101
|
|
102
|
Ma YR, Wang KF, Wang WJ, Ding Y, Shi TQ, Huang H, Ji XJ. Advances in the metabolic engineering of Yarrowia lipolytica for the production of terpenoids. BIORESOURCE TECHNOLOGY 2019; 281:449-456. [PMID: 30846235 DOI: 10.1016/j.biortech.2019.02.116] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/24/2019] [Accepted: 02/26/2019] [Indexed: 05/02/2023]
Abstract
Terpenoids are a large class of natural compounds based on the C5 isoprene unit, with many biological effects such activity against cancer and allergies, while some also have an agreeable aroma. Consequently, they have received extensive attention in the food, pharmaceutical and cosmetic fields. With the identification and analysis of the underlying natural product synthesis pathways, current microbial-based metabolic engineering approaches have yielded new strategies for the production of highly valuable terpenoids. Yarrowia lipolytica is a non-conventional oleaginous yeast that is rapidly emerging as a valuable host for the production of terpenoids due to its own endogenous mevalonate pathway and high oil production capacity. This review aims to summarize the status and strategies of metabolic engineering for the heterologous synthesis of terpenoids in Y. lipolytica in recent years and proposes new methods aiming towards further improvement of terpenoid production.
Collapse
Affiliation(s)
- Yi-Rong Ma
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Kai-Feng Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Wei-Jian Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Ying Ding
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Tian-Qiong Shi
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - He Huang
- College of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China.
| |
Collapse
|
103
|
Lyu X, Zhao G, Ng KR, Mark R, Chen WN. Metabolic Engineering of Saccharomyces cerevisiae for De Novo Production of Kaempferol. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:5596-5606. [PMID: 30957490 DOI: 10.1021/acs.jafc.9b01329] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Kaempferol is a polyphenolic compound with various reported health benefits and thus harbors considerable potential for food-engineering applications. In this study, a high-yield kaempferol-producing cell factory was constructed by multiple strategies, including gene screening, elimination of the phenylethanol biosynthetic branch, optimizing the core flavonoid synthetic pathway, supplementation of precursor PEP/E4P, and mitochondrial engineering of F3H and FLS. A total of 86 mg/L of kaempferol was achieved in strain YL-4, to date the highest production titer in yeast. Furthermore, a coculture system and supplementation of surfactants were investigated, to relieve the metabolic burden as well as the low solubility/possible transport limitations of flavonoids, respectively. In the coculture system, the whole pathway was divided across two strains, resulting in 50% increased cell growth. Meanwhile, supplementation of Tween 80 in our engineered strains yielded 220 mg/L of naringenin and 200 mg/L of mixed flavonoids-among the highest production titer reported via de novo production in yeast.
Collapse
Affiliation(s)
- Xiaomei Lyu
- School of Chemical and Biomedical Engineering, College of Engineering , Nanyang Technological University , 62 Nanyang Drive , Singapore 637459 , Singapore
| | - Guili Zhao
- School of Chemical and Biomedical Engineering, College of Engineering , Nanyang Technological University , 62 Nanyang Drive , Singapore 637459 , Singapore
| | - Kuan Rei Ng
- School of Chemical and Biomedical Engineering, College of Engineering , Nanyang Technological University , 62 Nanyang Drive , Singapore 637459 , Singapore
| | - Rita Mark
- School of Chemical and Biomedical Engineering, College of Engineering , Nanyang Technological University , 62 Nanyang Drive , Singapore 637459 , Singapore
| | - Wei Ning Chen
- School of Chemical and Biomedical Engineering, College of Engineering , Nanyang Technological University , 62 Nanyang Drive , Singapore 637459 , Singapore
| |
Collapse
|
104
|
Sun YJ, He JM, Kong JQ. Characterization of two flavonol synthases with iron-independent flavanone 3-hydroxylase activity from Ornithogalum caudatum Jacq. BMC PLANT BIOLOGY 2019; 19:195. [PMID: 31088366 PMCID: PMC6515686 DOI: 10.1186/s12870-019-1787-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 04/17/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND Flavonol synthase (FLS) is the key enzyme responsible for the biosynthesis of flavonols, the most abundant flavonoids, which have diverse pharmaceutical effects. Flavonol synthase has been previously found in other species, but not yet in Ornithogalum caudatum. RESULTS The transcriptome-wide mining and functional characterisation of a flavonol synthase gene family from O. caudatum were reported. Specifically, a small FLS gene family harbouring two members, OcFLS1 and OcFLS2, was isolated from O. caudatum based on transcriptome-wide mining. Phylogenetic analysis suggested that the two proteins showed the closest relationship with FLS proteins. In vitro enzymatic assays indicated OcFLS1 and OcFLS2 were flavonol synthases, catalysing the conversion of dihydroflavonols to flavonols in an iron-dependent fashion. In addition, the two proteins were found to display flavanone 3β-hydroxylase (F3H) activity, hydroxylating flavanones to form dihydroflavonols. Unlike single F3H enzymes, the F3H activity of OcFLS1 and OcFLS2 did not absolutely require iron. However, the presence of sufficient Fe2+ was demonstrated to be conducive to successive catalysis of flavanones to flavonols. The qRT-PCR analysis demonstrated that both genes were expressed in the leaves, bulbs, and flowers, with particularly high expression in the leaves. Moreover, their expression was regulated by developmental and environmental conditions. CONCLUSIONS OcFLS1 and OcFLS2 from O. caudatum were demonstrated to be flavonol synthases with iron-independent flavanone 3-hydroxylase activity.
Collapse
Affiliation(s)
- Yu-Jia Sun
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College (State Key Laboratory of Bioactive Substance and Function of Natural Medicines & NHC Key Laboratory of Biosynthesis of Natural Products), Beijing, 100050 China
| | - Jiu-Ming He
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College (State Key Laboratory of Bioactive Substance and Function of Natural Medicines & NHC Key Laboratory of Biosynthesis of Natural Products), Beijing, 100050 China
| | - Jian-Qiang Kong
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College (State Key Laboratory of Bioactive Substance and Function of Natural Medicines & NHC Key Laboratory of Biosynthesis of Natural Products), Beijing, 100050 China
| |
Collapse
|
105
|
Lyu X, Lee J, Chen WN. Potential Natural Food Preservatives and Their Sustainable Production in Yeast: Terpenoids and Polyphenols. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4397-4417. [PMID: 30844263 DOI: 10.1021/acs.jafc.8b07141] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Terpenoids and polyphenols are high-valued plant secondary metabolites. Their high antimicrobial activities demonstrate their huge potential as natural preservatives in the food industry. With the rapid development of metabolic engineering, it has become possible to realize large-scale production of non-native terpenoids and polyphenols by using the generally recognized as safe (GRAS) strain, Saccharomyces cerevisiae, as a cell factory. This review will summarize the major terpenoid and polyphenol compounds with high antimicrobial properties, describe their native metabolic pathways as well as antimicrobial mechanisms, and highlight current progress on their heterologous biosynthesis in S. cerevisiae. Current challenges and perspectives for the sustainable production of terpenoid and polyphenol as natural food preservatives via S. cerevisiae will also be discussed.
Collapse
Affiliation(s)
- Xiaomei Lyu
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 62 Nanyang Drive , Singapore 637459 , Singapore
| | - Jaslyn Lee
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 62 Nanyang Drive , Singapore 637459 , Singapore
| | - Wei Ning Chen
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 62 Nanyang Drive , Singapore 637459 , Singapore
| |
Collapse
|
106
|
Santos-Buelga C, González-Paramás AM, Oludemi T, Ayuda-Durán B, González-Manzano S. Plant phenolics as functional food ingredients. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 90:183-257. [PMID: 31445596 DOI: 10.1016/bs.afnr.2019.02.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Phenolic compounds have attracted much attention in recent times as their dietary intake has been associated with the prevention of some chronic and degenerative diseases that constitute major causes of death and incapacity in developed countries, such as cardiovascular diseases, type II diabetes, some types of cancers or neurodegenerative disorders like Alzheimer's and Parkinson's diseases. Nowadays it is considered that these compounds contribute, at least in part, for the protective effects of fruit and vegetable-rich diets, so that the study of their role in human nutrition has become a central issue in food research. This chapter reviews the current knowledge on the phenolic compounds as food components, namely their occurrence in the diet, bioavailability and metabolism, biological activities and mechanisms of action. Besides, the approaches for their extraction from plant matrices and technological improvements regarding their preparation, stability and bioavailability in order to be used as functional food ingredients are also reviewed, as well as their legal situation regarding the possibility of making "health claims" based on their presence in food and beverages.
Collapse
Affiliation(s)
- Celestino Santos-Buelga
- Grupo de Investigación en Polifenoles (GIP-USAL), Universidad de Salamanca, Salamanca, Spain.
| | - Ana M González-Paramás
- Grupo de Investigación en Polifenoles (GIP-USAL), Universidad de Salamanca, Salamanca, Spain
| | - Taofiq Oludemi
- Mountain Research Center (CIMO), Polytechnic Institute of Bragança, Bragança, Portugal
| | - Begoña Ayuda-Durán
- Grupo de Investigación en Polifenoles (GIP-USAL), Universidad de Salamanca, Salamanca, Spain
| | - Susana González-Manzano
- Grupo de Investigación en Polifenoles (GIP-USAL), Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
107
|
Yuan SF, Alper HS. Metabolic engineering of microbial cell factories for production of nutraceuticals. Microb Cell Fact 2019; 18:46. [PMID: 30857533 PMCID: PMC6410520 DOI: 10.1186/s12934-019-1096-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/27/2019] [Indexed: 11/18/2022] Open
Abstract
Metabolic engineering allows for the rewiring of basic metabolism to overproduce both native and non-native metabolites. Among these biomolecules, nutraceuticals have received considerable interest due to their health-promoting or disease-preventing properties. Likewise, microbial engineering efforts to produce these value-added nutraceuticals overcome traditional limitations of low yield from extractions and complex chemical syntheses. This review covers current strategies of metabolic engineering employed for the production of a few key nutraceuticals with selecting polyunsaturated fatty acids, polyphenolic compounds, carotenoids and non-proteinogenic amino acids as exemplary molecules. We focus on the use of both mono-culture and co-culture strategies to produce these molecules of interest. In each of these cases, metabolic engineering efforts are enabling rapid production of these molecules.
Collapse
Affiliation(s)
- Shuo-Fu Yuan
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Hal S Alper
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA.
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX, 78712, USA.
| |
Collapse
|
108
|
Auxillos JY, Garcia-Ruiz E, Jones S, Li T, Jiang S, Dai J, Cai Y. Multiplex Genome Engineering for Optimizing Bioproduction in Saccharomyces cerevisiae. Biochemistry 2019; 58:1492-1500. [DOI: 10.1021/acs.biochem.8b01086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jamie Y. Auxillos
- Manchester Institute of Biotechnology (MIB), School of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- School of Biological Sciences, University of Edinburgh, King’s Buildings, Edinburgh EH9 3JY, United Kingdom
| | - Eva Garcia-Ruiz
- Manchester Institute of Biotechnology (MIB), School of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Sally Jones
- Manchester Institute of Biotechnology (MIB), School of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Tianyi Li
- Center for Synthetic Genomics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Shuangying Jiang
- Center for Synthetic Genomics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Junbiao Dai
- Center for Synthetic Genomics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yizhi Cai
- Manchester Institute of Biotechnology (MIB), School of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
109
|
Huccetogullari D, Luo ZW, Lee SY. Metabolic engineering of microorganisms for production of aromatic compounds. Microb Cell Fact 2019; 18:41. [PMID: 30808357 PMCID: PMC6390333 DOI: 10.1186/s12934-019-1090-4] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 02/19/2019] [Indexed: 01/09/2023] Open
Abstract
Metabolic engineering has been enabling development of high performance microbial strains for the efficient production of natural and non-natural compounds from renewable non-food biomass. Even though microbial production of various chemicals has successfully been conducted and commercialized, there are still numerous chemicals and materials that await their efficient bio-based production. Aromatic chemicals, which are typically derived from benzene, toluene and xylene in petroleum industry, have been used in large amounts in various industries. Over the last three decades, many metabolically engineered microorganisms have been developed for the bio-based production of aromatic chemicals, many of which are derived from aromatic amino acid pathways. This review highlights the latest metabolic engineering strategies and tools applied to the biosynthesis of aromatic chemicals, many derived from shikimate and aromatic amino acids, including L-phenylalanine, L-tyrosine and L-tryptophan. It is expected that more and more engineered microorganisms capable of efficiently producing aromatic chemicals will be developed toward their industrial-scale production from renewable biomass.
Collapse
Affiliation(s)
- Damla Huccetogullari
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program) and Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, 34141, Republic of Korea
| | - Zi Wei Luo
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program) and Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, 34141, Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program) and Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, 34141, Republic of Korea.
- BioProcess Engineering Research Center and Bioinformatics Research Center, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
110
|
Pei J, Chen A, Dong P, Shi X, Zhao L, Cao F, Tang F. Modulating heterologous pathways and optimizing fermentation conditions for biosynthesis of kaempferol and astragalin from naringenin in Escherichia coli. ACTA ACUST UNITED AC 2019; 46:171-186. [DOI: 10.1007/s10295-018-02134-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 12/31/2018] [Indexed: 10/27/2022]
Abstract
Abstract
Kaempferol and astragalin are used as standards to assess the quality of Ginkgo biloba extract and Radix astragali, respectively, and possess numerous biological properties. In this study, we constructed a recombinant strain with a highly efficient biosynthetic pathway of kaempferol by screening key enzyme genes, designing a synthetic fusion enzyme and increasing the gene copy number. By optimizing conversion and fed-batch fermentation conditions, maximal kaempferol production reached 1184.2 ± 16.5 mg/L, which represents the highest yield of kaempferol from naringenin reported to date. Based on this result, glycosyltransferase (AtUGT78D2) and an efficient UDP-glucose synthesis pathway were introduced into the recombinant strain to produce astragalin, resulting in maximal astragalin production at 1738.5 ± 24.8 mg/L without kaempferol accumulation. The efficient synthesis pathway described in this study for kaempferol and astragalin biosynthesis can be widely used for flavonoid biosynthesis in Escherichia coli.
Collapse
Affiliation(s)
- Jianjun Pei
- grid.410625.4 Co-Innovation Center for Sustainable Forestry in Southern China Nanjing Forestry University Nanjing China
- grid.410625.4 College of Chemical Engineering Nanjing Forestry University 210037 Nanjing China
- Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass Nanjing China
| | - Anna Chen
- grid.410625.4 Co-Innovation Center for Sustainable Forestry in Southern China Nanjing Forestry University Nanjing China
- grid.410625.4 College of Chemical Engineering Nanjing Forestry University 210037 Nanjing China
| | - Ping Dong
- grid.410625.4 Co-Innovation Center for Sustainable Forestry in Southern China Nanjing Forestry University Nanjing China
- grid.410625.4 College of Chemical Engineering Nanjing Forestry University 210037 Nanjing China
| | - Xuejia Shi
- grid.410625.4 Co-Innovation Center for Sustainable Forestry in Southern China Nanjing Forestry University Nanjing China
- grid.410625.4 College of Chemical Engineering Nanjing Forestry University 210037 Nanjing China
| | - Linguo Zhao
- grid.410625.4 Co-Innovation Center for Sustainable Forestry in Southern China Nanjing Forestry University Nanjing China
- grid.410625.4 College of Chemical Engineering Nanjing Forestry University 210037 Nanjing China
- Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass Nanjing China
| | - Fuliang Cao
- grid.410625.4 Co-Innovation Center for Sustainable Forestry in Southern China Nanjing Forestry University Nanjing China
- grid.410625.4 College of Chemical Engineering Nanjing Forestry University 210037 Nanjing China
| | - Feng Tang
- 0000 0001 0742 5632 grid.459618.7 International Centre for Bamboo and Rattan Beijing China
| |
Collapse
|
111
|
Rai AK, Pandey A, Sahoo D. Biotechnological potential of yeasts in functional food industry. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2018.11.016] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
112
|
Palmer CM, Alper HS. Expanding the Chemical Palette of Industrial Microbes: Metabolic Engineering for Type III PKS-Derived Polyketides. Biotechnol J 2018; 14:e1700463. [DOI: 10.1002/biot.201700463] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/18/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Claire M. Palmer
- Institute for Cellular and Molecular Biology; The University of Texas at Austin; Austin 200 E Dean Keeton St. Stop C0400 Austin TX 78712
| | - Hal S. Alper
- Institute for Cellular and Molecular Biology; The University of Texas at Austin; Austin 200 E Dean Keeton St. Stop C0400 Austin TX 78712
- McKetta Department of Chemical Engineering; The University of Texas at Austin; Austin 200 E Dean Keeton St. Stop C0400 Austin TX 78712
| |
Collapse
|
113
|
Levisson M, Patinios C, Hein S, de Groot PA, Daran JM, Hall RD, Martens S, Beekwilder J. Engineering de novo anthocyanin production in Saccharomyces cerevisiae. Microb Cell Fact 2018; 17:103. [PMID: 29970082 PMCID: PMC6029064 DOI: 10.1186/s12934-018-0951-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/27/2018] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Anthocyanins are polyphenolic pigments which provide pink to blue colours in fruits and flowers. There is an increasing demand for anthocyanins, as food colorants and as health-promoting substances. Plant production of anthocyanins is often seasonal and cannot always meet demand due to low productivity and the complexity of the plant extracts. Therefore, a system of on-demand supply is useful. While a number of other (simpler) plant polyphenols have been successfully produced in the yeast Saccharomyces cerevisiae, production of anthocyanins has not yet been reported. RESULTS Saccharomyces cerevisiae was engineered to produce pelargonidin 3-O-glucoside starting from glucose. Specific anthocyanin biosynthetic genes from Arabidopsis thaliana and Gerbera hybrida were introduced in a S. cerevisiae strain producing naringenin, the flavonoid precursor of anthocyanins. Upon culturing, pelargonidin and its 3-O-glucoside were detected inside the yeast cells, albeit at low concentrations. A number of related intermediates and side-products were much more abundant and were secreted into the culture medium. To optimize titers of pelargonidin 3-O-glucoside further, biosynthetic genes were stably integrated into the yeast genome, and formation of a major side-product, phloretic acid, was prevented by engineering the yeast chassis. Further engineering, by removing two glucosidases which are known to degrade pelargonidin 3-O-glucoside, did not result in higher yields of glycosylated pelargonidin. In aerated, pH controlled batch reactors, intracellular pelargonidin accumulation reached 0.01 µmol/gCDW, while kaempferol and dihydrokaempferol were effectively exported to reach extracellular concentration of 20 µM [5 mg/L] and 150 µM [44 mg/L], respectively. CONCLUSION The results reported in this study demonstrate the proof-of-concept that S. cerevisiae is capable of de novo production of the anthocyanin pelargonidin 3-O-glucoside. Furthermore, while current conversion efficiencies are low, a number of clear bottlenecks have already been identified which, when overcome, have huge potential to enhance anthocyanin production efficiency. These results bode very well for the development of fermentation-based production systems for specific and individual anthocyanin molecules. Such systems have both great scientific value for identifying and characterising anthocyanin decorating enzymes as well as significant commercial potential for the production of, on-demand, pure bioactive compounds to be used in the food, health and even pharma industries.
Collapse
Affiliation(s)
- Mark Levisson
- Laboratory of Plant Physiology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Constantinos Patinios
- Laboratory of Plant Physiology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Sascha Hein
- Department of Food Quality and Nutrition, Fondazione Edmund Mach, Centro Ricerca e Innovazione, Via E. Mach, 1, 38010 San Michele all’Adige, TN Italy
| | - Philip A. de Groot
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Jean-Marc Daran
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Robert D. Hall
- Laboratory of Plant Physiology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Wageningen Plant Research, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Stefan Martens
- Department of Food Quality and Nutrition, Fondazione Edmund Mach, Centro Ricerca e Innovazione, Via E. Mach, 1, 38010 San Michele all’Adige, TN Italy
| | - Jules Beekwilder
- Wageningen Plant Research, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
114
|
Production of methoxylated flavonoids in yeast using ring A hydroxylases and flavonoid O-methyltransferases from sweet basil. Appl Microbiol Biotechnol 2018; 102:5585-5598. [DOI: 10.1007/s00253-018-9043-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/09/2018] [Accepted: 04/19/2018] [Indexed: 01/31/2023]
|
115
|
Averesch NJH, Krömer JO. Metabolic Engineering of the Shikimate Pathway for Production of Aromatics and Derived Compounds-Present and Future Strain Construction Strategies. Front Bioeng Biotechnol 2018; 6:32. [PMID: 29632862 PMCID: PMC5879953 DOI: 10.3389/fbioe.2018.00032] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/12/2018] [Indexed: 11/25/2022] Open
Abstract
The aromatic nature of shikimate pathway intermediates gives rise to a wealth of potential bio-replacements for commonly fossil fuel-derived aromatics, as well as naturally produced secondary metabolites. Through metabolic engineering, the abundance of certain intermediates may be increased, while draining flux from other branches off the pathway. Often targets for genetic engineering lie beyond the shikimate pathway, altering flux deep in central metabolism. This has been extensively used to develop microbial production systems for a variety of compounds valuable in chemical industry, including aromatic and non-aromatic acids like muconic acid, para-hydroxybenzoic acid, and para-coumaric acid, as well as aminobenzoic acids and aromatic α-amino acids. Further, many natural products and secondary metabolites that are valuable in food- and pharma-industry are formed outgoing from shikimate pathway intermediates. (Re)construction of such routes has been shown by de novo production of resveratrol, reticuline, opioids, and vanillin. In this review, strain construction strategies are compared across organisms and put into perspective with requirements by industry for commercial viability. Focus is put on enhancing flux to and through shikimate pathway, and engineering strategies are assessed in order to provide a guideline for future optimizations.
Collapse
Affiliation(s)
- Nils J H Averesch
- Universities Space Research Association at NASA Ames Research Center, Moffett Field, CA, United States
| | - Jens O Krömer
- Department of Solar Materials, Helmholtz Centre for Environmental Research, Leipzig, Germany
| |
Collapse
|
116
|
Tarko T, Kostrz M, Duda-Chodak A, Semik-Szczurak D, Sroka P, Senczyszyn T. The effect of apple cultivars and yeast strains on selected quality parameters and antioxidant activity of fermented apple beverages. CYTA - JOURNAL OF FOOD 2018. [DOI: 10.1080/19476337.2018.1503616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Tomasz Tarko
- Department of Fermentation Technology and Technical Microbiology, Faculty of Food Technology, University of Agriculture in Krakow, Krakow, Poland
| | - Magdalena Kostrz
- Department of Fermentation Technology and Technical Microbiology, Faculty of Food Technology, University of Agriculture in Krakow, Krakow, Poland
| | - Aleksandra Duda-Chodak
- Department of Fermentation Technology and Technical Microbiology, Faculty of Food Technology, University of Agriculture in Krakow, Krakow, Poland
| | - Dorota Semik-Szczurak
- Department of Fermentation Technology and Technical Microbiology, Faculty of Food Technology, University of Agriculture in Krakow, Krakow, Poland
| | - Paweł Sroka
- Department of Fermentation Technology and Technical Microbiology, Faculty of Food Technology, University of Agriculture in Krakow, Krakow, Poland
| | - Tomasz Senczyszyn
- Department of Fermentation Technology and Technical Microbiology, Faculty of Food Technology, University of Agriculture in Krakow, Krakow, Poland
| |
Collapse
|
117
|
Duan L, Ding W, Liu X, Cheng X, Cai J, Hua E, Jiang H. Biosynthesis and engineering of kaempferol in Saccharomyces cerevisiae. Microb Cell Fact 2017; 16:165. [PMID: 28950867 PMCID: PMC5615808 DOI: 10.1186/s12934-017-0774-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/18/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Kaempferol is a flavonol with broad bioactivity of anti-oxidant, anti-cancer, anti-diabetic, anti-microbial, cardio-protective and anti-asthma. Microbial synthesis of kaempferol is a promising strategy because of the low content in primary plant source. METHODS In this study, the biosynthesis pathway of kaempferol was constructed in the budding yeast Saccharomyces cerevisiae to produce kaempferol de novo, and several biological measures were taken for high production. RESULTS Firstly, a high efficient flavonol synthases (FLS) from Populus deltoides was introduced into the biosynthetic pathway of kaempferol. Secondly, a S. cerevisiae recombinant was constructed for de novo synthesis of kaempferol, which generated about 6.97 mg/L kaempferol from glucose. To further promote kaempferol production, the acetyl-CoA biosynthetic pathway was overexpressed and p-coumarate was supplied as substrate, which improved kaempferol titer by about 23 and 120%, respectively. Finally, a fed-batch process was developed for better kaempferol fermentation performance, and the production reached 66.29 mg/L in 40 h. CONCLUSIONS The titer of kaempferol in our engineered yeast is 2.5 times of the highest reported titer. Our study provides a possible strategy to produce kaempferol using microbial cell factory.
Collapse
Affiliation(s)
- Lijin Duan
- Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Wentao Ding
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Xiaonan Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaozhi Cheng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Jing Cai
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Erbing Hua
- Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China.
| | - Huifeng Jiang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
| |
Collapse
|