101
|
Quintanilla D, Hagemann T, Hansen K, Gernaey KV. Fungal Morphology in Industrial Enzyme Production--Modelling and Monitoring. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 149:29-54. [PMID: 25724310 DOI: 10.1007/10_2015_309] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Filamentous fungi are widely used in the biotechnology industry for the production of industrial enzymes. Thus, considerable work has been done with the purpose of characterizing these processes. The ultimate goal of these efforts is to be able to control and predict fermentation performance on the basis of "standardized" measurements in terms of morphology, rheology, viscosity, mass transfer and productivity. However, because the variables are connected or dependent on each other, this task is not trivial. The aim of this review article is to gather available information in order to explain the interconnectivity between the different variables in submerged fermentations. An additional factor which makes the characterization of a fermentation broth even more challenging is that the data obtained are also dependent on the way they have been collected-meaning which technologies or probes have been used, and on the way the data is interpreted-i.e. which models were applied. The main filamentous fungi used in industrial fermentation are introduced, ranging from Trichoderma reesei to Aspergillus species. Due to the fact that secondary metabolites, like antibiotics, are not to be considered bulk products, organisms like e.g. Penicillium chrysogenum are just briefly touched upon for the description of some characterization techniques. The potential for development of different morphological phenotypes is discussed as well, also in view of what this could mean to productivity and-equally important-the collection of the data. An overview of the state of the art techniques for morphology characterization is provided, discussing methods that finally can be employed as the computational power has grown sufficiently in the recent years. Image analysis (IA) clearly benefits most but it also means that methods like near infrared measurement (NIR), capacitance and on-line viscosity now provide potential alternatives as powerful tools for characterizing morphology. These measuring techniques, and to some extent their combination, allow obtaining the data necessary for supporting the creation of mathematical models describing the fermentation process. An important part of this article will indeed focus on describing the different models, and on discussing their importance to fermentations of filamentous fungi in general. The main conclusion is that it has not yet been attempted to develop an overarching model that spans across strains and scales, as most studies indeed conclude that their respective results might be strain specific and not necessarily valid across scales.
Collapse
Affiliation(s)
- Daniela Quintanilla
- Department of Chemical and Biochemical Engineering, Technical University of Denmark (DTU), Building 229, 2800, Lyngby, Denmark
| | | | | | | |
Collapse
|
102
|
Putri DA, Radjasa OK, Pringgenies D. Effectiveness of Marine Fungal Symbiont Isolated from Soft Coral Sinularia sp. from Panjang Island as Antifungal. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.proenv.2015.01.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
103
|
Meyer V, Fiedler M, Nitsche B, King R. The Cell Factory Aspergillus Enters the Big Data Era: Opportunities and Challenges for Optimising Product Formation. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 149:91-132. [PMID: 25616499 DOI: 10.1007/10_2014_297] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Living with limits. Getting more from less. Producing commodities and high-value products from renewable resources including waste. What is the driving force and quintessence of bioeconomy outlines the lifestyle and product portfolio of Aspergillus, a saprophytic genus, to which some of the top-performing microbial cell factories belong: Aspergillus niger, Aspergillus oryzae and Aspergillus terreus. What makes them so interesting for exploitation in biotechnology and how can they help us to address key challenges of the twenty-first century? How can these strains become trimmed for better growth on second-generation feedstocks and how can we enlarge their product portfolio by genetic and metabolic engineering to get more from less? On the other hand, what makes it so challenging to deduce biological meaning from the wealth of Aspergillus -omics data? And which hurdles hinder us to model and engineer industrial strains for higher productivity and better rheological performance under industrial cultivation conditions? In this review, we will address these issues by highlighting most recent findings from the Aspergillus research with a focus on fungal growth, physiology, morphology and product formation. Indeed, the last years brought us many surprising insights into model and industrial strains. They clearly told us that similar is not the same: there are different ways to make a hypha, there are more protein secretion routes than anticipated and there are different molecular and physical mechanisms which control polar growth and the development of hyphal networks. We will discuss new conceptual frameworks derived from these insights and the future scientific advances necessary to create value from Aspergillus Big Data.
Collapse
Affiliation(s)
- Vera Meyer
- Department Applied and Molecular Microbiology, Institute of Biotechnology, Berlin University of Technology, Gustav-Meyer-Allee 25, 13355, Berlin, Germany,
| | | | | | | |
Collapse
|
104
|
Engineering of Aspergillus niger for the production of secondary metabolites. Fungal Biol Biotechnol 2014; 1:4. [PMID: 28955446 PMCID: PMC5598268 DOI: 10.1186/s40694-014-0004-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 08/13/2014] [Indexed: 01/17/2023] Open
Abstract
Background Filamentous fungi can each produce dozens of secondary metabolites which are attractive as therapeutics, drugs, antimicrobials, flavour compounds and other high-value chemicals. Furthermore, they can be used as an expression system for eukaryotic proteins. Application of most fungal secondary metabolites is, however, so far hampered by the lack of suitable fermentation protocols for the producing strain and/or by low product titers. To overcome these limitations, we report here the engineering of the industrial fungus Aspergillus niger to produce high titers (up to 4,500 mg • l−1) of secondary metabolites belonging to the class of nonribosomal peptides. Results For a proof-of-concept study, we heterologously expressed the 351 kDa nonribosomal peptide synthetase ESYN from Fusarium oxysporum in A. niger. ESYN catalyzes the formation of cyclic depsipeptides of the enniatin family, which exhibit antimicrobial, antiviral and anticancer activities. The encoding gene esyn1 was put under control of a tunable bacterial-fungal hybrid promoter (Tet-on) which was switched on during early-exponential growth phase of A. niger cultures. The enniatins were isolated and purified by means of reverse phase chromatography and their identity and purity proven by tandem MS, NMR spectroscopy and X-ray crystallography. The initial yields of 1 mg • l−1 of enniatin were increased about 950 fold by optimizing feeding conditions and the morphology of A. niger in liquid shake flask cultures. Further yield optimization (about 4.5 fold) was accomplished by cultivating A. niger in 5 l fed batch fermentations. Finally, an autonomous A. niger expression host was established, which was independent from feeding with the enniatin precursor d-2-hydroxyvaleric acid d-Hiv. This was achieved by constitutively expressing a fungal d-Hiv dehydrogenase in the esyn1-expressing A. niger strain, which used the intracellular α-ketovaleric acid pool to generate d-Hiv. Conclusions This is the first report demonstrating that A. niger is a potent and promising expression host for nonribosomal peptides with titers high enough to become industrially attractive. Application of the Tet-on system in A. niger allows precise control on the timing of product formation, thereby ensuring high yields and purity of the peptides produced. Electronic supplementary material The online version of this article (doi:10.1186/s40694-014-0004-9) contains supplementary material, which is available to authorized users.
Collapse
|
105
|
Huang X, Lu X, Li Y, Li X, Li JJ. Improving itaconic acid production through genetic engineering of an industrial Aspergillus terreus strain. Microb Cell Fact 2014; 13:119. [PMID: 25162789 PMCID: PMC4251695 DOI: 10.1186/s12934-014-0119-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 08/05/2014] [Indexed: 11/10/2022] Open
Abstract
Background Itaconic acid, which has been declared to be one of the most promising and flexible building blocks, is currently used as monomer or co-monomer in the polymer industry, and produced commercially by Aspergillus terreus. However, the production level of itaconic acid hasn’t been improved in the past 40 years, and mutagenesis is still the main strategy to improve itaconate productivity. The genetic engineering approach hasn’t been applied in industrial A. terreus strains to increase itaconic acid production. Results In this study, the genes closely related to itaconic acid production, including cadA, mfsA, mttA, ATEG_09969, gpdA, ATEG_01954, acoA, mt-pfkA and citA, were identified and overexpressed in an industrial A. terreus strain respectively. Overexpression of the genes cadA (cis-aconitate decarboxylase) and mfsA (Major Facilitator Superfamily Transporter) enhanced the itaconate production level by 9.4% and 5.1% in shake flasks respectively. Overexpression of other genes showed varied effects on itaconate production. The titers of other organic acids were affected by the introduced genes to different extent. Conclusions Itaconic acid production could be improved through genetic engineering of the industrially used A. terreus strain. We have identified some important genes such as cadA and mfsA, whose overexpression led to the increased itaconate productivity, and successfully developed a strategy to establish a highly efficient microbial cell factory for itaconate protuction. Our results will provide a guide for further enhancement of the itaconic acid production level through genetic engineering in future. Electronic supplementary material The online version of this article (doi:10.1186/s12934-014-0119-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | - Jian-Jun Li
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No, 189 Songling Road, Qingdao 266101, China.
| |
Collapse
|
106
|
Loske AM, Fernández F, Magaña-Ortíz D, Coconi-Linares N, Ortíz-Vázquez E, Gómez-Lim MA. Tandem shock waves to enhance genetic transformation of Aspergillus niger. ULTRASONICS 2014; 54:1656-1662. [PMID: 24680880 DOI: 10.1016/j.ultras.2014.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 03/07/2014] [Accepted: 03/07/2014] [Indexed: 06/03/2023]
Abstract
Filamentous fungi are used in several industries and in academia to produce antibiotics, metabolites, proteins and pharmaceutical compounds. The development of valuable strains usually requires the insertion of recombinant deoxyribonucleic acid; however, the protocols to transfer DNA to fungal cells are highly inefficient. Recently, underwater shock waves were successfully used to genetically transform filamentous fungi. The purpose of this research was to demonstrate that the efficiency of transformation can be improved significantly by enhancing acoustic cavitation using tandem (dual-pulse) shock waves. Results revealed that tandem pressure pulses, generated at a delay of 300 μs, increased the transformation efficiency of Aspergillus niger up to 84% in comparison with conventional (single-pulse) shock waves. This methodology may also be useful to obtain new strains required in basic research and biotechnology.
Collapse
Affiliation(s)
- Achim M Loske
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, 76230 Querétaro, Qro., Mexico.
| | - Francisco Fernández
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, 76230 Querétaro, Qro., Mexico
| | - Denis Magaña-Ortíz
- Departamento de Ingeniería Genética de Plantas, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del IPN, 36500 Irapuato, Gto., Mexico
| | - Nancy Coconi-Linares
- Departamento de Ingeniería Genética de Plantas, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del IPN, 36500 Irapuato, Gto., Mexico
| | | | - Miguel A Gómez-Lim
- Departamento de Ingeniería Genética de Plantas, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del IPN, 36500 Irapuato, Gto., Mexico.
| |
Collapse
|
107
|
van den Berg BA, Reinders MJ, van der Laan JM, Roubos JA, de Ridder D. Protein redesign by learning from data. Protein Eng Des Sel 2014; 27:281-8. [DOI: 10.1093/protein/gzu031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
108
|
Kowalczyk JE, Benoit I, de Vries RP. Regulation of plant biomass utilization in Aspergillus. ADVANCES IN APPLIED MICROBIOLOGY 2014; 88:31-56. [PMID: 24767425 DOI: 10.1016/b978-0-12-800260-5.00002-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The ability of fungi to survive in every known biotope, both natural and man-made, relies in part on their ability to use a wide range of carbon sources. Fungi degrade polymeric carbon sources present in the environment (polysaccharides, proteins, and lignins) to use the monomeric components as nutrients. However, the available carbon sources vary strongly in nature, both between biotopes and in time. The degradation of polymeric carbon sources is mediated through the production of a broad range of enzymes, the production of which is tightly controlled by a network of regulators and linked to the activation of catabolic pathways to convert the released monomers. This review summarizes the knowledge of Aspergillus regulators involved in plant biomass utilization.
Collapse
Affiliation(s)
| | - Isabelle Benoit
- CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands
| | | |
Collapse
|
109
|
Liu L, Feizi A, Österlund T, Hjort C, Nielsen J. Genome-scale analysis of the high-efficient protein secretion system of Aspergillus oryzae. BMC SYSTEMS BIOLOGY 2014; 8:73. [PMID: 24961398 PMCID: PMC4086290 DOI: 10.1186/1752-0509-8-73] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 06/18/2014] [Indexed: 01/20/2023]
Abstract
Background The koji mold, Aspergillus oryzae is widely used for the production of industrial enzymes due to its particularly high protein secretion capacity and ability to perform post-translational modifications. However, systemic analysis of its secretion system is lacking, generally due to the poorly annotated proteome. Results Here we defined a functional protein secretory component list of A. oryzae using a previously reported secretory model of S. cerevisiae as scaffold. Additional secretory components were obtained by blast search with the functional components reported in other closely related fungal species such as Aspergillus nidulans and Aspergillus niger. To evaluate the defined component list, we performed transcriptome analysis on three α-amylase over-producing strains with varying levels of secretion capacities. Specifically, secretory components involved in the ER-associated processes (including components involved in the regulation of transport between ER and Golgi) were significantly up-regulated, with many of them never been identified for A. oryzae before. Furthermore, we defined a complete list of the putative A. oryzae secretome and monitored how it was affected by overproducing amylase. Conclusion In combination with the transcriptome data, the most complete secretory component list and the putative secretome, we improved the systemic understanding of the secretory machinery of A. oryzae in response to high levels of protein secretion. The roles of many newly predicted secretory components were experimentally validated and the enriched component list provides a better platform for driving more mechanistic studies of the protein secretory pathway in this industrially important fungus.
Collapse
|
110
|
Soltani J, Moghaddam MSH. Diverse and bioactive endophytic Aspergilli inhabit Cupressaceae plant family. Arch Microbiol 2014; 196:635-44. [PMID: 24912659 DOI: 10.1007/s00203-014-0997-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 05/14/2014] [Accepted: 05/16/2014] [Indexed: 01/16/2023]
Abstract
Aspergilli are filamentous, cosmopolitan and ubiquitous fungi which have significant impact on human, animal and plant welfare worldwide. Due to their extraordinary metabolic diversity, Aspergillus species are used in biotechnology for the production of a vast array of biomolecules. However, little is known about Aspergillus species that are able to adapt an endophytic lifestyle in Cupressaceae plant family and are capable of producing cytotoxic, antifungal and antibacterial metabolites. In this work, we report a possible ecological niche for pathogenic fungi such as Aspergillus fumigatus and Aspergillus flavus. Indeed, our findings indicate that A. fumigatus, A. flavus, Aspergillus niger var. niger and A. niger var. awamori adapt an endophytic lifestyle inside the Cupressaceous plants including Cupressus arizonica, Cupressus sempervirens var. fastigiata, Cupressus semipervirens var. cereiformis, and Thuja orientalis. In addition, we found that extracts of endophytic Aspergilli showed significant growth inhibition and cytotoxicity against the model fungus Pyricularia oryzae and bacteria such as Bacillus sp., Erwinia amylovora and Pseudomonas syringae. These endophytic Aspergilli also showed in vitro antifungal effects on the cypress fungal phytopathogens including Diplodia seriata, Phaeobotryon cupressi and Spencermartinsia viticola. In conclusion, our findings clearly support the endophytic association of Aspergilli with Cupressaceae plants and their possible role in protection of host plants against biotic stresses. Observed bioactivities of such endophytic Aspergilli may represent a significant potential for bioindustry and biocontrol applications.
Collapse
Affiliation(s)
- Jalal Soltani
- Phytopathology Department, Bu-Ali Sina University, Hamedan, Iran,
| | | |
Collapse
|
111
|
Du Y, Xie G, Yang C, Fang B, Chen H. Construction of brewing-wine Aspergillus oryzae pyrG- mutant by pyrG gene deletion and its application in homology transformation. Acta Biochim Biophys Sin (Shanghai) 2014; 46:477-83. [PMID: 24742431 DOI: 10.1093/abbs/gmu022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
pyrG(-) host cells are indispensable for pyrG(-) based transformation system. Isolations of pyrG(-) host cells by random mutations are limited by time-consuming, unclear genetic background and potential interferences of homogenous recombination. The purpose of this study was to construct brewing-wine Aspergillus oryzae pyrG(-) mutant by site-directed mutation of pyrG gene deletion which would be used as a host for further transformation. pMD-pyrGAB, a vector carrying pyrG deletion cassette, was used to construct pyrG(-) mutant of A. oryzae. Three stable pyrG deletion mutants of A. oryzae were isolated by resistant to 5-fluoroorotic acid and confirmed by polymerase chain reaction analysis, indicating that pyrG was completely excised. The ΔpyrG mutants were applied as pyrG(-) host cells to disrupt xdh gene encoding xylitol dehydrogenase, which involves in xylitol production of A. oryzae. The xdh disruption mutants were efficiently constructed by transforming a pMD-pyrG-xdh disruption plasmid carrying pyrG, and the produced xylitol concentration of the Δxdh mutant was three times as much as that of the ΔpyrG recipient. Site-directed pyrG gene deletion is thus an effective way for the isolation of pyrG(-) host cells, and the established host-vector system could be applied in further functional genomics analysis and molecular breeding of A. oryzae.
Collapse
Affiliation(s)
- Yu Du
- Department of Bioengineering & Biotechnology, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Guizhen Xie
- Department of Bioengineering & Biotechnology, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Chunfa Yang
- Department of Bioengineering & Biotechnology, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Baishan Fang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hongwen Chen
- Department of Bioengineering & Biotechnology, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
112
|
Physical methods for genetic transformation of fungi and yeast. Phys Life Rev 2014; 11:184-203. [DOI: 10.1016/j.plrev.2014.01.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 01/21/2014] [Indexed: 01/27/2023]
|
113
|
Development of an unmarked gene deletion system for the filamentous fungi Aspergillus niger and Talaromyces versatilis. Appl Environ Microbiol 2014; 80:3484-7. [PMID: 24682295 DOI: 10.1128/aem.00625-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this article, we present a method to delete genes in filamentous fungi that allows recycling of the selection marker and is efficient in a nonhomologous end-joining (NHEJ)-proficient strain. We exemplify the approach by deletion of the gene encoding the transcriptional regulator XlnR in the fungus Aspergillus niger. To show the efficiency and advantages of the method, we deleted 8 other genes and constructed a double mutant in this species. Moreover, we showed that the same principle also functions in a different genus of filamentous fungus (Talaromyces versatilis, basionym Penicillium funiculosum). This technique will increase the versatility of the toolboxes for genome manipulation of model and industrially relevant fungi.
Collapse
|
114
|
Cloning, characterization and application of a glyceraldehyde-3-phosphate dehydrogenase promoter from Aspergillus terreus. ACTA ACUST UNITED AC 2014; 41:585-92. [DOI: 10.1007/s10295-013-1385-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 11/20/2013] [Indexed: 11/27/2022]
Abstract
Abstract
It is important to develop native and highly efficient promoters for effective genetic engineering of filamentous fungi. Although Aspergillus terreus is an important industrial fungus for the production of itaconic acid and lovastatin, the available genetic toolbox for this microorganism is still rather limited. We have cloned the 5′ upstream region of the glyceraldehyde-3-phosphate dehydrogenase gene (gpd; 2,150 bp from the start codon) from A. terreus CICC 40205 and subsequently confirmed its promoter function using sgfp (synthetic green fluorescent protein) as the reporter. The sequence of the promoter PgpdAt was further analysed by systematic deletion to obtain an effective and compact functional promoter. Two truncated versions of PgpdAt (1,081 and 630 bp) were also able to drive sgfp expression in A. terreus. The activities of these three PgpdAt promoters of varying different lengths were further confirmed by fluorescence, western blot and transcription. The shortest one (630 bp) was successfully applied as a driver of vgb expression in the genetic engineering of A. terreus. The function of expressed haemoglobin was demonstrated by the CO (carbon monoxide)-difference spectrum and enhanced oxygen uptake rate, glucose consumption and itaconic acid titer. Our study was successful in developing and validating an efficient and compact native promoter for genetic engineering of A. terreus.
Collapse
|
115
|
Nevalainen H, Peterson R. Making recombinant proteins in filamentous fungi- are we expecting too much? Front Microbiol 2014; 5:75. [PMID: 24578701 PMCID: PMC3936196 DOI: 10.3389/fmicb.2014.00075] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 02/11/2014] [Indexed: 11/13/2022] Open
Abstract
Hosts used for the production of recombinant proteins are typically high-protein secreting mutant strains that have been selected for a specific purpose, such as efficient production of cellulose-degrading enzymes. Somewhat surprisingly, sequencing of the genomes of a series of mutant strains of the cellulolytic Trichoderma reesei, widely used as an expression host for recombinant gene products, has shed very little light on the nature of changes that boost high-level protein secretion. While it is generally agreed and shown that protein secretion in filamentous fungi occurs mainly through the hyphal tip, there is growing evidence that secretion of proteins also takes place in sub-apical regions. Attempts to increase correct folding and thereby the yields of heterologous proteins in fungal hosts by co-expression of cellular chaperones and foldases have resulted in variable success; underlying reasons have been explored mainly at the transcriptional level. The observed physiological changes in fungal strains experiencing increasing stress through protein overexpression under strong gene promoters also reflect the challenge the host organisms are experiencing. It is evident, that as with other eukaryotes, fungal endoplasmic reticulum is a highly dynamic structure. Considering the above, there is an emerging body of work exploring the use of weaker expression promoters to avoid undue stress. Filamentous fungi have been hailed as candidates for the production of pharmaceutically relevant proteins for therapeutic use. One of the biggest challenges in terms of fungally produced heterologous gene products is their mode of glycosylation; fungi lack the functionally important terminal sialylation of the glycans that occurs in mammalian cells. Finally, exploration of the metabolic pathways and fluxes together with the development of sophisticated fermentation protocols may result in new strategies to produce recombinant proteins in filamentous fungi.
Collapse
Affiliation(s)
- Helena Nevalainen
- Biomolecular Frontiers Research Centre, Department of Chemistry and Biomolecular Sciences, Macquarie University, SydneyNSW, Australia
| | | |
Collapse
|
116
|
Guillemette T, Calmes B, Simoneau P. Impact of the UPR on the virulence of the plant fungal pathogen A. brassicicola. Virulence 2014; 5:357-64. [PMID: 24189567 PMCID: PMC3956514 DOI: 10.4161/viru.26772] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 10/10/2013] [Accepted: 10/10/2013] [Indexed: 11/19/2022] Open
Abstract
The fungal genus Alternaria contains many destructive plant pathogens, including Alternaria brassicicola, which causes black spot disease on a wide range of Brassicaceae plants and which is routinely used as a model necrotrophic pathogen in studies with Arabidopsis thaliana. During host infection, many fungal proteins that are critical for disease progression are processed in the endoplasmic reticulum (ER)/Golgi system and secreted in planta. The unfolded protein response (UPR) is an essential part of ER protein quality control that ensures efficient maturation of secreted and membrane-bound proteins in eukaryotes. This review highlights the importance of the UPR signaling pathway with respect to the ability of A. brassicicola to efficiently accomplish key steps of its pathogenic life cycle. Understanding the pathogenicity mechanisms that fungi uses during infection is crucial for the development of new antifungal therapies. Therefore the UPR pathway has emerged as a promising drug target for plant disease control.
Collapse
Affiliation(s)
- Thomas Guillemette
- Université d’Angers; UMR 1345 IRHS; SFR QUASAV; Angers, France
- INRA; UMR 1345 IRHS; Angers, France
- Agrocampus-Ouest; UMR 1345 IRHS; Angers, France
| | - Benoit Calmes
- Université d’Angers; UMR 1345 IRHS; SFR QUASAV; Angers, France
- INRA; UMR 1345 IRHS; Angers, France
- Agrocampus-Ouest; UMR 1345 IRHS; Angers, France
| | - Philippe Simoneau
- Université d’Angers; UMR 1345 IRHS; SFR QUASAV; Angers, France
- INRA; UMR 1345 IRHS; Angers, France
- Agrocampus-Ouest; UMR 1345 IRHS; Angers, France
| |
Collapse
|
117
|
Cheng LC, Wu TS, Wang JW, Wu SH, Chung MH, Kuo YM, Tsai CH. Production and isolation of chitosan fromAspergillus terreusand application in tin(II) adsorption. J Appl Polym Sci 2014. [DOI: 10.1002/app.40436] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Li-Chun Cheng
- Department of Environmental and Safety Engineering; Chung Hwa University of Medical Technology; Tainan 717 Taiwan
| | - Tzung-Shian Wu
- Department of Environmental and Safety Engineering; Chung Hwa University of Medical Technology; Tainan 717 Taiwan
| | - Jian-Wen Wang
- Department of Environmental and Safety Engineering; Chung Hwa University of Medical Technology; Tainan 717 Taiwan
| | - Szu-Han Wu
- Department of Physics Division; Institute of Nuclear Energy Research; Lung-Tan 32546 Taiwan
| | - Mei-Hui Chung
- Department of Environmental and Safety Engineering; Chung Hwa University of Medical Technology; Tainan 717 Taiwan
| | - Yi-Ming Kuo
- Department of Environmental and Safety Engineering; Chung Hwa University of Medical Technology; Tainan 717 Taiwan
| | - Cheng-Hsien Tsai
- Department of Chemical and Material Engineering; National Kaohsiung University of Applied Sciences; Kaohsiung 80778 Taiwan
| |
Collapse
|
118
|
Mustafa G, Tahir A, Asgher M, Rahman MU, Jamil A. Comparative sequence analysis of citrate synthase and 18S ribosomal DNA from a wild and mutant strains of Aspergillus niger with various fungi. Bioinformation 2014; 10:1-7. [PMID: 24516318 PMCID: PMC3916811 DOI: 10.6026/97320630010001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 01/16/2014] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED A mutation was induced in Aspergillus niger wild strain using ethidium bromide resulting in enhanced expression of citric acid by three folds and 112.42 mg/mL citric acid was produced under optimum conditions with 121.84 mg/mL of sugar utilization. Dendograms of 18S rDNA and citrate synthase from different fungi including sample strains were made to assess homology among different fungi and to study the correlation of citrate synthase gene with evolution of fungi. Subsequent comparative sequence analysis revealed strangeness between the citrate synthase and 18S rDNA phylogenetic trees. Furthermore, the citrate synthase movement suggests that the use of traditional marker molecule of 18S rDNA gives misleading information about the evolution of citrate synthase in different fungi as it has shown that citrate synthase gene transferred independently among different fungi having no evolutionary relationships. Random amplified polymorphic DNA (RAPD-PCR) analysis was also employed to study genetic variation between wild and mutant strains of A. niger and only 71.43% similarity was found between both the genomes. Keeping in view the importance of citric acid as a necessary constituent of various food preparations, synthetic biodegradable detergents and pharmaceuticals the enhanced production of citric acid by mutant derivative might provide significant boost in commercial scale viability of this useful product. ABBREVIATIONS CS - Citrate synthase, CA - Citric acid, RAPD - Random amplified polymorphic DNA, TAF - Total amplified fragments, PAF - Polymorphic amplified fragments, CAF - Common amplified fragments.
Collapse
Affiliation(s)
- Ghulam Mustafa
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, USA
| | - Aisha Tahir
- Department of Chemistry and Biochemistry, University of Agriculture, Faisalabad-38040, Pakistan
| | - Muhammad Asgher
- Department of Chemistry and Biochemistry, University of Agriculture, Faisalabad-38040, Pakistan
| | - Mehboob-ur Rahman
- National Institute for Biotechnology & Genetic Engineering (NIBGE) PO Box 577 Jhang Road Faisalabad, Pakistan
| | - Amer Jamil
- Department of Chemistry and Biochemistry, University of Agriculture, Faisalabad-38040, Pakistan
| |
Collapse
|
119
|
Maller A, Mota AMDO, Silva DP, Vicente AA, Teixeira JA, Polizeli MDLTDM. Fermentation pH in stirred tank and air-lift bioreactors affects phytase secretion byAspergillus japonicusdifferently but not the particle size. BIOCATAL BIOTRANSFOR 2014. [DOI: 10.3109/10242422.2013.870559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
120
|
Abstract
A focused platform for phytase bio-processing and application oriented research will help in developing an integrated technological solution to phytase production.
Collapse
Affiliation(s)
- K. Bhavsar
- NCIM Resource Center
- National Chemical Laboratory
- Pune 411008, India
| | - J. M. Khire
- NCIM Resource Center
- National Chemical Laboratory
- Pune 411008, India
| |
Collapse
|
121
|
Othman N, Jahim JM, Murad AMA, Bakar FDA. Dual Carbon Fermentation for the Production of Inducible Cellobiohydrolase by Recombinant Aspergillus Niger. JOURNAL OF MEDICAL AND BIOENGINEERING 2014; 3:93-97. [DOI: 10.12720/jomb.3.2.93-97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
122
|
Bhavsar K, Buddhiwant P, Soni SK, Depan D, Sarkar S, Khire JM. Phytase isozymes from Aspergillus niger NCIM 563 under solid state fermentation: Biochemical characterization and their correlation with submerged phytases. Process Biochem 2013. [DOI: 10.1016/j.procbio.2013.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
123
|
Tsunematsu Y, Ishikawa N, Wakana D, Goda Y, Noguchi H, Moriya H, Hotta K, Watanabe K. Distinct mechanisms for spiro-carbon formation reveal biosynthetic pathway crosstalk. Nat Chem Biol 2013; 9:818-25. [PMID: 24121553 DOI: 10.1038/nchembio.1366] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 09/09/2013] [Indexed: 01/10/2023]
Abstract
Spirotryprostatins, an indole alkaloid class of nonribosomal peptides isolated from Aspergillus fumigatus, are known for their antimitotic activity in tumor cells. Because spirotryprostatins and many other chemically complex spiro-carbon-bearing natural products exhibit useful biological activities, identifying and understanding the mechanism of spiro-carbon biosynthesis is of great interest. Here we report a detailed study of spiro-ring formation in spirotryprostatins from tryprostatins derived from the fumitremorgin biosynthetic pathway, using reactants and products prepared with engineered yeast and fungal strains. Unexpectedly, FqzB, an FAD-dependent monooxygenase from the unrelated fumiquinazoline biosynthetic pathway, catalyzed spiro-carbon formation in spirotryprostatin A via an epoxidation route. Furthermore, FtmG, a cytochrome P450 from the fumitremorgin biosynthetic pathway, was determined to catalyze the spiro-ring formation in spirotryprostatin B. Our results highlight the versatile role of oxygenating enzymes in the biosynthesis of structurally complex natural products and indicate that cross-talk of different biosynthetic pathways allows product diversification in natural product biosynthesis.
Collapse
Affiliation(s)
- Yuta Tsunematsu
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
124
|
Goebels C, Thonn A, Gonzalez-Hilarion S, Rolland O, Moyrand F, Beilharz TH, Janbon G. Introns regulate gene expression in Cryptococcus neoformans in a Pab2p dependent pathway. PLoS Genet 2013; 9:e1003686. [PMID: 23966870 PMCID: PMC3744415 DOI: 10.1371/journal.pgen.1003686] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 06/17/2013] [Indexed: 11/18/2022] Open
Abstract
Most Cryptococccus neoformans genes are interrupted by introns, and alternative splicing occurs very often. In this study, we examined the influence of introns on C. neoformans gene expression. For most tested genes, elimination of introns greatly reduces mRNA accumulation. Strikingly, the number and the position of introns modulate the gene expression level in a cumulative manner. A screen for mutant strains able to express functionally an intronless allele revealed that the nuclear poly(A) binding protein Pab2 modulates intron-dependent regulation of gene expression in C. neoformans. PAB2 deletion partially restored accumulation of intronless mRNA. In addition, our results demonstrated that the essential nucleases Rrp44p and Xrn2p are implicated in the degradation of mRNA transcribed from an intronless allele in C. neoformans. Double mutant constructions and over-expression experiments suggested that Pab2p and Xrn2p could act in the same pathway whereas Rrp44p appears to act independently. Finally, deletion of the RRP6 or the CID14 gene, encoding the nuclear exosome nuclease and the TRAMP complex associated poly(A) polymerase, respectively, has no effect on intronless allele expression. Cryptococcus neoformans is a major human pathogen responsible for deadly infection in immunocompromised patients. The analysis of its genome previously revealed that most of its genes are interrupted by introns. Here, we demonstrate that introns modulate gene expression in a cumulative manner. We also demonstrate that introns can play a positive or a negative role in this process. We identify a nuclear poly(A) binding protein (Pab2p) as implicated in the intron-dependent control of gene expression in C. neoformans. We also demonstrate that the essential nucleases Rrp44p and Xrn2p are implicated in two independent pathways controlling the intron-dependent regulation of gene expression in C. neoformans. Xrn2p regulation seems to depend on Pab2p whereas Rrp44p acts independently. In contrast, the other exosome nuclease Rrp6p and the TRAMP associated poly(A) polymerase Cid14p do not appear to be implicated in this regulation. Our results provide new insights into the regulation of gene expression in eukaryotes and more specifically into the biology and virulence of C. neoformans.
Collapse
Affiliation(s)
- Carolin Goebels
- Institut Pasteur, Unité des Aspergillus, Département Parasitologie et Mycologie, Paris, France
| | - Aline Thonn
- Institut Pasteur, Unité des Aspergillus, Département Parasitologie et Mycologie, Paris, France
| | - Sara Gonzalez-Hilarion
- Institut Pasteur, Unité des Aspergillus, Département Parasitologie et Mycologie, Paris, France
| | - Olga Rolland
- Institut Pasteur, Unité des Aspergillus, Département Parasitologie et Mycologie, Paris, France
| | - Frederique Moyrand
- Institut Pasteur, Unité des Aspergillus, Département Parasitologie et Mycologie, Paris, France
| | - Traude H. Beilharz
- Monash University, Department of Biochemistry and Molecular Biology, Clayton, Australia
| | - Guilhem Janbon
- Institut Pasteur, Unité des Aspergillus, Département Parasitologie et Mycologie, Paris, France
- * E-mail:
| |
Collapse
|
125
|
Brown SH, Bashkirova L, Berka R, Chandler T, Doty T, McCall K, McCulloch M, McFarland S, Thompson S, Yaver D, Berry A. Metabolic engineering of Aspergillus oryzae NRRL 3488 for increased production of l-malic acid. Appl Microbiol Biotechnol 2013; 97:8903-12. [DOI: 10.1007/s00253-013-5132-2] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 07/15/2013] [Accepted: 07/16/2013] [Indexed: 01/25/2023]
|
126
|
Zhu Y, Tramper J. Koji--where East meets West in fermentation. Biotechnol Adv 2013; 31:1448-57. [PMID: 23850857 DOI: 10.1016/j.biotechadv.2013.07.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 05/29/2013] [Accepted: 07/02/2013] [Indexed: 01/29/2023]
Abstract
Almost all biotechnological processes originate from traditional food fermentations, i.e. the many indigenous processes that can be found already in the written history of thousands of years ago. We still consume many of these fermented foods and beverages on a daily basis today. The evolution of these traditional processes, in particular since the 19th century, stimulated and influenced the development of modern biotechnological processes. In return, the development of modern biotechnology and related advanced techniques will no doubt improve the process, the product quality and the safety of our favourite fermented foods and beverages. In this article, we describe the relationship between these traditional food fermentations and modern biotechnology. Using Koji and its derived product soy sauce as examples, we address the mutual influences that will provide us with a better future concerning the quality, safety and nutritional effect of many fermented food products.
Collapse
Affiliation(s)
- Yang Zhu
- Bioprocess Engineering, Wageningen University and Research Centre, P.O. Box 8129, 6700 EV Wageningen, Netherlands.
| | | |
Collapse
|
127
|
Magaña-Ortíz D, Coconi-Linares N, Ortiz-Vazquez E, Fernández F, Loske AM, Gómez-Lim MA. A novel and highly efficient method for genetic transformation of fungi employing shock waves. Fungal Genet Biol 2013; 56:9-16. [DOI: 10.1016/j.fgb.2013.03.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 03/22/2013] [Accepted: 03/26/2013] [Indexed: 01/09/2023]
|
128
|
Towards the development of systems for high-yield production of microbial lipases. Biotechnol Lett 2013; 35:1551-60. [PMID: 23743957 DOI: 10.1007/s10529-013-1256-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 05/24/2013] [Indexed: 10/26/2022]
Abstract
Microbial lipases are a versatile and attractive class of biocatalysts for a wide variety of applications. Lipases can be produced by bacteria, yeasts or filamentous fungi. Nevertheless, they are often not optimal for direct use in industrial conditions due to low yields, low specific activities and a limited spectrum of activities. Improvements in the productivity of lipases have been made by genetic manipulation of the cell factory production hosts and by optimizing production media and conditions. Advances in protein engineering technology, ranging from directed evolution to rational design, have also been able to tailor lipases to particular applications. This review describes various approaches used to improve lipase production and applications.
Collapse
|
129
|
Fernández FJ, Vega MC. Technologies to keep an eye on: alternative hosts for protein production in structural biology. Curr Opin Struct Biol 2013; 23:365-73. [DOI: 10.1016/j.sbi.2013.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 01/31/2013] [Accepted: 02/01/2013] [Indexed: 12/21/2022]
|
130
|
Krimitzas A, Pyrri I, Kouvelis VN, Kapsanaki-Gotsi E, Typas MA. A phylogenetic analysis of Greek isolates of Aspergillus species based on morphology and nuclear and mitochondrial gene sequences. BIOMED RESEARCH INTERNATIONAL 2013; 2013:260395. [PMID: 23762830 PMCID: PMC3665174 DOI: 10.1155/2013/260395] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 04/09/2013] [Indexed: 12/13/2022]
Abstract
Aspergillus species originating from Greece were examined by morphological and molecular criteria to explore the diversity of this genus. The phylogenetic relationships of these species were determined using sequences from the ITS and IGS region of the nuclear rRNA gene complex, two nuclear genes ( β -tubulin (benA) and RNA polymerase II second largest subunit (rpb2)) and two mitochondrial genes (small rRNA subunit (rns) and cytochrome oxidase subunit I (cox1)) and, where available, related sequences from databases. The morphological characters of the anamorphs and teleomorphs, and the single gene phylogenetic trees, differentiated and placed the species examined in the well-supported sections of Aenei, Aspergillus, Bispori, Candidi, Circumdati, Clavati, Cremei, Flavi, Flavipedes, Fumigati, Nidulantes, Nigri, Restricti, Terrei, Usti, and Zonati, with few uncertainties. The combined use of the three commonly employed nuclear genes (benA, rpb2, and ITS), the IGS region, and two less often used mitochondrial gene sequences (rns and cox1) as a single unit resolved several taxonomic ambiguities. A phylogenetic tree was inferred using Neighbour-Joining, Maximum Parsimony, and Bayesian methods. The strains examined formed seven well-supported clades within the genus Aspergillus. Altogether, the concatenated nuclear and mitochondrial sequences offer additional tools for an improved understanding of phylogenetic relationships within this genus.
Collapse
Affiliation(s)
- Antonios Krimitzas
- Department of Genetics and Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistemiopolis, 15701 Athens, Greece
| | - Ioanna Pyrri
- Department of Ecology and Systematics, Faculty of Biology, National and Kapodistrian University of Athens, Panepistemiopolis, 15784 Athens, Greece
| | - Vassili N. Kouvelis
- Department of Genetics and Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistemiopolis, 15701 Athens, Greece
| | - Evangelia Kapsanaki-Gotsi
- Department of Ecology and Systematics, Faculty of Biology, National and Kapodistrian University of Athens, Panepistemiopolis, 15784 Athens, Greece
| | - Milton A. Typas
- Department of Genetics and Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistemiopolis, 15701 Athens, Greece
| |
Collapse
|
131
|
A robust whole-cell biocatalyst that introduces a thermo- and solvent-tolerant lipase into Aspergillus oryzae cells: Characterization and application to enzymatic biodiesel production. Enzyme Microb Technol 2013; 52:331-5. [DOI: 10.1016/j.enzmictec.2013.03.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/04/2013] [Accepted: 03/06/2013] [Indexed: 01/26/2023]
|
132
|
Abstract
Hemolysins are a class of proteins defined by their ability to lyse red cells but have been described to exhibit pleiotropic functions. These proteins have been extensively studied in bacteria and more recently in fungi. Within the last decade, a number of studies have characterized fungal hemolysins and revealed a fascinating yet diverse group of proteins. The purpose of this review is to provide a synopsis of the known fungal hemolysins with an emphasis on those belonging to the aegerolysin protein family. New insight and perspective into fungal hemolysins in biotechnology and health are additionally presented.
Collapse
Affiliation(s)
- Ajay P Nayak
- Allergy and Clinical Immunology Branch, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV 26505, USA.
| | | | | |
Collapse
|
133
|
Quorus bioreactor: a new perfusion-based technology for microbial cultivation. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2013; 138:149-77. [PMID: 23913132 DOI: 10.1007/10_2013_238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
: This chapter briefly reviews perfusion-based cultivation solutions used in biomanufacturing. It further introduces the innovative single-use Quorus Bioreactor, which was designed for the efficient cultivation of nontraditional production cell types. The Quorus Bioreactor design, process control, and productivity are described. Case studies are presented using Aspergillus niger and Lactococcus lactis as model organisms to demonstrate process flexibility, efficiency, and scalability.
Collapse
|
134
|
Evaluation of structural features in fungal cytochromes P450 predicted to rule catalytic diversification. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:205-20. [DOI: 10.1016/j.bbapap.2012.09.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 09/17/2012] [Accepted: 09/18/2012] [Indexed: 01/11/2023]
|
135
|
Papp T, Csernetics Á, Nagy G, Bencsik O, Iturriaga EA, Eslava AP, Vágvölgyi C. Canthaxanthin production with modified Mucor circinelloides strains. Appl Microbiol Biotechnol 2012; 97:4937-50. [DOI: 10.1007/s00253-012-4610-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 11/12/2012] [Accepted: 11/22/2012] [Indexed: 12/12/2022]
|
136
|
Abstract
Microorganisms are one of the greatest sources of metabolic and enzymatic diversity. In recent years, emerging recombinant DNA and genomic techniques have facilitated the development of new efficient expression systems, modification of biosynthetic pathways leading to new metabolites by metabolic engineering, and enhancement of catalytic properties of enzymes by directed evolution. Complete sequencing of industrially important microbial genomes is taking place very rapidly and there are already hundreds of genomes sequenced. Functional genomics and proteomics are major tools used in the search for new molecules and development of higher-producing strains.
Collapse
|
137
|
van den Berg BA, Reinders MJT, Hulsman M, Wu L, Pel HJ, Roubos JA, de Ridder D. Exploring sequence characteristics related to high-level production of secreted proteins in Aspergillus niger. PLoS One 2012; 7:e45869. [PMID: 23049690 PMCID: PMC3462195 DOI: 10.1371/journal.pone.0045869] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Accepted: 08/22/2012] [Indexed: 12/12/2022] Open
Abstract
Protein sequence features are explored in relation to the production of over-expressed extracellular proteins by fungi. Knowledge on features influencing protein production and secretion could be employed to improve enzyme production levels in industrial bioprocesses via protein engineering. A large set, over 600 homologous and nearly 2,000 heterologous fungal genes, were overexpressed in Aspergillus niger using a standardized expression cassette and scored for high versus no production. Subsequently, sequence-based machine learning techniques were applied for identifying relevant DNA and protein sequence features. The amino-acid composition of the protein sequence was found to be most predictive and interpretation revealed that, for both homologous and heterologous gene expression, the same features are important: tyrosine and asparagine composition was found to have a positive correlation with high-level production, whereas for unsuccessful production, contributions were found for methionine and lysine composition. The predictor is available online at http://bioinformatics.tudelft.nl/hipsec. Subsequent work aims at validating these findings by protein engineering as a method for increasing expression levels per gene copy.
Collapse
Affiliation(s)
- Bastiaan A. van den Berg
- Delft Bioinformatics Lab, Department of Intelligent Systems, Faculty Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands
- Netherlands Bioinformatics Centre, Nijmegen, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, Delft, The Netherlands
| | - Marcel J. T. Reinders
- Delft Bioinformatics Lab, Department of Intelligent Systems, Faculty Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands
- Netherlands Bioinformatics Centre, Nijmegen, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, Delft, The Netherlands
| | - Marc Hulsman
- Delft Bioinformatics Lab, Department of Intelligent Systems, Faculty Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands
- Netherlands Bioinformatics Centre, Nijmegen, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, Delft, The Netherlands
| | - Liang Wu
- DSM Biotechnology Center, Delft, The Netherlands
| | | | | | - Dick de Ridder
- Delft Bioinformatics Lab, Department of Intelligent Systems, Faculty Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands
- Netherlands Bioinformatics Centre, Nijmegen, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, Delft, The Netherlands
| |
Collapse
|
138
|
Kathiravan MK, Salake AB, Chothe AS, Dudhe PB, Watode RP, Mukta MS, Gadhwe S. The biology and chemistry of antifungal agents: A review. Bioorg Med Chem 2012; 20:5678-98. [PMID: 22902032 DOI: 10.1016/j.bmc.2012.04.045] [Citation(s) in RCA: 427] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Revised: 04/21/2012] [Accepted: 04/21/2012] [Indexed: 01/16/2023]
Affiliation(s)
- Muthu K Kathiravan
- Sinhgad College of Pharmacy, Department of Pharmaceutical Chemistry, Vadgaon(Bk), Pune 410041, India.
| | | | | | | | | | | | | |
Collapse
|
139
|
Tamayo-Ramos JA, Barends S, de Lange D, de Jel A, Verhaert R, de Graaff L. Enhanced production ofAspergillus nigerlaccase-like multicopper oxidases through mRNA optimization of the glucoamylase expression system. Biotechnol Bioeng 2012; 110:543-51. [DOI: 10.1002/bit.24723] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/14/2012] [Accepted: 08/17/2012] [Indexed: 02/03/2023]
|
140
|
Production of recombinant proteins by filamentous fungi. Biotechnol Adv 2012; 30:1119-39. [DOI: 10.1016/j.biotechadv.2011.09.012] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 08/30/2011] [Accepted: 09/15/2011] [Indexed: 11/17/2022]
|
141
|
Carvalho ND, Jørgensen TR, Arentshorst M, Nitsche BM, van den Hondel CA, Archer DB, Ram AF. Genome-wide expression analysis upon constitutive activation of the HacA bZIP transcription factor in Aspergillus niger reveals a coordinated cellular response to counteract ER stress. BMC Genomics 2012; 13:350. [PMID: 22846479 PMCID: PMC3472299 DOI: 10.1186/1471-2164-13-350] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 07/09/2012] [Indexed: 01/07/2023] Open
Abstract
Background HacA/Xbp1 is a conserved bZIP transcription factor in eukaryotic cells which regulates gene expression in response to various forms of secretion stress and as part of secretory cell differentiation. In the present study, we replaced the endogenous hacA gene of an Aspergillus niger strain with a gene encoding a constitutively active form of the HacA transcription factor (HacACA). The impact of constitutive HacA activity during exponential growth was explored in bioreactor controlled cultures using transcriptomic analysis to identify affected genes and processes. Results Transcription profiles for the wild-type strain (HacAWT) and the HacACA strain were obtained using Affymetrix GeneChip analysis of three replicate batch cultures of each strain. In addition to the well known HacA targets such as the ER resident foldases and chaperones, GO enrichment analysis revealed up-regulation of genes involved in protein glycosylation, phospholipid biosynthesis, intracellular protein transport, exocytosis and protein complex assembly in the HacACA mutant. Biological processes over-represented in the down-regulated genes include those belonging to central metabolic pathways, translation and transcription. A remarkable transcriptional response in the HacACA strain was the down-regulation of the AmyR transcription factor and its target genes. Conclusions The results indicate that the constitutive activation of the HacA leads to a coordinated regulation of the folding and secretion capacity of the cell, but with consequences on growth and fungal physiology to reduce secretion stress.
Collapse
Affiliation(s)
- Neuza Dsp Carvalho
- Institute of Biology Leiden, Leiden University, Molecular Microbiology and Biotechnology, BE Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
142
|
Krull R, Wucherpfennig T, Esfandabadi ME, Walisko R, Melzer G, Hempel DC, Kampen I, Kwade A, Wittmann C. Characterization and control of fungal morphology for improved production performance in biotechnology. J Biotechnol 2012; 163:112-23. [PMID: 22771505 DOI: 10.1016/j.jbiotec.2012.06.024] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 05/02/2012] [Accepted: 06/25/2012] [Indexed: 11/25/2022]
Abstract
Filamentous fungi have been widely applied in industrial biotechnology for many decades. In submerged culture processes, they typically exhibit a complex morphological life cycle that is related to production performance--a link that is of high interest for process optimization. The fungal forms can vary from dense spherical pellets to viscous mycelia. The resulting morphology has been shown to be influenced strongly by process parameters, including power input through stirring and aeration, mass transfer characteristics, pH value, osmolality and the presence of solid micro-particles. The surface properties of fungal spores and hyphae also play a role. Due to their high industrial relevance, the past years have seen a substantial development of tools and techniques to characterize the growth of fungi and obtain quantitative estimates on their morphological properties. Based on the novel insights available from such studies, more recent studies have been aimed at the precise control of morphology, i.e., morphology engineering, to produce superior bio-processes with filamentous fungi.
Collapse
Affiliation(s)
- Rainer Krull
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Watson R, Wang S. A method for making directed changes to the Fusarium graminearum genome without leaving markers or other extraneous DNA. Fungal Genet Biol 2012; 49:556-66. [DOI: 10.1016/j.fgb.2012.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 05/15/2012] [Accepted: 05/16/2012] [Indexed: 02/06/2023]
|
144
|
Dave K, Ahuja M, Jayashri T, Sirola RB, Punekar NS. A novel selectable marker based on Aspergillus niger arginase expression. Enzyme Microb Technol 2012; 51:53-8. [DOI: 10.1016/j.enzmictec.2012.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 04/05/2012] [Accepted: 04/05/2012] [Indexed: 11/27/2022]
|
145
|
Tanaka M, Tokuoka M, Shintani T, Gomi K. Transcripts of a heterologous gene encoding mite allergen Der f 7 are stabilized by codon optimization in Aspergillus oryzae. Appl Microbiol Biotechnol 2012; 96:1275-82. [DOI: 10.1007/s00253-012-4169-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 05/08/2012] [Accepted: 05/10/2012] [Indexed: 11/27/2022]
|
146
|
Abstract
Natural products and their derivatives play an important role in modern healthcare as frontline treatments for many diseases and as inspiration for chemically synthesized therapeutics. With advances in sequencing and recombinant DNA technology, many of the biosynthetic pathways responsible for the production of these chemically complex yet valuable compounds have been elucidated. With an ever-expanding toolkit of biosynthetic components, metabolic engineering is an increasingly powerful method to improve natural product titers and generate novel compounds. Heterologous production platforms have enabled access to pathways from difficult to culture strains, systems biology and metabolic modeling tools have resulted in increasing predictive and analytic capabilities, advances in expression systems and regulation have enabled the fine-tuning of pathways for increased efficiency, and characterization of individual pathway components has facilitated the construction of hybrid pathways for the production of new compounds. These advances in the many aspects of metabolic engineering not only have yielded fascinating scientific discoveries but also make it an increasingly viable approach for the optimization of natural product biosynthesis.
Collapse
Affiliation(s)
- Lauren B Pickens
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
147
|
Four butyrolactones and diverse bioactive secondary metabolites from terrestrial Aspergillus flavipes MM2: isolation and structure determination. Org Med Chem Lett 2012; 2:9. [PMID: 22380482 PMCID: PMC3349564 DOI: 10.1186/2191-2858-2-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 03/01/2012] [Indexed: 12/26/2022] Open
Abstract
The chemical constituents and biological activities of the terrestrial Aspergillus flavipes MM2 isolated from Egyptian rice hulls are reported. Seven bioactive compounds were obtained, of which one sterol: ergosterol (1), four butyrolactones: butyrolactone I (2), aspulvinone H (3), butyrolactone-V (6) and 4,4'-diydroxypulvinone (7), along with 6-methylsalicylic acid (4) and the cyclopentenone analogue; terrien (5). Structures of the isolated compounds were deduced by intensive studies of their 1D & 2D NMR, MS data and comparison with related structures. The strain extract and the isolated compounds (1-7) were biologically studied against number of microbial strains, and brine shrimp for cytotoxicity. In this article, the taxonomical characterization of A. flavipes MM2 along with its upscale fermentation, isolation and structural assignment of the obtained bioactive metabolites, and evaluate their antimicrobial and cytotoxic activities were described.
Collapse
|
148
|
A. K. Pahirulzaman K, Williams K, Lazarus CM. A Toolkit for Heterologous Expression of Metabolic Pathways in Aspergillus oryzae. Methods Enzymol 2012; 517:241-60. [DOI: 10.1016/b978-0-12-404634-4.00012-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
149
|
Integration of in vivo and in silico metabolic fluxes for improvement of recombinant protein production. Metab Eng 2011; 14:47-58. [PMID: 22115737 DOI: 10.1016/j.ymben.2011.11.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 10/12/2011] [Accepted: 11/02/2011] [Indexed: 01/20/2023]
Abstract
The filamentous fungus Aspergillus niger is an efficient host for the recombinant production of the glycosylated enzyme fructofuranosidase, a biocatalyst of commercial interest for the synthesis of pre-biotic sugars. In batch culture on a minimal glucose medium, the recombinant strain A. niger SKAn1015, expressing the fructofuranosidase encoding suc1 gene secreted 45U/mL of the target enzyme, whereas the parent wild type SKANip8 did not exhibit production. The production of the recombinant enzyme induced a significant change of in vivo fluxes in central carbon metabolism, as assessed by (13)C metabolic flux ratio analysis. Most notably, the flux redistribution enabled an elevated supply of NADPH via activation of the cytosolic pentose phosphate pathway (PPP) and mitochondrial malic enzyme, whereas the flux through energy generating TCA cycle was reduced. In addition, the overall possible flux space of fructofuranosidase producing A. niger was investigated in silico by elementary flux mode analysis. This provided theoretical flux distributions for multiple scenarios with differing production capacities. Subsequently, the measured flux changes linked to improved production performance were projected into the in silico flux space. This provided a quantitative evaluation of the achieved optimization and a priority ranked target list for further strain engineering. Interestingly, the metabolism was shifted largely towards the optimum flux pattern by sole expression of the recombinant enzyme, which seems an inherent attractive property of A. niger. Selected fluxes, however, changed contrary to the predicted optimum and thus revealed novel targets-including reactions linked to NADPH metabolism and gluconate formation.
Collapse
|
150
|
Peterson R, Nevalainen H. Trichoderma reesei RUT-C30--thirty years of strain improvement. MICROBIOLOGY-SGM 2011; 158:58-68. [PMID: 21998163 DOI: 10.1099/mic.0.054031-0] [Citation(s) in RCA: 292] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The hypersecreting mutant Trichoderma reesei RUT-C30 (ATCC 56765) is one of the most widely used strains of filamentous fungi for the production of cellulolytic enzymes and recombinant proteins, and for academic research. The strain was obtained after three rounds of random mutagenesis of the wild-type QM6a in a screening program focused on high cellulase production and catabolite derepression. Whereas RUT-C30 achieves outstanding levels of protein secretion and high cellulolytic activity in comparison to the wild-type QM6a, recombinant protein production has been less successful. Here, we bring together and discuss the results from biochemical-, microscopic-, genomic-, transcriptomic-, glycomic- and proteomic-based research on the RUT-C30 strain published over the last 30 years.
Collapse
Affiliation(s)
- Robyn Peterson
- Biomolecular Frontiers Research Centre, Macquarie University, Australia
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Australia
| | - Helena Nevalainen
- Biomolecular Frontiers Research Centre, Macquarie University, Australia
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Australia
| |
Collapse
|