101
|
Kanno H. Regenerative therapy for neuronal diseases with transplantation of somatic stem cells. World J Stem Cells 2013; 5:163-171. [PMID: 24179604 PMCID: PMC3812520 DOI: 10.4252/wjsc.v5.i4.163] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 07/21/2013] [Accepted: 10/16/2013] [Indexed: 02/06/2023] Open
Abstract
Pluripotent stem cells, which are capable of differentiating in various species of cells, are hoped to be donor cells in transplantation in regenerative medicine. Embryonic stem (ES) cells and induced pluripotent stem cells have the potential to differentiate in approximately all species of cells. However, the proliferating ability of these cells is high and the cancer formation ability is also recognized. In addition, ethical problems exist in using ES cells. Somatic stem cells with the ability to differentiate in various species of cells have been used as donor cells for neuronal diseases, such as amyotrophic lateral sclerosis, spinal cord injury, Alzheimer disease, cerebral infarction and congenital neuronal diseases. Human mesenchymal stem cells derived from bone marrow, adipose tissue, dermal tissue, umbilical cord blood and placenta are usually used for intractable neuronal diseases as somatic stem cells, while neural progenitor/stem cells and retinal progenitor/stem cells are used for a few congenital neuronal diseases and retinal degenerative disease, respectively. However, non-treated somatic stem cells seldom differentiate to neural cells in recipient neural tissue. Therefore, the contribution to neuronal regeneration using non-treated somatic stem cells has been poor and various differential trials, such as the addition of neurotrophic factors, gene transfer, peptide transfer for neuronal differentiation of somatic stem cells, have been performed. Here, the recent progress of regenerative therapies using various somatic stem cells is described.
Collapse
|
102
|
Fink KD, Rossignol J, Crane AT, Davis KK, Bombard MC, Bavar AM, Clerc S, Lowrance SA, Song C, Lescaudron L, Dunbar GL. Transplantation of umbilical cord-derived mesenchymal stem cells into the striata of R6/2 mice: behavioral and neuropathological analysis. Stem Cell Res Ther 2013; 4:130. [PMID: 24456799 PMCID: PMC3854759 DOI: 10.1186/scrt341] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 10/09/2013] [Indexed: 12/31/2022] Open
Abstract
Introduction Huntington’s disease (HD) is an autosomal dominant disorder caused by an expanded CAG repeat on the short arm of chromosome 4 resulting in cognitive decline, motor dysfunction, and death, typically occurring 15 to 20 years after the onset of motor symptoms. Neuropathologically, HD is characterized by a specific loss of medium spiny neurons in the caudate and the putamen, as well as subsequent neuronal loss in the cerebral cortex. The transgenic R6/2 mouse model of HD carries the N-terminal fragment of the human HD gene (145 to 155 repeats) and rapidly develops some of the behavioral characteristics that are analogous to the human form of the disease. Mesenchymal stem cells (MSCs) have shown the ability to slow the onset of behavioral and neuropathological deficits following intrastriatal transplantation in rodent models of HD. Use of MSCs derived from umbilical cord (UC) offers an attractive strategy for transplantation as these cells are isolated from a noncontroversial and inexhaustible source and can be harvested at a low cost. Because UC MSCs represent an intermediate link between adult and embryonic tissue, they may hold more pluripotent properties than adult stem cells derived from other sources. Methods Mesenchymal stem cells, isolated from the UC of day 15 gestation pups, were transplanted intrastriatally into 5-week-old R6/2 mice at either a low-passage (3 to 8) or high-passage (40 to 50). Mice were tested behaviorally for 6 weeks using the rotarod task, the Morris water maze, and the limb-clasping response. Following behavioral testing, tissue sections were analyzed for UC MSC survival, the immune response to the transplanted cells, and neuropathological changes. Results Following transplantation of UC MSCs, R6/2 mice did not display a reduction in motor deficits but there appeared to be transient sparing in a spatial memory task when compared to untreated R6/2 mice. However, R6/2 mice receiving either low- or high-passage UC MSCs displayed significantly less neuropathological deficits, relative to untreated R6/2 mice. Conclusions The results from this study demonstrate that UC MSCs hold promise for reducing the neuropathological deficits observed in the R6/2 rodent model of HD.
Collapse
|
103
|
Julavijitphong S, Wichitwiengrat S, Tirawanchai N, Ruangvutilert P, Vantanasiri C, Phermthai T. A xeno-free culture method that enhances Wharton's jelly mesenchymal stromal cell culture efficiency over traditional animal serum-supplemented cultures. Cytotherapy 2013; 16:683-91. [PMID: 24119645 DOI: 10.1016/j.jcyt.2013.07.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Revised: 06/29/2013] [Accepted: 07/29/2013] [Indexed: 01/22/2023]
Abstract
BACKGROUND AIMS Mesenchymal stromal cell (MSC) transplantation holds great promise for use in medical therapies. Several key features of MSCs, including efficient cell growth, generation of sufficient cell numbers and safety, as determined by teratoma formation, make MSCs an ideal candidate for clinical use. However, MSCs derived under standard culture conditions, co-cultured with animal by-products, are inappropriate for therapy because of the risks of graft rejection and animal virus transmission to humans. Alternative serum sources have been sought for stem cell production. METHODS We demonstrate for the first time that human serum from umbilical cord blood (hUCS) is an effective co-culture reagent for MSC production from Wharton's jelly MSCs (WJMSCs). Ten umbilical cords were used to generate parallel cultures of WJMSC lines under medium supplemented with hUCS and embryonic stem cell-qualified fetal bovine serum. The WJMSC lines from each medium were analyzed and compared with regard to cell line derivation, proliferation ability and characteristic stability. RESULTS The phenotypic characteristics of WJMSC derived under either medium showed no differences. WJMSC lines derived under hUCS medium displayed comparable primary culture cell outgrowth, lineage differentiation capacity and cell recovery after cryopreservation compared with supplementation with embryonic stem cell-qualified fetal bovine serum medium. However, superior cell proliferation rates and retention of in vitro propagation (>22 passages) were observed in WJMSC cultures supplemented with hUCS. Additionally, more robust population doubling times were observed in hUCS-supplemented cultures. CONCLUSIONS We conclude that hUCS is an efficient and effective serum source for animal product-free WJMSC line production and can generate MSC lines that may be appropriate for therapeutic use.
Collapse
Affiliation(s)
- Suphakde Julavijitphong
- Stem Cell Research and Development Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Suparat Wichitwiengrat
- Stem Cell Research and Development Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand; Department of Biochemistry, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nednapis Tirawanchai
- Department of Biochemistry, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pornpimol Ruangvutilert
- Maternal Fetal Medicine Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chanchai Vantanasiri
- Maternal Fetal Medicine Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Tatsanee Phermthai
- Stem Cell Research and Development Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
104
|
Teixeira FG, Carvalho MM, Sousa N, Salgado AJ. Mesenchymal stem cells secretome: a new paradigm for central nervous system regeneration? Cell Mol Life Sci 2013; 70:3871-82. [PMID: 23456256 PMCID: PMC11113366 DOI: 10.1007/s00018-013-1290-8] [Citation(s) in RCA: 235] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 01/22/2013] [Accepted: 02/04/2013] [Indexed: 12/15/2022]
Abstract
The low regeneration potential of the central nervous system (CNS) represents a challenge for the development of new therapeutic strategies. Mesenchymal stem cells (MSCs) have been proposed as a possible therapeutic tool for CNS disorders. In addition to their differentiation potential, it is well accepted nowadays that their beneficial actions can also be mediated by their secretome. Indeed, it was already demonstrated, both in vitro and in vivo, that MSCs are able to secrete a broad range of neuroregulatory factors that promote an increase in neurogenesis, inhibition of apoptosis and glial scar formation, immunomodulation, angiogenesis, neuronal and glial cell survival, as well as relevant neuroprotective actions on different pathophysiological contexts. Considering their protective action in lesioned sites, MSCs' secretome might also improve the integration of local progenitor cells in neuroregeneration processes, opening a door for their future use as therapeutical strategies in human clinical trials. Thus, in this review we analyze the current understanding of MSCs secretome as a new paradigm for the treatment of CNS neurodegenerative diseases.
Collapse
Affiliation(s)
- Fábio G. Teixeira
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Miguel M. Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - António J. Salgado
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
105
|
Eckert MA, Vu Q, Xie K, Yu J, Liao W, Cramer SC, Zhao W. Evidence for high translational potential of mesenchymal stromal cell therapy to improve recovery from ischemic stroke. J Cereb Blood Flow Metab 2013; 33:1322-34. [PMID: 23756689 PMCID: PMC3764389 DOI: 10.1038/jcbfm.2013.91] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 05/06/2013] [Accepted: 05/08/2013] [Indexed: 12/27/2022]
Abstract
Although ischemic stroke is a major cause of morbidity and mortality, current therapies benefit only a small proportion of patients. Transplantation of mesenchymal stromal cells (MSC, also known as mesenchymal stem cells or multipotent stromal cells) has attracted attention as a regenerative therapy for numerous diseases, including stroke. Mesenchymal stromal cells may aid in reducing the long-term impact of stroke via multiple mechanisms that include induction of angiogenesis, promotion of neurogenesis, prevention of apoptosis, and immunomodulation. In this review, we discuss the clinical rationale of MSC for stroke therapy in the context of their emerging utility in other diseases, and their recent clinical approval for treatment of graft-versus-host disease. An analysis of preclinical studies examining the effects of MSC therapy after ischemic stroke indicates near-universal agreement that MSC have significant favorable effect on stroke recovery, across a range of doses and treatment time windows. These results are interpreted in the context of completed and ongoing human clinical trials, which provide support for MSC as a safe and potentially efficacious therapy for stroke recovery in humans. Finally, we consider principles of brain repair and manufacturing considerations that will be useful for effective translation of MSC from the bench to the bedside for stroke recovery.
Collapse
Affiliation(s)
- Mark A Eckert
- Departments of Pharmaceutical Sciences and Biomedical Engineering, Sue and Bill Gross Stem Cell Research Center, Chao Family Comprehensive Cancer Center, University of California, Irvine, California, USA
| | - Quynh Vu
- Department of Neurology, Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, California, USA
| | - Kate Xie
- Department of Neurology, Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, California, USA
| | - Jingxia Yu
- Departments of Pharmaceutical Sciences and Biomedical Engineering, Sue and Bill Gross Stem Cell Research Center, Chao Family Comprehensive Cancer Center, University of California, Irvine, California, USA
| | - Wenbin Liao
- Department of Pathology, State University of New York at Stony Brook, Stony Brook, New York, USA
| | - Steven C Cramer
- Departments of Neurology and Anatomy and Neurobiology, Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, California, USA
| | - Weian Zhao
- Departments of Pharmaceutical Sciences and Biomedical Engineering, Sue and Bill Gross Stem Cell Research Center, Chao Family Comprehensive Cancer Center, University of California, Irvine, California, USA
| |
Collapse
|
106
|
Chen L, Xi H, Huang H, Zhang F, Liu Y, Chen D, Xiao J. Multiple cell transplantation based on an intraparenchymal approach for patients with chronic phase stroke. Cell Transplant 2013; 22 Suppl 1:S83-91. [PMID: 23992950 DOI: 10.3727/096368913x672154] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Stroke is the third leading cause of death worldwide and a huge perpetrator in adult disability. This pilot clinical study investigates the possible benefits of transplanting multiple cells in chronic stroke. A total of 10 consecutive stroke patients were treated by combination cell transplantation on the basis of an intraparenchymal approach from November 2003 to April 2011. There were six males and four females. Their age ranged from 42 to 87 years, and the course of disease varied from 6 months to 20 years. Six patients suffered cerebral infarction, and four patients suffered a brain hemorrhage. The olfactory ensheathing cells, neural progenitor cells, umbilical cord mesenchymal cells, and Schwann cells were injected through selected routes including intracranial parenchymal implantation, intrathecal implantation, and intravenous administration, respectively. The clinical neurological function was assessed carefully and independently before treatment and during a long-term follow-up using the Clinic Neurologic Impairment Scale and the Barthel index. All patients were followed up successfully from 6 months to 2 years after cell transplantation. Every subject achieved neurological function amelioration including improved speech, muscle strength, muscular tension, balance, pain, and breathing; most patients had an increased Barthel index score and Clinic Neurologic Impairment Scale score. These preliminary results demonstrate the novel strategy of combined multiple cell therapy based on intraparenchymal delivery: it appears to be relatively clinically safe and at least initially beneficial for chronic stroke patients. This manuscript is published as part of the International Association of Neurorestoratology (IANR) supplement issue of Cell Transplantation.
Collapse
|
107
|
Isolation and characterization of a novel strain of mesenchymal stem cells from mouse umbilical cord: potential application in cell-based therapy. PLoS One 2013; 8:e74478. [PMID: 23991222 PMCID: PMC3753309 DOI: 10.1371/journal.pone.0074478] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 07/31/2013] [Indexed: 12/12/2022] Open
Abstract
Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) have recently been recognized as a potential source for cell-based therapy in various preclinical animal models, such as Parkinson's disease, cerebral ischemia, spinal cord injury, and liver failure; however, the precise cellular and molecular mechanisms underlying the beneficial outcomes remain under investigation. There is a growing concern regarding rejection and alteration of genetic code using this xenotransplantation approach. In this study, a novel strain of murine MSCs derived from the umbilical cord of wild-type and green fluorescent protein (GFP) transgenic mice have been successfully isolated, expanded, and characterized. After 10 passages, the mUC-MSCs developed a rather homogeneous, triangular, spindle-shaped morphology, and were sub-cultured up to 7 months (over 50 passages) without overt changes in morphology and doubling time. Cell surface markers are quite similar to MSCs isolated from other tissue origins as well as hUC-MSCs. These mUC-MSCs can differentiate into osteoblasts, adipocytes, neurons, and astrocytes in vitro, as well as hematopoietic lineage cells in vivo. mUC-MSCs also possess therapeutic potential against two disease models, focal ischemic stroke induced by middle cerebral artery occlusion (MCAo) and acute hepatic failure. Subtle differences in the expression of cytokine-related genes exist between mUC-MSCs and hUC-MSCs, which may retard and jeopardize the advance of cell therapy. Allografts of these newly established mUC-MSCs into various mouse disease models may deepen our insights into the development of more effective cell therapy regimens.
Collapse
|
108
|
Wang S, Cheng H, Dai G, Wang X, Hua R, Liu X, Wang P, Chen G, Yue W, An Y. Umbilical cord mesenchymal stem cell transplantation significantly improves neurological function in patients with sequelae of traumatic brain injury. Brain Res 2013; 1532:76-84. [PMID: 23942181 DOI: 10.1016/j.brainres.2013.08.001] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 07/31/2013] [Accepted: 08/01/2013] [Indexed: 01/01/2023]
Abstract
The aim of this study was to investigate the effects of transplantation with umbilical cord mesenchymal stem cells in patients with sequelae of traumatic brain injury (TBI). The study hypothesis was that umbilical cord mesenchymal stem cell transplantation could safely and effectively improve neurological function in patients with sequelae of traumatic brain injury. Forty patients with sequelae of TBI were randomly assigned to the stem cell treatment group or the control group. The patients in the stem cell treatment group underwent 4 stem cell transplantations via lumbar puncture. All patients of the group were also evaluated using Fugl-Meyer Assessments (FMA) and Functional Independence Measures (FIM) before and at 6 months after the stem cell transplantation. The patients in the control group did not receive any medical treatment (i.e., neither surgery nor medical intervention), and their FMA and FIM scores were determined on the day of the visit to the clinic and at 6 months after that clinical observation. The FMA results demonstrated an improvement in upper extremity motor sub-score, lower extremity motor sub-score, sensation sub-score and balance sub-score in the stem cell transplantation group at 6 months after the transplantation (P<0.05). The FIM results also exhibited significant improvement (P<0.05) in the patient self-care sub-score, sphincter control sub-score, mobility sub-score, locomotion sub-score, communication sub-score and social cognition sub-score. The control group exhibited no improvements after 6 months (P>0.05). All in all, the study results confirmed that the umbilical cord mesenchymal stem cell transplantation improved the neurological function and self-care in patients with TBI sequels. Umbilical cord mesenchymal stem cell transplantation may be a potential treatment for patients with sequelae of TBI. Further research, including a multicenter and large sample size prospective randomized clinical trial, will be required to define definitively the role of umbilical cord mesenchymal stem cell transplantation on sequelae of TBI.
Collapse
Affiliation(s)
- Sen Wang
- Department of Cell Transplantation, General Hospital of Chinese People's Armed Police Forces, Beijing 100039, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Isolation and characterisation of mesenchymal stem cells from different regions of the human umbilical cord. BIOMED RESEARCH INTERNATIONAL 2013; 2013:916136. [PMID: 23984420 PMCID: PMC3741948 DOI: 10.1155/2013/916136] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 06/13/2013] [Indexed: 12/13/2022]
Abstract
Umbilical cords as a source of stem cells are of increasing interest for cell therapies as they present little ethical consideration and are reported to contain immune privileged cells which may be suitable for allogeneic based therapies. Mesenchymal stem cells (MSCs) sourced from several different cord regions, including artery, vein, cord lining, and Wharton's jelly, are described in the literature. However, no one study has yet isolated and characterised MSCs from all regions of the same cord to determine the most suitable cells for cell based therapeutics.
Collapse
|
110
|
Paul G, Anisimov SV. The secretome of mesenchymal stem cells: potential implications for neuroregeneration. Biochimie 2013; 95:2246-56. [PMID: 23871834 DOI: 10.1016/j.biochi.2013.07.013] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Accepted: 07/10/2013] [Indexed: 12/14/2022]
Abstract
Mesenchymal stem cells have shown regenerative properties in many tissues. This feature had originally been ascribed to their multipotency and thus their ability to differentiate into tissue-specific cells. However, many researchers consider the secretome of mesenchymal stem cells the most important player in the observed reparative effects of these cells. In this review, we specifically focus on the potential neuroregenerative effect of mesenchymal stem cells, summarize several possible mechanisms of neuroregeneration and list key factors mediating this effect. We illustrate examples of mesenchymal stem cell treatment in central nervous system disorders including stroke, neurodegenerative disorders (such as Parkinson's disease, Huntington's disease, multiple system atrophy and cerebellar ataxia) and inflammatory disease (such as multiple sclerosis). We specifically highlight studies where mesenchymal stem cells have entered clinical trials.
Collapse
Affiliation(s)
- Gesine Paul
- Translational Neurology Group, Division of Neurology, Department of Clinical Sciences, Lund University, Lund, Sweden; Department of Neurology, Scania University Hospital, Lund, Sweden.
| | | |
Collapse
|
111
|
Pluripotent possibilities: human umbilical cord blood cell treatment after neonatal brain injury. Pediatr Neurol 2013; 48:346-54. [PMID: 23583051 DOI: 10.1016/j.pediatrneurol.2012.10.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 10/29/2012] [Indexed: 12/14/2022]
Abstract
Perinatal hypoxic-ischemic brain injury and stroke in the developing brain remain important causes of chronic neurologic morbidity. Emerging data suggest that transplantation of umbilical cord blood-derived stem cells may have therapeutic potential for neuroregeneration and improved functional outcome. The pluripotent capacity of stem cells from the human umbilical cord blood provides simultaneous targeting of multiple neuropathologic events initiated by a hypoxic-ischemic insult. Their high regenerative potential and naïve immunologic phenotype makes them a preferable choice for transplantation. A multiplicity of transplantation protocols have been studied with a variety of brain injury models; however, only a few have been conducted on immature animals. Biological recipient characteristics, such as age and sex, appear to differentially modulate responses of the animals to the transplanted cord blood stem cells. Survival, migration, and function of the transplanted cells have also been studied and reveal insights into the mechanisms of cord blood stem cell effects. Data from preclinical studies have informed current clinical safety trials of human cord blood in neonates, and further work is needed to continue progress in this field.
Collapse
|
112
|
Fortino VR, Pelaez D, Cheung HS. Concise review: stem cell therapies for neuropathic pain. Stem Cells Transl Med 2013; 2:394-9. [PMID: 23572051 DOI: 10.5966/sctm.2012-0122] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Neuropathic pain is a chronic condition that is heterogeneous in nature and has different causes. Different from and more burdensome than nociceptive pain, neuropathic pain more severely affects people's quality of life. Understanding the various mechanisms of the onset and progression of neuropathic pain is important in the development of an effective treatment. Research is being done to replace current pharmacological treatments with cellular therapies that will have longer lasting effects. Stem cells present an exciting potential therapy for neuropathic pain. In this review, we describe the neuroprotective effects of stem cells along with special emphasis on the current translational research using stem cells to treat neuropathic pain.
Collapse
Affiliation(s)
- Veronica R Fortino
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
| | | | | |
Collapse
|
113
|
Liu J, Han D, Wang Z, Xue M, Zhu L, Yan H, Zheng X, Guo Z, Wang H. Clinical analysis of the treatment of spinal cord injury with umbilical cord mesenchymal stem cells. Cytotherapy 2013; 15:185-91. [DOI: 10.1016/j.jcyt.2012.09.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Revised: 08/04/2012] [Accepted: 09/05/2012] [Indexed: 01/14/2023]
|
114
|
Silva NA, Gimble JM, Sousa N, Reis RL, Salgado AJ. Combining adult stem cells and olfactory ensheathing cells: the secretome effect. Stem Cells Dev 2013; 22:1232-40. [PMID: 23316915 DOI: 10.1089/scd.2012.0524] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Adipose-derived adult stem cells (ASCs), bone marrow mesenchymal stem cells (bmMSCs), and human umbilical cord perivascular cells (HUCPVCs) tissue have been widely tested for regenerative applications, such as bone regeneration. Moreover, olfactory ensheathing cells (OECs) show promise in promoting spinal cord injury (SCI) regeneration. Our group recently proposed the use of a hybrid scaffold targeting both vertebral bone repair and SCI regeneration. According to this concept, both MSCs and OECs should be in close contact to be influenced by the factors that are involved in secretion. For this reason, here we studied the effects of the OEC secretome on the metabolic activity and proliferation of ASCs, bmMSCs, and HUCPVCs. The stem cells' secretome effects on metabolic activity and proliferation of the OECs were also considered. In co-cultures of OECs with ASCs, bmMSCs, or HUCPVCs, the metabolic activity/viability, proliferation, and total cell numbers were measured after 2 and 7 days of culture. The results demonstrated that the secretome of OECs has a positive effect on the metabolic activity and proliferation of MSCs from different origins, especially on ASCs. Furthermore, in general, the stem cells' secretome also had a positive effect on the OECs behavior, particularly when ASCs were in co-culture with OECs. These results suggest that the most suitable combination of cells to be used in our hybrid scaffold is the OECs with the ASCs. Finally, this work adds new knowledge to the cell therapy field, bringing new information about paracrine interactions between OECs and distinct mesenchymal stems.
Collapse
Affiliation(s)
- Nuno A Silva
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
| | | | | | | | | |
Collapse
|
115
|
Tunma S, Inthanon K, Chaiwong C, Pumchusak J, Wongkham W, Boonyawan D. Improving the attachment and proliferation of umbilical cord mesenchymal stem cells on modified polystyrene by nitrogen-containing plasma. Cytotechnology 2013; 65:119-34. [PMID: 22760551 PMCID: PMC3536880 DOI: 10.1007/s10616-012-9467-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 05/21/2012] [Indexed: 01/01/2023] Open
Abstract
Wharton's jelly mesenchymal stem cells (WJMSCs) are important alternative source of pluripotent cells for several therapeutic purposes. Understanding of adhesion properties of such cells is necessary to regulate the attachment, growth and proliferation on targeted culture surfaces. BCP-K1, a line of WJMSCs, and polystyrene (PS) culture dishes were used as membrane samples. A 13.56 MHz inductively coupled discharge plasma reactor with a mixture of N-containing gas and noble gas was used. This was expected to introduce the more hydrophilic groups on PS surface and enhance the cell adhesion. The plasma-treated PS dishes with the mixed gas of N(2) + He at 50 W and NH(3) + He at 100 W were reactive towards BCP-K1. Cellular adhesion and proliferation was significantly twice as efficient on the treated surfaces than on PS dishes. BCP-K1 also secreted more focal adhesion kinase to adhere and proliferate when cultured on N(2)-treated PS dishes than on the NH(3)-treated PS dishes. Stable stemness markers were detected, including CD105, CD9 and SSEA-4, expressed on BCP-K1 growing on the modified PS dish surfaces, during 7 days of culturing. The presence of -NH(2) groups on the PS dish surface were revealed by X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. A large amount of oxygen- and nitrogen-containing functional groups, up to 9.0 %, were introduced by NH(3) plasma and N(2) plasma. The functional groups introduced on to the PS surfaces were clearly the key factors which enhanced WJMSCs attachment and stemness stability.
Collapse
Affiliation(s)
- Somruthai Tunma
- />The Graduate School, Chiang Mai University, 239 Huaykaew Rd., Muang, 50200 Thailand
- />Materials Science Research Center (MSRC) Faculty of Science, Chiang Mai University, 239 Huaykaew Rd., Muang, 50200 Thailand
| | - Kewalin Inthanon
- />The Graduate School, Chiang Mai University, 239 Huaykaew Rd., Muang, 50200 Thailand
- />Department of Biology, Faculty of Science, Chiang Mai University, 239 Huaykaew Rd., Muang, 50200 Thailand
| | - Chanokporn Chaiwong
- />Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, 239 Huaykaew Rd., Muang, 50200 Thailand
| | - Jantrawan Pumchusak
- />Materials Science Research Center (MSRC) Faculty of Science, Chiang Mai University, 239 Huaykaew Rd., Muang, 50200 Thailand
- />Department of Industrial Chemistry, Faculty of Science, Chiang Mai University, 239 Huaykaew Rd., Muang, 50200 Thailand
| | - Weerah Wongkham
- />Department of Biology, Faculty of Science, Chiang Mai University, 239 Huaykaew Rd., Muang, 50200 Thailand
| | - Dheerawan Boonyawan
- />Materials Science Research Center (MSRC) Faculty of Science, Chiang Mai University, 239 Huaykaew Rd., Muang, 50200 Thailand
- />Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, 239 Huaykaew Rd., Muang, 50200 Thailand
| |
Collapse
|
116
|
Repairing neural injuries using human umbilical cord blood. Mol Neurobiol 2012; 47:938-45. [PMID: 23275174 DOI: 10.1007/s12035-012-8388-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 12/13/2012] [Indexed: 01/14/2023]
Abstract
Stem cells are promising sources for repairing damaged neurons and glial cells in neural injuries and for replacing dead cells in neurodegenerative diseases. An essential step for stem cell-based therapy is to generate large quantities of stem cells and develop reliable culture conditions to direct efficient differentiation of specific neuronal and glial subtypes. The human umbilical cord and umbilical cord blood (UCB) are rich sources of multiple stem cells, including hematopoietic stem cells, mesenchymal stem cells, unrestricted somatic stem cells, and embryonic-like stem cells. Human UC/UCB-derived cells are able to give rise to multiple cell types of neural lineages. Studies have shown that UCB and UCB-derived cells can survive in injured sites in animal models of ischemic brain damage and spinal cord injuries, and promote survival and prevent cell death of local neurons and glia. Human UCB is easy to harvest and purify. Moreover, unlike embryonic stem cells, the use of human UCB is not limited by ethical quandaries. Therefore, human UCB is an attractive source of stem cells for repairing neural injuries.
Collapse
|
117
|
Zhang L, Yi L, Chopp M, Kramer BC, Romanko M, Gosiewska A, Hong K. Intravenous administration of human umbilical tissue-derived cells improves neurological function in aged rats after embolic stroke. Cell Transplant 2012; 22:1569-76. [PMID: 23127976 DOI: 10.3727/096368912x658674] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Intravenous administration of human umbilical tissue-derived cells (hUTC) improves neurological function in young adult rats after stroke. However, stroke is a major cause of death and disability in the aged population, with the majority of stroke patients 65 years and older. The present study investigated the effect of hUTC on aged rats after embolic stroke. Rats at the age of 18-20 months were subjected to embolic middle cerebral artery (MCA) occlusion. Two groups of eight animals each were compared. The investigational group was injected intravenously with 1×10(7) cells/kg in serum-free culture medium (vehicle) 24 h after stroke onset, and the control group was treated with vehicle only at the same time poststroke. Intravenous administration of hUTC significantly improved neurological functional recovery without reducing infarct volume compared to vehicle-treated aged rats. Additionally, hUTC treatment significantly enhanced synaptogenesis and vessel density in the ischemic boundary zone (IBZ). Moreover, hUTC treatment resulted in a trend toward increased progenitor cell proliferation in the subventricular zone (SVZ) compared to vehicle-treated aged rats. Intravenous administration of hUTC improved functional recovery in aged rats after stroke. The enhancement of synaptogenesis and vessel density may contribute to the beneficial effects of hUTC in the treatment of stroke in the aged animal.
Collapse
Affiliation(s)
- Li Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | | | | | | | | | | | | |
Collapse
|
118
|
Zhang L, Li Y, Romanko M, Kramer BC, Gosiewska A, Chopp M, Hong K. Different routes of administration of human umbilical tissue-derived cells improve functional recovery in the rat after focal cerebral ischemia. Brain Res 2012; 1489:104-12. [PMID: 23063717 DOI: 10.1016/j.brainres.2012.10.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 09/24/2012] [Accepted: 10/08/2012] [Indexed: 12/20/2022]
Abstract
Human umbilical tissue-derived cells (hUTC) are a potential neurorestorative candidate for stroke treatment. Here, we test the effects of hUTC treatment in a rat model of stroke via various routes of administration. Rats were treated with hUTC or phosphate-buffered saline (PBS) via different routes including intraarterial (IA), intravenous (IV), intra-cisterna magna (ICM), lumber intrathecal (IT), or intracerebral injection (IC) at 24h after stroke onset. Treatment with hUTC via IV and IC route led to significant functional improvements starting at day 14, which persisted to day 60 compared with respective PBS-treated rats. HUTC administered via IA, ICM, and IT significantly improved neurological functional recovery starting at day 14 and persisted up to day 49 compared with PBS-treated rats. Although IA administration resulted in the highest donor cell number detected within the ischemic brain compared to the other routes, hUTC treatments significantly increased ipsilateral bromodeoxyuridine incorporating subventricular zone (SVZ) cells and vascular density in the ischemic boundary compared with PBS-treated rats regardless of the route of administration. While rats received hUTC treatment via IA, IV, IC, and ICM routes showed greater synaptophysin immunoreactivity, significant reductions in TUNEL-positive cells in the ipsilateral hemisphere were observed in IA, IV, and IC routes compared with PBS-treated rats. hUTC treatments did not reduce infarct volume when compared to the PBS groups. Our data indicate that hUTC administered via multiple routes provide therapeutic benefit after stroke. The enhancement of neurorestorative events in the host brain may contribute to the therapeutic benefits of hUTC in the treatment of stroke.
Collapse
Affiliation(s)
- Li Zhang
- Department of Neurology, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI 48202, United States.
| | | | | | | | | | | | | |
Collapse
|
119
|
Zhilai Z, Hui Z, Anmin J, Shaoxiong M, Bo Y, Yinhai C. A combination of taxol infusion and human umbilical cord mesenchymal stem cells transplantation for the treatment of rat spinal cord injury. Brain Res 2012; 1481:79-89. [PMID: 22960115 DOI: 10.1016/j.brainres.2012.08.051] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 08/14/2012] [Accepted: 08/27/2012] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND PURPOSE Studies have shown that the administration of Taxol, an anti-cancer drug, inhibited scar formation, promoted axonal elongation and improved locomotor recovery in rats after spinal cord injury (SCI). We hypothesized that combining Taxol with another promising therapy, transplantation of human umbilical mesenchymal stem cells (hUCMSCs), might further improve the degree of locomotor recovery. The present study examined whether Taxol combined with transplantation of hUCMSCs would produce synergistic effects on recovery and which mechanisms were involved in the effect. METHODS A total of 32 rats subjected to SCI procedures were assigned to one of the following four treatment groups: phosphate-buffered saline (PBS, control), hUCMSCs, Taxol, or Taxol+hUCMSCs. Immediately after injury, hUCMSCs were transplanted into the injury site and Taxol was administered intrathecally for 4 weeks. Locomotor recovery was evaluated using the Basso, Beattie and Bresnahan locomotor (BBB) rating scale. Survival of the transplanted human cells and the host glial reaction in the injured spinal cord were studied by immunohistochemistry. RESULTS Treatment with Taxol, hUCMSCs or Taxol+hUCMSCs reduced the extent of astrocytic activation, increased axonal preservation and decreased the number of caspase-3(+) and ED-1(+) cells, but these effects were more pronounced in the Taxol+hUCMSCs group. Behavioral analyses showed that rats in the Taxol+hUCMSCs group showed better motor performance than rats treated with hUCMSCs or Taxol only. CONCLUSIONS The combination of Taxol and hUCMSCs produced beneficial effects in rats with regard to functional recovery following SCI through the enhancement of anti-inflammatory, anti-astrogliosis, anti-apoptotic and axonal preservation effects.
Collapse
Affiliation(s)
- Zhou Zhilai
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
120
|
Ryu HH, Kang BJ, Park SS, Kim Y, Sung GJ, Woo HM, Kim WH, Kweon OK. Comparison of mesenchymal stem cells derived from fat, bone marrow, Wharton's jelly, and umbilical cord blood for treating spinal cord injuries in dogs. J Vet Med Sci 2012; 74:1617-30. [PMID: 22878503 DOI: 10.1292/jvms.12-0065] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous animal studies have shown that transplantation of mesenchymal stem cells (MSCs) into spinal cord lesions enhances axonal regeneration and promotes functional recovery. We isolated the MSCs derived from fat, bone marrow, Wharton's jelly and umbilical cord blood (UCB) positive for MSC markers and negative for hematopoietic cell markers. Their effects on the regeneration of injured canine spinal cords were compared. Spinal cord injury was induced by balloon catheter compression. Dogs with injured spinal cords were treated with only matrigel or matrigel mixed with each type of MSCs. Olby and modified Tarlov scores, immunohistochemistry, ELISA and Western blot analysis were used to evaluate the therapeutic effects. The different MSC groups showed significant improvements in locomotion at 8 weeks after transplantation (P<0.05). This recovery was accompanied by increased numbers of surviving neuron and neurofilament-positive fibers in the lesion site. Compared to the control, the lesion sizes were smaller, and fewer microglia and reactive astrocytes were found in the spinal cord epicenter of all MSC groups. Although there were no significant differences in functional recovery among the MSCs groups, UCB-derived MSCs (UCSCs) induced more nerve regeneration and anti-inflammation activity (P<0.05). Transplanted MSCs survived for 8 weeks and reduced IL-6 and COX-2 levels, which may have promoted neuronal regeneration in the spinal cord. Our data suggest that transplantation of MSCs promotes functional recovery after SCI. Furthermore, application of UCSCs led to more nerve regeneration, neuroprotection and less inflammation compared to other MSCs.
Collapse
Affiliation(s)
- Hak-Hyun Ryu
- Department of Veterinary Surgery, College of Veterinary Medicine, Seoul National University, Daehak-dong, Gwanak-gu, Seoul 151-742, Korea
| | | | | | | | | | | | | | | |
Collapse
|
121
|
Xiao Q, Wang SK, Tian H, Xin L, Zou ZG, Hu YL, Chang CM, Wang XY, Yin QS, Zhang XH, Wang LY. TNF-α increases bone marrow mesenchymal stem cell migration to ischemic tissues. Cell Biochem Biophys 2012; 62:409-14. [PMID: 22081437 DOI: 10.1007/s12013-011-9317-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The objective of this study was to analyze the influence of TNF-α on rat mesenchymal stem cells (MSCs) and to assess feasibility of MSC transplantation to repair ischemic injury. In this study, adhesion molecules and cell specific surface markers on MSCs were measured after exposure to different concentrations of TNF-α. MSCs stimulated with varying concentrations of TNF-α were cultured with aortic endothelial cells, and the adhesion rate was measured. MSCs were then stimulated with an optimum concentration of TNF-α as determined in vitro, and injected intravenously into rats with ischemic hind limb injury. The number of MSCs in muscle samples from the ischemic area was counted. The results showed that (1) TNF-α induced a concentration-dependent increase in VCAM-1 expression in MSCs, whereas the expression of L-selectin, ICAM-1 and VLA-4 did not change significantly. Expression of MSC-specific antigens was unchanged. (2) MSCs pretreated with 10 ng/ml TNF-α showed significantly increased adhesion to endothelial cells in vitro, and accumulated to a greater extent in the areas of ischemic damage in rat hind limbs. We were able to conclude that TNF-α has no effect on expression of MSC-specific markers, but can increase the expression of VCAM-1 on rat MSCs. Suitable concentrations of TNF-α can promote MSC adhesion to endothelial cells and migration to damaged tissue.
Collapse
Affiliation(s)
- Qiong Xiao
- Institute of Anatomy & Histology and Embryology, Medical School of Shandong University, Jinan 250012, Shandong, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
RODRIGUES MARIACAROLINAO, DMITRIEV DMITRIY, RODRIGUES ANTONIO, GLOVER LORENE, SANBERG PAULR, ALLICKSON JULIEG, KUZMIN-NICHOLS NICOLE, TAJIRI NAOKI, SHINOZUKA KAZUTAKA, GARBUZOVA-DAVIS SVITLANA, KANEKO YUJI, BORLONGAN CESARV. Menstrual blood transplantation for ischemic stroke: Therapeutic mechanisms and practical issues. Interv Med Appl Sci 2012; 4:59-68. [PMID: 25267932 PMCID: PMC4177033 DOI: 10.1556/imas.4.2012.2.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Cerebrovascular diseases are a major cause of death and long-term disability in developed countries. Tissue plasmin activator (tPA) is the only approved therapy for ischemic stroke, strongly limited by the short therapeutic window and hemorrhagic complications, therefore excluding most patients from its benefits. The rescue of the penumbra area of the ischemic infarct is decisive for functional recovery after stroke. Inflammation is a key feature in the penumbra area and it plays a dual role, improving injury in early phases but impairing neural survival at later stages. Stem cells can be opportunely used to modulate inflammation, abrogate cell death and, therefore, preserve neural function. We here discuss the possible role of stem cells derived from menstrual blood as restorative treatment for stroke. We highlight the availability, proliferative capacity, pluripotentiality and angiogenic features of these cells and explore their present and future experimental and clinical applications.
Collapse
Affiliation(s)
- MARIA CAROLINA O. RODRIGUES
- Department of Neurosurgery and Brain Repair, University of South Florida, College of Medicine, Tampa, FL, USA
- Department of Internal Medicine, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - DMITRIY DMITRIEV
- Department of Neurosurgery and Brain Repair, University of South Florida, College of Medicine, Tampa, FL, USA
| | - ANTONIO RODRIGUES
- Department of Neurosurgery and Brain Repair, University of South Florida, College of Medicine, Tampa, FL, USA
- Department of Internal Medicine, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - LOREN E. GLOVER
- Department of Neurosurgery and Brain Repair, University of South Florida, College of Medicine, Tampa, FL, USA
| | - PAUL R. SANBERG
- Department of Neurosurgery and Brain Repair, University of South Florida, College of Medicine, Tampa, FL, USA
| | | | | | - NAOKI TAJIRI
- Department of Neurosurgery and Brain Repair, University of South Florida, College of Medicine, Tampa, FL, USA
| | - KAZUTAKA SHINOZUKA
- Department of Neurosurgery and Brain Repair, University of South Florida, College of Medicine, Tampa, FL, USA
| | - SVITLANA GARBUZOVA-DAVIS
- Department of Neurosurgery and Brain Repair, University of South Florida, College of Medicine, Tampa, FL, USA
| | - YUJI KANEKO
- Department of Neurosurgery and Brain Repair, University of South Florida, College of Medicine, Tampa, FL, USA
| | - CESAR V. BORLONGAN
- Department of Neurosurgery and Brain Repair, University of South Florida, College of Medicine, Tampa, FL, USA
| |
Collapse
|
123
|
Alder J, Kramer BC, Hoskin C, Thakker-Varia S. Brain-derived neurotrophic factor produced by human umbilical tissue-derived cells is required for its effect on hippocampal dendritic differentiation. Dev Neurobiol 2012; 72:755-65. [DOI: 10.1002/dneu.20980] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
124
|
The secretome of stem cells isolated from the adipose tissue and Wharton jelly acts differently on central nervous system derived cell populations. Stem Cell Res Ther 2012; 3:18. [PMID: 22551705 PMCID: PMC3392765 DOI: 10.1186/scrt109] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 04/02/2012] [Accepted: 05/02/2012] [Indexed: 01/26/2023] Open
Abstract
Introduction It is hypothesized that administration of stromal/stem cells isolated from the adipose tissue (ASCs) and umbilical cord (HUCPVCs) can ameliorate the injured central nervous system (CNS). It is still not clear, however, whether they have similar or opposite effects on primary cultures of neuronal populations. The objective of the present work was to determine if ASCs and HUCPVCs preferentially act, or not, on specific cell populations within the CNS. Methods Primary cultures of hippocampal neurons were exposed to ASCs and HUCPVCs conditioned media (CM) (obtained 24, 48, 72 and 96 hours after three days of culture) for one week. Results Cell viability experiments (MTS (3-(4, 5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2(4-sulfophenyl)-2H tetrazolium) test) revealed that CM obtained from both cell populations at all time points did not cause any deleterious effects on neuronal cells. In fact, it was determined that whenever the ASCs CM were supplemented with basic fibroblast growth factor (bFGF) and B27, there was a significant increase in the metabolic viability and neuronal cell density of the cultures. On the other hand, in the absence of CM supplementation, it was the HUCPVCs secretome that had the highest impact on the metabolic viability and cell density. In an attempt to unveil which factors could be involved in the observed effects, a screening for the presence of bFGF, nerve growth factor (NGF), stem cell factor (SCF), hepatocyte growth factors (HGF) and vascular endothelial growth factor (VEGF) in the CM was performed. Results revealed the presence of all these factors in ASCs CM, except bFGF; in contrast, in HUCPVCs CM it was only possible to detect robust NGF expression. Conclusions Overall, the results confirm important differences on the secretome of ASCs and HUCPVCs, which lead to distinct effects on the metabolic viability and neuronal cell densities in primary cultures of hippocampal neurons; however, the factor(s) that promote the stronger effect of the HUCPVCs CM in neuronal survival is(are) still to be identified.
Collapse
|
125
|
Dalous J, Larghero J, Baud O. Transplantation of umbilical cord-derived mesenchymal stem cells as a novel strategy to protect the central nervous system: technical aspects, preclinical studies, and clinical perspectives. Pediatr Res 2012; 71:482-90. [PMID: 22430384 DOI: 10.1038/pr.2011.67] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The prevention of perinatal neurological disabilities remains a major challenge for public health, and no neuroprotective treatment to date has proven clinically useful in reducing the lesions leading to these disabilities. Efforts are, therefore, urgently needed to test other neuroprotective strategies including cell therapies. Although stem cells have raised great hopes as an inexhaustible source of therapeutic products that could be used for neuroprotection and neuroregeneration in disorders affecting the brain and spinal cord, certain sources of stem cells are associated with potential ethical issues. The human umbilical cord (hUC) is a rich source of stem and progenitor cells including mesenchymal stem cells (MSCs) derived either from the cord or from cord blood. hUC MSCs (hUC-MSCs) have several advantages as compared to other types and sources of stem cells. In this review, we will summarize the most recent findings regarding the technical aspects and the preclinical investigation of these promising cells in neuroprotection and neuroregeneration, and their potential use in the developing human brain. However, extensive studies are needed to optimize the administration protocol, safety parameters, and potential preinjection cell manipulations before designing a controlled trial in human neonates.
Collapse
Affiliation(s)
- Jérémie Dalous
- INSERM UMR 676, Université Paris Diderot, Hôpital Robert Debré, APHP, Paris, France
| | | | | |
Collapse
|
126
|
Neural differentiation of umbilical cord mesenchymal stem cells by sub-sonic vibration. Life Sci 2012; 90:591-9. [DOI: 10.1016/j.lfs.2012.02.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 01/16/2012] [Accepted: 02/09/2012] [Indexed: 12/11/2022]
|
127
|
Mathieu P, Roca V, Gamba C, Del Pozo A, Pitossi F. Neuroprotective effects of human umbilical cord mesenchymal stromal cells in an immunocompetent animal model of Parkinson's disease. J Neuroimmunol 2012; 246:43-50. [PMID: 22458982 DOI: 10.1016/j.jneuroim.2012.03.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 02/28/2012] [Accepted: 03/01/2012] [Indexed: 01/22/2023]
Abstract
Microglial activation in the substantia nigra (SN) is a ubiquitous feature in PD which could mediate toxic effects. Human mesenchymal stromal cells (hMSCs) possess immunomodulatory properties. We evaluated whether the transplantation of hMSCs obtained from umbilical cord had a neuroprotective effect in a not-immunosuppressed rat Parkinson's disease (PD) model. Rats receiving hMSCs in the SN displayed significant preservation in the number of dopaminergic neurons in the SN at 21 days after lesion and an improved performance in behavioral tests compared to control rats. However, no differences in any inflammatory parameter tested were found. These results suggest that grafted hMSCs exert neuroprotection but not neuromodulatory effects on degenerating dopaminergic neurons.
Collapse
Affiliation(s)
- Patricia Mathieu
- Laboratory of Regenerative and Protective Therapies of the Nervous System, Foundation Leloir Institute, IIBBA-CONICET, 435 Av Patricias Argentinas, 1405 Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
128
|
Smith HK, Gavins FNE. The potential of stem cell therapy for stroke: is PISCES the sign? FASEB J 2012; 26:2239-52. [PMID: 22426119 DOI: 10.1096/fj.11-195719] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Substantial developments in the field of stem cell research point toward novel therapies for the treatment of diseases such as stroke. This review covers the establishment of tissue damage in stroke and the status of current therapies. We evaluate stem cell therapy with respect to other treatments, including clinical, preclinical, and failed, and provide a comprehensive account of stem cell clinical trials for stroke therapy currently underway. Finally, we describe mechanisms through which stem cells improve outcome in experimental stroke as well as potential pitfalls this basic research has identified.
Collapse
Affiliation(s)
- Helen K Smith
- Wolfson Neuroscience Laboratories, Department of Medicine, Imperial College London, London, UK
| | | |
Collapse
|
129
|
Jiang X, Cao HQ, Shi LY, Ng SY, Stanton LW, Chew SY. Nanofiber topography and sustained biochemical signaling enhance human mesenchymal stem cell neural commitment. Acta Biomater 2012; 8:1290-302. [PMID: 22154861 DOI: 10.1016/j.actbio.2011.11.019] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 10/20/2011] [Accepted: 11/14/2011] [Indexed: 11/26/2022]
Abstract
Stem cells hold great promise in enhancing nerve regeneration. In particular, human mesenchymal stem cells (MSC) represent a clinically viable cell source due in part to their abundance and accessibility. Unfortunately, current methods to direct the fate of stem cells remains largely limited to biochemical-based approaches on two-dimensional substrates with restricted efficacies. Here we have evaluated a scaffold-based approach to directing stem cell differentiation. We demonstrate the combined effects of nanofiber topography and controlled drug release on enhancing MSC neural commitment. By encapsulating up to 0.3 wt.% retinoic acid (RA) within aligned poly(ε-caprolactone) (PCL) nanofibers (average diameter ∼270 nm, AF750), sustained released of RA was obtained for at least 14 days (∼60% released). Compared with tissue culture polystyrene (TCPS), the nanofiber topography arising from plain PCL nanofibers significantly up-regulated the expressions of neural markers, Tuj-1, MAP2, GalC and RIP at the mRNA and protein levels. Combined with sustained drug availability, more significant changes in cell morphology and enhancement of neural marker expression were observed. In particular, scaffold-based controlled delivery of RA enhanced MAP2 and RIP expression compared with bolus delivery despite lower amounts of drug (>8 times lower). The generally higher expression of the mature neuronal marker MAP2 compared with glial markers at the mRNA and protein levels suggested an enhanced potential of MSC neuronal differentiation. In addition, positive staining for synaptophysin was detected only in cells cultured on aligned scaffolds in the presence of RA. Taken together, the results highlight the advantage of the scaffold-based approach in enhancing the potential of MSC neuronal differentiation and demonstrated the importance of the drug delivery approach in directing cell fate. Such biomimicking drug-encapsulating scaffolds may permit subsequent direct cell transplantation and provide guidance cues to control the fate of endogenously recruited stem cells.
Collapse
|
130
|
Koh SH, Huh YM, Noh MY, Kim HY, Kim KS, Lee ES, Ko HJ, Cho GW, Yoo AR, Song HT, Hwang S, Lee K, Haam S, Frank JA, Suh JS, Kim SH. β-PIX is critical for transplanted mesenchymal stromal cell migration. Stem Cells Dev 2012; 21:1989-99. [PMID: 22087847 DOI: 10.1089/scd.2011.0430] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bone marrow-derived mesenchymal stromal cells (MSCs) have been used successfully as a source of stem cells for treating neurodegenerative diseases. However, for reasons that are not clear, autologous MSC transplants have not yielded successful results in human trials. To test one possible reason, we compared the migratory ability of MSCs from amyotrophic lateral sclerosis (ALS) patients with those of healthy controls. We found that MSCs derived from ALS patients (ALS-MSCs) had a reduced ability to migrate, which may explain why autologous transplantation is not successful. We also found that expression of one of the intracellular factors implicated in migration, β-PIX, was significantly reduced in ALS-MSCs compared with healthy stem cells. Restoration of β-PIX expression by genetic manipulation restored the migratory ability of ALS-MSCs, and inhibition of β-PIX expression with shRNA reduced the migration of healthy MSCs. We suggest that transplantation of allogeneic or genetically modified autologous stem cells might be a more promising strategy for ALS patients than transplantation of autologous stem cells.
Collapse
Affiliation(s)
- Seong-Ho Koh
- Department of Neurology, Hanyang University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Whone AL, Kemp K, Sun M, Wilkins A, Scolding NJ. Human bone marrow mesenchymal stem cells protect catecholaminergic and serotonergic neuronal perikarya and transporter function from oxidative stress by the secretion of glial-derived neurotrophic factor. Brain Res 2012; 1431:86-96. [DOI: 10.1016/j.brainres.2011.10.038] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 10/18/2011] [Accepted: 10/20/2011] [Indexed: 12/29/2022]
|
132
|
Zanier ER, Montinaro M, Vigano M, Villa P, Fumagalli S, Pischiutta F, Longhi L, Leoni ML, Rebulla P, Stocchetti N, Lazzari L, De Simoni MG. Human umbilical cord blood mesenchymal stem cells protect mice brain after trauma. Crit Care Med 2011; 39:2501-10. [PMID: 21725237 DOI: 10.1097/ccm.0b013e31822629ba] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To investigate whether human umbilical cord blood mesenchymal stem cells, a novel source of progenitors with multilineage potential: 1) decrease traumatic brain injury sequelae and restore brain function; 2) are able to survive and home to the lesioned region; and 3) induce relevant changes in the environment in which they are infused. DESIGN Prospective experimental study. SETTING Research laboratory. SUBJECTS Male C57Bl/6 mice. INTERVENTIONS Mice were subjected to controlled cortical impact/sham brain injury. At 24 hrs postinjury, human umbilical cord blood mesenchymal stem cells (150,000/5 μL) or phosphate-buffered saline (control group) were infused intracerebroventricularly contralateral to the injured side. Immunosuppression was achieved by cyclosporine A (10 mg/kg intraperitoneally). MEASUREMENTS AND MAIN RESULTS After controlled cortical impact, human umbilical cord blood mesenchymal stem cell transplantation induced an early and long-lasting improvement in sensorimotor functions assessed by neuroscore and beam walk tests. One month postinjury, human umbilical cord blood mesenchymal stem cell mice showed attenuated learning dysfunction at the Morris water maze and reduced contusion volume compared with controls. Hoechst positive human umbilical cord blood mesenchymal stem cells homed to lesioned tissue as early as 1 wk after injury in 67% of mice and survived in the injured brain up to 5 wks. By 3 days postinjury, cell infusion significantly increased brain-derived neurotrophic factor concentration into the lesioned tissue, restoring its expression close to the levels observed in sham operated mice. By 7 days postinjury, controlled cortical impact human umbilical cord blood mesenchymal stem cell mice showed a nonphagocytic activation of microglia/macrophages as shown by a selective rise (260%) in CD11b staining (a marker of microglia/macrophage activation/recruitment) associated with a decrease (58%) in CD68 (a marker of active phagocytosis). Thirty-five days postinjury, controlled cortical impact human umbilical cord blood mesenchymal stem cell mice showed a decrease of glial fibrillary acidic protein positivity in the scar region compared with control mice. CONCLUSIONS These findings indicate that human umbilical cord blood mesenchymal stem cells stimulate the injured brain and evoke trophic events, microglia/macrophage phenotypical switch, and glial scar inhibitory effects that remodel the brain and lead to significant improvement of neurologic outcome.
Collapse
Affiliation(s)
- Elisa R Zanier
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Anderson AJ, Haus DL, Hooshmand MJ, Perez H, Sontag CJ, Cummings BJ. Achieving stable human stem cell engraftment and survival in the CNS: is the future of regenerative medicine immunodeficient? Regen Med 2011; 6:367-406. [PMID: 21548741 DOI: 10.2217/rme.11.22] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
There is potential for a variety of stem cell populations to mediate repair in the diseased or injured CNS; in some cases, this theoretical possibility has already transitioned to clinical safety testing. However, careful consideration of preclinical animal models is essential to provide an appropriate assessment of stem cell safety and efficacy, as well as the basic biological mechanisms of stem cell action. This article examines the lessons learned from early tissue, organ and hematopoietic grafting, the early assumptions of the stem cell and CNS fields with regard to immunoprivilege, and the history of success in stem cell transplantation into the CNS. Finally, we discuss strategies in the selection of animal models to maximize the predictive validity of preclinical safety and efficacy studies.
Collapse
Affiliation(s)
- Aileen J Anderson
- Sue & Bill Gross Stem Cell Center, 845 Health Science Road, UC Irvine, Irvine, CA 92697-1705, USA.
| | | | | | | | | | | |
Collapse
|
134
|
Hong SQ, Zhang HT, You J, Zhang MY, Cai YQ, Jiang XD, Xu RX. Comparison of transdifferentiated and untransdifferentiated human umbilical mesenchymal stem cells in rats after traumatic brain injury. Neurochem Res 2011; 36:2391-400. [PMID: 21877237 DOI: 10.1007/s11064-011-0567-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 07/26/2011] [Accepted: 07/27/2011] [Indexed: 12/23/2022]
Abstract
Transdifferentiated and untransdifferentiated mesenchymal stem cells (MSCs) have shown therapeutic benefits in central nervous system (CNS) injury. However, it is unclear which would be more appropriate for transplantation. To address this question, we transplanted untransdifferentiated human umbilical mesenchymal stem cells (HUMSCs) and transdifferentiated HUMSCs (HUMSC-derived neurospheres, HUMSC-NSs) into a rat model of traumatic brain injury. Cognitive function, cell survival and differentiation, brain tissue morphology and neurotrophin expression were compared between groups. Significant improvements in cognitive function and brain tissue morphology were seen in the HUMSCs group compared with HUMSC-NSs group, which was accompanied by increased neurotrophin expression. Moreover, only few grafted cells survived in both the HUMSCs and HUMSC-NSs groups, with very few of the cells differentiating into neural-like cells. These findings indicate that HUMSCs are more appropriate for transplantation and their therapeutic benefits may be associated with neuroprotection rather than cell replacement.
Collapse
Affiliation(s)
- Sun-Quan Hong
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | | | | | | | | | | | | |
Collapse
|
135
|
Seo Y, Yang SR, Jee MK, Joo EK, Roh KH, Seo MS, Han TH, Lee SY, Ryu PD, Jung JW, Seo KW, Kang SK, Kang KS. Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Protect against Neuronal Cell Death and Ameliorate Motor Deficits in Niemann Pick Type C1 Mice. Cell Transplant 2011; 20:1033-47. [DOI: 10.3727/096368910x545086] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Niemann Pick disease type C1 (NPC) is an autosomal recessive disease characterized by progressive neurological deterioration leading to premature death. In this study, we hypothesized that human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) have the multifunctional abilities to ameliorate NPC symptoms in the brain. To test this hypothesis, hUCB-MSCs were transplanted into the hippocampus of NPC mice in the early asymptomatic stage. This transplantation resulted in the recovery of motor function in the Rota Rod test and impaired cholesterol homeostasis leading to increased levels of cholesterol efflux-related genes such as LXRα, ABCA1, and ABCG5 while decreased levels of 3-hydroxy-3-methylglutaryl coenzyme A reductase were observed in NPC mice. In the cerebrum, hUCB-MSCs enhanced neuronal cell survival and proliferation, where they directly differentiated into electrically active MAP2-positive neurons as demonstrated by whole-cell patch clamping. In addition, we observed that hUCB-MSCs reduced Purkinje neuronal loss by suppression of inflammatory and apoptotic signaling in the cerebellum as shown by immunohistochemistry. We further investigated how hUCB-MSCs enhance cellular survival and inhibit apoptosis in NPC mice. Neuronal cell survival was associated with increased PI3K/AKT and JAK2/STAT3 signaling; moreover, hUCB-MSCs modulated the levels of GABA/glutamate transporters such as GAT1, EAAT2, EAAT3, and GAD6 in NPC mice as assessed by Western blot analysis. Taken together, our findings suggest that hUCB-MSCs might play multifunctional roles in neuronal cell survival and ameliorating motor deficits of NPC mice.
Collapse
Affiliation(s)
- Yoojin Seo
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Laboratory of Stem Cell and Tumor Biology, Department of Veterinary Public Health, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Se-Ran Yang
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Laboratory of Stem Cell and Tumor Biology, Department of Veterinary Public Health, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Min Ki Jee
- Department of Veterinary Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Eun Kyung Joo
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Laboratory of Stem Cell and Tumor Biology, Department of Veterinary Public Health, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Kyung-Hwan Roh
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Laboratory of Stem Cell and Tumor Biology, Department of Veterinary Public Health, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Min-Soo Seo
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Laboratory of Stem Cell and Tumor Biology, Department of Veterinary Public Health, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Tae Hee Han
- Department of Veterinary Pharmacology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - So Yeong Lee
- Department of Veterinary Pharmacology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Pan Dong Ryu
- Department of Veterinary Pharmacology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Ji-Won Jung
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Laboratory of Stem Cell and Tumor Biology, Department of Veterinary Public Health, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Kwang-Won Seo
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Laboratory of Stem Cell and Tumor Biology, Department of Veterinary Public Health, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Soo-Kyung Kang
- Department of Veterinary Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Kyung-Sun Kang
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Laboratory of Stem Cell and Tumor Biology, Department of Veterinary Public Health, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
136
|
PET molecular imaging in stem cell therapy for neurological diseases. Eur J Nucl Med Mol Imaging 2011; 38:1926-38. [DOI: 10.1007/s00259-011-1860-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 06/06/2011] [Indexed: 01/12/2023]
|
137
|
Yang J, Lee ES, Noh MY, Koh SH, Lim EK, Yoo AR, Lee K, Suh JS, Kim SH, Haam S, Huh YM. Ambidextrous magnetic nanovectors for synchronous gene transfection and labeling of human MSCs. Biomaterials 2011; 32:6174-82. [PMID: 21696819 DOI: 10.1016/j.biomaterials.2011.04.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 04/05/2011] [Indexed: 12/16/2022]
Abstract
The synchronization of gene expression and cell trafficking in transfected stem cells is crucial for augmentation of stem cell functions (differentiation and neurotropic factor secretion) and real time in vivo monitoring. We report a magnetic nanoparticle-based gene delivery system that can ensure simultaneous gene delivery and in vivo cell trafficking by high resolution MR imaging. The polar aprotic solvent soluble MnFe₂O₄ nanoparticles were enveloped using cationic polymers (branched polyethyleneimine, PEI) by the solvent shifting method for a gene loading. Using our magnetic nanovector system (PEI-coated MnFe₂O₄ nanoparticles), thus, we synchronized stem cell migration and its gene expression in a rat stroke model.
Collapse
Affiliation(s)
- Jaemoon Yang
- Department of Radiology, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Zhang MJ, Sun JJ, Qian L, Liu Z, Zhang Z, Cao W, Li W, Xu Y. Human umbilical mesenchymal stem cells enhance the expression of neurotrophic factors and protect ataxic mice. Brain Res 2011; 1402:122-31. [PMID: 21683345 DOI: 10.1016/j.brainres.2011.05.055] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/23/2011] [Accepted: 05/24/2011] [Indexed: 12/11/2022]
Abstract
Cerebellar ataxias, which comprise a wide spectrum of progressive disorders, are incurable at present. It has been reported that human umbilical mesenchymal stem cell (HU-MSC) transplantation has a protective effect on neurodegenerative diseases. In this study, we investigated the effect of HU-MSCs on ataxic mice induced by cytosine beta-D-arabinofuranoside (Ara-C). The ataxic mouse received an intravenous injection of 2×10(6) HU-MSCs once a week for three consecutive weeks. Neurological function was scored weekly by rotarod test and open field test. The mouse cerebellar volume and weight were also measured. The apoptotic cells, pathological alternations and distribution of HU-MSCs were determined by TUNEL assay and immunohistochemistry staining respectively. Double immunostaining was carried out to investigate the dynamics of HU-MSCs in the host animals. Neurotrophic factors in cerebellar tissue and serum were measured by Q-PCR and ELISA. Our results showed that HU-MSCs implantation significantly improved the motor skills of ataxic mice 8 weeks after application. HU-MSCs also alleviated cerebellar atrophy and decreased the number of apoptotic cells in the therapeutic group. Implanted HU-MSCs stayed in cerebellum for at least three months with no obvious differentiation. HU-MSC treated mice had enhanced expression of insulin-like growth factor-1 (IGF-1) and vascular endothelial growth factor (VEGF) in cerebellum extraction and blood serum. Double immunostaining revealed that a few MAB1287 positive cells co-localized with IGF-1 or VEGF express cells. Our results suggest that HU-MSC treatment is capable of alleviating the motor impairments and cerebellar atrophy in the ataxic mouse model, probably via promoting particular neurotrophic factors.
Collapse
Affiliation(s)
- Mei-Juan Zhang
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, PR China
| | | | | | | | | | | | | | | |
Collapse
|
139
|
Recent progress in cell therapy for basal ganglia disorders with emphasis on menstrual blood transplantation in stroke. Neurosci Biobehav Rev 2011; 36:177-90. [PMID: 21645544 DOI: 10.1016/j.neubiorev.2011.05.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 04/25/2011] [Accepted: 05/20/2011] [Indexed: 12/13/2022]
Abstract
Cerebrovascular diseases are the third leading cause of death and the primary cause of long-term disability in the United States. The only approved therapy for stroke is tPA, strongly limited by the short therapeutic window and hemorrhagic complications, therefore excluding most patients from its benefits. Parkinson's and Huntington's disease are the other two most studied basal ganglia diseases and, as stroke, have very limited treatment options. Inflammation is a key feature in central nervous system disorders and it plays a dual role, either improving injury in early phases or impairing neural survival at later stages. Stem cells can be opportunely used to modulate inflammation, abrogate cell death and, therefore, preserve neural function. We here discuss the role of stem cells as restorative treatments for basal ganglia disorders, including Parkinson's disease, Huntington's disease and stroke, with special emphasis to the recently investigated menstrual blood stem cells. We highlight the availability, proliferative capacity, pluripotentiality and angiogenic features of these cells and explore their present and future experimental and clinical applications.
Collapse
|
140
|
Lin YC, Ko TL, Shih YH, Lin MYA, Fu TW, Hsiao HS, Hsu JYC, Fu YS. Human umbilical mesenchymal stem cells promote recovery after ischemic stroke. Stroke 2011; 42:2045-53. [PMID: 21566227 DOI: 10.1161/strokeaha.110.603621] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND PURPOSE Stroke is a cerebrovascular defect that leads to many adverse neurological complications. Current pharmacological treatments for stroke remain unclear in their effectiveness, whereas stem cell transplantation shows considerable promise. Previously, we have shown that human umbilical mesenchymal stem cells (HUMSCs) can differentiate into neurons in neuronal-conditioned medium. Here we evaluate the therapeutic potential of HUMSC transplantation for ischemic stroke in rats. METHODS Focal cerebral ischemia was produced by middle cerebral artery occlusion and reperfusion. The HUMSCs treated with neuronal-conditioned medium or not treated were transplanted into the ischemic cortex 24 hours after surgery. RESULTS Histology and MRI revealed that rats implanted with HUMSCs treated with neuronal-conditioned medium or not treated exhibited a trend toward less infarct volume and significantly less atrophy compared with the control group, which received no HUMSCs. Moreover, rats receiving HUMSCs showed significant improvements in motor function, greater metabolic activity of cortical neurons, and better revascularization in the infarct cortex. Implanted HUMSCs, treated or not treated, survived in the infarct cortex for at least 36 days and released neuroprotective and growth-associated cytokines, including brain-derived neurotrophic factor, platelet-derived growth factor-AA, basic fibroblast growth factor, angiopoietin-2, CXCL-16, neutrophil-activating protein-2, and vascular endothelial growth factor receptor-3. CONCLUSIONS Our results demonstrate the therapeutic benefits of HUMSC transplantation for ischemic stroke, likely due to the ability of the cells to produce growth-promoting factors. Thus, HUMSC transplantation may be an effective therapy in the future.
Collapse
Affiliation(s)
- Yu-Ching Lin
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, 155 Sec. 2, Li-Nung Street, Taipei 112, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
141
|
Dongmei H, Jing L, Mei X, Ling Z, Hongmin Y, Zhidong W, Li D, Zikuan G, Hengxiang W. Clinical analysis of the treatment of spinocerebellar ataxia and multiple system atrophy-cerebellar type with umbilical cord mesenchymal stromal cells. Cytotherapy 2011; 13:913-7. [PMID: 21545234 DOI: 10.3109/14653249.2011.579958] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND AIMS The aims of this study were to observe the safety and effectiveness of umbilical cord mesenchymal stromal cells (UC-MSC) in the treatment of spinocerebellar ataxia (SCA) and multiple system atrophy-cerebellar type (MSA-C). METHODS From October 2009 to September 2010, 14 cases of SCA and 10 cases of MSA-C were given UC-MSC by weekly intrathecal injection, at a dose of 1 × 10(6)/kg four times as one course. All the patients received one course of treatment, except three patients who received two courses. The movement ability and quality of daily life were evaluated with the International Cooperative Ataxia Rating Scale (ICARS) and Activity of Daily Living Scale (ADL) and the scores compared with those before cell therapy. A follow-up of 6-15 months was carried out for all of the patients. RESULTS The results showed that the ICARS and ADL scores were significantly decreased 1 month after treatment (P < 0.01). The symptoms, including unstable walking and standing, slow movement, fine motor disorders of the upper limbs, writing difficulties and dysarthria, were greatly improved except for one patient, who had no response. The observed side-effects included dizziness (four patients), back pain (two cases) and headache (one case), which disappeared within 1-3 days. During the follow-up, 10 cases remained stable for half a year or longer, while 14 cases had regressed to the status prior to the treatment within 1-14 months (an average of 3 months). CONCLUSIONS Intrathecal injection of UC-MSC is safe and can delay the progression of neurologic deficits for SCA and MSA-C patients.
Collapse
Affiliation(s)
- Han Dongmei
- Department of Hematology, General Hospital of the Air Force, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Zhang L, Li Y, Zhang C, Chopp M, Gosiewska A, Hong K. Delayed Administration of Human Umbilical Tissue-Derived Cells Improved Neurological Functional Recovery in a Rodent Model of Focal Ischemia. Stroke 2011; 42:1437-44. [DOI: 10.1161/strokeaha.110.593129] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and Purpose—
The short time window required by neuroprotective strategies for successful treatment of patients with ischemic stroke precludes treatment for most. However, clinical therapies based on neuroregeneration might extend this therapeutic time window and thus address a significant unmet need. Human umbilical tissue-derived cells have shown great potential as neuroregenerative candidates for stroke treatment.
Methods—
The effectiveness of intravenous administration of human umbilical tissue-derived cells was tested in a rodent middle cerebral artery stroke model in a dose escalation study (doses tested: 3×10
5
, 1×10
6
, 3×x10
6
, or 1×10
7
cells/injection) followed by a time-of-administration study (time after stroke: Day 1, Day 7, Day 30, and Day 90 at a dose of 5×10
6
cells/injection). Controls were phosphate-buffered saline injections and human bone marrow-derived mesenchymal stromal cell injections. Post-treatment outcome tools included the modified neurological severity score and the adhesive removal tests. Histology was performed on all cases to evaluate synaptogenesis, neurogenesis, angiogenesis, and cell apoptosis.
Results—
Statistically significant improvements of human umbilical tissue-derived cell treatment versus phosphate-buffered saline in modified neurological severity scores and adhesive test results were observed for doses ≥3×10
6
cells up to 30 days poststroke. At doses ≥3×10
6
, histological evaluations confirmed enhanced synaptogenesis, vessel density, and reduced apoptosis in the ischemic boundary zone and increased proliferation of progenitor cells in the subventricular zone of human umbilical tissue-derived cell-treated animals versus phosphate-buffered saline controls.
Conclusions—
These results indicate effectiveness of intravenous administration of human umbilical tissue-derived cells in a rodent stroke model compared with phosphate-buffered saline control and warrant further investigation for possible use in humans.
Collapse
Affiliation(s)
- Li Zhang
- From the Department of Neurology (L.Z., Y.L., C.Z., M.C.), Henry Ford Hospital, Detroit, MI; the Department of Physics (M.C.), Oakland University, Rochester, MI; and Advanced Technologies and Regenerative Medicine, LLC (A.G., K.H.), c/o Ethicon, Inc, Somerville, NJ
| | - Yi Li
- From the Department of Neurology (L.Z., Y.L., C.Z., M.C.), Henry Ford Hospital, Detroit, MI; the Department of Physics (M.C.), Oakland University, Rochester, MI; and Advanced Technologies and Regenerative Medicine, LLC (A.G., K.H.), c/o Ethicon, Inc, Somerville, NJ
| | - Chunling Zhang
- From the Department of Neurology (L.Z., Y.L., C.Z., M.C.), Henry Ford Hospital, Detroit, MI; the Department of Physics (M.C.), Oakland University, Rochester, MI; and Advanced Technologies and Regenerative Medicine, LLC (A.G., K.H.), c/o Ethicon, Inc, Somerville, NJ
| | - Michael Chopp
- From the Department of Neurology (L.Z., Y.L., C.Z., M.C.), Henry Ford Hospital, Detroit, MI; the Department of Physics (M.C.), Oakland University, Rochester, MI; and Advanced Technologies and Regenerative Medicine, LLC (A.G., K.H.), c/o Ethicon, Inc, Somerville, NJ
| | - Anna Gosiewska
- From the Department of Neurology (L.Z., Y.L., C.Z., M.C.), Henry Ford Hospital, Detroit, MI; the Department of Physics (M.C.), Oakland University, Rochester, MI; and Advanced Technologies and Regenerative Medicine, LLC (A.G., K.H.), c/o Ethicon, Inc, Somerville, NJ
| | - Klaudyne Hong
- From the Department of Neurology (L.Z., Y.L., C.Z., M.C.), Henry Ford Hospital, Detroit, MI; the Department of Physics (M.C.), Oakland University, Rochester, MI; and Advanced Technologies and Regenerative Medicine, LLC (A.G., K.H.), c/o Ethicon, Inc, Somerville, NJ
| |
Collapse
|
143
|
Fan CG, Zhang QJ, Zhou JR. Therapeutic potentials of mesenchymal stem cells derived from human umbilical cord. Stem Cell Rev Rep 2011; 7:195-207. [PMID: 20676943 DOI: 10.1007/s12015-010-9168-8] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs), isolated from discarded extra-embryonic tissue after birth, are promising candidate source of mesenchymal stem cells (MSCs). Apart from their prominent advantages in abundant supply, painless collection, and faster self-renewal, hUC-MSCs have shown the potencies to differentiate into a variety of cells of three germ layers (such as bone, cartilage, adipose, skeletal muscle, cardiomyocyte, endothelium, hepatocyte-like cluster, islet-like cluster, neuron, astrocyte and oligodendrocyte), to synthesize and secret a set of trophic factors and cytokines, to support the expansion and function of other cells (like hematopoietic stem cells, embryonic stem cells, natural killer cells, islet-like cell clusters, neurons and glial cells), to migrate toward and home to pathological areas, and to be readily transfected with conventional methods. Two excellent previous reviews documenting the characteristics of this cell population with special emphasis on its niche, isolation, surface markers and primitive properties have been published recently. In this review, we will firstly give a brief introduction of this cell population, and subsequently dwell on the findings of differential capacities with emphasis on its therapeutic potentials.
Collapse
Affiliation(s)
- Cun-Gang Fan
- Neurosurgical Department of Peking University People's Hospital, Beijing, China
| | | | | |
Collapse
|
144
|
Hatlapatka T, Moretti P, Lavrentieva A, Hass R, Marquardt N, Jacobs R, Kasper C. Optimization of culture conditions for the expansion of umbilical cord-derived mesenchymal stem or stromal cell-like cells using xeno-free culture conditions. Tissue Eng Part C Methods 2011; 17:485-493. [PMID: 21166520 DOI: 10.1089/ten.tec.2010.0406] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
First isolated from bone marrow, mesenchymal stem or stromal cells (MSC) were shown to be present in several postnatal and extraembryonic tissues as well as in a large variety of fetal tissues (e.g., fatty tissue, dental pulp, placenta, umbilical cord blood, and tissue). In this study, an optimized protocol for the expansion of MSC-like cells from whole umbilical cord tissue under xeno-free culture conditions is proposed. Different fetal calf sera and human serum (HS) were compared with regard to cell proliferation and MSC marker stability in long-term expansion experiments, and HS was shown to support optimal growth conditions. Additionally, the optimal concentration of HS during the cultivation was determined. With regard to cell proliferative potential, apoptosis, colony-forming unit fibroblast frequency, and cell senescence, our findings suggest that an efficient expansion of the cells is carried out best in media supplemented with 10% HS. Under our given xeno-free culture conditions, MSC-like cells were found to display in vitro immunoprivileged and immunomodulatory properties, which were assessed by co-culture and transwell culture experiments with carboxyfluorescein diacetate succinimidyl ester-labeled peripheral blood mononuclear cells. These findings may be of great value for the establishment of biotechnological protocols for the delivery of sufficient cell numbers of high quality for regenerative medicine purposes.
Collapse
Affiliation(s)
- Tim Hatlapatka
- Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
145
|
Wyatt TJ, Keirstead HS. Stem cell-derived neurotrophic support for the neuromuscular junction in spinal muscular atrophy. Expert Opin Biol Ther 2011; 10:1587-94. [PMID: 20955113 DOI: 10.1517/14712598.2010.529895] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
IMPORTANCE OF THE FIELD Spinal muscular atrophy (SMA) is a neurodegenerative disease characterized by specific degeneration of α-motor neurons in the spinal cord. The use of cell transplantation to restore lost function through cell replacement or prevent further degeneration of motor neurons and synapses through neurotrophic support heralds tremendous hope in the SMA field. AREAS COVERED IN THIS REVIEW Much research has been carried out in the last decade on the use of embryonic stem cells in cell replacement strategies for various neurodegenerative diseases. Cell replacement is contingent on the ability of transplanted cells to integrate and form new functional connections with host cells. In the case of SMA, cell replacement is a tall order in that axons of transplanted cells would be required to grow over long distances from the spinal cord through growth-averse terrain to synapse with muscles in the periphery. The efficacy of neurotrophic support is contingent on the ability of transplanted cells to secrete neurotrophins appropriate for degenerating motor neurons in the spinal cord or development/stability of the neuromuscular junction (NMJ) in the periphery. WHAT THE READER WILL GAIN The reader will gain an understanding of the potential of neurotrophins to promote development of the NMJ in a diseased or injured environment. TAKE HOME MESSAGE Neurotrophins play a major role in NMJ development and thus may be a key factor in the pathogenesis of NMJs in SMA. Further research into the signaling mechanisms involved in NMJ maturation may identify additional mechanisms by which transplanted cells may be of therapeutic benefit.
Collapse
Affiliation(s)
- Tanya J Wyatt
- Department of Anatomy and Neurobiology, University of California at Irvine, College of Medicine, Reeve-Irvine Research Center, Sue and Bill Gross Stem Cell Research Center, 2111 Gillespie Neuroscience Research Facility, Irvine, CA 92697-4292, USA
| | | |
Collapse
|
146
|
Peng J, Wang Y, Zhang L, Zhao B, Zhao Z, Chen J, Guo Q, Liu S, Sui X, Xu W, Lu S. Human umbilical cord Wharton's jelly-derived mesenchymal stem cells differentiate into a Schwann-cell phenotype and promote neurite outgrowth in vitro. Brain Res Bull 2011; 84:235-43. [DOI: 10.1016/j.brainresbull.2010.12.013] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2010] [Revised: 11/24/2010] [Accepted: 12/22/2010] [Indexed: 12/17/2022]
|
147
|
Kim SH. Clinical application of adult stem cell therapy in neurological disorders. JOURNAL OF THE KOREAN MEDICAL ASSOCIATION 2011. [DOI: 10.5124/jkma.2011.54.5.482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Seung Hyun Kim
- Department of Neurology, Hanyang University College of Medicine, Seoul, Korea
- Cell Therapy Center, Hanyang University Hospital, Seoul, Korea
| |
Collapse
|
148
|
Jozwiak S, Habich A, Kotulska K, Sarnowska A, Kropiwnicki T, Janowski M, Jurkiewicz E, Lukomska B, Kmiec T, Walecki J, Roszkowski M, Litwin M, Oldak T, Boruczkowski D, Domanska-Janik K. Intracerebroventricular Transplantation of Cord Blood-Derived Neural Progenitors in a Child With Severe Global Brain Ischemic Injury. CELL MEDICINE 2010; 1:71-80. [PMID: 26966631 PMCID: PMC4776166 DOI: 10.3727/215517910x536618] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Transplantation of neural stem/precursor cells has recently been proposed as a promising, albeit still controversial, approach to brain repair. Human umbilical cord blood could be a source of such therapeutic cells, proven beneficial in several preclinical models of stroke. Intracerebroventricular infusion of neutrally committed cord blood-derived cells allows their broad distribution in the CNS, whereas additional labeling with iron oxide nanoparticles (SPIO) enables to follow the fate of engrafted cells by MRI. A 16-month-old child at 7 months after the onset of cardiac arrest-induced global hypoxic/ischemic brain injury, resulting in a permanent vegetative state, was subjected to intracerebroventricular transplantation of the autologous neutrally committed cord blood cells. These cells obtained by 10-day culture in vitro in neurogenic conditions were tagged with SPIO nanoparticles and grafted monthly by three serial injections (12 × 10(6) cells/0.5 ml) into lateral ventricle of the brain. Neural conversion of cord blood cells and superparamagnetic labeling efficiency was confirmed by gene expression, immunocytochemistry, and phantom study. MRI examination revealed the discrete hypointense areas appearing immediately after transplantation in the vicinity of lateral ventricles wall with subsequent lowering of the signal during entire period of observation. The child was followed up for 6 months after the last transplantation and his neurological status slightly but significantly improved. No clinically significant adverse events were noted. This report indicates that intracerebroventricular transplantation of autologous, neutrally committed cord blood cells is a feasible, well tolerated, and safe procedure, at least during 6 months of our observation period. Moreover, a cell-related MRI signal persisted at a wall of lateral ventricle for more than 4 months and could be monitored in transplanted brain hemisphere.
Collapse
Affiliation(s)
- Sergiusz Jozwiak
- *Department of Neurology and Epileptology, The Children’s Memorial Health Institute, Warsaw, Poland
| | - Aleksandra Habich
- †NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Kotulska
- *Department of Neurology and Epileptology, The Children’s Memorial Health Institute, Warsaw, Poland
| | - Anna Sarnowska
- †NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz Kropiwnicki
- ‡Department of Neurosurgery, The Children’s Memorial Health Institute, Warsaw, Poland
| | - Miroslaw Janowski
- †NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Elzbieta Jurkiewicz
- §Department of Radiology, MR Unit, The Children’s Memorial Health Institute, Warsaw, Poland
| | - Barbara Lukomska
- †NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz Kmiec
- *Department of Neurology and Epileptology, The Children’s Memorial Health Institute, Warsaw, Poland
| | - Jerzy Walecki
- ¶Department of Radiology and Diagnostic Imaging, Postgraduate Medical Centre and Experimental Pharmacology Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Marcin Roszkowski
- ‡Department of Neurosurgery, The Children’s Memorial Health Institute, Warsaw, Poland
| | - Mieczyslaw Litwin
- #Department of Nephrology, The Children’s Memorial Health Institute, Warsaw, Poland
| | | | | | - Krystyna Domanska-Janik
- †NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
149
|
Hu SL, Luo HS, Li JT, Xia YZ, Li L, Zhang LJ, Meng H, Cui GY, Chen Z, Wu N, Lin JK, Zhu G, Feng H. Functional recovery in acute traumatic spinal cord injury after transplantation of human umbilical cord mesenchymal stem cells. Crit Care Med 2010; 38:2181-2189. [PMID: 20711072 DOI: 10.1097/ccm.0b013e3181f17c0e] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Spinal cord injury results in loss of neurons, degeneration of axons, formation of glial scar, and severe functional impairment. Human umbilical cord mesenchymal stem cells can be induced to form neural cells in vitro. Thus, these cells have a potential therapeutic role for treating spinal cord injury. DESIGN AND SETTING Rats were randomly divided into three groups: sham operation group, control group, and human umbilical cord mesenchymal stem cell group. All groups were subjected to spinal cord injury by weight drop device except for sham group. SUBJECTS Thirty-six female Sprague-Dawley rats. INTERVENTIONS The control group received Dulbecco's modified essential media/nutrient mixture F-12 injections, whereas the human umbilical cord mesenchymal stem cell group undertook cells transplantation at the dorsal spinal cord 2 mm rostrally and 2 mm caudally to the injury site at 24 hrs after spinal cord injury. MEASUREMENTS Rats from each group were examined for neurologic function and contents of brain-derived neurotrophic factor, glial cell line-derived neurotrophic factor, and neurotrophin-3. Survival, migration, and differentiation of human umbilical cord mesenchymal stem cells, regeneration of axons, and formation of glial scar were also explored by using immunohistochemistry and immunofluorescence. MAIN RESULTS Recovery of hindlimb locomotor function was significantly enhanced in the human umbilical cord mesenchymal stem cells grafted animals at 5 wks after transplantation. This recovery was accompanied by increased length of neurofilament-positive fibers and increased numbers of growth cone-like structures around the lesion site. Transplanted human umbilical cord-mesenchymal stem cells survived, migrated over short distances, and produced large amounts of glial cell line-derived neurotrophic factor and neurotrophin-3 in the host spinal cord. There were fewer reactive astrocytes in both the rostral and caudal stumps of the spinal cord in the human umbilical cord-mesenchymal stem cell group than in the control group. CONCLUSIONS Treatment with human umbilical cord mesenchymal stem cells can facilitate functional recovery after traumatic spinal cord injury and may prove to be a useful therapeutic strategy to repair the injured spinal cord.
Collapse
Affiliation(s)
- Sheng-Li Hu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chong-Qing, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Cho GW, Koh SH, Kim MH, Yoo AR, Noh MY, Oh S, Kim SH. The neuroprotective effect of erythropoietin-transduced human mesenchymal stromal cells in an animal model of ischemic stroke. Brain Res 2010; 1353:1-13. [DOI: 10.1016/j.brainres.2010.06.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 06/03/2010] [Accepted: 06/07/2010] [Indexed: 10/19/2022]
|