely correlated with disease activity and disease duration. In addition, patients with higher expression levels of MEG3 had a shorter hospitalization time and a lower re-hospitalization rate within 2 years after discharge It was concluded that lncRNA MEG3 is downregulated in ankylosing spondylitis patients and is associated with disease activity, time of hospitalization and disease duration.
Collapse
Affiliation(s)
- Wei Liu
- Department of Orthopedics, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, P.R. China
| | - Lili Huang
- Department of Infections, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, P.R. China
| | - Cuiying Zhang
- Department of Gynaecology and Obstetrics, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, P.R. China
| | - Zuozhong Liu
- Department of Orthopedics, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, P.R. China
| |
Collapse
|
138
|
Yu L, Qu H, Yu Y, Li W, Zhao Y, Qiu G. LncRNA-PCAT1 targeting miR-145-5p promotes TLR4-associated osteogenic differentiation of adipose-derived stem cells. J Cell Mol Med 2018; 22:6134-6147. [PMID: 30338912 PMCID: PMC6237555 DOI: 10.1111/jcmm.13892] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/10/2018] [Indexed: 12/31/2022] Open
Abstract
This study was aimed to explore the differential expression of long noncoding RNAs (lncRNA)‐PCAT1, miR‐145‐5p and TLR4 in osteogenic differentiation via the Toll‐like receptor (TLR) signalling pathway and consequently determine the potential molecular mechanism. The mRNAs and pathways related to the osteogenic differentiation in human adipose‐derived stem cells (hADSCs) were analysed by bioinformatics. The MiRanda and TargetScan database were employed to detect the potential binding sites of miRNAs on lncRNAs and mRNAs. The differential expression of lncRNA‐PCAT1, miR‐145‐5p and TLR4 were detected by qRT‐PCR. Rrelated protein expression was analysed by Western blot. The targeted relationships between lncRNA‐PCAT1, miR‐145‐5p and TLR4 were verified by dual‐luciferase reporter assay. Alkaline phosphatase (ALP) activity and ARS staining assays were used to measure the impacts exerted by lncRNA PCAT1, miR‐145‐5p and TLR4 mRNA on osteogenic differentiation. After the induction of osteoblast differentiation, the expression of lncRNA‐PCAT1 and TLR4 increased, while the expression of miR‐145‐5p decreased. Dual‐luciferase reporter assay confirmed the targeted relationship between lncRNA‐PCAT1, miR‐145‐5p, and TLR4. LncRNA‐PCAT1 negatively regulated miR‐145‐5p and positively regulated TLR4. Knockdown of lncRNA‐PCAT1 or TLR4 decreased the expression of osteogenic differentiation‐related proteins, reduced the ALP and ARS levels and the activity of the TLR signalling pathway. MiR‐145‐5p could reverse the effects of PCAT1 and TLR4 in hADSCs osteogenic differentiation. LncRNA‐PCAT1 negatively regulated miR‐145‐5p, which promoted TLR4 expression to promote osteogenic differentiation by activating the TLR signalling pathway.
Collapse
Affiliation(s)
- Lingjia Yu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Dongcheng District, Beijing, China
| | - Hao Qu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Dongcheng District, Beijing, China
| | - Yifeng Yu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Dongcheng District, Beijing, China
| | - Wenjing Li
- Department of Orthopaedic Surgery, Beijing Jishuitan Hospital, Fourth Clinical Medical College of Peking University, Xicheng District, Beijing, China
| | - Yu Zhao
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Dongcheng District, Beijing, China
| | - Guixing Qiu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Dongcheng District, Beijing, China
| |
Collapse
|
139
|
Wu ZH, Huang KH, Liu K, Wang GT, Sun Q. DGCR5 induces osteogenic differentiation by up-regulating Runx2 through miR-30d-5p. Biochem Biophys Res Commun 2018; 505:426-431. [PMID: 30266402 DOI: 10.1016/j.bbrc.2018.09.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 09/07/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Postmenopausal osteoporosis (PMOP) is a metabolic bone disease caused by unbalance between osteoblast bone formation and osteoclast bone resorption. In this study, the moderating effect of DGCR5 on osteogenic differentiation and its role in PMOP was assessed. METHODS The expression levels of DGCR5, miR-30d-5p, and Runt-related transcription factor 2 (Runx2) mRNA and protein were determined by qRT-PCR and western blot, separately. The bone marrow human mesenchymal stem cells (hMSCs) were isolated from bone marrow of patients with PMOP or the healthy control. ALP activity and bone mineral density (BMD) were detected to reflect the osteogenic differentiation status. RIP and RNA pull-down assay were performed to explore the combination and interaction between DGCR5 and miR-30d-5p. RESULTS Compared with the healthy control group (n = 20), DGCR5 was down-regulated in hMSCs from patients with PMOP (n = 20). Overexpression of DGCR5 induced osteogenic differentiation of hMSCs. DGCR5 up-regulated the expression of Runx2 through miR-30d-5p. DGCR5 up-regulated the expression of Runx2 through miR-30d-5p to induce osteogenic differentiation of hMSCs. CONCLUSION DGCR5 negatively regulates miR-30d-5p, and it up-regulates Runx2 through miR-30d-5p, thereby inducing osteogenic differentiation of hMSCs, which may help to delay PMOP development.
Collapse
Affiliation(s)
- Zhi-Hao Wu
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Kai-Hua Huang
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Kang Liu
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Guan-Tong Wang
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Qiang Sun
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.
| |
Collapse
|
140
|
Liu Y, Zeng X, Miao J, Liu C, Wei F, Liu D, Zheng Z, Ting K, Wang C, Guo J. Upregulation of long noncoding RNA MEG3 inhibits the osteogenic differentiation of periodontal ligament cells. J Cell Physiol 2018; 234:4617-4626. [PMID: 30256394 DOI: 10.1002/jcp.27248] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 07/24/2018] [Indexed: 12/22/2022]
Abstract
OBJECTIVE This study aims to discuss long noncoding RNA (lncRNA) maternally expressed gene 3 (MEG3) function of regulating osteogenesis in human periodontal ligament cells (hPDLCs). METHODS First, use of a mineralizing solution induced osteogenic differentiation of hPDLCs to establish a differentiated cell model. Through microarray analysis, we selected a lncRNA MEG3 with marked changes between differentiated and undifferentiated cells. The quantitative polymerase chain reaction was used to detect the MEG3 content and an enzyme-linked immunosorbent assay was used to detect changes in related proteins. Cell viability was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and apoptosis was measured by flow cytometry. Alizarin red staining was also used to evaluate cells' osteogenic level. Finally, RNA-binding protein immunoprecipitation assays were conducted to further clarify the endogenous relationship between MEG3 and bone morphogenetic protein 2 ( BMP2) in hPDLCs. RESULTS MEG3 was downregulated in osteogenic differentiation hPDLCs induced by mineralizing solution. Overexpression of MEG3 inhibited cell viability and increased cell apoptosis. MEG3 overexpression can reverse osteogenic differentiation induced by mineralizing solution. MEG3 can suppress BMP2 through interaction with heterogeneous nuclear ribonucleoprotein I. CONCLUSION Upregulation of MEG3 inhibits the osteogenic differentiation of periodontal ligament cells by downregulating BMP2 expression.
Collapse
Affiliation(s)
- Yi Liu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, China.,Department of Orthodontics, School of Stomatology, Shandong University, Jinan, China
| | - Xuemin Zeng
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, China.,Department of Orthodontics, School of Stomatology, Shandong University, Jinan, China
| | - Jie Miao
- Department of Stomatology, The Fifth People's Hospital of Ji'nan, Jinan, China
| | - Chunpeng Liu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, China.,Department of Orthodontics, School of Stomatology, Shandong University, Jinan, China
| | - Fulan Wei
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, China.,Department of Orthodontics, School of Stomatology, Shandong University, Jinan, China
| | - Dongxu Liu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, China.,Department of Orthodontics, School of Stomatology, Shandong University, Jinan, China
| | - Zhong Zheng
- Section of Orthodontics, Division of Growth and Development, School of Dentistry, University of California, Los Angeles, California.,UCLA Division of Plastic and Reconstructive Surgery, Department of Orthopaedic Surgery, The Orthopaedic Hospital Research Center, University of California, Los Angeles, California
| | - Kang Ting
- Section of Orthodontics, Division of Growth and Development, School of Dentistry, University of California, Los Angeles, California.,UCLA Division of Plastic and Reconstructive Surgery, Department of Orthopaedic Surgery, The Orthopaedic Hospital Research Center, University of California, Los Angeles, California
| | - Chunling Wang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, China.,Department of Orthodontics, School of Stomatology, Shandong University, Jinan, China
| | - Jie Guo
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, China.,Department of Orthodontics, School of Stomatology, Shandong University, Jinan, China
| |
Collapse
|
141
|
Zhang Z, Chen Y, Xiang L, Wang Z, Xiao GG, Ju D. Diosgenin protects against alveolar bone loss in ovariectomized rats via regulating long non-coding RNAs. Exp Ther Med 2018; 16:3939-3950. [PMID: 30344672 PMCID: PMC6176149 DOI: 10.3892/etm.2018.6681] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 08/23/2018] [Indexed: 12/13/2022] Open
Abstract
The present study assessed the changes in long non-coding (lnc)RNA and mRNA expression profiles when diosgenin (DIO) exerted a potential osteoprotective effect on the alveolar bone of ovariectomized (OVX) rats. Female Wistar rats underwent a sham operation (SHAM group) or ovariectomy. OVX rats were treated using vehicle (OVX group), DIO (DIO group) or estradiol valerate (EV group) for 12 weeks. After treatment, the biomarkers of bone turnover in plasma and the microstructure of alveolar bone were assessed. lncRNA microarrays were applied to assess lncRNA and mRNA expression profiles in alveolar bone in the OVX and DIO group rats. Subsequently, the differentially expressed mRNAs associated with the comprehensive bone metabolism pathway in Ingenuity Pathway Analysis (IPA) were identified and regarded as key mRNAs. Based on some of the key mRNAs and all the differentially expressed lncRNAs, a coexpression network was established and this network was further analyzed to identify the top 6 lncRNAs with the highest closeness scores (pivotal lncRNAs). Finally, 6 modules showing interactions between pivotal lncRNAs and key mRNAs were constructed. All of the pivotal lncRNAs and key mRNAs were validated with reverse transcription-quantitative polymerase chain reaction. The present findings demonstrated that DIO suppressed the loss of alveolar bone in OVX rats, and the changes to the expression of some lncRNAs or mRNAs occurred in the alveolar bone of the rats in the DIO group. Twenty-four key mRNAs were identified during pathway analysis. Furthermore, 8/24 key mRNAs (Ctnnb1, Smad4, Tcf2, Sp7, Il1b, Il1r1, Tnf and Tnfrsf1a) were used to establish a coexpression network, which included 1,656 nodes and 5,341 edges. During network analysis, 6 pivotal lncRNAs (XR_008346, MRuc007iji, MRAK157089, MRAK076413, MRAK143591 and AB036696) were obtained, and 6 modules illustrating pivotal lncRNA-key mRNA interactions were identified. These results revealed that the anti-osteoporotic effect of DIO on alveolar bone may be associated with the promotion of a bone formation process through increasing the signaling of the Wnt and BMPs pathways and the inhibition of the bone resorption process through decreasing stimulators of osteoclastogenesis. To conclude, several pivotal lncRNAs may serve important roles in these processes via regulating some key mRNAs in the bone metabolism pathway.
Collapse
Affiliation(s)
- Zhiguo Zhang
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Yanjing Chen
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Lihua Xiang
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Zhen Wang
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Gary Guishan Xiao
- School of Pharmaceutical Science, Dalian University of Technology, Dalian, Liaoning 116024, P.R. China.,Functional Genomics and Proteomics Laboratory, Osteoporosis Research Center, Creighton University Medical Center, Omaha, NE 68131 USA
| | - Dahong Ju
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| |
Collapse
|
142
|
He J, Tu C, Liu Y. Role of lncRNAs in aging and age-related diseases. Aging Med (Milton) 2018; 1:158-175. [PMID: 31942494 PMCID: PMC6880696 DOI: 10.1002/agm2.12030] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/28/2018] [Accepted: 07/03/2018] [Indexed: 01/10/2023] Open
Abstract
Aging is progressive physiological degeneration and consequently declined function, which is linked to senescence on both cellular and organ levels. Accumulating studies indicate that long noncoding RNAs (lncRNAs) play important roles in cellular senescence at all levels-transcriptional, post-transcriptional, translational, and post-translational. Understanding the molecular mechanism of lncRNAs underlying senescence could facilitate interpretation and intervention of aging and age-related diseases. In this review, we describe categories of known and novel lncRNAs that have been involved in the progression of senescence. We also identify the lncRNAs implicated in diseases arising from age-driven degeneration or dysfunction in some representative organs and systems (brains, liver, muscle, cardiovascular system, bone pancreatic islets, and immune system). Improved comprehension of lncRNAs in the aging process on all levels, from cell to organismal, may provide new insights into the amelioration of age-related pathologies and prolonged healthspan.
Collapse
Affiliation(s)
- Jieyu He
- Department of GeriatricsThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Chao Tu
- Department of OrthopedicsThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Youshuo Liu
- Department of GeriatricsThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| |
Collapse
|
143
|
Sun X, Luo LH, Feng L, Li DS. Down-regulation of lncRNA MEG3 promotes endothelial differentiation of bone marrow derived mesenchymal stem cells in repairing erectile dysfunction. Life Sci 2018; 208:246-252. [PMID: 30012476 DOI: 10.1016/j.lfs.2018.07.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/05/2018] [Accepted: 07/12/2018] [Indexed: 01/05/2023]
Abstract
AIMS In the treatment of diabetes mellitus associated erectile dysfunction (DMED), the intracavernous and periprostatic implantations of bone marrow derived mesenchymal stem cells (BM-MSCs) represent the new therapeutic approaches with great applied prospect. However, the specific mechanisms of BM-MSCs protecting erectile function remain largely unknown. MATERIALS AND METHODS The DMED rats were induced and the erectile function was assessed in the models with or without BM-MSCs implantation using intracavernous pressure (ICP)/mean arterial pressure (MAP) ratio. The differentiation of BM-MSCs toward endothelial cells (ECs) was induced by exogenous vascular endothelial growth factor (VEGF) in vitro. RNA pull-down and RIP assays were performed to explore the interaction between MEG3 and FOXM1 protein. KEY FINDINGS Intracavernous implantation of BM-MSCs effectively improved the erectile function of DMED rats, which was accompanied by a significant decrease in the expression of MEG3 in the corpus cavernosum tissues. Also, our study revealed that MEG3 expression was significantly down-regulated during the endothelial differentiation of BM-MSCs in vitro. The down-regulation of MEG3 was further confirmed to be conducive to the differentiation of BM-MSCs toward ECs. More importantly, MEG3 promoted the degradation of FOXM1 protein via facilitating FOXM1 ubiquitination, thereby decreasing VEGF expression, which ultimately regulated the endothelial differentiation of BM-MSCs. SIGNIFICANCE Taken together, our findings presented the vital role of MEG3 in the repairing processes of BM-MSCs for erectile function and provided new mechanistic insights into the BM-MSCs-mediated DMED repairing.
Collapse
Affiliation(s)
- Xiang Sun
- Department of Urology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China.
| | - Long-Hua Luo
- Department of Urology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Liang Feng
- Department of Urology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Dong-Shui Li
- Department of Urology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| |
Collapse
|
144
|
Deng L, Hong H, Zhang X, Chen D, Chen Z, Ling J, Wu L. Down-regulated lncRNA MEG3 promotes osteogenic differentiation of human dental follicle stem cells by epigenetically regulating Wnt pathway. Biochem Biophys Res Commun 2018; 503:2061-2067. [PMID: 30103943 DOI: 10.1016/j.bbrc.2018.07.160] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 07/31/2018] [Indexed: 01/03/2023]
Abstract
Our previous long noncoding RNA (lncRNA) microarray results showed that lncRNA MEG3 (maternally expressed 3) was significantly downregulated in human dental follicle cells than human periodontal ligament cells. Latest studies show that MEG3 contributes to polycomb repressive complex 2 (PRC2) recruitment to silence gene expression. The enhancer of zeste homolog 2 (EZH2), a crucial catalytic subunit of PRC2, mediates gene silencing and participates in cell lineage determination via methyltransferase activity. In this study, we found that the expression of EZH2 and H3K27me3 (trimethylation on lysine 27 in histone H3) decreased during osteogenesis of human dental follicle stem cells (hDFSCs). Knockdown studies of MEG3 and EZH2 by siRNA showed that MEG3/EZH2 negatively regulated osteogenesis of hDFSCs. We investigated the role of Wnt signaling pathway during the osteogenesis of hDFSCs and its relationship with EZH2. Besides, we studied the key genes of the canonical/noncanonical Wnt signaling pathway which might be related to EZH2. ChIP (chromatin immunoprecipitation) analysis showed that these effects were due to the EZH2 regulation of H3K27me3 level on the Wnt genes promotors. We first demonstrated that the decrease of MEG3 or EZH2 activated the Wnt/β-catenin signaling pathway via epigenetically regulating the H3K27me3 level on the Wnt genes promotors. Our research offers a new target for periodontal tissue engineering and osteogenic tissue regeneration.
Collapse
Affiliation(s)
- Lidi Deng
- Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China
| | - Hong Hong
- Zhujiang New Town Dental Clinic, Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China
| | - Xueqin Zhang
- Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China
| | - Dongru Chen
- Department of Preventive Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China
| | - Zhengyuan Chen
- Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China
| | - Junqi Ling
- Department of Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China.
| | - Liping Wu
- Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong, China.
| |
Collapse
|
145
|
Gao Y, Xiao F, Wang C, Wang C, Cui P, Zhang X, Chen X. Long noncoding RNA MALAT1 promotes osterix expression to regulate osteogenic differentiation by targeting miRNA-143 in human bone marrow-derived mesenchymal stem cells. J Cell Biochem 2018; 119:6986-6996. [PMID: 29741283 DOI: 10.1002/jcb.26907] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 03/28/2018] [Indexed: 02/06/2023]
Abstract
Osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (hBMSCs) is essential for the human bone formation, and emerging evidence shows that long non-coding RNAs (lncRNAs) play important roles in hBMSC osteogenic differentiation. MALAT1 is often regarded as a tumor-related lncRNA, but its function in mesenchymal stem cell differentiation remains to be defined. In this study, we aimed to investigate whether MALAT1 regulates Osterix (Osx) expression by sponging miR-143 to promote hBMSC osteogenic differentiation. Firstly, we found that the expression of MALAT1 was much lower in hBMSCs from osteoporosis patients and miR-143 was contrarily higher. In addition, MALAT1 expression increased, and miR-143 decreased when hBMSCs were treated with osteogenic induction. Then, we used short hairpin RNAs to knockdown MALAT1, and the results showed that hBMSC osteogenic differentiation decreased significantly, indicating that MALAT1 is a positive regulator of osteogenic differentiation in hBMSCs. Furthermore, by luciferase assays, we found that MALAT1 could directly bind to miR-143 and negatively regulate its expression. Similarly, miR-143 could directly bind to the target site on the Osx 3'-UTR and then inhibit Osx expression. Knockdown of MALAT1 decreased Osx expression, and co-transfection of miR-143 inhibitor could rescue Osx mRNA expression. While Osx expression was increased in MALAT1-overexpressing hBMSCs, it was reversed by the miR-143 mimics. Moreover, Osx silencing decreased ALP, OCN, and OPN mRNA expression induced by the miR-143 inhibitor. Altogether, our findings suggest that MALAT1 acts to regulate Osx expression through targeting miR-143; thus, it is considered as a positive regulator in hBMSC osteogenic differentiation.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Fei Xiao
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Chenglong Wang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Chuandong Wang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Penglei Cui
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Xiaoling Zhang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Xiaodong Chen
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| |
Collapse
|
146
|
Zhu H, Guo J, Shen Y, Dong W, Gao H, Miao Y, Li C, Zhang Y. Functions and Mechanisms of Tumor Necrosis Factor-α and Noncoding RNAs in Bone-Invasive Pituitary Adenomas. Clin Cancer Res 2018; 24:5757-5766. [DOI: 10.1158/1078-0432.ccr-18-0472] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 05/07/2018] [Accepted: 07/02/2018] [Indexed: 11/16/2022]
|
147
|
Chen S, Jia L, Zhang S, Zheng Y, Zhou Y. DEPTOR regulates osteogenic differentiation via inhibiting MEG3-mediated activation of BMP4 signaling and is involved in osteoporosis. Stem Cell Res Ther 2018; 9:185. [PMID: 29973283 PMCID: PMC6033203 DOI: 10.1186/s13287-018-0935-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/02/2018] [Accepted: 06/18/2018] [Indexed: 02/07/2023] Open
Abstract
Background The mammalian target of rapamycin (mTOR) pathway plays a significant role in osteogenic differentiation and bone maintenance. As the only known endogenous inhibitor of mTOR function, DEP domain containing mTOR interacting protein (DEPTOR) is potentially involved in stem cell differentiation, although the pathophysiological significance and its molecular mechanisms remain unclear. The present study aimed to elucidate the effects of DEPTOR on the progress of osteoporosis and investigate the underlying molecular mechanisms of osteogenic regulation. Methods An ovariectomy mouse model with decreased bone formation and osteogenic induction with bone marrow mesenchymal stem cells (BMSCs) were used to investigate the relationship between DEPTOR and osteogenic events. A loss-of-function investigation was then performed to explore the role of DEPTOR in the osteogenic differentiation of BMSCs both in vitro and in vivo. Finally, long noncoding RNA (lncRNA) and mRNA sequences were investigated to reveal the underlying mechanisms of DEPTOR in osteogenic regulation. RNA interference, western blotting, and chromatin immunoprecipitation assays were performed for further mechanistic determination. Results The results indicated that DEPTOR contributes to the progress of osteoporosis, and higher expression of Deptor was observed in osteoporotic bones. The expression of DEPTOR was reduced during the osteogenic differentiation of BMSCs, and knockdown of DEPTOR promoted BMSC osteogenesis in vitro and in vivo. lncRNA and mRNA sequences indicated that knockdown of DEPTOR upregulated the expression of maternally expressed 3 (nonprotein coding) (MEG3), which subsequently activated bone morphogenetic protein 4 (BMP4) signaling. Furthermore, DEPTOR could bind to a specific region (− 1000 bp ~ 0) of the MEG3 promoter to regulate its transcription, and inhibition of MEG3 reduced BMP4 activation triggered by DEPTOR knockdown. Conclusions Taken together, our study revealed a novel function of DEPTOR in osteogenic differentiation by inhibiting MEG3-mediated activation of BMP4 signaling, which suggested that DEPTOR could be a therapeutic target for bone loss diseases and skeletal tissue regeneration. Electronic supplementary material The online version of this article (10.1186/s13287-018-0935-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Si Chen
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China
| | - Lingfei Jia
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.,Central Laboratory, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.,National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China
| | - Shan Zhang
- Central Laboratory, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China
| | - Yunfei Zheng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China. .,National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China. .,National Engineering Lab for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China. .,National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.
| |
Collapse
|
148
|
Wang Y, Liu W, Liu Y, Cui J, Zhao Z, Cao H, Fu Z, Liu B. Long noncoding RNA H19 mediates
LCoR
to impact the osteogenic and adipogenic differentiation of mBMSCs in mice through sponging miR‐188. J Cell Physiol 2018; 233:7435-7446. [DOI: 10.1002/jcp.26589] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/09/2018] [Indexed: 01/04/2023]
Affiliation(s)
- Yijun Wang
- Department of Hand and Foot SurgeryThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Wentao Liu
- Institute of ImmunologyJilin UniversityChangchunJilinChina
| | - Yadong Liu
- Department of Spine SurgeryThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Jianli Cui
- Department of Hand and Foot SurgeryThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Zhiwei Zhao
- Department of Hand and Foot SurgeryThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Hui Cao
- Department of Hand and Foot SurgeryThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Zhuo Fu
- Department of Hand and Foot SurgeryThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Bin Liu
- Department of Hand and Foot SurgeryThe First Hospital of Jilin UniversityChangchunJilinChina
| |
Collapse
|
149
|
Peng W, Zhu S, Wang J, Chen L, Weng J, Chen S. Lnc-NTF3-5 promotes osteogenic differentiation of maxillary sinus membrane stem cells via sponging miR-93-3p. Clin Implant Dent Relat Res 2018; 20:110-121. [PMID: 29106055 PMCID: PMC5947825 DOI: 10.1111/cid.12553] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 10/03/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND The function and the mechanism of long non-coding RNAs (lncRNAs) on the osteogenic differentiation of maxillary sinus membrane stem cells (MSMSCs) remain largely unknown. MATERIALS AND METHODS The expression of lnc-NTF3-5 and Runt-related transcription factor 2 (RUNX2), Osterix (OSX), and Alkaline Phosphatase (ALP) was examined by quantitative real-time PCR (qRT-PCR) in MSMSCs during the process osteogenic differentiation. Then the function of lnc-NTF3-5 was evaluated by loss- and gain-of-function techniques, as well as qRT-PCR, western blot, and Alizarin Red staining. In addition, the microRNAs (miRNAs) sponge potential of lnc-NTF3-5 was assessed through RNA immunoprecipitation, dual luciferase reporter assay, and in vivo ectopic bone formation. RESULTS Lnc-NTF3-5, RUNX2, OSX, and ALP increased alone with the differentiation. Inhibition of lnc-NTF3-5 decreased the expression of RUNX2, OSX, and ALP both at mRNA and protein levels. Alizarin red staining showed similar trend. In contrast, overexpression of lnc-NTF3-5 presented totally opposite effects. Besides, overexpression of lnc-NTF3-5 could decrease the expression of microRNA-93-3p (miR-93-3p). Enhance miR-93-3p could also inhibit the expression level of lnc-NTF3-5. RNA immunoprecipitation demonstrated that lnc-NTF3-5 is directly bound to miR-93-3p and dual luciferase reporter assay proved that miR-93-3p targets 3' UTR of RUNX2 to regulate its expression. Ultimately, in vivo bone formation study showed that lnc-NTF3-5 and miR-93-3p inhibitor co-transfection group displayed the strongest bone formation. CONCLUSIONS The novel pathway lnc-NTF3-5/miR-93-3p/RUNX2 could regulate osteogenic differentiation of MSMSCs and might serve as a therapeutic target for bone regeneration in the posterior maxilla.
Collapse
Affiliation(s)
- Wei Peng
- Department of Oral and Maxillofacial SurgeryThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
- Guangdong Key Laboratory of StomatologySun Yat‐sen UniversityGuangzhouChina
| | - Shuang‐Xi Zhu
- Department of Oral and Maxillofacial SurgeryThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
- Guangdong Key Laboratory of StomatologySun Yat‐sen UniversityGuangzhouChina
| | - Jin Wang
- Department of Oral and Maxillofacial SurgeryThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
- Guangdong Key Laboratory of StomatologySun Yat‐sen UniversityGuangzhouChina
| | - Li‐Li Chen
- Department of PathologyThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Jun‐Quan Weng
- Department of Oral and Maxillofacial SurgeryThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
- Department of StomatologyShenzhen People's Hospital, Second Clinical Medical School, Jinan UniversityShenzhenChina
| | - Song‐Ling Chen
- Department of Oral and Maxillofacial SurgeryThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
- Guangdong Key Laboratory of StomatologySun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
150
|
Fei Q, Bai X, Lin J, Meng H, Yang Y, Guo A. Identification of aberrantly expressed long non-coding RNAs in postmenopausal osteoporosis. Int J Mol Med 2018; 41:3537-3550. [PMID: 29568943 PMCID: PMC5881766 DOI: 10.3892/ijmm.2018.3575] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 02/14/2018] [Indexed: 01/03/2023] Open
Abstract
Postmenopausal osteoporosis (PMOP) is a common skeletal disorder in postmenopausal women. The present study aimed to identify the key long non‑coding RNAs (lncRNAs) in PMOP through RNA sequencing. RNA sequencing was performed to obtain the expression profile of lncRNAs and mRNAs in blood samples of patients with PMOP and normal controls (NCs). Following the identification of differentially expressed mRNAs (DEmRNAs) and differentially expressed lncRNAs (DElncRNAs), the DElncRNA-DEmRNA co‑expression network was constructed. A search was performed for the DEGs transcribed within a 100‑kb window upstream or downstream of DElncRNAs, which served as nearby DEmRNAs of DElncRNAs. Functional annotation of the DEmRNAs co‑expressed with DElncRNAs was performed. The GSE56815 dataset was used to verify the expression of selected DEmRNAs and DElncRNAs. Three blood samples from patients with PMOP and two blood samples from NCs were used for RNA sequencing. Compared with the NC group, a total of 185 DEmRNAs and 51 DElncRNAs were obtained in PMOP. A total of 3,057 co‑expression DElncRNA‑DEmRNA pairs and 97 DElncRNA‑nearby DEmRNA pairs were obtained. Six DEmRNAs [diacylglycerol O‑acyltransferase 2, potassium voltage‑gated channel subfamily S member 1, peptidase inhibitor 3, secretory leukocyte peptidase inhibitor, galectin‑related protein and alkaline phosphatase, liver/bone/kidney (ALPL)] were nearby co‑expressed genes of four DElncRNAs, including LOC105376834, LOC101929866, LOC105374771 and LOC100506113. Three PMOP-associated DEmRNAs, including ALPL, suppressor of cytokine signaling 3 and adrenomedullin, were co‑expressed with the hub DElncRNAs (LINC00963, LOC105378415, LOC105377067, HCG27, LOC101928143 and LINC01094) of the positively and negatively co‑expressed DElncRNA‑DEmRNA interaction network. The expression of selected DEmRNAs and DElncRNAs was consistent with the RNA‑sequencing results. In conclusion, the present study identified the key DEmRNAs and DElncRNAs in PMOP, which may provide clues for understanding the mechanism and developing novel biomarkers for PMOP.
Collapse
Affiliation(s)
- Qi Fei
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Xiaodong Bai
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Jisheng Lin
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Hai Meng
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Yong Yang
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Ai Guo
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| |
Collapse
|