101
|
Ehiosun KI, Godin S, Vargas V, Preud'homme H, Grimaud R, Lobinski R. Biodegradation of saturate fraction of crude oil and production of signature carboxylic acids. CHEMOSPHERE 2023; 339:139773. [PMID: 37567266 DOI: 10.1016/j.chemosphere.2023.139773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/18/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Bacteria degrading large portion of saturated hydrocarbons are important for crude oil bioremediation. This study investigates Novosphingobium sp. S1, Gordonia amicalis S2 and Gordonia terrae S5 capability of degrading wide range of saturated hydrocarbons from Congo Bilondo crude oil and discusses the degradation pathway. A parallel analytical approach combining GC-MS and LC-HRMS enabled characterization of saturated hydrocarbons and comprehensive determination of carboxylic acid metabolites produced during biodegradation, respectively. Results showed that the three strains could efficiently degrade the n-alkanes (C10-C28) as well as methyl-substituted alkanes (C11-C26). The series of mono-, hydroxy- and dicarboxylic acids identified in this study confirmed the active biodegradation of the saturate fraction and suggest their degradation was via the bi-terminal oxidation pathway. This is the first study linking these bacterial species to bi-terminal oxidation of the saturated hydrocarbons. The study highlights the potential application of the bacterial strains in the bioremediation of crude oil contaminated sites. Additionally, while carboxylic acids is indicated as a suitable and valuable metabolic biomarker, its application is considered feasible and cost effective for rapid monitoring and evaluation of hydrocarbon biodegradation.
Collapse
Affiliation(s)
- Kevin Iyere Ehiosun
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France; Department of Biochemistry, Edo State University Uzairue, Edo State, Nigeria.
| | - Simon Godin
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - Vicmary Vargas
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - Hugues Preud'homme
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - Régis Grimaud
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - Ryszard Lobinski
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| |
Collapse
|
102
|
Zainab R, Hasnain M, Ali F, Dias DA, El-Keblawy A, Abideen Z. Exploring the bioremediation capability of petroleum-contaminated soils for enhanced environmental sustainability and minimization of ecotoxicological concerns. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:104933-104957. [PMID: 37718363 DOI: 10.1007/s11356-023-29801-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/06/2023] [Indexed: 09/19/2023]
Abstract
The bioremediation of soils contaminated with petroleum hydrocarbons (PHCs) has emerged as a promising approach, with its effectiveness contingent upon various types of PHCs, i.e., crude oil, diesel, gasoline, and other petroleum products. Strategies like genetically modified microorganisms, nanotechnology, and bioaugmentation hold potential for enhancing remediation of polycyclic aromatic hydrocarbon (PAH) contamination. The effectiveness of bioremediation relies on factors such as metabolite toxicity, microbial competition, and environmental conditions. Aerobic degradation involves enzymatic oxidative reactions, while bacterial anaerobic degradation employs reductive reactions with alternative electron acceptors. Algae employ monooxygenase and dioxygenase enzymes, breaking down PAHs through biodegradation and bioaccumulation, yielding hydroxylated and dihydroxylated intermediates. Fungi contribute via mycoremediation, using co-metabolism and monooxygenase enzymes to produce CO2 and oxidized products. Ligninolytic fungi transform PAHs into water-soluble compounds, while non-ligninolytic fungi oxidize PAHs into arene oxides and phenols. Certain fungi produce biosurfactants enhancing degradation of less soluble, high molecular-weight PAHs. Successful bioremediation offers sustainable solutions to mitigate petroleum spills and environmental impacts. Monitoring and assessing strategy effectiveness are vital for optimizing biodegradation in petroleum-contaminated soils. This review presents insights and challenges in bioremediation, focusing on arable land safety and ecotoxicological concerns.
Collapse
Affiliation(s)
- Rida Zainab
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Maria Hasnain
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Faraz Ali
- School of Engineering and Technology, Central Queensland University, Sydney, Australia
| | - Daniel Anthony Dias
- CASS Food Research Centre, School of Exercise and Nutrition Sciences Deakin University, Melbourne, VIC, 3125, Australia
| | - Ali El-Keblawy
- Department of Applied Biology, College of Sciences, University of Sharjah, PO Box 27272, Sharjah, UAE
| | - Zainul Abideen
- Department of Applied Biology, College of Sciences, University of Sharjah, PO Box 27272, Sharjah, UAE.
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
103
|
Conde Molina D, Liporace F, Quevedo CV. Bioremediation of an industrial soil contaminated by hydrocarbons in microcosm system, involving bioprocesses utilizing co-products and agro-industrial wastes. World J Microbiol Biotechnol 2023; 39:323. [PMID: 37773232 DOI: 10.1007/s11274-023-03766-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 09/15/2023] [Indexed: 10/01/2023]
Abstract
The present study describes practical implication of bioaugmentation and biostimulation processes for bioremediation of an industrial soil chronically contaminated by hydrocarbons. For this purpose, biomass production of six autochthonous hydrocarbon-degrading bacteria were evaluated as inoculum of bioaugmentation strategy, by testing carbon and nitrogen sources included co-products and agro-industrial waste as sustainable and low-cost components of the growth medium. Otherwise, biostimulation was approached by the addition of optimized concentration of nitrogen and phosphorus. Microcosm assays showed that total hydrocarbons (TH) were significantly removed from chronically contaminated soil undergoing bioremediation treatment. Systems Mix (bioaugmentation); N,P (biostimulation) and Mix + N,P (bioaugmentation and biostimulation) reached higher TH removal, being 89.85%, 91.00%, 93.04%, respectively, comparing to 77.83% of system C (natural attenuation) at 90 days. The increased heterotrophic aerobic bacteria and hydrocarbon degrading bacteria counts were according to TH biodegrading process during the experiments. Our results showed that biostimulation with nutrients represent a valuable alternative tool to treat a chronically hydrocarbon-contaminated industrial soil, while bioaugmentation with a consortium of hydrocarbon degrading bacteria would be justified when the soil has a low amount of endogenous degrading microorganisms. Furthermore, the production of inoculum for application in bioaugmentation using low-cost substrates, such as industrial waste, would lead to the development of an environmentally friendly and attractive process in terms of cost-benefit.
Collapse
Affiliation(s)
- Debora Conde Molina
- Grupo de Biotecnología y Nanotecnología Aplicada, Facultad Regional Delta, Universidad Tecnológica Nacional, San Martín 1171, Campana, 2804, Buenos Aires, Argentina.
| | - Franco Liporace
- Grupo de Biotecnología y Nanotecnología Aplicada, Facultad Regional Delta, Universidad Tecnológica Nacional, San Martín 1171, Campana, 2804, Buenos Aires, Argentina
| | - Carla V Quevedo
- Grupo de Biotecnología y Nanotecnología Aplicada, Facultad Regional Delta, Universidad Tecnológica Nacional, San Martín 1171, Campana, 2804, Buenos Aires, Argentina
- Consejo de Investigaciones Científicas y Técnicas (CONICET), CABA (C1425FQB), 2290, Godoy Cruz, Argentina
| |
Collapse
|
104
|
Fazekas ÁF, Gyulavári T, Pap Z, Bodor A, Laczi K, Perei K, Illés E, László Z, Veréb G. Effects of Different TiO 2/CNT Coatings of PVDF Membranes on the Filtration of Oil-Contaminated Wastewaters. MEMBRANES 2023; 13:812. [PMID: 37887984 PMCID: PMC10608089 DOI: 10.3390/membranes13100812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023]
Abstract
Six different TiO2/CNT nanocomposite-coated polyvinylidene-fluoride (PVDF) microfilter membranes (including -OH or/and -COOH functionalized CNTs) were evaluated in terms of their performance in filtering oil-in-water emulsions. In the early stages of filtration, until reaching a volume reduction ratio (VRR) of ~1.5, the membranes coated with functionalized CNT-containing composites provided significantly higher fluxes than the non-functionalized ones, proving the beneficial effect of the surface modifications of the CNTs. Additionally, until the end of the filtration experiments (VRR = 5), notable flux enhancements were achieved with both TiO2 (~50%) and TiO2/CNT-coated membranes (up to ~300%), compared to the uncoated membrane. The irreversible filtration resistances of the membranes indicated that both the hydrophilicity and surface charge (zeta potential) played a crucial role in membrane fouling. However, a sharp and significant flux decrease (~90% flux reduction ratio) was observed for all membranes until reaching a VRR of 1.1-1.8, which could be attributed to the chemical composition of the oil. Gas chromatography measurements revealed a lack of hydrocarbon derivatives with polar molecular fractions (which can act as natural emulsifiers), resulting in significant coalescent ability (and less stable emulsion). Therefore, this led to a more compact cake layer formation on the surface of the membranes (compared to a previous study). It was also demonstrated that all membranes had excellent purification efficiency (97-99.8%) regarding the turbidity, but the effectiveness of the chemical oxygen demand reduction was slightly lower, ranging from 93.7% to 98%.
Collapse
Affiliation(s)
- Ákos Ferenc Fazekas
- Department of Biosystem Engineering, Faculty of Engineering, University of Szeged, Moszkvai Blvd. 9., H-6725 Szeged, Hungary
- Doctoral School of Environmental Sciences, University of Szeged, Rerrich Béla Sq. 1, H-6720 Szeged, Hungary
| | - Tamás Gyulavári
- Department of Applied and Environmental Chemistry, Institute of Chemistry, University of Szeged, Rerrich Béla Sq. 1, H-6720 Szeged, Hungary
| | - Zsolt Pap
- Department of Applied and Environmental Chemistry, Institute of Chemistry, University of Szeged, Rerrich Béla Sq. 1, H-6720 Szeged, Hungary
- Centre of Nanostructured Materials and Bio-Nano Interfaces, Institute for Interdisciplinary, Research on Bio-Nano-Sciences, Treboniu Laurian 42, RO-400271 Cluj-Napoca, Romania
- STAR-UBB Institute, Mihail Kogălniceanu 1, RO-400084 Cluj-Napoca, Romania
| | - Attila Bodor
- Department of Biotechnology, Institute of Biology, University of Szeged, Közép Alley 52, H-6726 Szeged, Hungary
- Institute of Biophysics, Biological Research Centre, Hungarian Research Network, Temesvári Blvd. 62, H-6726 Szeged, Hungary
| | - Krisztián Laczi
- Department of Biotechnology, Institute of Biology, University of Szeged, Közép Alley 52, H-6726 Szeged, Hungary
| | - Katalin Perei
- Department of Biotechnology, Institute of Biology, University of Szeged, Közép Alley 52, H-6726 Szeged, Hungary
| | - Erzsébet Illés
- Department of Food Engineering, Faculty of Engineering, University of Szeged, Mars Sq. 7, H-6724 Szeged, Hungary
| | - Zsuzsanna László
- Department of Biosystem Engineering, Faculty of Engineering, University of Szeged, Moszkvai Blvd. 9., H-6725 Szeged, Hungary
| | - Gábor Veréb
- Department of Biosystem Engineering, Faculty of Engineering, University of Szeged, Moszkvai Blvd. 9., H-6725 Szeged, Hungary
| |
Collapse
|
105
|
Yehia RS. Highlighting the potential for crude oil bioremediation of locally isolated Cunninghamella echinulata and Mucor circinelloides. Braz J Microbiol 2023; 54:1969-1981. [PMID: 37249816 PMCID: PMC10485222 DOI: 10.1007/s42770-023-01008-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/13/2023] [Indexed: 05/31/2023] Open
Abstract
The current investigation was carried out to assess the potential of fungi isolated from polluted soil samples in Al Jubail, Saudi Arabia, to degrade crude oil. In a minimal salt medium with 1% crude oil as the carbon source, the growth potential of various fungal isolates was examined. Among twelve fungal isolates, YS-6 and YS-10, identified as Cunninghamella echinulata and Mucor circinelloides based on multiple sequence comparisons and phylogenetic analyses, were selected as having superior crude oil degrading abilities. To the best of our knowledge, the isolated species have never been detected in polluted soil samples in the eastern province of Saudi Arabia. YS-6 and YS-10 have shown their capacity to metabolize crude oil by removing 59.7 and 78.1% of crude oil, respectively. Interestingly, they succeeded in reducing the surface tension to 41.2 and 35.9 mN/m, respectively. Moreover, the emulsification activity and hydrophobicity were determined to be 36.7, 44.9, 35.9, and 53.4%, respectively. The recovery assays included zinc sulfate, ammonium sulfate, acid precipitation, and solvent extraction techniques. All these approaches showed that the amount of biosurfactants correlates to the tested hydrocarbons. Furthermore, the enzyme activity of these two isolates generated significantly more laccase (Lac) than manganese peroxidase (MnP) and lignin peroxidase (LiP), as compared to the control. In conclusion, our study highlights new perspectives on the fungal resources found in persistently polluted terrestrial ecosystems. This knowledge will be useful for bioremediation, safe disposal of petroleum-oil contamination, and other industrial uses.
Collapse
Affiliation(s)
- Ramy S Yehia
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia.
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
106
|
Dai X, Lv J, Fu P, Guo S. Microbial remediation of oil-contaminated shorelines: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:93491-93518. [PMID: 37572250 DOI: 10.1007/s11356-023-29151-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/31/2023] [Indexed: 08/14/2023]
Abstract
Frequent marine oil spills have led to increasingly serious oil pollution along shorelines. Microbial remediation has become a research hotspot of intertidal oil pollution remediation because of its high efficiency, low cost, environmental friendliness, and simple operation. Many microorganisms are able to convert oil pollutants into non-toxic substances through their growth and metabolism. Microorganisms use enzymes' catalytic activities to degrade oil pollutants. However, microbial remediation efficiency is affected by the properties of the oil pollutants, microbial community, and environmental conditions. Feasible field microbial remediation technologies for oil spill pollution in the shorelines mainly include the addition of high-efficiency oil degrading bacteria (immobilized bacteria), nutrients, biosurfactants, and enzymes. Limitations to the field application of microbial remediation technology mainly include slow start-up, rapid failure, long remediation time, and uncontrolled environmental impact. Improving the environmental adaptability of microbial remediation technology and developing sustainable microbial remediation technology will be the focus of future research. The feasibility of microbial remediation techniques should also be evaluated comprehensively.
Collapse
Affiliation(s)
- Xiaoli Dai
- Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 10089, China.
| | - Jing Lv
- China University of Petroleum-Beijing, Beijing, 102249, China
| | - Pengcheng Fu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Hainan, 570228, China
| | - Shaohui Guo
- China University of Petroleum-Beijing, Beijing, 102249, China
| |
Collapse
|
107
|
Carregosa JC, Castiblanco JEB, Santos TM, Prata PS, Santos JM, Wisniewski A. Assessment of the effect of short-term weathering on the molecular-level chemical composition of crude oils in contact with aquatic environments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:95738-95757. [PMID: 37556063 DOI: 10.1007/s11356-023-29148-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 07/29/2023] [Indexed: 08/10/2023]
Abstract
Multiple studies have focused on the effect of long-term weathering processes on oils after spill events, without considering the chemical compositional changes occurring shortly after the release of oil into the environment. Therefore, the present study provides a broad chemical characterization for understanding of the changes occurring in the chemical compositions of intermediate (°API = 27.0) and heavy (°API = 20.9) oils from the Sergipe-Alagoas basin submitted to two simulated situations, one under marine conditions and the other in a riverine environment. Samples of the oils were collected during the first 72 h of contact with the simulated environments, followed by evaluation of their chemical compositions. SARA fractionation was used to isolate the resins, which were characterized at the molecular level by UHRMS. The evaporation process was highlighted, with the GC-FID chromatographic profiles showing the disappearance of compounds from n-C10 until n-C16, as well as changes in the weathering indexes and pristane + n-C17/phytane + n-C18 ratios for the crude oils submitted to the riverine conditions. Analysis of the resins fraction showed that basic polar compounds underwent little or no alterations during the early stages of weathering. The marine environment was shown to be much less oxidative than the riverine environment. For both environments, a feature highlighted was an increase of acidic oxygenated compounds with the increase of weathering, especially for the crude oil with °API = 27.0.
Collapse
Affiliation(s)
- Jhonattas Carvalho Carregosa
- Petroleum and Energy from Biomass Research Group (PEB), Department of Chemistry, Federal University of Sergipe, Jardim Rosa Elze, São Cristóvão, SE, 49107-230, Brazil
| | - Julian Eduardo Ballén Castiblanco
- Petroleum and Energy from Biomass Research Group (PEB), Department of Chemistry, Federal University of Sergipe, Jardim Rosa Elze, São Cristóvão, SE, 49107-230, Brazil
| | - Tarcísio Martins Santos
- Petroleum and Energy from Biomass Research Group (PEB), Department of Chemistry, Federal University of Sergipe, Jardim Rosa Elze, São Cristóvão, SE, 49107-230, Brazil
| | - Paloma Santana Prata
- Petroleum and Energy from Biomass Research Group (PEB), Department of Chemistry, Federal University of Sergipe, Jardim Rosa Elze, São Cristóvão, SE, 49107-230, Brazil
| | - Jandyson Machado Santos
- Department of Chemistry, Federal Rural University of Pernambuco, Dois Irmãos, Recife, PE, 52171-900, Brazil
| | - Alberto Wisniewski
- Petroleum and Energy from Biomass Research Group (PEB), Department of Chemistry, Federal University of Sergipe, Jardim Rosa Elze, São Cristóvão, SE, 49107-230, Brazil.
| |
Collapse
|
108
|
Wojtowicz K, Steliga T, Kapusta P, Brzeszcz J. Oil-Contaminated Soil Remediation with Biodegradation by Autochthonous Microorganisms and Phytoremediation by Maize ( Zea mays). Molecules 2023; 28:6104. [PMID: 37630356 PMCID: PMC10459520 DOI: 10.3390/molecules28166104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Biological methods are currently the most commonly used methods for removing hazardous substances from land. This research work focuses on the remediation of oil-contaminated land. The biodegradation of aliphatic hydrocarbons and PAHs as a result of inoculation with biopreparations B1 and B2 was investigated. Biopreparation B1 was developed on the basis of autochthonous bacteria, consisting of strains Dietzia sp. IN118, Gordonia sp. IN101, Mycolicibacterium frederiksbergense IN53, Rhodococcus erythropolis IN119, Rhodococcus globerulus IN113 and Raoultella sp. IN109, whereas biopreparation B2 was enriched with fungi, such as Aspergillus sydowii, Aspergillus versicolor, Candida sp., Cladosporium halotolerans, Penicillium chrysogenum. As a result of biodegradation tests conducted under ex situ conditions for soil inoculated with biopreparation B1, the concentrations of TPH and PAH were reduced by 31.85% and 27.41%, respectively. Soil inoculation with biopreparation B2 turned out to be more effective, as a result of which the concentration of TPH was reduced by 41.67% and PAH by 34.73%. Another issue was the phytoremediation of the pre-treated G6-3B2 soil with the use of Zea mays. The tests were carried out in three systems (system 1-soil G6-3B2 + Zea mays; system 2-soil G6-3B2 + biopreparation B2 + Zea mays; system 3-soil G6-3B2 + biopreparation B2 with γ-PGA + Zea mays) for 6 months. The highest degree of TPH and PAH reduction was obtained in system 3, amounting to 65.35% and 60.80%, respectively. The lowest phytoremediation efficiency was recorded in the non-inoculated system 1, where the concentration of TPH was reduced by 22.80% and PAH by 18.48%. Toxicological tests carried out using PhytotoxkitTM, OstracodtoxkitTM and Microtox® Solid Phase tests confirmed the effectiveness of remediation procedures and showed a correlation between the concentration of petroleum hydrocarbons in the soil and its toxicity. The results obtained during the research indicate the great potential of bioremediation practices with the use of microbial biopreparations and Zea mays in the treatment of soils contaminated with petroleum hydrocarbons.
Collapse
Affiliation(s)
- Katarzyna Wojtowicz
- Oil and Gas Institute—National Research Institute, ul. Lubicz 25 A, 31-503 Krakow, Poland; (T.S.); (P.K.); (J.B.)
| | | | | | | |
Collapse
|
109
|
Deng Z, Yu T, Li S, He C, Hu B, Zhang X. Effects of 2,6-di-tert-butyl-hydroxytotulene and mineral-lubricant base oils on microbial communities during lubricants biodegradation. ENVIRONMENTAL RESEARCH 2023; 231:116120. [PMID: 37182830 DOI: 10.1016/j.envres.2023.116120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/06/2023] [Accepted: 05/11/2023] [Indexed: 05/16/2023]
Abstract
2,6-Di-tert-butyl-hydroxytotulene (BHT) is an additive commonly used in the manufacturing of lubricants to improve their antioxidant properties. However, in this study, we found that BHT affects the biodegradation of bio-lubricants by influencing the microbial community during the degradation of bio-lubricants. Specifically, BHT was found to reduce bacterial richness in activated sludge, but it increased the relative abundance of Actinobacteria (from 21.24% to 40.89%), Rhodococcus (from 17.15% to 31.25%), Dietzia (from 0.069% to 6.49%), and Aequorivita (from 0.90% to 1.85%). LEfSe analysis and co-occurrence network analysis suggested that Actinobacteria could be potential biomarkers and keystone taxa in microbial communities. Using the MetaCyc pathway database, the study found that BHT interfered with cellular biosynthetic processes. Additionally, the study also showed that mineral-lubricant base oils, which are difficult to degrade, significantly altered the diversity and composition of the microbiome. Overall, the findings demonstrate that BHT and mineral-lubricant base oils can substantially alter bacterial richness, structure, and function, potentially contributing to the difficulty in degrading lubricants. These findings have implications for the development of more biodegradable lubricants and the management of industrial waste containing lubricants.
Collapse
Affiliation(s)
- Zhenkun Deng
- Beijing Key Lab of Bioprocess, National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Tong Yu
- Beijing Key Lab of Bioprocess, National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Shuai Li
- Beijing Key Lab of Bioprocess, National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Changliu He
- Beijing Key Lab of Bioprocess, National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Bing Hu
- Beijing Key Lab of Bioprocess, National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Xu Zhang
- Beijing Key Lab of Bioprocess, National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.
| |
Collapse
|
110
|
Yuan L, Wu Y, Fan Q, Li P, Liang J, Liu Y, Ma R, Li R, Shi L. Remediating petroleum hydrocarbons in highly saline-alkali soils using three native plant species. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 339:117928. [PMID: 37060692 DOI: 10.1016/j.jenvman.2023.117928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/28/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
Phytoremediation of total petroleum hydrocarbons (TPHs) contamination is a process that uses the synergistic action of plants and rhizosphere microorganisms to degrade, absorb and stabilize pollutants in the soil, and has received increasing attention in recent years. However, this technology still has some challenges under certain conditions (e.g., highly alkaline and saline environments). The present study was selected three native plant species (alfalfa, tall fescue, and ryegrass) to remediate petroleum pollutants in greenhouse pot experiments. The results indicate that TPH contamination not only inhibited plant growth, soil chemical properties and soil fertility (i.e. lower plant biomass, chlorophyll, pH, and electrical conductivity), but also increased the malondialdehyde, glutathione, and antioxidant enzyme activities (catalase and polyphenol oxidase). Further, correlation analysis results illustrated that TPH removal was strongly positively correlated with chlorophyll, soil fertility, and total organic carbon, but was negatively correlated with dehydrogenase, polyphenol oxidase, pH, and electrical conductivity. The highest TPHs removal rate (74.13%) was exhibited by alfalfa, followed by tall fescue (61.79%) and ryegrass (57.28%). The degradation rates of short-chain alkanes and low rings polycyclic aromatic hydrocarbons (PAHs) were substantially higher than those of long-chain alkanes and high rings PAHs. The findings of this study provide valuable insights into petroleum decontamination strategies in the highly saline - alkali environments.
Collapse
Affiliation(s)
- Longmiao Yuan
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingqin Wu
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Petroleum Resources, Gansu, Lanzhou, 730000, China.
| | - Qiaohui Fan
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Petroleum Resources, Gansu, Lanzhou, 730000, China; Key Laboratory of Strategic Mineral Resources of the Upper Yellow River, Ministry of Natural Resources, Lanzhou, 730046, China.
| | - Ping Li
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Petroleum Resources, Gansu, Lanzhou, 730000, China; Key Laboratory of Strategic Mineral Resources of the Upper Yellow River, Ministry of Natural Resources, Lanzhou, 730046, China
| | - Jianjun Liang
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Petroleum Resources, Gansu, Lanzhou, 730000, China; Key Laboratory of Strategic Mineral Resources of the Upper Yellow River, Ministry of Natural Resources, Lanzhou, 730046, China
| | - Yanhong Liu
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Petroleum Resources, Gansu, Lanzhou, 730000, China
| | - Rong Ma
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruijie Li
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Leiping Shi
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
111
|
Yamini V, Rajeswari VD. Metabolic capacity to alter polycyclic aromatic hydrocarbons and its microbe-mediated remediation. CHEMOSPHERE 2023; 329:138707. [PMID: 37068614 DOI: 10.1016/j.chemosphere.2023.138707] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023]
Abstract
The elimination of contaminants caused by anthropogenic activities and rapid industrialization can be accomplished using the widely used technology of bioremediation. Recent years have seen significant advancement in our understanding of the bioremediation of coupled polycyclic aromatic hydrocarbon contamination caused by microbial communities including bacteria, algae, fungi, yeast, etc. One of the newest techniques is microbial-based bioremediation because of its greater productivity, high efficiency, and non-toxic approach. Microbes are appealing candidates for bioremediation because they have amazing metabolic capacity to alter most types of organic material and can endure harsh environmental conditions. Microbes have been characterized as extremophiles that can survive in a variety of environmental circumstances, making them the treasure troves for environmental cleanup and the recovery of contaminated soil. In this study, the mechanisms underlying the bioremediation process as well as the current situation of microbial bioremediation of polycyclic aromatic hydrocarbon are briefly described.
Collapse
Affiliation(s)
- V Yamini
- Department of Biomedical Sciences, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India
| | - V Devi Rajeswari
- Department of Biomedical Sciences, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India.
| |
Collapse
|
112
|
Nnadi MO, Bingle L, Thomas K. Bacterial community dynamics and associated genes in hydrocarbon contaminated soil during bioremediation using brewery spent grain. Access Microbiol 2023; 5:acmi000519.v3. [PMID: 37424545 PMCID: PMC10323799 DOI: 10.1099/acmi.0.000519.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 04/05/2023] [Indexed: 07/11/2023] Open
Abstract
Brewery spent grain (BSG) has previously been exploited in bioremediation. However, detailed knowledge of the associated bacterial community dynamics and changes in relevant metabolites and genes over time is limited. This study investigated the bioremediation of diesel contaminated soil amended with BSG. We observed complete degradation of three total petroleum hydrocarbon (TPH C10-C28) fractions in amended treatments as compared to one fraction in the unamended, natural attenuation treatments. The biodegradation rate constant (k) was higher in amended treatments (0.1021k) than in unamended (0.059k), and bacterial colony forming units increased significantly in amended treatments. The degradation compounds observed fitted into the elucidated diesel degradation pathways and quantitative PCR results showed that the gene copy numbers of all three associated degradation genes, alkB, catA and xylE, were significantly higher in amended treatments. High-throughput sequencing of 16S rRNA gene amplicons showed that amendment with BSG enriched autochthonous hydrocarbon degraders. Also, community shifts of the genera Acinetobacter and Pseudomonas correlated with the abundance of catabolic genes and degradation compounds observed. This study showed that these two genera are present in BSG and thus may be associated with the enhanced biodegradation observed in amended treatments. The results suggest that the combined evaluation of TPH, microbiological, metabolite and genetic analysis provides a useful holistic approach to assessing bioremediation.
Collapse
Affiliation(s)
- Mabel Owupele Nnadi
- Faculty of Health Sciences & Wellbeing, University of Sunderland, Chester Road, Sunderland SR1 3SD, UK
| | - Lewis Bingle
- Faculty of Health Sciences & Wellbeing, University of Sunderland, Chester Road, Sunderland SR1 3SD, UK
| | - Keith Thomas
- Brewlab, Unit One, West Quay Court, Sunderland SR5 2TE, UK
| |
Collapse
|
113
|
Talukdar P, Bordoloi P, Bora PP, Yadav A, Saikia R, Geed SR. Assessment of oily sludge biodegradation in lab scale composting and slurry bioreactor by bacterial consortium. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118360. [PMID: 37315467 DOI: 10.1016/j.jenvman.2023.118360] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023]
Abstract
The present study aimed to investigate biodegradability of oily sludge in lab scale composting and slurry bioreactor using a potential bacterial consortium isolated from petroleum-contaminated sites. The consortium used in the study consisted of bacterial genera, including Enterobacter, Bacillus, Microbacterium, Alcaligenes Pseudomonas, Ochrobactrum, Micrococcus, and Shinella which were obtained after rigorous screening using different hydrocarbons. The meticulously designed lab scale composting experiments were carried out and showed that the combination of 10% oily sludge (A1) exhibited the highest total carbon (TC) removal, which was 40.33% within 90 days. To assess the composting experiments' efficiency, the first (k1) and second (k2) order rate constants were evaluated and was found to be 0.0004-0.0067 per day and second (k2) 0.0000008-0.00005 g/kg. day respectively. To further enhance the biodegradation rate of A1 combination, a slurry bioreactor was used. The maximum total petroleum hydrocarbon (TPH) removals in a slurry bioreactor for cycle-I and -II were 48.8% and 46.5%, respectively, on the 78th and 140th days of the treatment. The results obtained in the study will be a technological platform for the development of slurry phase treatment of petroleum waste in a sustainable and eco-friendly manner.
Collapse
Affiliation(s)
- Pooja Talukdar
- CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Palakshi Bordoloi
- CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India
| | - Priyankush Protim Bora
- CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Archana Yadav
- CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India
| | - Ratul Saikia
- CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sachin Rameshrao Geed
- CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
114
|
Xiang W, Hong S, Xue Y, Ma Y. Functional Analysis of Novel alkB Genes Encoding Long-Chain n-Alkane Hydroxylases in Rhodococcus sp. Strain CH91. Microorganisms 2023; 11:1537. [PMID: 37375039 DOI: 10.3390/microorganisms11061537] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Rhodococcus sp. strain CH91 is capable of utilizing long-chain n-alkanes as the sole carbon source. Two new genes (alkB1 and alkB2) encoding AlkB-type alkane hydroxylase were predicted by its whole-genome sequence analysis. The purpose of this study was to elucidate the functional role of alkB1 and alkB2 genes in the n-alkane degradation of strain CH91. RT-qPCR analyses revealed that the two genes were induced by n-alkanes ranging from C16 to C36 and the expression of the alkB2 gene was up-regulated much higher than that of alkB1. The knockout of the alkB1 or alkB2 gene in strain CH91 resulted in the obvious reduction of growth and degradation rates on C16-C36 n-alkanes and the alkB2 knockout mutant exhibited lower growth and degradation rate than the alkB1 knockout mutant. When gene alkB1 or alkB2 was heterologously expressed in Pseudomonas fluorescens KOB2Δ1, the two genes could restore its alkane degradation activity. These results demonstrated that both alkB1 and alkB2 genes were responsible for C16-C36 n-alkanes' degradation of strain CH91, and alkB2 plays a more important role than alkB1. The functional characteristics of the two alkB genes in the degradation of a broad range of n-alkanes make them potential gene candidates for engineering the bacteria used for bioremediation of petroleum hydrocarbon contaminations.
Collapse
Affiliation(s)
- Wei Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shan Hong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanfen Xue
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanhe Ma
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
115
|
Das S. Cell surface hydrophobicity and petroleum hydrocarbon degradation by biofilm-forming marine bacterium Pseudomonas furukawaii PPS-19 under different physicochemical stressors. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131795. [PMID: 37301070 DOI: 10.1016/j.jhazmat.2023.131795] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/19/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
Biofilm-forming marine bacterium Pseudomonas furukawaii PPS-19 showed strong hydrophobicity under different physicochemical stressors, such as pH and salinity. Strong aggregation of P. furukawaii PPS-19 was observed at hydrophobic interfaces of n-dodecane and crude oil, while uptake of pyrene resulted in blue fluorescence of the bacterium. Changes in biofilm microcolonies were observed under different physicochemical stressors with maximum biofilm thickness of 15.15 µm and 15.77 µm at pH 7% and 1% salinity, respectively. Relative expression analysis of alkB2 gene revealed the maximum expression in n-dodecane (10.5 fold) at pH 7 (1 fold) and 1% salinity (8.3 fold). During the degradation process, a significant drop in surface tension resulted in increased emulsification activity. P. furukawaii PPS-19 showed the respective n-dodecane and pyrene degradation of 94.3% and 81.5% at pH 7% and 94.5% and 83% at 1% salinity. A significant positive correlation was obtained between cell surface hydrophobicity (CSH), biofilm formation, and PHs degradation (P < 0.05) under all the physicochemical stressors, with the highest value at pH 7% and 1% salinity. Analysis of metabolites indicated that mono-terminal oxidation and multiple pathways were followed for n-dodecane and pyrene biodegradation, respectively. Thus, P. furukawaii PPS-19 is an efficient hydrocarbonoclastic bacterium that may be exploited for large-scale oil pollution abatement.
Collapse
Affiliation(s)
- Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769 008, Odisha, India.
| |
Collapse
|
116
|
Zhong J, Wu S, Chen WJ, Huang Y, Lei Q, Mishra S, Bhatt P, Chen S. Current insights into the microbial degradation of nicosulfuron: Strains, metabolic pathways, and molecular mechanisms. CHEMOSPHERE 2023; 326:138390. [PMID: 36935058 DOI: 10.1016/j.chemosphere.2023.138390] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 02/02/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Nicosulfuron is among the sulfonylurea herbicides that are widely used to control annual and perennial grass weeds in cornfields. However, nicosulfuron residues in the environment are likely to cause long-lasting harmful environmental and biological effects. Nicosulfuron degrades via photo-degradation, chemical hydrolysis, and microbial degradation. The latter is crucial for pesticide degradation and has become an essential strategy to remove nicosulfuron residues from the environment. Most previous studies have focused on the screening, degradation characteristics, and degradation pathways of biodegrader microorganisms. The isolated nicosulfuron-degrading strains include Bacillus, Pseudomonas, Klebsiella, Alcaligenes, Rhodopseudomonas, Ochrobactrum, Micrococcus, Serratia, Penicillium, Aspergillus, among others, all of which have good degradation efficiency. Two main intermediates, 2-amino-4,6-dimethoxypyrimidine (ADMP) and 2-aminosulfonyl-N,N-dimethylnicotinamide (ASDM), are produced during microbial degradation and are derived from the C-N, C-S, and S-N bond breaks on the sulfonylurea bridge, covering almost every bacterial degradation pathway. In addition, enzymes related to the degradation of nicosulfuron have been identified successively, including the manganese ABC transporter (hydrolase), Flavin-containing monooxygenase (oxidase), and E3 (esterase). Further in-depth studies based on molecular biology and genetics are needed to elaborate on their role in the evolution of novel catabolic pathways and the microbial degradation of nicosulfuron. To date, few reviews have focused on the microbial degradation and degradation mechanisms of nicosulfuron. This review summarizes recent advances in nicosulfuron degradation and comprehensively discusses the potential of nicosulfuron-degrading microorganisms for bioremediating contaminated environments, providing a reference for further research development on nicosulfuron biodegradation in the future.
Collapse
Affiliation(s)
- Jianfeng Zhong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Siyi Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Wen-Juan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Yaohua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Qiqi Lei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Sandhya Mishra
- Environmental Technologies Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
| | - Pankaj Bhatt
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, 47906, USA.
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
117
|
Zhuang J, Zhang R, Zeng Y, Dai T, Ye Z, Gao Q, Yang Y, Guo X, Li G, Zhou J. Petroleum pollution changes microbial diversity and network complexity of soil profile in an oil refinery. Front Microbiol 2023; 14:1193189. [PMID: 37287448 PMCID: PMC10242060 DOI: 10.3389/fmicb.2023.1193189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/27/2023] [Indexed: 06/09/2023] Open
Abstract
Introduction Petroleum pollution resulting from spills and leakages in oil refinery areas has been a significant environmental concern for decades. Despite this, the effects of petroleum pollutants on soil microbial communities and their potential for pollutant biodegradation still required further investigation. Methods In this study, we collected 75 soil samples from 0 to 5 m depths of 15 soil profiles in an abandoned refinery to analyze the effect of petroleum pollution on soil microbial diversity, community structure, and network co-occurrence patterns. Results Our results suggested soil microbial a-diversity decreased under high C10-C40 levels, coupled with significant changes in the community structure of soil profiles. However, soil microbial network complexity increased with petroleum pollution levels, suggesting more complex microbial potential interactions. A module specific for methane and methyl oxidation was also found under high C10-C40 levels of the soil profile, indicating stronger methanotrophic and methylotrophic metabolic activities at the heavily polluted soil profile. Discussion The increased network complexity observed may be due to more metabolic pathways and processes, as well as increased microbial interactions during these processes. These findings highlight the importance of considering both microbial diversity and network complexity in assessing the effects of petroleum pollution on soil ecosystems.
Collapse
Affiliation(s)
- Jugui Zhuang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Ruihuan Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Yufei Zeng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Tianjiao Dai
- School of Water Resources and Environment, China University of Geosciences, Beijing, China
| | - Zhencheng Ye
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Qun Gao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Xue Guo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Guanghe Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Jizhong Zhou
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, United States
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States
- Earth and Environmental Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
118
|
Wu B, Xiu J, Yu L, Huang L, Yi L, Ma Y. Degradation of crude oil in a co-culture system of Bacillus subtilis and Pseudomonas aeruginosa. Front Microbiol 2023; 14:1132831. [PMID: 37250029 PMCID: PMC10213283 DOI: 10.3389/fmicb.2023.1132831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 04/21/2023] [Indexed: 05/31/2023] Open
Abstract
Microbial remediation has been regarded as one of the most promising decontamination techniques for crude oil pollution. However, there are few studies on the interaction of bacteria in the microbial community during bioremediation. The aim of this work was to research the promotion of defined co-culture of Bacillus subtilis SL and Pseudomonas aeruginosa WJ-1 for biodegradation of crude oil. After 7 days of incubation, the analysis of residual oil, saturated and aromatic fraction in the samples showed that the degradation efficiency of them was significantly improved. The degradation efficiency of crude oil was enhanced from 32.61% and 54.35% in individual culture to 63.05% by the defined co-culture of strains SL and WJ-1. Furthermore, it was found that the defined co-culture system represented relatively excellent performance in bacterial growth, cell surface hydrophobicity (CSH) and emulsification activity. These results indicated that the combination of Bacillus subtilis and Pseudomonas aeruginosa can effectively promote the degradation and utilization of crude oil, which may provide a new idea for the improvement of bioremediation strategies. GRAPHICAL ABSTRACT.
Collapse
Affiliation(s)
- Bo Wu
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
- Institute of Porous Flow and Fluid Mechanics, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Enhanced Oil Recovery, PetroChina Research Institute of Petroleum Exploration and Development, Beijing, China
| | - Jianlong Xiu
- PetroChina Research Institute of Petroleum Exploration and Development, Beijing, China
| | - Li Yu
- PetroChina Research Institute of Petroleum Exploration and Development, Beijing, China
| | - Lixin Huang
- PetroChina Research Institute of Petroleum Exploration and Development, Beijing, China
| | - Lina Yi
- PetroChina Research Institute of Petroleum Exploration and Development, Beijing, China
| | - Yuandong Ma
- PetroChina Research Institute of Petroleum Exploration and Development, Beijing, China
| |
Collapse
|
119
|
Li J, Lin F, Yu H, Tong X, Cheng Z, Yan B, Song Y, Chen G, Hou L, Crittenden JC. Biochar-Assisted Catalytic Pyrolysis of Oily Sludge to Attain Harmless Disposal and Residue Utilization for Soil Reclamation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7063-7073. [PMID: 37018050 DOI: 10.1021/acs.est.2c09099] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Pyrolysis of oily sludge (OS) is a feasible technology to match the principle of reduction and recycling; however, it is difficult to confirm the feasible environmental destination and meet the corresponding requirements. Therefore, an integrated strategy of biochar-assisted catalytic pyrolysis (BCP) of OS and residue utilization for soil reclamation is investigated in this study. During the catalytic pyrolysis process, biochar as a catalyst intensifies the removal of recalcitrant petroleum hydrocarbons at the expense of liquid product yield. Concurrently, biochar as an adsorbent can inhibit the release of micromolecular gaseous pollutants (e.g. HCN, H2S, and HCl) and stabilize heavy metals. Due to the assistance of biochar, pyrolysis reactions of OS are more likely to occur and require a lower temperature to achieve the same situation. During the soil reclamation process, the obtained residue as a soil amendment can not only provide a carbon source and mineral nutrients but can also improve the abundance and diversity of microbial communities. Thus, it facilitates the plant germination and the secondary removal of petroleum hydrocarbons. The integrated strategy of BCP of OS and residue utilization for soil reclamation is a promising management strategy, which is expected to realize the coordinated and benign disposal of more than one waste.
Collapse
Affiliation(s)
- Jiantao Li
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, P. R. China
| | - Fawei Lin
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, P. R. China
| | - Hongdi Yu
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, P. R. China
| | - Xin Tong
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Zhanjun Cheng
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, P. R. China
| | - Beibei Yan
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, P. R. China
| | - Yingjin Song
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, P. R. China
| | - Guanyi Chen
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, P. R. China
| | - Li'an Hou
- Xi'an High-Tech Institute, Xi'an 710025, P. R. China
| | - John C Crittenden
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
120
|
Zeng Z, Yue W, Kined C, Raciheon B, Liu J, Chen X. Effect of Lysinibacillus isolated from environment on probiotic properties and gut microbiota in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 258:114952. [PMID: 37141683 DOI: 10.1016/j.ecoenv.2023.114952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/09/2023] [Accepted: 04/22/2023] [Indexed: 05/06/2023]
Abstract
Soil microorganisms (SM) are primarily involved in organism degradation, plant nitrogen nutrient immobilization, host microorganisms and oxidation. However, research on the effect of soil-derived Lysinibacillus on the intestinal microbiota spatial disparity of mice is lacking. To test the probiotic properties of Lysinibacillus and the spatial disparity on mice intestinal microorganisms, hemolysis test, molecular phylogenetic analysis, antibiotic sensitivity testing, serum biochemical assays and 16S rRNA profiling were applied. The results showed that Lysinibacillus (LZS1 and LZS2) was resistant to two common antibiotics, Tetracyclines and Rifampin, and sensitive to other antibiotics among the 12 antibiotics tested and negative for hemolysis. In addition, the body weight of group L (treatment of Lysinibacillus, 1.0 × 108 CFU/d for 21days) mice was significantly greater than that of the control group; serum biochemical tests showed that the TG and UREA were significantly lower in group L. The spatial disparity of intestinal microorganisms in mice was significant, treatment of Lysinibacillus (1.0 × 108 CFU/d for 21days) reduced the intestinal microbial diversity and decreased the richness of Proteobacteria, Cyanobacteria and Bacteroidetes in mice. Furthermore, Lysinibacillus treatment enhanced Lactobacillus and Lachnospiraceae richness and significantly reduced 6 bacterial genera in jejunum community, reduced 8 bacterial genera, but increased bacteria at the 4 genera level in cecum microorganisms. In conclusion, this study demonstrated spatial disparity of intestinal microorganisms in mice and probiotic potential of Lysinibacillus isolated from soil.
Collapse
Affiliation(s)
- Zhibo Zeng
- Institute of Animal Husbandry and Veterinary Medicine/Fujian Key Laboratory of Animal Genetics and Breeding, Fujian Academy of Agricultural Sciences, Fuzhou 350013, PR China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China; Institute of Agricultural Sciences, ETH Zurich, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - Wen Yue
- Institute of Animal Husbandry and Veterinary Medicine/Fujian Key Laboratory of Animal Genetics and Breeding, Fujian Academy of Agricultural Sciences, Fuzhou 350013, PR China
| | - Cermon Kined
- Institute of Agricultural Sciences, ETH Zurich, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - Bakint Raciheon
- Institute of Agricultural Sciences, ETH Zurich, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - Jing Liu
- Institute of Animal Husbandry and Veterinary Medicine/Fujian Key Laboratory of Animal Genetics and Breeding, Fujian Academy of Agricultural Sciences, Fuzhou 350013, PR China
| | - Xinzhu Chen
- Institute of Animal Husbandry and Veterinary Medicine/Fujian Key Laboratory of Animal Genetics and Breeding, Fujian Academy of Agricultural Sciences, Fuzhou 350013, PR China.
| |
Collapse
|
121
|
Ling H, Hou J, Du M, Zhang Y, Liu W, Christie P, Luo Y. Surfactant-enhanced bioremediation of petroleum-contaminated soil and microbial community response: A field study. CHEMOSPHERE 2023; 322:138225. [PMID: 36828103 DOI: 10.1016/j.chemosphere.2023.138225] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Surfactant-enhanced bioremediation (SEBR) is frequently employed to clean up soil polluted with petroleum hydrocarbons, but few studies have focused on how surfactants affect microbial communities and different fractions of petroleum hydrocarbons, particularly in the field. Here, the surfactants sodium dodecyl benzene sulfonate (SDBS), alpha olefin sulfonate (AOS), Triton X-100 (TX-100), Tween80, and rhamnolipid were combined with the oil-degrading bacterium Pseudomonas sp. SB to remediate oil-contaminated soil in the laboratory. AOS gave the highest removal efficiency (65.1%) of total petroleum hydrocarbons (TPHs). Therefore, AOS was used in a field experiment with Pseudomonas sp. SB and the removal efficiency of TPHs and long-chain hydrocarbons C21-C40 reached 57.4 and 53.0%, respectively, significantly higher than the other treatments. During bioremediation the addition of Pseudomonas sp. SB significantly stimulated the growth of bacterial genera such as Alcanivorax, Luteimonas, Parvibaculum, Stenotrophomonas, and Pseudomonas and AOS further stimulated the growth of Sphingobacterium, Pseudomonas and Alcanivorax. This study validates the feasibility of surfactant-enhanced bioremediation in the field and partly reveals the mechanism of surfactant-enhanced bioremediation from the perspective of changes in different fractions of petroleum and microbial community dynamics.
Collapse
Affiliation(s)
- Hao Ling
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinyu Hou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Mingjun Du
- China Petroleum Engineering and Construction Corporation North Company, Renqiu, 062552, China
| | - Yun Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Wuxing Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Peter Christie
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yongming Luo
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| |
Collapse
|
122
|
Saeed M, Ilyas N, Bibi F, Shabir S, Jayachandran K, Sayyed RZ, Shati AA, Alfaifi MY, Show PL, Rizvi ZF. Development of novel kinetic model based on microbiome and biochar for in-situ remediation of total petroleum hydrocarbons (TPHs) contaminated soil. CHEMOSPHERE 2023; 324:138311. [PMID: 36878368 DOI: 10.1016/j.chemosphere.2023.138311] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/05/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
A novel kinetic model has been developed to explain the degradation of total petroleum hydrocarbons. Microbiome engineered biochar amendment may result in a synergistic impact on degradation of total petroleum hydrocarbons (TPHs). Therefore, the present study analyzed the potential of hydrocarbon-degrading bacteria A designated as Aeromonas hydrophila YL17 and B as Shewanella putrefaciens Pdp11 morphological characterized as rod shaped, anaerobic and gram-negative immobilized on biochar, and the degradation efficiency was measured by gravimetric analysis and gas chromatography-mass spectrometry (GC-MS). Whole genome sequencing of both strains revealed the existence of genes responsible for hydrocarbon degradation. In 60 days remediation setup, the treatment consisting of immobilization of both strains on biochar proved more efficient with less half-life and better biodegradation potentials compared to biochar without strains for decreasing the content of TPHs and n-alkanes (C12-C18). Enzymatic content and microbiological respiration showed that biochar acted as a soil fertilizer and carbon reservoir and enhanced microbial activities. The removal efficiency of hydrocarbons was found to be a maximum of 67% in soil samples treated with biochar immobilized with both strains (A + B), followed by biochar immobilized with strain B 34%, biochar immobilized with strain A 29% and with biochar 24%, respectively. A 39%, 36%, and 41% increase was observed in fluorescein diacetate (FDA) hydrolysis, polyphenol oxidase and dehydrogenase activities in immobilized biochar with both strains as compared to control and individual treatment of biochar and strains. An increase of 35% was observed in the respiration rate with the immobilization of both strains on biochar. While a maximum colony forming unit (CFU/g) was found 9.25 with immobilization of both strains on biochar at 40 days of remediation. The degradation efficiency was due to synergistic effect of both biochar and bacteria based amendment on the soil enzymatic activity and microbial respiration.
Collapse
Affiliation(s)
- Maimona Saeed
- Department of Botany, PMAS-Arid Agriculture University Rawalpindi, 46300, Rawalpindi, Pakistan; Government College Women University, Sialkot. Pakistan
| | - Noshin Ilyas
- Department of Botany, PMAS-Arid Agriculture University Rawalpindi, 46300, Rawalpindi, Pakistan.
| | - Fatima Bibi
- Department of Botany, PMAS-Arid Agriculture University Rawalpindi, 46300, Rawalpindi, Pakistan
| | - Sumera Shabir
- Department of Botany, PMAS-Arid Agriculture University Rawalpindi, 46300, Rawalpindi, Pakistan
| | | | - R Z Sayyed
- Asian PGPR Society for Sustainable Agriculture, Auburn Ventures, Auburn, AL, 36830, USA
| | - Ali A Shati
- Biology Department, Faculty of Science, King Khalid University, Abha, 9004, Saudi Arabia
| | - Mohammad Y Alfaifi
- Biology Department, Faculty of Science, King Khalid University, Abha, 9004, Saudi Arabia
| | - Pau Loke Show
- Department of Chemical Engineering, Khalifa University, 127788, Abu Dhabi, United Arab Emirates; Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China; Department of Chemical and Environmental Engineering, University of Nottingham, Malaysia, 43500, Semenyih, Selangor Darul Ehsan, Malaysia; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | | |
Collapse
|
123
|
Zhang L, Zhou X, Hu C, Yao S, Shi L, Niu T, Li X, Tong L, Zhang J, Ma T, Xia W. CO 2 improves the anaerobic biodegradation intensity and selectivity of heterocyclic hydrocarbons in heavy oil. ENVIRONMENTAL RESEARCH 2023; 224:115541. [PMID: 36828250 DOI: 10.1016/j.envres.2023.115541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Heterocyclic hydrocarbons pollution generated by oil spills and oilfield wastewater discharges threatens the ecological environment and human health. Here we described a strategy that combines the greenhouse gas CO2 reduction with microbial remediation. In the presence of nitrate, CO2 can improve the biodegradation efficiency of the resins and asphaltenes in heavy oil, particularly the biodegradation selectivity of the polar heterocyclic compounds by the newly isolated Klebsiella michiganensis. This strain encoded 80 genes for the xenobiotic biodegradation and metabolism, and can efficiently utilize CO2 when degrading heavy oil. The total abundance of resins and asphaltenes decreased significantly with CO2, from 40.816% to 26.909%, to 28.873% with O2, and to 36.985% with N2. The transcripts per million (TPM) value of accA gene was 57.81 under CO2 condition, while respectively 8.86 and 21.23 under O2 and N2 conditions. Under CO2 condition, the total relative percentage of N1-type heterocyclic compounds was selectively decreased from 32.25% to 22.78%, resulting in the heavy oil viscosity decreased by 46.29%. These results demonstrated a novel anaerobic degradation mechanism that CO2 can promote the anaerobic biodegradation of heterocyclic hydrocarbons in heavy oil, which provides a promising biotreatment technology for the oil-contaminated water.
Collapse
Affiliation(s)
- Lu Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, PR China
| | - Xiangyu Zhou
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, PR China
| | - Chuxiao Hu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, PR China
| | - Shun Yao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, PR China
| | - Lei Shi
- Xinjiang Xinyitong Petroleum Technology Co.,Ltd, Karamay, 834000, PR China
| | - Tong Niu
- School of Public Health, Jilin University, Changchun, 130012, PR China
| | - Xin Li
- Xinli Oil Production Plant, Jilin Oilfield, PetroChina, Songyuan, 138001, PR China
| | - Lihua Tong
- Oil & Gas Survey, China Geological Survey, Beijing, 100083, PR China
| | - Jiaqiang Zhang
- The Key Laboratory of Unconventional Petroleum Geology, China Geological Survey, Beijing, 100083, PR China
| | - Ting Ma
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, PR China.
| | - Wenjie Xia
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, PR China.
| |
Collapse
|
124
|
Yue W, Li X, Jing J, Qi J, Dai S, Lu H, Huang Z. The green CO2-controllable fatty acid-based deep eutectic solvents for sustainable oil separation. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
125
|
Ma W, Zhang S, Deng L, Zhong D, Li K, Liu X, Li J, Zhang J, Ma J. Cu-based perovskite as a novel CWPO catalyst for petroleum refining wastewater treatment: Performance, toxicity and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130824. [PMID: 36764249 DOI: 10.1016/j.jhazmat.2023.130824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
For the first time, Cu-based perovskite oxides were used as catalysts to treat highly toxic and refractory petroleum refining wastewater based on catalytic wet peroxide oxidation (CWPO) technology. Perovskite La2CuO4 was synthesized by sol-gel method. A series of characterizations showed that the synthesized catalyst particles are tetragonal phase perovskite structure. The experimental results showed that under the conditions of catalyst dosage of 0.75 g, temperature of 100 ℃ and reaction time of 30 min, the COD removal rate was 89.58 %, the TOC removal rate was 87.38 %. The morphology and structure of the catalyst before and after the reaction proved that the catalyst has strong stability and catalytic activity. The components of raw water, Wet Air Oxidation (WAO) effluent and CWPO effluent were compared and analyzed by Gas Chromatography-Mass Spectrometry (GC-MS), and the possible mechanism and path of WAO and CWPO degradation of petroleum refining wastewater were further explored. The changes of Cu components in La2CuO4 before and after CWPO reaction and the transformation of lattice oxygen and adsorbed oxygen were analyzed by X-ray Photoelectron Spectroscopy (XPS). The involvement of Cu (Ⅱ) /Cu (Ⅰ) in the activation of H2O2 was speculated. Finally, the biotoxicity of raw water, WAO effluent and CWPO effluent was predicted. The results provide reference value for the application of catalyst La2CuO4 in various petrochemical wastewater.
Collapse
Affiliation(s)
- Wencheng Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China; Harbin Institute of Technology, National Engineer Research Center of Urban Water Resources, Harbin 150090, PR China
| | - Shaobo Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Liming Deng
- Harbin Institute of Technology, National Engineer Research Center of Urban Water Resources, Harbin 150090, PR China
| | - Dan Zhong
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China; Harbin Institute of Technology, National Engineer Research Center of Urban Water Resources, Harbin 150090, PR China.
| | - Kefei Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xiaotong Liu
- China Southwest Architectural Design and Research Institute Gorp.Ltd, PR China
| | - Jinxin Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jingna Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
126
|
Koohkan H, Mortazavi MS, Golchin A, Najafi-Ghiri M, Golkhandan M, Akbarzadeh-Chomachaei G, Saraji F. The effect of petroleum levels on some soil biological properties under phytoremediation and bioaugmentation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:60618-60637. [PMID: 37036650 DOI: 10.1007/s11356-023-26730-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 03/26/2023] [Indexed: 04/11/2023]
Abstract
With the development of industries and excessive use of petroleum compounds, petroleum pollution has become a serious threat to the environment. The aim of this study was to the effect of petroleum levels on the biological activities of soil affected by phytoremediation and bioaugmentation. A surface soil sample was collected from the polluted areas around Bandar Abbas Oil Refinery Company, and the petroleum-degrading bacteria were isolated. M. yunnanensis (native) was selected among the isolated colonies for further experiment. The used soil in this study was a surface soil collected from Baghu region of Bandar Abbas, Sothern Iran, and treatments were added to soil samples. To evaluate removal of petroleum levels (0, 4, and 8%) from the soil by phytoremediation (control, sorghum, barley, and bermudagrass) and bioaugmentation (control, A. brasilense (non-native) and M. yunnanensis) and bioaugmented phytoremediation, a factorial pot experiment with completely randomized design and three replications was performed. The results demonstrated that sorghum and bermudagrass were more resistant than barley to the toxic effects of petroleum. Positive effect of bacteria on dry weight in polluted soil was greater than in the non-polluted soil. The degradation of petroleum reaches 77% in sorghum + M. yunanesis + 4% petroleum. Plants had stronger ability to degrade total petroleum hydrocarbon (TPH), while bacteria could better degrade polyaromatic hydrocarbons (PAHs). Application of bacteria and plants stimulated soil biological characteristics (dehydrogenase, arylsulfatase, lipase, bacterial population, and respiration) in polluted soil. Among measured enzymes, dehydrogenase exhibited a stronger response to petroleum levels. Four-percent level had greater irritating effect on soil biological properties. Plants and bacteria rely on differences in biological properties to attain synergy in petroleum degradation. Results indicated that M. yunnanensis has a high ability to remove petroleum from soil, and plants enhance the efficiency of this bacterium.
Collapse
Affiliation(s)
- Hadi Koohkan
- Agricultural Education and Extension Research Organization, Persian Gulf and Oman Sea Ecological Research Institute, Iranian Fisheries Science Research Institute, Bandar Abbas, Hormozgan, Iran.
| | - Mohammad Seddiq Mortazavi
- Agricultural Education and Extension Research Organization, Persian Gulf and Oman Sea Ecological Research Institute, Iranian Fisheries Science Research Institute, Bandar Abbas, Hormozgan, Iran
| | - Ahmad Golchin
- Soil Science Department, Faculty of Agriculture, Zanjan University of Zanjan, Zanjan, Iran
| | - Mehdi Najafi-Ghiri
- College of Agriculture and Natural Resources of Darab, Shiraz University, Darab, Iran
| | | | - Gholamali Akbarzadeh-Chomachaei
- Agricultural Education and Extension Research Organization, Persian Gulf and Oman Sea Ecological Research Institute, Iranian Fisheries Science Research Institute, Bandar Abbas, Hormozgan, Iran
| | - Fereshteh Saraji
- Agricultural Education and Extension Research Organization, Persian Gulf and Oman Sea Ecological Research Institute, Iranian Fisheries Science Research Institute, Bandar Abbas, Hormozgan, Iran
| |
Collapse
|
127
|
Shanthi Kumari BS, Kumar KD, Golla N, Krishna SBN, Geetha KS, Vyshnava SS, Reddy BR. Effect of lignocellulosic materials and chlorpyrifos pesticide on secretion of ligninolytic enzymes by the white rot fungus – Stereum ostrea. BIOREMEDIATION JOURNAL 2023; 27:147-157. [DOI: 10.1080/10889868.2022.2029823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Affiliation(s)
- B. S. Shanthi Kumari
- Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu, Andhra Pradesh, India
| | - Kanderi Dileep Kumar
- Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu, Andhra Pradesh, India
| | - Narasimha Golla
- Department of Virology, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| | - Suresh Babu Naidu Krishna
- Department of Biomedical and Clinical Technology, Durban University of Technology, Durban, South Africa
| | - K. Sai Geetha
- Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu, Andhra Pradesh, India
| | | | - B. Rajasekhar Reddy
- Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu, Andhra Pradesh, India
| |
Collapse
|
128
|
Hou Z, Zhou Q, Mo F, Kang W, Ouyang S. Enhanced carbon emission driven by the interaction between functional microbial community and hydrocarbons: An enlightenment for carbon cycle. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161402. [PMID: 36638996 DOI: 10.1016/j.scitotenv.2023.161402] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
Soil microbial communities are usually regarded as one of the key players in the global element cycling. Moreover, an important consequence of oil contamination altering the structure of microbial communities is likely to result in an increased carbon emission. However, understanding of the complex interactions between environmental factors and biological communities is clearly lagging behind. Here it showed that the flux of carbon emissions increased in oil-contaminated soils, up to 13.64 g C·(kg soil)-1·h-1. This phenomenon was mainly driven by the enrichment of rare degrading microorganisms (e.g., Methylosinus, Marinobacter, Pseudomonas, Alcanivorax, Yeosuana, Halomonas and Microbulbifer) in the aerobic layer, rather than the anaerobic layer, which is more conducive to methane formation. In addition, petroleum hydrocarbons and environmental factors are equally important in shaping the structure of microbial communities (the ecological stability) and functional traits (e.g., fatty acid metabolism, lipid metabolism and amino acid metabolism) due to the different ecological sensitivities of microorganisms. Thus, it can be believed that the variability of rare hydrocarbon degrading microorganisms is of greater concern than changes in dominant microorganisms in oil-contaminated soil. Undoubtedly, this study could reveal the unique characterization of bacterial communities that mediate carbon emission and provide evidence for understanding the conversion from carbon stores to carbon gas release in oil-contaminated soils.
Collapse
Affiliation(s)
- Zelin Hou
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qixing Zhou
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Fan Mo
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Weilu Kang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shaohu Ouyang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
129
|
Hou Z, An X, Zhu K, Tang Q, Lan H, Liu H, Qu J. Revealing the Pore Size-Dependent Sorption Mechanism of Toluene and Cetane in Porous Carbon by Nuclear Magnetic Resonance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5003-5012. [PMID: 36931868 DOI: 10.1021/acs.est.2c07086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The adsorption of contaminants by porous carbon has been extensively studied by conventional isotherm and kinetic methods. However, the co-adsorption behavior and sorption sites of multiple contaminants in different-sized pores remain unclear. Herein, the nuclear magnetic resonance (NMR) approach is performed to investigate the adsorption mechanism of toluene and cetane in the confined space of carbon at the molecular level. The ring current effect induces the variation in the NMR chemical shifts of in-pore adsorbed toluene and cetane, realizing the identification of pore-dependent adsorption sites for contaminant removal. Cetane has a slower adsorption kinetic but a higher binding energy than toluene, which could squeeze toluene from micropores to larger pores with increasing adsorption quantity. This leads to a stronger competitive adsorption effect in small micropores than in mesopores. Accordingly, hierarchical porous carbons are determined to be the most effective adsorbents for the adsorption of coexisting contaminants. This study not only provides an effective NMR method to reveal the adsorption mechanism in the confined space of porous carbon at the molecular level but also offers new insights into the pore size-dependent adsorption of activated carbon for petroleum contaminant treatment.
Collapse
Affiliation(s)
- Zhiang Hou
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaoqiang An
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Kai Zhu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Qingwen Tang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Huachun Lan
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiuhui Qu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
130
|
Chen X, Zhang J, Chen X, Zhu Y, Liu X. Reduced Graphene Oxide-Doped Porous Thermoplastic Polyurethane Sponges for Highly Efficient Oil/Water Separation. ACS OMEGA 2023; 8:10487-10492. [PMID: 36969439 PMCID: PMC10034838 DOI: 10.1021/acsomega.3c00121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/23/2023] [Indexed: 05/13/2023]
Abstract
In this paper, a porous polyurethane sponge with excellent hydrophobicity was prepared through thermal phase separation. Preparation condition modified experiments were systematically carried out, and a sponge with a saturated oil absorption capacity (13.3 g g-1) and a rapid absorption rate (achieving absorption equilibrium within 20 s) was achieved. The thermoplastic polyurethane (TPU) sponge as an oil absorbent is capable of selectively absorbing various oils/organic solvents from oil/water mixtures with a high recovery rate. To further enhance the hydrophobicity and mechanical properties of the porous sponge, 3% reduced graphene oxide was doped to this material. The morphological investigation indicated that the three-dimensional composite sponges have uniformly distributed micropores and nanopores, and the hydrophobicity and mechanical properties were improved. The composite as a whole exhibited remarkable superelasticity, excellent reversible compressibility, and fatigue resistance (strength up to 186 kPa at 80% strain), which allows it to re-absorb oil by simple manual extrusion. The abovementioned properties make this TPU porous material a promising candidate for practical application in water pollution treatment.
Collapse
|
131
|
Chunyan X, Qaria MA, Qi X, Daochen Z. The role of microorganisms in petroleum degradation: Current development and prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161112. [PMID: 36586680 DOI: 10.1016/j.scitotenv.2022.161112] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/04/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Petroleum hydrocarbon compounds are persistent organic pollutants, which can cause permanent damage to ecosystems due to their biomagnification. Bioremediation of oil is currently the main solution for the remediation of petroleum hydrocarbon pollutants in ecosystems. Despite several lab studies on oil microbial biodegradation efficiency, still there are various challenges for microorganisms to perform efficiently in outside environments. Herewith, investigating efficient biodegradation technologies through discovering new microorganisms, biodegradation pathways modification, and new bioremediations technologies are in great demand. The degradation of petroleum pollutants by microorganisms and the remediation of contaminated soils are achieved through their key enzymes and metabolic pathways. Although, several challenges hinder the effective biodegradation processes such as the toxic environment, long chains and versatility of petroleum hydrocarbons and the existence of the full metabolism pathways in a single microorganism. There are several developed oil biodegradation strategies by microorganisms such as synthetic biology, biofilm, recombinant technology and microbial consortia. Herewith, the application of multi-omics technology to discover oil-contaminated environments microbial communities, synthetic biology, microbial consortia, and other technologies would help improve the efficiency of microbial remediation.
Collapse
Affiliation(s)
- Xu Chunyan
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Majjid A Qaria
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Xu Qi
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Zhu Daochen
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
132
|
Wang M, Ding M, Yuan Y. Bioengineering for the Microbial Degradation of Petroleum Hydrocarbon Contaminants. Bioengineering (Basel) 2023; 10:bioengineering10030347. [PMID: 36978738 PMCID: PMC10045523 DOI: 10.3390/bioengineering10030347] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 03/18/2023] Open
Abstract
Petroleum hydrocarbons are relatively recalcitrant compounds, and as contaminants, they are one of the most serious environmental problems. n-Alkanes are important constituents of petroleum hydrocarbons. Advances in synthetic biology and metabolic engineering strategies have made n-alkane biodegradation more designable and maneuverable for solving environmental pollution problems. In the microbial degradation of n-alkanes, more and more degradation pathways, related genes, microbes, and alkane hydroxylases have been discovered, which provide a theoretical basis for the further construction of degrading strains and microbial communities. In this review, the current advances in the microbial degradation of n-alkanes under aerobic condition are summarized in four aspects, including the biodegradation pathways and related genes, alkane hydroxylases, engineered microbial chassis, and microbial community. Especially, the microbial communities of “Alkane-degrader and Alkane-degrader” and “Alkane-degrader and Helper” provide new ideas for the degradation of petroleum hydrocarbons. Surfactant producers and nitrogen providers as a “Helper” are discussed in depth. This review will be helpful to further achieve bioremediation of oil-polluted environments rapidly.
Collapse
Affiliation(s)
- Minzhen Wang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Mingzhu Ding
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Correspondence:
| | - Yingjin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
133
|
Elzinga M, de Haan D, Buisman CJN, Ter Heijne A, Klok JBM. Nutrient recovery and pollutant removal during renewable fuel production: opportunities and challenges. Trends Biotechnol 2023; 41:323-330. [PMID: 36669946 DOI: 10.1016/j.tibtech.2022.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 01/19/2023]
Abstract
Stimulated by the desire to achieve a Net Zero energy economy, the demand for renewable fuels is growing rapidly. The production of toxic waste streams that accompanies the transition from fossil fuels to renewable fuels is often overlooked. These waste streams include, among others, thiols and ammonia, and benzene, toluene, and xylene (BTX). When suitable treatment technologies are available, these compounds can be converted to valuable nutrients. In this opinion article, we provide an overview of expected waste streams and their characteristics. We indicate future challenges for associated waste streams, such as the lag in developing resource recovery technologies. Furthermore, we discuss unexploited opportunities to recover valuable nutrients from these waste streams.
Collapse
Affiliation(s)
- Margo Elzinga
- Environmental Technology, Wageningen University, Bornse Weilanden 9, PO Box 17, 6700 AA, Wageningen, The Netherlands; Paqell BV, Reactorweg 301, 3542 AD, Utrecht, The Netherlands
| | | | - Cees J N Buisman
- Environmental Technology, Wageningen University, Bornse Weilanden 9, PO Box 17, 6700 AA, Wageningen, The Netherlands; Wetsus, Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, PO Box 1113, 8900 CC, Leeuwarden, The Netherlands
| | - Annemiek Ter Heijne
- Environmental Technology, Wageningen University, Bornse Weilanden 9, PO Box 17, 6700 AA, Wageningen, The Netherlands.
| | - Johannes B M Klok
- Environmental Technology, Wageningen University, Bornse Weilanden 9, PO Box 17, 6700 AA, Wageningen, The Netherlands; Paqell BV, Reactorweg 301, 3542 AD, Utrecht, The Netherlands; Wetsus, Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, PO Box 1113, 8900 CC, Leeuwarden, The Netherlands
| |
Collapse
|
134
|
Siddiqui Z, Grohmann E, Malik A. Degradation of alkane hydrocarbons by Priestia megaterium ZS16 and sediments consortia with special reference to toxicity and oxidative stress induced by the sediments in the vicinity of an oil refinery. CHEMOSPHERE 2023; 317:137886. [PMID: 36657569 DOI: 10.1016/j.chemosphere.2023.137886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
Petroleum hydrocarbon is a critical ecological issue with impact on ecosystems through bioaccumulation. It poses significant risks to human health. Due to the extent of alkane hydrocarbon pollution in some environments, biosurfactants are considered as a new multifunctional technology for the efficient removal of petroleum-based contaminants. To this end, Yamuna river sediments were collected at different sites in the vicinity of Mathura oil refinery, UP (India). They were analysed by atomic absorption spectrophotometry and gas chromatography-mass spectrometry (GC-MS) for heavy metals and organic pollutants. Heptadecane, nonadecane, oleic acid ester and phthalic acid were detected. In total 107 bacteria were isolated from the sediments and screened for biosurfactant production. The most efficient biosurfactant producing strain was tested for its capability to degrade hexadecane efficiently at different time intervals (0 h, 7 d, 14 d and 21 d). FT-IR analysis defined the biosurfactant as lipopeptide. 16S rRNA gene sequencing identified the bacterium as Priestia megaterium. The strain lacks resistance to common antibiotics thus making it an important candidate for remediation. The microbial consortia present in the sediments were also investigated for their capability to degrade C16, C17 and C18 alkane hydrocarbons. By using gas chromatography-mass spectrophotometry the metabolites were identified as 1-docosanol, dodecanoic acid, 7-hexadecenal, (Z)-, hexadecanoic acid, docosanoic acid, 1-hexacosanal, 9-octadecenoic acid, 3-octanone, Z,Z-6,28-heptatriactontadien-2-one, heptacosyl pentafluoropropionate, 1,30-triacontanediol and decyl octadecyl ester. Oxidative stress in Vigna radiata L. roots was observed by using Confocal Laser Scanning Microscopy. A strong reduction in seed germination and radicle and plumule length was observed when Vigna radiata L. was treated with different concentrations of sediment extracts, possibly due to the toxic effects of the pollutants in the river sediments. Thus, this study is significant since it considers the toxicological effects of hydrocarbons and to degrade them in an environmentally friendly manner.
Collapse
Affiliation(s)
- Zarreena Siddiqui
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Elisabeth Grohmann
- Berliner Hochschule für Technik, Faculty of Life Sciences and Technology, Seestraße 64, 13347, Berlin, Germany
| | - Abdul Malik
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
135
|
Fungal bioproducts for petroleum hydrocarbons and toxic metals remediation: recent advances and emerging technologies. Bioprocess Biosyst Eng 2023; 46:393-428. [PMID: 35943595 DOI: 10.1007/s00449-022-02763-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/22/2022] [Indexed: 11/02/2022]
Abstract
Petroleum hydrocarbons and toxic metals are sources of environmental contamination and are harmful to all ecosystems. Fungi have metabolic and morphological plasticity that turn them into potential prototypes for technological development in biological remediation of these contaminants due to their ability to interact with a specific contaminant and/or produced metabolites. Although fungal bioinoculants producing enzymes, biosurfactants, polymers, pigments and organic acids have potential to be protagonists in mycoremediation of hydrocarbons and toxic metals, they can still be only adjuvants together with bacteria, microalgae, plants or animals in such processes. However, the sudden accelerated development of emerging technologies related to the use of potential fungal bioproducts such as bioinoculants, enzymes and biosurfactants in the remediation of these contaminants, has boosted fungal bioprocesses to achieve higher performance and possible real application. In this review, we explore scientific and technological advances in bioprocesses related to the production and/or application of these potential fungal bioproducts when used in remediation of hydrocarbons and toxic metals from an integral perspective of biotechnological process development. In turn, it sheds light to overcome existing technological limitations or enable new experimental designs in the remediation of these and other emerging contaminants.
Collapse
|
136
|
Xu S, Zhan J, Li L, Zhu Y, Liu J, Guo X. Total petroleum hydrocarbons and influencing factors in co-composting of rural sewage sludge and organic solid wastes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120911. [PMID: 36549453 DOI: 10.1016/j.envpol.2022.120911] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/08/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Co-composting is an efficient strategy for collaborative disposal of multiple organic wastes in rural areas. In this study, we explored the co-composting of rural sewage sludge and other organic solid wastes (corn stalks and kitchen waste), with a focus on the variation of total petroleum hydrocarbons (TPH) during this process. 12% corn-derived biochar was applied in the composting (BC), with no additives applied as the control treatment (CK). The TPH contents of piles after composting ranged from 0.70 to 0.74 mg/g, with overall removal efficiencies of 35.6% and 61.1% for CK and BC, respectively. The results indicate that the addition of 12% biochar increased the rate of TPH degradation and accelerated the degradation process. 16s rDNA high-throughput sequencing was applied to investigate the biodiversity and bacterial community succession during the composting process. Diverse bacterial communities with TPH degradation functions were observed in the composting process, including Acinetobacter, Flavobacterium, Paenibacillus, Pseudomonas, and Bacillus spp. These functional bacteria synergistically degraded TPH, with cooperative behavior dominating during composting. Biochar amendment enhanced the microbial activity and effectively promoted the biodegradation of TPH. The physicochemical properties of the compost piles, including environmental factors (pH and temperature), nutrients (nitrogen, phosphorus, potassium), and humic substances produced in composting (humic acids and fulvic acids), directly and indirectly affected the variation in TPH contents. In conclusion, this work illustrates the variation in TPH content and associated influencing factors during co-composting of rural organic solid wastes, providing valuable guidance toward the further optimization of rural organic waste management.
Collapse
Affiliation(s)
- Su Xu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Jun Zhan
- POWERCHINA Group Environmental Engineering Co.,LTD, Hangzhou, Zhejiang, 310005, PR China.
| | - Lin Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Yingming Zhu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Junxin Liu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Xuesong Guo
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
137
|
Ghosh S, Rusyn I, Dmytruk OV, Dmytruk KV, Onyeaka H, Gryzenhout M, Gafforov Y. Filamentous fungi for sustainable remediation of pharmaceutical compounds, heavy metal and oil hydrocarbons. Front Bioeng Biotechnol 2023; 11:1106973. [PMID: 36865030 PMCID: PMC9971017 DOI: 10.3389/fbioe.2023.1106973] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
This review presents a comprehensive summary of the latest research in the field of bioremediation with filamentous fungi. The main focus is on the issue of recent progress in remediation of pharmaceutical compounds, heavy metal treatment and oil hydrocarbons mycoremediation that are usually insufficiently represented in other reviews. It encompasses a variety of cellular mechanisms involved in bioremediation used by filamentous fungi, including bio-adsorption, bio-surfactant production, bio-mineralization, bio-precipitation, as well as extracellular and intracellular enzymatic processes. Processes for wastewater treatment accomplished through physical, biological, and chemical processes are briefly described. The species diversity of filamentous fungi used in pollutant removal, including widely studied species of Aspergillus, Penicillium, Fusarium, Verticillium, Phanerochaete and other species of Basidiomycota and Zygomycota are summarized. The removal efficiency of filamentous fungi and time of elimination of a wide variety of pollutant compounds and their easy handling make them excellent tools for the bioremediation of emerging contaminants. Various types of beneficial byproducts made by filamentous fungi, such as raw material for feed and food production, chitosan, ethanol, lignocellulolytic enzymes, organic acids, as well as nanoparticles, are discussed. Finally, challenges faced, future prospects, and how innovative technologies can be used to further exploit and enhance the abilities of fungi in wastewater remediation, are mentioned.
Collapse
Affiliation(s)
- Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa,*Correspondence: Soumya Ghosh, ,
| | - Iryna Rusyn
- Department of Ecology and Sustainaible Environmental Management, Viacheslav Chornovil Institute of Sustainable Development, Lviv Polytechnic National University, Lviv, Ukraine
| | - Olena V. Dmytruk
- Institute of Cell Biology NAS of Ukraine, Lviv, Ukraine,Institute of Biology and Biotechnology, University of Rzeszow, Rzeszow, Poland
| | - Kostyantyn V. Dmytruk
- Institute of Cell Biology NAS of Ukraine, Lviv, Ukraine,Institute of Biology and Biotechnology, University of Rzeszow, Rzeszow, Poland
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Marieka Gryzenhout
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
| | - Yusufjon Gafforov
- Mycology Laboratory, Institute of Botany, Academy of Sciences of Republic of Uzbekistan, Tashkent, Uzbekistan,AKFA University, Tashkent, Uzbekistan
| |
Collapse
|
138
|
Xin Q, Saborimanesh N, Greer CW, Farooqi H, Dettman HD. The effect of temperature on hydrocarbon profiles and the microbial community composition in North Saskatchewan River water during mesoscale tank tests of diluted bitumen spills. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160161. [PMID: 36379338 DOI: 10.1016/j.scitotenv.2022.160161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/21/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Despite many studies of diluted bitumen (DB) behavior during spills in saltwater, limited information is available on DB behavior in fresh water. This study examined the collective weathering processes on changes of fresh DB spilled in the North Saskatchewan River water and sediment mixture in a mesoscale spill tank under average air/water temperatures of 14 °C/15 °C and 6 °C/2 °C. Temporal changes of the hydrocarbon and microbial community compositions in the water column were assessed during the two 35-day tests under intermittent wave action. The contents of total organic carbon (TOC), benzene/toluene/ethylbenzene/xylenes (BTEX) and polycyclic aromatic hydrocarbons (PAHs) in water decreased with time during both tests. The final contents remained at higher values in warm water (15 °C) than in cold water (2 °C) after the collective weathering processes. A quick response of the main phyla, Proteobacteria and Actinobacteria, was observed, where the members of Proteobacteria enriched during both DB spills. In contrast, the members of Actinobacteria reduced with time. The microbial shifts coincided with the changes of PAHs in the waters at both temperatures. A comparison of the physical properties and chemical compositions of fresh and weathered DBs at both temperatures showed that the oil had undergone weathering that increased oil density and viscosity due to losing the light oil fraction with boiling points < 204 °C and emulsifying with water. This corresponded to losses of 19.0 wt% and 17.2 wt% of the fresh DB at 15 °C and 2 °C tests, respectively. For organic compounds in the DB with boiling points > 204 °C, there were small losses of saturates and 2- & 3-ring PAH aromatics (more during the 15 °C test than the 2 °C test), and negligible losses in the subfractions of resins and asphaltenes by the ends of the tests. <1.0 wt% of the DB was recovered from the bottom sediment, regardless of the temperature.
Collapse
Affiliation(s)
- Qin Xin
- Natural Resources Canada (NRCan), CanmetENERGY, 1 Oil Patch Drive, Devon, AB T9G 1A8, Canada.
| | - Nayereh Saborimanesh
- Natural Resources Canada (NRCan), CanmetENERGY, 1 Oil Patch Drive, Devon, AB T9G 1A8, Canada
| | - Charles W Greer
- National Research Council Canada, Energy, Mining and Environment Research Centre, 6100 Royalmount Ave., Montreal, Quebec H4P 2R2, Canada; McGill University, Natural Resource Sciences, 21111 Lakeshore, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Hena Farooqi
- Natural Resources Canada (NRCan), CanmetENERGY, 1 Oil Patch Drive, Devon, AB T9G 1A8, Canada
| | - Heather D Dettman
- Natural Resources Canada (NRCan), CanmetENERGY, 1 Oil Patch Drive, Devon, AB T9G 1A8, Canada
| |
Collapse
|
139
|
Li X, Xu J, Yang Z. Insight on efficiently oriented oxidation of petroleum hydrocarbons by redistribution of oxidant through inactivation of soil organic matter coupled with passivation of manganese minerals. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130192. [PMID: 36270191 DOI: 10.1016/j.jhazmat.2022.130192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/19/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
While extensive works focused on the enhancement of the activity of heterogeneous Fenton catalysts, little was paid attention to the inhibition of soil organic matter (SOM) and Mn minerals in soil remediation. Here, the oxidation of petroleum hydrocarbons in soils (S1: 4.28 % SOM, S2: 6.04 % SOM, S3: 10.33 % SOM) with inactivated SOM and passivated Mn oxides regulating by calcium superphosphate (Ca(H2PO4)2) was carried out. Oily sludge pyrolysis residue was used as precursors to prepare an oleophilic iron-supported solid catalyst (Fe-N @ PR). For regulated systems, under the optimal conditions of 1.8 mmol/g H2O2 and 0.05 g/g Fe-N @ PR, 72 ∼ 91 % of total petroleum hydrocarbons (TPHs: 15,616.58 mg/kg) were oxidized, which was 38 ∼ 45 % higher than that of control systems. The mechanism of efficient oxidation was proposed that the passivated Mn minerals stabilized H2O2 redistributing more H2O2 to sustainably produce •OH, and the inactivated SOM improved the relative reactivity of •OH to TPHs. Additionally, the passivation of Mn oxides was mainly related to the binding of H2PO4-, and the inactivation of SOM was realized by Ca2+ combing with -OH and C-O-C to form stable complexes. This study brought us a new perspective on soil remediation through passivating Mn minerals and inactivating SOM.
Collapse
Affiliation(s)
- Xiumin Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, 710055 Xi'an, Shaanxi, China; Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, China; Key Laboratory of Environmental Engineering, Shaanxi Province, China
| | - Jinlan Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, 710055 Xi'an, Shaanxi, China; Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, China; Key Laboratory of Environmental Engineering, Shaanxi Province, China.
| | - Zhilin Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, 710055 Xi'an, Shaanxi, China; Key Laboratory of Northwest Water Resources, Environment and Ecology, MOE, China; Key Laboratory of Environmental Engineering, Shaanxi Province, China
| |
Collapse
|
140
|
Salmazo P, De Marco N, Soeiro VS, Castanho NRCM, Leite FG, Chaud MV, Grotto D, Jozala AF. Evaluation of Bacillus subtilis as a Tool for Biodegrading Diesel Oil and Gasoline in Experimentally Contaminated Water and Soil. Curr Microbiol 2023; 80:94. [PMID: 36737549 DOI: 10.1007/s00284-022-03175-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/29/2022] [Indexed: 02/05/2023]
Abstract
Benzene, toluene, ethylbenzene and xylene (BTEX) are toxic petroleum hydrocarbons pollutants that can affect the central nervous system and even cause cancer. For that reason, studies regarding BTEX degradation are extremely important. Our study aimed evaluate the microorganism Bacillus subtilis as a tool for degrading petroleum hydrocarbons pollutants. Assays were run utilizing water or soil distinctly contaminated with gasoline and diesel oil, with and without B. subtilis. The ability of B. subtilis to degrade hydrophobic compounds was analyzed by Fourier-Transform Infrared Spectroscopy (FTIR) and gas chromatography. The FTIR results indicated, for water assays, that B. subtilis utilized the gasoline and diesel oil to produce the biosurfactant, and, as a consequence, performed a biodegradation process. In the same way, for soil assay, B. subtilis biodegraded the diesel oil. The gas chromatography results indicated, for gasoline in soil assay, the B. subtilis removed BTEX. So, B. subtilis was capable of degrading BTEX, producing biosurfactant and it can also be used for other industrial applications. Bioremediation can be an efficient, economical, and versatile alternative for BTEX contamination.
Collapse
Affiliation(s)
- Paulo Salmazo
- LaMInFe - Laboratory of Industrial Microbiology and Fermentation Process, University of Sorocaba, Sorocaba, SP, Brazil
| | - Nathane De Marco
- LaMInFe - Laboratory of Industrial Microbiology and Fermentation Process, University of Sorocaba, Sorocaba, SP, Brazil
| | - Victória Soares Soeiro
- LaMInFe - Laboratory of Industrial Microbiology and Fermentation Process, University of Sorocaba, Sorocaba, SP, Brazil.,LaBNUS - Biomaterials and Nanotechnology Laboratory, University of Sorocaba, Sorocaba, SP, Brazil
| | - Nathália Roberta Cardoso Mendes Castanho
- LaMInFe - Laboratory of Industrial Microbiology and Fermentation Process, University of Sorocaba, Sorocaba, SP, Brazil.,LAPETOX - Laboratory of Toxicological Research, University of Sorocaba, Sorocaba, SP, Brazil
| | - Fernanda Gomes Leite
- LAPETOX - Laboratory of Toxicological Research, University of Sorocaba, Sorocaba, SP, Brazil
| | - Marco Vinicius Chaud
- LaBNUS - Biomaterials and Nanotechnology Laboratory, University of Sorocaba, Sorocaba, SP, Brazil
| | - Denise Grotto
- LAPETOX - Laboratory of Toxicological Research, University of Sorocaba, Sorocaba, SP, Brazil
| | - Angela F Jozala
- LaMInFe - Laboratory of Industrial Microbiology and Fermentation Process, University of Sorocaba, Sorocaba, SP, Brazil.
| |
Collapse
|
141
|
Otur Ç, Okay S, Kurt-Kızıldoğan A. Whole genome analysis of Flavobacterium aziz-sancarii sp. nov., isolated from Ardley Island (Antarctica), revealed a rich resistome and bioremediation potential. CHEMOSPHERE 2023; 313:137511. [PMID: 36509185 DOI: 10.1016/j.chemosphere.2022.137511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/29/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Despite being one of the most isolated regions in the world, Antarctica is at risk of increased contamination with potentially toxic elements and other toxic chemicals through anthropogenic interventions. In this study, a psychrotolerant bacterium was isolated using the lake water collected from Ardley Island (Antarctica), which can grow at temperatures between 4 and 30 °C and pH values between 6.0 and 9.0. The isolate, named AC, had protease, amylase, and lipase activities with no NaCl tolerance and could degrade 1-5% diesel fuel. Multilocus sequence analysis (MLSA) using 16S rRNA, gyrB, tuf, and rpoD genes resulted in 92.91-98.6% sequence similarities between the isolate AC and other Flavobacterium spp. Whole genome analysis indicated that the genome length of Flavobacterium sp. AC is 5.8 Mbp with a GC content of 34.04% and 1274 genes predicted. The strain AC branched independently from other Flavobacterium spp. in the phylogenetic and phylogenomic trees and ranked a new species named Flavobacterium aziz-sancarii. Genome mining identified several cold-inducible genes, including stress-associated genes such as cold-shock proteins, chaperones, carotenoid biosynthetic genes, or oxidative-stress response genes. In addition, virulence, gliding motility, and biofilm-related genes were determined. Its genome contains 35 and 88 open-reading frames related to potentially toxic element and antibiotic resistance, respectively. F. aziz-sancarii showed a remarkable tolerance of Cr and Ni, with minimal inhibitory concentration values of 2.88 and 2.81 mM, respectively. Pb, Cu, and Zn exposure resulted in moderate toxicity (2.14-2.41 mM), while Cd showed the highest inhibitory effect in bacterial growth (0.74 mM). Antibiotic susceptibility testing indicated multidrug-resistant phenotype in correlation to in silico prediction of antibiotic resistance genes. Overall, our results contribute to biodiversity of Antarctica and provide new insights into resistome profile of Antarctic microorganisms. Additionally, the diesel degradation feature of F. aziz-sancarii offers potential use for the bioremediation of hydrocarbon-contaminated polar ecosystems.
Collapse
Affiliation(s)
- Çiğdem Otur
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayıs University, 55139, Samsun, Turkey
| | - Sezer Okay
- Department of Vaccine Technology, Vaccine Institute, Hacettepe University, 06230, Ankara, Turkey
| | - Aslıhan Kurt-Kızıldoğan
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayıs University, 55139, Samsun, Turkey.
| |
Collapse
|
142
|
Yang J, Sun J, Wang R, Qu Y. Treatment of drilling fluid waste during oil and gas drilling: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:19662-19682. [PMID: 36648726 DOI: 10.1007/s11356-022-25114-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Oil and gas exploration and development provide important energy sources for the world, and drilling fluid is an essential engineering material for oil and gas exploration and development. During the drilling of oil wells, drilling fluids are eventually discarded as waste products after many cycles. Abandoned drilling fluid constitutes one of the largest wastes generated during oil and gas exploration and development. Drilling fluid contains many chemicals, which turn into pollutants during use. Furthermore, when drilling is carried out to reach reservoir, the drilling fluid becomes contaminated with crude oil. It may also mix with groundwater containing salts and heavy metals. The resulting pollutants and harmful substances threaten the environment, humans, animals, and plants. The variety and complexity of drilling fluid waste have increased in recent years. Various countries and regions are paying more attention to the ecological environment, and effective methods are urgently needed to solve problems associated with of environmental pollution caused by drilling fluid wastes. At present, various physical, chemical, and biological methods have been proposed for the treatment of drilling fluid wastes: safe landfilling, stabilization/solidification treatment, physicochemical treatment, thermal treatment, supercritical fluid treatment, bioremediation, etc. All of these methods show promising characteristics, and they each have advantages and limitations; thus, treatment methods need to be selected according to the actual application scenarios. This critical overview is based on an extensive literature review, and it summarizes and expounds on the current drilling fluid waste treatment technologies and proposes views future potential and outlook.
Collapse
Affiliation(s)
- Jie Yang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China
- CNPC Engineering Technology R&D Company Limited, Beijing, 102206, China
| | - Jinsheng Sun
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China.
- CNPC Engineering Technology R&D Company Limited, Beijing, 102206, China.
| | - Ren Wang
- CNPC Engineering Technology R&D Company Limited, Beijing, 102206, China
| | - Yuanzhi Qu
- CNPC Engineering Technology R&D Company Limited, Beijing, 102206, China
| |
Collapse
|
143
|
Sarfo MK, Gyasi SF, Kabo-Bah AT, Adu B, Mohktar Q, Appiah AS, Serfor-Armah Y. Isolation and characterization of crude-oil-dependent bacteria from the coast of Ghana using oxford nanopore sequencing. Heliyon 2023; 9:e13075. [PMID: 36785818 PMCID: PMC9918745 DOI: 10.1016/j.heliyon.2023.e13075] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
The utilization and improper use of crude oil can have irreparable damage on the environment and human populations. This study sought to isolate hydrocarbon utilizing bacteria from 1% v/v pristine seawater and 1% v/v crude oil using enrichment culture techniques. Whole genome sequencing of DNA using the Oxford Nanopore sequencing technique with Fastq WIMP as the workflow at 3% abundance was undertaken. The results showed that the most abundant isolates identified using this technique at specific sampling sites were, Acinetobacter junii (51.9%), Alcanivarax pacificus (15.8%), Acinetobacter haemolyticus (21.6%), Pseudomonas aeruginosa (23.4%), Alcanivorax xenomutans (24.7%), Alcanivorax xenomutans (23.0%) Acinetobacter baumannii (40.0%) and Acinetobacter junii (14.2%). Cumulatively, the most abundant isolates in the 8 sampling sites were Acinetobacter junii (17.91%), Alcanivorax xenomutans (11.68%), Pseudomonas aeruginosa (7.68%), Escherichia coli (7.67%), Acinetobacter haemolyticus (3.40%), and Alkanivorax pacificus (3.10%). Spearman's rank correlation analysis to examine the strength of relationship between the physicochemical parameters and type of bacteria isolated, revealed that salinity (0.8046) and pH (0.7252) were the highest. Isolated bacteria from pristine seawater, especially Escherichia coli have shown their capacity for bioremediating oil spill pollution in oceanic environments in Ghana.
Collapse
Affiliation(s)
- Mark Kwasi Sarfo
- Regional Center for Energy and Environmental Sustainability, Department of Civil and Environmental Engineering, University of Energy and Natural Resources, Sunyani, Ghana,Corresponding author.
| | - Samuel Fosu Gyasi
- Department of Biological Science, University of Energy and Natural Resources, Sunyani, Ghana,Centre for Research in Applied Biology, University of Energy and Natural Resources, Sunyani, Ghana
| | - Amos Tiereyangn Kabo-Bah
- Regional Center for Energy and Environmental Sustainability, Department of Civil and Environmental Engineering, University of Energy and Natural Resources, Sunyani, Ghana
| | - Bright Adu
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University Of Ghana, Ghana
| | - Quaneeta Mohktar
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University Of Ghana, Ghana
| | - Andrew Sarkodie Appiah
- Biotechnology Center, Biotechnology and Nuclear Agricultural Research Institute, Ghana Atomic Energy Commission, Ghana
| | - Yaw Serfor-Armah
- School of Nuclear and Allied Sciences, University of Ghana, Legon, Ghana
| |
Collapse
|
144
|
Vu KA, Mulligan CN. An Overview on the Treatment of Oil Pollutants in Soil Using Synthetic and Biological Surfactant Foam and Nanoparticles. Int J Mol Sci 2023; 24:ijms24031916. [PMID: 36768251 PMCID: PMC9915329 DOI: 10.3390/ijms24031916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Oil-contaminated soil is one of the most concerning problems due to its potential damage to human, animals, and the environment. Nanoparticles have effectively been used to degrade oil pollution in soil in the lab and in the field for a long time. In recent years, surfactant foam and nanoparticles have shown high removal of oil pollutants from contaminated soil. This review provides an overview on the remediation of oil pollutants in soil using nanoparticles, surfactant foams, and nanoparticle-stabilized surfactant foams. In particular, the fate and transport of oil compounds in the soil, the interaction of nanoparticles and surfactant foam, the removal mechanisms of nanoparticles and various surfactant foams, the effect of some factors (e.g., soil characteristics and amount, nanoparticle properties, surfactant concentration) on remediation efficiency, and some advantages and disadvantages of these methods are evaluated. Different nanoparticles and surfactant foam can be effectively utilized for treating oil compounds in contaminated soil. The treatment efficiency is dependent on many factors. Thus, optimizing these factors in each scenario is required to achieve a high remediation rate while not causing negative effects on humans, animals, and the environment. In the future, more research on the soil types, operating cost, posttreatment process, and recycling and reuse of surfactants and nanoparticles need to be conducted.
Collapse
Affiliation(s)
- Kien A. Vu
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Catherine N. Mulligan
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
- Correspondence:
| |
Collapse
|
145
|
Tran NN, Escribà-Gelonch M, Sarafraz MM, Pho QH, Sagadevan S, Hessel V. Process Technology and Sustainability Assessment of Wastewater Treatment. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Nam Nghiep Tran
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, North Terrace, Adelaide, South Australia5005, Australia
- Department of Chemical Engineering, Can Tho University, 3/2 Street, Can Tho900000, Vietnam
| | - Marc Escribà-Gelonch
- Higher Polytechnic Engineering School, University of Lleida, Igualada25003, Spain
| | | | - Quoc Hue Pho
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, North Terrace, Adelaide, South Australia5005, Australia
| | - Suresh Sagadevan
- Nanotechnology & Catalysis Research Centre, University of Malaya, Kuala Lumpur50603, Malaysia
| | - Volker Hessel
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, North Terrace, Adelaide, South Australia5005, Australia
- School of Engineering, University of Warwick, Coventry, LondonCV4 7AL, United Kingdom
| |
Collapse
|
146
|
Prosser CM, Davis CW, Bragin GE, Camenzuli L. Using weight of evidence to assess degradation potential of UVCB hydrocarbon solvents. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2023. [PMID: 36600450 DOI: 10.1002/ieam.4731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Hydrocarbon solvents are a diverse group of petrochemical substances that are identified as unknown or variable composition, complex reaction products, or biological materials (UVCBs) and may contain tens of thousands of individual chemical constituents. As such, it is generally not possible to analytically resolve every chemical constituent in a hydrocarbon solvent. This, along with the low water solubility and/or high vapor pressure of constituents, precludes the use of many standardized tests designed to determine biodegradation in the environment (e.g., Organization for Economic Co-operation and Development [OECD] 309). A weight of evidence approach may be needed to reduce uncertainty to an acceptable level such that a determination on the biodegradation of the substance can be drawn. Based on the OECD 2019 weight of evidence guidance, we present a framework using various lines of evidence that can be used to evaluate the biodegradation of a UVCB solvent in a weight of evidence approach. The lines of evidence include whole substance testing, data on representative constituents, quantitative structure activity relationship (QSAR) models, and biological plausibility. Using these lines of evidence, "Hydrocarbon, C11-C14, normal alkane, isoalkane, cyclic, <2% aromatics" (EC# 926-141-6) was evaluated in a case study. Data from three whole substance tests, 43 constituents (representing 152 data points), three QSAR models and evidence of microbial degradation pathways were evaluated. Based on the available data, it is concluded that the solvent for the case study is not expected to persist in the environment. This framework sets out a real-world example of how the weight of evidence can be used to evaluate hydrocarbon solvents. While focused on persistence, similar approaches can be used to evaluate other endpoints such as bioaccumulation and toxicity. Integr Environ Assess Manag 2023;00:1-11. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
| | - Craig W Davis
- ExxonMobil Biomedical Sciences Inc., Annandale, New Jersey, USA
| | - Gail E Bragin
- ExxonMobil Biomedical Sciences Inc., Annandale, New Jersey, USA
| | | |
Collapse
|
147
|
Ubah PC, Dashti AF, Saaid M, Imam SS, Adnan R. Fabrication and response optimization of Moringa oleifera-functionalized nanosorbents for the removal of diesel range organics from contaminated water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:4462-4484. [PMID: 35969341 DOI: 10.1007/s11356-022-22245-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
The purpose of this research is to synthesize environmentally friendly nanosorbents for the novel adsorption of diesel range organics (DRO) from contaminated water. Central composite design (CCD) analysis of response surface methodology (RSM) was employed in a model fitting of the variables predicting the adsorption efficiency of Moringa oleifera-functionalized zerovalent iron particles (ZINPs) for the removal of DRO. The effects of the reaction parameters on the response were screened using 24 factorial designs to determine the statistically significant independent variables. A quadratic model predicting the DRO adsorption efficiency of ZINPs with an F value of 276.84 (p value < 0.0001) was developed. Diagnostic plots show that the predicted values were in excellent agreement with actual experimental values (R2 = 0.99). The maximum percentage removal of DRO of 92.6% was achieved after optimization, using the synthesized ZINPs after 8 h of contact between DRO substrates and ZINPs at pH of 8, the temperature of 25 °C, with an adsorbent dosage of 2 g/L and at composite desirability of 1. Characterization of ZINPs revealed the formation of quasi nanospheres and nanocubes with an average particle diameter of 50.9 ± 9.7, a crystallite size of 15.31 nm, a crystallinity index of 32.47% and a pore width of 75.69-88.59 nm. The adsorption equilibrium data modelling of ZINPs for adsorption of DRO was best described by Langmuir isotherm with the maximum monolayer coverage capacity of 7.194 mg/g. The separation factor [Formula: see text], indicated favourable adsorption. The adsorption kinetic data were consistent with pseudo-second-order kinetics indicating probable chemisorption.
Collapse
Affiliation(s)
- Promise Chima Ubah
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
- Department of Industrial Chemistry, Federal University of Technology, Imo State, Owerri, PMB 1526, Nigeria
| | | | - Mardiana Saaid
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Saifullahi Shehu Imam
- Department of Pure and Industrial Chemistry, Bayero University, Kano, P.M.B 3011, Nigeria
| | - Rohana Adnan
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| |
Collapse
|
148
|
Zhao Y, Wei HM, Yuan JL, Xu L, Sun JQ. A comprehensive genomic analysis provides insights on the high environmental adaptability of Acinetobacter strains. Front Microbiol 2023; 14:1177951. [PMID: 37138596 PMCID: PMC10149724 DOI: 10.3389/fmicb.2023.1177951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/28/2023] [Indexed: 05/05/2023] Open
Abstract
Acinetobacter is ubiquitous, and it has a high species diversity and a complex evolutionary pattern. To elucidate the mechanism of its high ability to adapt to various environment, 312 genomes of Acinetobacter strains were analyzed using the phylogenomic and comparative genomics methods. It was revealed that the Acinetobacter genus has an open pan-genome and strong genome plasticity. The pan-genome consists of 47,500 genes, with 818 shared by all the genomes of Acinetobacter, while 22,291 are unique genes. Although Acinetobacter strains do not have a complete glycolytic pathway to directly utilize glucose as carbon source, most of them harbored the n-alkane-degrading genes alkB/alkM (97.1% of tested strains) and almA (96.7% of tested strains), which were responsible for medium-and long-chain n-alkane terminal oxidation reaction, respectively. Most Acinetobacter strains also have catA (93.3% of tested strains) and benAB (92.0% of tested strains) genes that can degrade the aromatic compounds catechol and benzoic acid, respectively. These abilities enable the Acinetobacter strains to easily obtain carbon and energy sources from their environment for survival. The Acinetobacter strains can manage osmotic pressure by accumulating potassium and compatible solutes, including betaine, mannitol, trehalose, glutamic acid, and proline. They respond to oxidative stress by synthesizing superoxide dismutase, catalase, disulfide isomerase, and methionine sulfoxide reductase that repair the damage caused by reactive oxygen species. In addition, most Acinetobacter strains contain many efflux pump genes and resistance genes to manage antibiotic stress and can synthesize a variety of secondary metabolites, including arylpolyene, β-lactone and siderophores among others, to adapt to their environment. These genes enable Acinetobacter strains to survive extreme stresses. The genome of each Acinetobacter strain contained different numbers of prophages (0-12) and genomic islands (GIs) (6-70), and genes related to antibiotic resistance were found in the GIs. The phylogenetic analysis revealed that the alkM and almA genes have a similar evolutionary position with the core genome, indicating that they may have been acquired by vertical gene transfer from their ancestor, while catA, benA, benB and the antibiotic resistance genes could have been acquired by horizontal gene transfer from the other organisms.
Collapse
Affiliation(s)
- Yang Zhao
- Lab for Microbial Resources, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Hua-Mei Wei
- Lab for Microbial Resources, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Jia-Li Yuan
- Lab for Microbial Resources, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Lian Xu
- Jiangsu Key Lab for Organic Solid Waste Utilization, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Ji-Quan Sun
- Lab for Microbial Resources, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
- *Correspondence: Ji-Quan Sun,
| |
Collapse
|
149
|
Stancu MM. Characterization of new diesel-degrading bacteria isolated from freshwater sediments. INTERNATIONAL MICROBIOLOGY : THE OFFICIAL JOURNAL OF THE SPANISH SOCIETY FOR MICROBIOLOGY 2023; 26:109-122. [PMID: 36156170 DOI: 10.1007/s10123-022-00277-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 01/06/2023]
Abstract
As the result of diesel's extensive production and use as fuel for transportation, pollution with such complex mixtures of hydrocarbons is a major concern worldwide. The present study's focus was to investigate the presence of diesel-degrading bacteria in different Danube Delta freshwater sediments. Ten bacterial strains capable to grow in a minimal medium with diesel as the sole carbon source were isolated and characterized in this study. Based on the phenotypic and molecular characteristics, the ten strains belong to four genera and seven species, such as Pseudomonas (P. aeruginosa, P. nitroreducens, P. resinovorans, P. multiresinivorans), Acinetobacter (A. tandoii), Bacillus (B. marisflavi), and Stenotrophomonas (S. maltophilia). All these bacteria were excellent biosurfactant producers, and they were able to tolerate saturated hydrocarbons, like n-heptane, n-decane, n-pentadecane, and n-hexadecane. The ten strains possess at least one alkane hydroxylase gene in their genome, and they were also able to tolerate and degrade diesel. Higher biodegradation rates of diesel were acquired for the strains from the genera Pseudomonas, Acinetobacter, and Stenotrophomonas, compared with that obtained for the Bacillus strain. Due to their remarkable potential to degrade diesel and produce biosurfactants, the ten isolated bacteria are attractive candidates for bioremediation of diesel-polluted environments.
Collapse
Affiliation(s)
- Mihaela Marilena Stancu
- Institute of Biology Bucharest of Romanian Academy, 296 Splaiul Independentei, P.O. Box 56-53, 060031, Bucharest, Romania.
| |
Collapse
|
150
|
Muthukumar B, Surya S, Sivakumar K, AlSalhi MS, Rao TN, Devanesan S, Arunkumar P, Rajasekar A. Influence of bioaugmentation in crude oil contaminated soil by Pseudomonas species on the removal of total petroleum hydrocarbon. CHEMOSPHERE 2023; 310:136826. [PMID: 36243087 DOI: 10.1016/j.chemosphere.2022.136826] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
This study aimed to carry out the bioaugmentation of crude oil/motor oil contaminated soil. The mixture of novel strains Pseudomonas aeruginosa PP3 and Pseudomonas aeruginosa PP4 were used in this bioaugmentation studies. The four different bioaugmentation systems (BS 1-4) were carried out in this experiment labelled as BS 1 (Crude oil contaminated soil), BS 2 (BS 1 + bacterial consortia), BS 3 (Motor oil sludge contaminated soil), and BS 4 (BS 3 + bacterial consortia). The total petroleum hydrocarbon (TPH) was investigated for monitor the effectiveness of bioaugmentation process. The highest TPH removal rate was recorded on BS 4 (9091 mg Kg -1) was about 67% followed by 52% on BS 2 (8584 mg Kg -1) respectively. The percentage of biodegradation efficiency (BE) of residual crude and motor oil contaminated soil were evaluated by GCMS analysis and the results showed that 65% (BS 2) and 83% (BS 4) respectively. Further the bioaugmented soil was subjected to the plant cultivation (Lablab purpureus) and the results revealed that the L. purpureus was rapidly grown in the systems BS 4 and BS 2 than the system BS 1 and BS 2 which was due to the lesser biodegradation of the crude oil contents. In resultant, it can be concluded that the soil was suitable for the cultivation of plant. Overall, this study revealed that the selected bacterial consortia were effectively degraded the hydrocarbon and act as a potential bioremediator in the hydrocarbon polluted soil in a short period.
Collapse
Affiliation(s)
- Balakrishnan Muthukumar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu, 632115, India
| | - Saravanan Surya
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu, 632115, India
| | - Krithiga Sivakumar
- Department of Community Medicine, Government Stanley Medical College, Chennai, Tamil Nadu, India
| | - Mohamad S AlSalhi
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box-2455, Riyadh, 11451, Saudi Arabia
| | - Tentu Nageswara Rao
- Department of Chemistry, Krishna University, Machilipatnam, AP, 521001, India
| | - Sandhanasamy Devanesan
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box-2455, Riyadh, 11451, Saudi Arabia
| | - Paulraj Arunkumar
- School of Chemical Engineering, Chonnam National University, Gwangju, 61186, South Korea
| | - Aruliah Rajasekar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu, 632115, India.
| |
Collapse
|