101
|
Effect of TRAF6 in acute pancreatitis-induced intestinal barrier injury via TLR4/NF-κB signal pathway. Tissue Cell 2022; 76:101792. [DOI: 10.1016/j.tice.2022.101792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 12/28/2022]
|
102
|
Chen HY, Ge P, Liu JY, Qu JL, Bao F, Xu CM, Chen HL, Shang D, Zhang GX. Artificial intelligence: Emerging player in the diagnosis and treatment of digestive disease. World J Gastroenterol 2022; 28:2152-2162. [PMID: 35721881 PMCID: PMC9157617 DOI: 10.3748/wjg.v28.i20.2152] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/24/2021] [Accepted: 04/24/2022] [Indexed: 02/06/2023] Open
Abstract
Given the breakthroughs in key technologies, such as image recognition, deep learning and neural networks, artificial intelligence (AI) continues to be increasingly developed, leading to closer and deeper integration with an increasingly data-, knowledge- and brain labor-intensive medical industry. As society continues to advance and individuals become more aware of their health needs, the problems associated with the aging of the population are receiving increasing attention, and there is an urgent demand for improving medical technology, prolonging human life and enhancing health. Digestive system diseases are the most common clinical diseases and are characterized by complex clinical manifestations and a general lack of obvious symptoms in the early stage. Such diseases are very difficult to diagnose and treat. In recent years, the incidence of diseases of the digestive system has increased. As AI applications in the field of health care continue to be developed, AI has begun playing an important role in the diagnosis and treatment of diseases of the digestive system. In this paper, the application of AI in assisted diagnosis and the application and prospects of AI in malignant and benign digestive system diseases are reviewed.
Collapse
Affiliation(s)
- Hai-Yang Chen
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
- Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
| | - Peng Ge
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
- Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
| | - Jia-Yue Liu
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
- Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
| | - Jia-Lin Qu
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Fang Bao
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
- Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
| | - Cai-Ming Xu
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
- Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Hai-Long Chen
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
- Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Dong Shang
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
- Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Gui-Xin Zhang
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
- Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| |
Collapse
|
103
|
Gong J, Chen W, Xu R, Jin Y, Huang J. Upregulation of B7-H4 Is Involved in and Related to the Severity of Acute Pancreatitis. J Interferon Cytokine Res 2022; 42:235-241. [PMID: 35533007 DOI: 10.1089/jir.2021.0219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The expression and clinical significance of co-stimulator B7-H4 in acute pancreatitis (AP) is still unclear. In vitro study showed that the expression of soluble B7-H4 (sB7-H4) and proportions of membrane B7-H4-positive CD14+ cells in the peripheral blood mononuclear cells were upregulated in response to stimulation with plasma from AP patients, lipopolysaccharides, or tumor necrosis factor α (TNF-α). sB7-H4 in the plasma of AP patients were positively correlated with interleukin (IL)-6, IL-10, IL-17A, TNF-α, and interferon-γ The areas under the curves (AUCs) of receiver operating characteristic (ROC) curves of plasma sB7-H4 to distinguish the AP patients from healthy donors, the mild AP (MAP) from the moderately severe acute pancreatitis (MSAP)+severe acute pancreatitis (SAP) or the SAP from the MAP+MSAP were 0.78 (P < 0.001) or 0.773 (P < 0.001) or 0.764 (P < 0.001). sB7-H4 in the plasma of patients were positively correlated with the RANSON scores, Bedside Index of Severity of Acute Pancreatitis scores, Marshall scores, and Acute Physiology And Chronic Health Evaluation II scores; and the AUCs of ROC curves of plasma sB7-H4 in the prediction of local complications was 0.726 (P = 0.001). In conclusion, the co-stimulator B7-H4 is involved in the immune response in AP.
Collapse
Affiliation(s)
- Ju Gong
- Department of Emergency Medicine, Changshu Hospital Affiliated to Xuzhou Medical University, Changshu, China.,Department of Emergency Medicine, The First Affiliated Hospital of Suzhou University, Suzhou, China
| | - Wei Chen
- Department of Emergency Medicine, The First Affiliated Hospital of Suzhou University, Suzhou, China
| | - Ruoxin Xu
- Department of Emergency Medicine, The First Affiliated Hospital of Suzhou University, Suzhou, China
| | - Yakang Jin
- Department of Pharmacology, College of Pharmaceutical Sciences, Suzhou University, Suzhou, China
| | - Jian Huang
- Department of Emergency Medicine, The First Affiliated Hospital of Suzhou University, Suzhou, China
| |
Collapse
|
104
|
Beneficial Effect of Kidney Bean Resistant Starch on Hyperlipidemia-Induced Acute Pancreatitis and Related Intestinal Barrier Damage in Rats. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092783. [PMID: 35566136 PMCID: PMC9100041 DOI: 10.3390/molecules27092783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022]
Abstract
Accumulating attention has been focused on resistant starch (RS) due to its blood-lipid-lowering activities. However, reports on the potential bioactivities of RS for preventing hyperlipidemia acute pancreatitis (HLAP) are limited. Therefore, in this study, an acute pancreatitis model was set up by feeding a hyperlipidemia diet to rats, and subsequently evaluating the anti-HLAP effect of RS in kidney beans. The results show that the IL-6, IL-1β, and TNF-α of serum in each RS group were decreased by 18.67-50.00%, 7.92-22.89%, and 8.06-34.04%, respectively, compared with the model group (MOD). In addition, the mRNA expression of tight junction protein ZO-1, occludin, and antibacterial peptides CRAMP and DEFB1 of rats in each RS group increased by 26.43-60.07%, 229.98-279.90%, 75.80-111.20%, and 77.86-109.07%, respectively. The height of the villi in the small intestine and the thickness of the muscle layer of rats were also increased, while the depth of the crypt decreased. The present study indicates that RS relieves intestinal inflammation, inhibits oxidative stress, and prevents related intestinal barrier damage. These results support the supplementation of RS as an effective nutritional intervention for HLAP and associated intestinal injury.
Collapse
|
105
|
Wang J, Xu H, Chen T, Xu C, Zhang X, Zhao S. Effect of Monoacylglycerol Lipase Inhibition on Intestinal Permeability of Rats With Severe Acute Pancreatitis. Front Pharmacol 2022; 13:869482. [PMID: 35496266 PMCID: PMC9039313 DOI: 10.3389/fphar.2022.869482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Endocannabinoid 2-arachidonoylglycerol (2-AG) is an anti-nociceptive lipid that is inactivated through cellular uptake and subsequent catabolism by monoacylglycerol lipase (MAGL). In this study, we investigated the effects of MAGL inhibition on intestinal permeability and explored the possible mechanism. Methods: A rat model of severe acute pancreatitis (SAP) was established. Rats were divided into three groups according to treatment. We analyzed intestinal permeability to fluorescein isothiocyanate-dextran and the levels of inflammatory factors interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) and 2-AG. Hematoxylin and eosin staining was used to assess histological tissue changes. In vivo intestinal permeability was evaluated by transmission electron microscopy. We obtained ileum tissues, extracted total RNA, and applied RNA-sequencing. Sequencing data were analyzed by bioinformatics. Results: Inflammatory factor levels were higher, while 2-AG levels were lower in the SAP group compared with the control group. Administration of JZL184 to rats with SAP increased the levels of 2-AG and lowered the levels of IL-6 and TNF-α. Notably, intestinal permeability was improved by JZL184 as demonstrated by fluorescein isothiocyanate-dextran measurement, hematoxylin and eosin staining, and transmission electron microscopy. RNA-sequencing showed significant transcriptional differences in SAP and JZL184 groups compared with the control group. KEGG analysis showed that the up- or downregulated genes in multiple comparison groups were enriched in two pathways, focal adhesion and PI3K-Akt signaling pathways. Differential alternative splicing (AS) genes, such as Myo9b, Lsp1, and Git2, have major functions in intestinal diseases. A total of 132 RNA-binding proteins (RBPs) were screened by crossing the identified abnormally expressed genes with the reported RBP genes. Among them, HNRNPDL coexpressed the most AS events as the main RBP. Conclusion: MAGL inhibition improved intestinal mucosal barrier injury in SAP rats and induced a large number of differentially expressed genes and alternative splicing events. HNRNPDL might play an important role in improving intestinal mucosal barrier injury by affecting alternative splicing events.
Collapse
|
106
|
Fawzy HA, Mohammed AA, Fawzy HM, Fikry EM. Reorienting of pramipexole as a promising therapy for acute pancreatitis in a rat model by suppressing TLR-4\NF-κB p65\NLRP3 inflammasome signaling. Can J Physiol Pharmacol 2022; 100:542-552. [PMID: 35413206 DOI: 10.1139/cjpp-2021-0664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Acute pancreatitis (AP), a disorder of global importance, has a growing incidence and prevalence, particularly in the western world. Its complications include pseudo-cysts and chronic pancreatitis. Pramipexole (PMX), a D2/3 receptor selecting agonist used in Parkinsonism, has reported anti-inflammatory effects lately. PURPOSE Exploring the potential curative role of PMX in an l-arginine-induced acute pancreatitis rat model besides a possible mechanistic pathway. METHODS Rats were divided randomly into three groups: control, l-arginine, and "l-arginine + PMX". 7 days after AP induction, rats decapitated and estimated for serum amylase, lipase, glucose, pancreatic inflammatory mediators "toll-like receptor-4, nuclear factor- kappa B p65 ,serum tumor necrosis factor-α, NLRP3 inflammasome, caspase-1, interleukin-1 beta, oxidative biomarkers "malondialdehyde, myeloperoxidase, nitrite/nitrate, reduced glutathione, and the apoptotic marker "caspase-3", with pancreatic histopathological changes. RESULTS L-arginine mediated AP proved by elevated serum lipase and amylase, pancreatic inflammatory, oxidative and apoptotic markers with infiltration of inflammatory cells using hematoxylin and eosin stain. PMX improved all these adverse signs of AP greatly. CONCLUSION PMX might be considered as an innovative therapy for AP due to its remarkable antioxidant, anti-apoptotic, and anti-inflammatory effects, which are attributed to the suppression of the NLRP3 inflammasome and its downstream inflammatory cytokines.
Collapse
Affiliation(s)
| | - Asmaa A Mohammed
- Al-Azhar University, 68820, Department of Pharmacology and Toxicology, Cairo, Egypt;
| | - Hala M Fawzy
- NODCAR, 204596, Department of Pharmacology, Giza, Egypt;
| | | |
Collapse
|
107
|
Ketamine inhibits TNF-α-induced cecal damage by enhancing RIP1 ubiquitination to attenuate lethal SIRS. Cell Death Dis 2022; 8:72. [PMID: 35184141 PMCID: PMC8857635 DOI: 10.1038/s41420-022-00869-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/22/2022] [Accepted: 02/03/2022] [Indexed: 01/02/2023]
Abstract
Systemic inflammatory response syndrome (SIRS) is a sepsis-associated inflammatory state and a self-defense mechanism against specific and nonspecific stimuli. Ketamine influences many key processes that are altered during sepsis. However, the underlying mechanisms remain incompletely understood. In this study, TNF-α-treated mice, as well as HT-29 and L929 cell models, were applied to characterize TNF-α-induced systemic and local cecal tissue inflammatory responses. Behavioral, biochemical, histological, and molecular biological approaches were applied to illustrate the related processes. Mice with TNF-α-induced SIRS showed systemic and local cecal tissue inflammatory responses, as indicated by increased levels of high mobility group box 1 protein (HMGB1), chemokines (C-X-C motif) ligand 10 (CXCL10), interleukin-6 (IL-6), and IL-10, as well as high mortality. Ketamine pretreatment alleviated death rates, symptoms, and the production of inflammatory cytokines induced by TNF-α in mice. Moreover, ketamine also protected the mice from TNF-α-induced cecal damage by suppressing the phosphorylation of receptor-interacting serine/threonine-protein kinase 3 (RIP3) and mixed lineage kinase domain-like protein (MLKL). In addition, our results showed that ketamine efficiently inhibited TNF-α-induced necroptosis in HT-29 and L929 cells. Furthermore, we explored the mechanism using different L929 cell lines. The results displayed that ketamine inhibited TNF-α-induced necroptosis by enhancing RIP1 ubiquitination and reducing the RIP1-RIP3 and RIP3-MLKL interactions, as well as the formation of necrosomes. Thus, our study may provide a new theoretical and experimental basis for treating diseases characterized by SIRS-associated inflammatory factor storms. Moreover, our exploration may provide potential molecular mechanisms and targets for therapeutic intervention and clinical application of ketamine.
Collapse
|
108
|
Huo J, Wu Z, Sun W, Wang Z, Wu J, Huang M, Wang B, Sun B. Protective Effects of Natural Polysaccharides on Intestinal Barrier Injury: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:711-735. [PMID: 35078319 DOI: 10.1021/acs.jafc.1c05966] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Owing to their minimal side effects and effective protection from oxidative stress, inflammation, and malignant growth, natural polysaccharides (NPs) are a potential adjuvant therapy for several diseases caused by intestinal barrier injury (IBI). More studies are accumulating on the protective effects of NPs with respect to IBI, but the underlying mechanisms remain unclear. Thus, this review aims to represent current studies that investigate the protective effects of NPs on IBI by directly maintaining intestinal epithelial barrier integrity (inhibiting oxidative stress, regulating inflammatory cytokine expression, and increasing tight junction protein expression) and indirectly regulating intestinal immunity and microbiota. Furthermore, the mechanisms underlying IBI development are briefly introduced, and the structure-activity relationships of polysaccharides with intestinal barrier protection effects are discussed. Potential developments and challenges associated with NPs exhibiting protective effects against IBI have also been highlighted to guide the application of NPs in the treatment of intestinal diseases caused by IBI.
Collapse
Affiliation(s)
- Jiaying Huo
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China
| | - Ziyan Wu
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | - Weizheng Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People's Republic of China
| | - Zhenhua Wang
- Center for Mitochondria and Healthy Aging, College of Life Science, Yantai University, Yantai, Shandong 264005, People's Republic of China
| | - Jihong Wu
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | - Mingquan Huang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | - Bowen Wang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | - Baoguo Sun
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| |
Collapse
|
109
|
Song M, Wang Y, Zhou P, Wang J, Xu H, Zheng J. MicroRNA-361-5p Aggravates Acute Pancreatitis by Promoting Interleukin-17A Secretion via Impairment of Nuclear Factor IA-Dependent Hes1 Downregulation. J Med Chem 2021; 64:16541-16552. [PMID: 34738458 DOI: 10.1021/acs.jmedchem.1c01110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This study set out to explore the potential role of microRNA-361-5p (miR-361-5p) in acute pancreatitis through regulation of interleukin-17A (IL-17A). We first identified the expression of miR-361-5p, IL-17A, nuclear factor IA (NFIA), and hes family bHLH transcription factor 1 (Hes1) in serum samples collected from patients with acute pancreatitis, caerulein-induced mice, and a Th17 cell model. The predicted binding of miR-361-5p to NFIA was confirmed in vitro. Gain- and loss-of-function assays of miR-361-5p and NFIA were employed to elucidate their effects on acute pancreatitis. miR-361-5p promoted Th17 cells to secrete IL-17A and then aggravated acute pancreatitis. miR-361-5p directly targeted NFIA by binding to its promoter region, leading to its downregulation. Overexpression of NFIA reduced Hes1 expression and rescued the promoting effect of miR-361-5p on IL-17A secretion. In summary, miR-361-5p enhances IL-17A secretion from Th17 cells and thus aggravates acute pancreatitis by targeting NFIA and upregulating Hes1.
Collapse
Affiliation(s)
- Menglong Song
- Emergency Intensive Care Unit, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, P. R. China
| | - Yifan Wang
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, P. R. China.,Department of Emergency Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
| | - Ping Zhou
- Emergency Intensive Care Unit, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, P. R. China
| | - Jiandong Wang
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, P. R. China.,Department of Emergency Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
| | - Haidong Xu
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, P. R. China.,Department of Emergency Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
| | - Jun Zheng
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, P. R. China.,Department of Emergency Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
| |
Collapse
|
110
|
Ren AQ, Wang HJ, Zhu HY, Ye G, Li K, Chen DF, Zeng T, Li H. Glycoproteins From Rabdosia japonica var. glaucocalyx Regulate Macrophage Polarization and Alleviate Lipopolysaccharide-Induced Acute Lung Injury in Mice via TLR4/NF-κB Pathway. Front Pharmacol 2021; 12:693298. [PMID: 34366849 PMCID: PMC8333617 DOI: 10.3389/fphar.2021.693298] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 06/24/2021] [Indexed: 01/04/2023] Open
Abstract
Background and Aims:Rabdosia japonica var. glaucocalyx is a traditional Chinese medicine (TCM) for various inflammatory diseases. This present work aimed to investigate the protective effects of R. japonica var. glaucocalyx glycoproteins on lipopolysaccharide (LPS)-induced acute lung injury (ALI) and the potential mechanism. Methods: Glycoproteins (XPS) were isolated from R. japonica var. glaucocalyx, and homogeneous glycoprotein (XPS5-1) was purified from XPS. ANA-1 cells were used to observe the effect of glycoproteins on the secretion of inflammatory mediators by enzyme-linked immunosorbent assay (ELISA). Flow cytometry assay, immunofluorescence assay, and Western blot analysis were performed to detect macrophage polarization in vitro. The ALI model was induced by LPS via intratracheal instillation, and XPS (20, 40, and 80 mg/kg) was administered intragastrically 2 h later. The mechanisms of XPS against ALI were investigated by Western blot, ELISA, and immunohistochemistry. Results:In vitro, XPS and XPS5-1 downregulated LPS-induced proinflammatory mediators production including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, and nitric oxide (NO) and upregulated LPS-induced IL-10 secretion. The LPS-stimulated macrophage polarization was also modulated from M1 to M2. In vivo, XPS maintained pulmonary histology with significantly reducing protein concentration and numbers of mononuclear cells in bronchoalveolar lavage fluid (BALF). The level of IL-10 in BALF was upregulated by XPS treatment. The level of cytokines including TNF-α, IL-1β, and IL-6 was downregulated. XPS also decreased infiltration of macrophages and polymorphonuclear leukocytes (PMNs) in lung. XPS suppressed the expression of key proteins in the TLR4/NF-κB signal pathway. Conclusion: XPS was demonstrated to be a potential agent for treating ALI. Our findings might provide evidence supporting the traditional application of R. japonica var. glaucocalyx in inflammation-linked diseases.
Collapse
Affiliation(s)
- An-Qi Ren
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Hui-Jun Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hai-Yan Zhu
- Department of Biological Medicines and Shanghai Engineering Research Center of Immuno Therapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Guan Ye
- Central Research Institute, Shanghai Pharmaceuticals Holding Co., Ltd., Shanghai, China
| | - Kun Li
- Central Research Institute, Shanghai Pharmaceuticals Holding Co., Ltd., Shanghai, China
| | - Dao-Feng Chen
- Department of Pharmacognosy, School of Pharmacy, Fudan University, Shanghai, China
| | - Tao Zeng
- Clinical Trial Institution, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Hong Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|