101
|
Liu Y, Wei H, Li S, Wang G, Guo T, Han H. Facile fabrication of semi-IPN hydrogel adsorbent based on quaternary cellulose via amino-anhydride click reaction in water. Int J Biol Macromol 2022; 207:622-634. [PMID: 35283138 DOI: 10.1016/j.ijbiomac.2022.03.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 02/16/2022] [Accepted: 03/07/2022] [Indexed: 12/15/2022]
Abstract
Clean and safe water resources play a key role in environmental safety and human health. Recently, hydrogels have attracted extensive attention due to their non-toxicity, controllable performance, and high adsorption. Herein, a semi- interpenetrating network hydrogel (semi-IPN-Gel) adsorbent based on quaternary cellulose (QC) was prepared by the amino-anhydride click reaction between maleic anhydride copolymer and polyacrylamine hydrochloride (PAH), and its adsorption properties for Eosin Y were studied. First, a binary copolymer (PAM) of acrylamide and maleic anhydride was synthesized by free radical polymerization. Then, the PAM, QC and PAH were dissolved in water, and the pH of the solution was adjusted to alkaline. Semi-IPN-Gel was successfully prepared by fast anhydride-amino click reaction. The preparation conditions of hydrogels were optimized by single-factor experiments. Finally, taking Eosin Y as a model pollutant, the adsorption performance of Eosin Y was studied. The factors influencing the adsorption capacity of the absorbents such as initial concentration of the Eosin Y, temperature, the amount of absorbent, ionic strength and pH of the Eosin Y solutions were investigated. And adsorption data were analyzed via the kinetic model and the isothermal model, indicating that the adsorption process of the hydrogel is a single layer chemisorption process.
Collapse
Affiliation(s)
- Yuhua Liu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Hongliang Wei
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| | - Songmao Li
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Gang Wang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Tao Guo
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Huayun Han
- Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
102
|
Drug Delivery Strategies and Biomedical Significance of Hydrogels: Translational Considerations. Pharmaceutics 2022; 14:pharmaceutics14030574. [PMID: 35335950 PMCID: PMC8950534 DOI: 10.3390/pharmaceutics14030574] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 02/04/2023] Open
Abstract
Hydrogels are a promising and attractive option as polymeric gel networks, which have immensely fascinated researchers across the globe because of their outstanding characteristics such as elevated swellability, the permeability of oxygen at a high rate, good biocompatibility, easy loading, and drug release. Hydrogels have been extensively used for several purposes in the biomedical sector using versatile polymers of synthetic and natural origin. This review focuses on functional polymeric materials for the fabrication of hydrogels, evaluation of different parameters of biocompatibility and stability, and their application as carriers for drugs delivery, tissue engineering and other therapeutic purposes. The outcome of various studies on the use of hydrogels in different segments and how they have been appropriately altered in numerous ways to attain the desired targeted delivery of therapeutic agents is summarized. Patents and clinical trials conducted on hydrogel-based products, along with scale-up translation, are also mentioned in detail. Finally, the potential of the hydrogel in the biomedical sector is discussed, along with its further possibilities for improvement for the development of sophisticated smart hydrogels with pivotal biomedical functions.
Collapse
|
103
|
Mechanosensitive Osteogenesis on Native Cellulose Scaffolds for Bone Tissue Engineering. J Biomech 2022; 135:111030. [DOI: 10.1016/j.jbiomech.2022.111030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 01/17/2022] [Accepted: 02/28/2022] [Indexed: 12/23/2022]
|
104
|
Xu C, Zhang J, Shahriari-Khalaji M, Gao M, Yu X, Ye C, Cheng Y, Zhu M. Fibrous Aerogels for Solar Vapor Generation. Front Chem 2022; 10:843070. [PMID: 35237563 PMCID: PMC8882847 DOI: 10.3389/fchem.2022.843070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/24/2022] [Indexed: 11/24/2022] Open
Abstract
Solar-driven vapor generation is emerging as an eco-friendly and cost-effective water treatment technology for harvesting solar energy. Aerogels are solid materials with desirable high-performance properties, including low density, low thermal conductivity, and high porosity with a large internal surface, which exhibit outstanding performance in the area of solar vapor generation. Using fibers as building blocks in aerogels could achieve unexpected performance in solar vapor generation due to their entangled fibrous network and high surface area. In this review, based on the fusion of the one-dimensional fibers and three-dimensional porous aerogels, we discuss recent development in fibrous aerogels for solar vapor generation based on building blocks synthesis, photothermal materials selection, pore structures construction and device design. Thermal management and water management of fibrous aerogels are also evaluated to improve evaporation performance. Focusing on materials science and engineering, we overview the key challenges and future research opportunities of fibrous aerogels in both fundamental research and practical application of solar vapor generation technology.
Collapse
|
105
|
Wei W, Yang Q, Hu J, Yao Y, Yang H. Dexamethasone-Loaded Injectable In-situ Thermal Crosslinking Magnetic Responsive Hydrogel for the Physiochemical Stimulation of Acupoint to Suppress Pain in Sciatica Rats. Cell Transplant 2022; 31:9636897221126088. [PMID: 36178143 PMCID: PMC9527991 DOI: 10.1177/09636897221126088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The physicochemical stimulation of acupoints is a widespread treatment strategy for different diseases, such as sciatica. Its efficacy is mainly based on the temporal and spatial modulation of the physicochemical properties of the acupoints. The existing therapies based on the stimulation of acupoints have certain disadvantages. Therefore, in this study, injectable dexamethasone (DXM)- and magnetic Fe3O4 nanoparticles-loaded chitosan/β-glycerophosphate (CS/GP) thermal crosslinking hydrogels were prepared, thereby improving the performance of embedding materials. The sciatica rat models were established to compare the therapeutic effects of hydrogels and catgut. The DXM or Fe3O4-loaded CS/GP hydrogels were compared in terms of their gelation kinetics, release kinetics, magnetic responsiveness in-vitro, and biocompatibility as well as their analgesic effects on the chronic constriction injury of the sciatic nerve (CCI) rats in-vivo. The CS/GP/Fe3O4/DXM hydrogel showed comparable gelation kinetics and good magnetic responsiveness in-vitro. This hydrogel could relieve sciatica by reducing the expression levels of inflammatory factors in serum, inhibiting the p38MAPK (p38, mitogen-activated protein kinase) phosphorylation, and decreasing the expression level of the P2X4 receptor (P2X4R) in the spinal dorsal horn. In conclusion, the DXM or Fe3O4-loaded CS/GP hydrogels can be considered as a treatment option for the physiochemical stimulation therapy of acupoints to improve sciatica.
Collapse
Affiliation(s)
- Wan Wei
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiuhong Yang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Hu
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong Yao
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huayuan Yang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
106
|
Cernencu AI, Dinu AI, Stancu IC, Lungu A, Iovu H. Nanoengineered biomimetic hydrogels: A major advancement to fabricate 3D-printed constructs for regenerative medicine. Biotechnol Bioeng 2021; 119:762-783. [PMID: 34961918 DOI: 10.1002/bit.28020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/09/2021] [Accepted: 12/21/2021] [Indexed: 11/08/2022]
Abstract
Nanostructured compounds already validated as performant reinforcements for biomedical applications together with different fabrication strategies have been often used to channel the biophysical and biochemical features of hydrogel networks. Ergo, a wide array of nanostructured compounds has been employed as additive materials integrated with hydrophilic networks based on naturally-derived polymers to produce promising scaffolding materials for specific fields of regenerative medicine. To date, nanoengineered hydrogels are extensively explored in (bio)printing formulations, representing the most advanced designs of hydrogel (bio)inks able to fabricate structures with improved mechanical properties and high print fidelity along with a cell-interactive environment. The development of printing inks comprising organic-inorganic hybrid nanocomposites is in full ascent as the impact of a small amount of nanoscale additive does not translate only in improved physicochemical and biomechanical properties of bioink. The biopolymeric nanocomposites may even exhibit additional particular properties engendered by nano-scale reinforcement such as electrical conductivity, magnetic responsiveness, antibacterial or antioxidation properties. The present review focus on hydrogels nanoengineered for 3D printing of biomimetic constructs, with particular emphasis on the impact of the spatial distribution of reinforcing agents (0D, 1D, 2D). Here, a systematic analysis of the naturally-derived nanostructured inks is presented highlighting the relationship between relevant length scales and size effects that influence the final properties of the hydrogels designed for regenerative medicine. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Alexandra I Cernencu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061, Bucharest, Romania
| | - Andreea I Dinu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061, Bucharest, Romania
| | - Izabela C Stancu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061, Bucharest, Romania
| | - Adriana Lungu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061, Bucharest, Romania
| | - Horia Iovu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061, Bucharest, Romania.,Academy of Romanian Scientists, 54 Splaiul Independentei, 050094, Bucharest, Romania
| |
Collapse
|
107
|
Moon JY, Lee J, Hwang TI, Park CH, Kim CS. A multifunctional, one-step gas foaming strategy for antimicrobial silver nanoparticle-decorated 3D cellulose nanofiber scaffolds. Carbohydr Polym 2021; 273:118603. [PMID: 34561003 DOI: 10.1016/j.carbpol.2021.118603] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/10/2021] [Accepted: 08/21/2021] [Indexed: 11/30/2022]
Abstract
Creating nanoparticle-decorated nanofibers in a single step can greatly speed up and scale up the production of scaffolds for various applications. In this study, we report a facile multifunctional method for the simultaneous foaming and synthesis of silver nanoparticles-covered three-dimensional cellulose using sodium borohydride (NaBH4). The physicochemical properties of the 3D cellulose-Ag scaffold were evaluated and compared to 2D CA membranes, including morphology (porous 3D vs flat 2D), mechanical properties (22.72 vs <13 MPa Young's modulus), antibacterial effect (27 vs 0 mm zone of inhibition), and biocompatibility. The findings suggest that our method enables the scaffold to be easily manufactured-indicating it can be used to scale-up manufacturing processes-with high bioactivity, antibacterial effect, and biocompatibility, showing potential as a 3D structure production method for tissue engineering and other relevant applications.
Collapse
Affiliation(s)
- Joon Yeon Moon
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Joshua Lee
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| | - Tae In Hwang
- Department of Family Medicine, Wonkwang University Hospital, Iksan 54538, Republic of Korea
| | - Chan Hee Park
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 54896, Republic of Korea; Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| | - Cheol Sang Kim
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 54896, Republic of Korea; Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| |
Collapse
|
108
|
Poddar D, Majood M, Singh A, Mohanty S, Jain P. Chitosan-coated pore wall polycaprolactone three-dimensional porous scaffolds fabricated by porogen leaching method for bone tissue engineering: a comparative study on blending technique to fabricate scaffolds. Prog Biomater 2021; 10:281-297. [PMID: 34825346 PMCID: PMC8633273 DOI: 10.1007/s40204-021-00172-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/06/2021] [Indexed: 01/21/2023] Open
Abstract
One of the significant challenges in the fabrication of scaffolds for tissue engineering lies in the direct interaction of bioactive agents with cells in the scaffolds matrix, which curbs the effectiveness of bioactive agents resulting in diminished cell recognition and attachment ability of the scaffolds. Here, three-dimensional porous scaffolds were fabricated using polycaprolactone (PCL) and chitosan, by two approaches, i.e., blending and surface coating to compare their overall effectiveness. Blended scaffolds (Chi-PCL) were compared with the scaffolds fabricated using surface coating technique, where chitosan was coated on the pore wall of PCL scaffolds (C-PCL). The C-PCL exhibited a collective improvement in bioactivities of the stem cell on the scaffold, because of the cell compatible environment provided by the presence of chitosan over the scaffolds interface. The C-PCL showed the enhanced cell attachment and proliferation behavior of the scaffolds along with two-fold increase in hemolysis compatibility compared to Chi-PCL. Furthermore, the compression strength in C-PCL increased by 24.52% and 8.62% increase in total percentage porosity compared to Chi-PCL was attained. Along with this, all the bone markers showed significant upregulation in C-PCL scaffolds, which supported the surface coating technique over the conventional methods, even though the pore size of C-PCL was compromised by 19.98% compared with Chi-PCL.
Collapse
Affiliation(s)
- Deepak Poddar
- Department of Chemistry, Netaji Subhas Institute of Technology, University of Delhi, Dwarka Sector 3, New Delhi, 110078 India
| | - Misba Majood
- Stem Cell Facility, DBT-Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi, 110029 India
| | - Ankita Singh
- Department of Chemistry, Netaji Subhas Institute of Technology, University of Delhi, Dwarka Sector 3, New Delhi, 110078 India
| | - Sujata Mohanty
- Stem Cell Facility, DBT-Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi, 110029 India
| | - Purnima Jain
- Department of Chemistry, Netaji Subhas Institute of Technology, University of Delhi, Dwarka Sector 3, New Delhi, 110078 India
| |
Collapse
|
109
|
Hydrogel, Electrospun and Composite Materials for Bone/Cartilage and Neural Tissue Engineering. MATERIALS 2021; 14:ma14226899. [PMID: 34832300 PMCID: PMC8624846 DOI: 10.3390/ma14226899] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 12/15/2022]
Abstract
Injuries of the bone/cartilage and central nervous system are still a serious socio-economic problem. They are an effect of diversified, difficult-to-access tissue structures as well as complex regeneration mechanisms. Currently, commercially available materials partially solve this problem, but they do not fulfill all of the bone/cartilage and neural tissue engineering requirements such as mechanical properties, biochemical cues or adequate biodegradation. There are still many things to do to provide complete restoration of injured tissues. Recent reports in bone/cartilage and neural tissue engineering give high hopes in designing scaffolds for complete tissue regeneration. This review thoroughly discusses the advantages and disadvantages of currently available commercial scaffolds and sheds new light on the designing of novel polymeric scaffolds composed of hydrogels, electrospun nanofibers, or hydrogels loaded with nano-additives.
Collapse
|
110
|
Liu L, Shang Y, Li C, Jiao Y, Qiu Y, Wang C, Wu Y, Zhang Q, Wang F, Yang Z, Wang L. Hierarchical Nanostructured Electrospun Membrane with Periosteum-Mimic Microenvironment for Enhanced Bone Regeneration. Adv Healthc Mater 2021; 10:e2101195. [PMID: 34350724 DOI: 10.1002/adhm.202101195] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/17/2021] [Indexed: 12/11/2022]
Abstract
An ideal periosteum substitute should be able to mimic the periosteum microenvironment that continuously provides growth factors, recruits osteoblasts, and subsequent extracellular matrix (ECM) mineralization to accelerate bone regeneration. Here, a calcium-binding peptide-loaded poly(ε-caprolactone) (PCL) electrospun membrane modified by the shish-kebab structure that can mimic the periosteum microenvironment was developed as a bionic periosteum. The calcium-binding peptide formed by the negatively charged heptaglutamate domain (E7) in the E7-BMP-2 with calcium ion in the tricalcium phosphate sol (TCP sol) through electrostatic chelation not only extended the release cycle of E7-BMP-2 but also promoted the biomineralization of the bionic periosteum. Cell experiments showed that the bionic periosteum could significantly improve the osteogenic differentiation of the rat-bone marrow-derived mesenchymal stem cells (rBMSCs) through both chemical composition and physical structure. The in vivo evaluation of the bionic periosteum confirmed the inherent osteogenesis of this periosteum microenvironment, which could promote the regeneration of vascularized bone tissue. Therefore, the hierarchical nanostructured electrospun membrane with periosteum-mimic microenvironment is a promising periosteum substitute for the treatment of bone defects.
Collapse
Affiliation(s)
- Laijun Liu
- Key Laboratory of Textile Science and Technology of Ministry of Education College of Textiles Donghua University Shanghai 201620 China
| | - Yuna Shang
- State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Bioactive Materials Ministry of Education and College of Life Sciences Nankai University Tianjin 300071 China
| | - Chaojing Li
- Key Laboratory of Textile Science and Technology of Ministry of Education College of Textiles Donghua University Shanghai 201620 China
| | - Yongjie Jiao
- Key Laboratory of Textile Science and Technology of Ministry of Education College of Textiles Donghua University Shanghai 201620 China
| | - Yanchen Qiu
- Key Laboratory of Textile Science and Technology of Ministry of Education College of Textiles Donghua University Shanghai 201620 China
| | - Chengyi Wang
- Key Laboratory of Textile Science and Technology of Ministry of Education College of Textiles Donghua University Shanghai 201620 China
| | - Yuge Wu
- Key Laboratory of Textile Science and Technology of Ministry of Education College of Textiles Donghua University Shanghai 201620 China
| | - Qiuyun Zhang
- Key Laboratory of Textile Science and Technology of Ministry of Education College of Textiles Donghua University Shanghai 201620 China
| | - Fujun Wang
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology Donghua University Shanghai 201620 China
| | - Zhimou Yang
- State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Bioactive Materials Ministry of Education and College of Life Sciences Nankai University Tianjin 300071 China
| | - Lu Wang
- Key Laboratory of Textile Science and Technology of Ministry of Education College of Textiles Donghua University Shanghai 201620 China
| |
Collapse
|
111
|
Stricher M, Sarde CO, Guénin E, Egles C, Delbecq F. Cellulosic/Polyvinyl Alcohol Composite Hydrogel: Synthesis, Characterization and Applications in Tissue Engineering. Polymers (Basel) 2021; 13:3598. [PMID: 34685357 PMCID: PMC8539384 DOI: 10.3390/polym13203598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/11/2021] [Accepted: 10/16/2021] [Indexed: 12/29/2022] Open
Abstract
The biomedical field still requires composite materials for medical devices and tissue engineering model design. As part of the pursuit of non-animal and non-proteic scaffolds, we propose here a cellulose-based material. In this study, 9%, 18% and 36% dialdehyde-functionalized microcrystalline celluloses (DAC) were synthesized by sodium periodate oxidation. The latter was subsequently coupled to PVA at ratios 1:2, 1:1 and 2:1 by dissolving in N-methyl pyrrolidone and lithium chloride. Moulding and successive rehydration in ethanol and water baths formed soft hydrogels. While oxidation effectiveness was confirmed by dialdehyde content determination for all DAC, we observed increasing hydrolysis associated with particle fragmentation. Imaging, FTIR and XDR analysis highlighted an intertwined DAC/PVA network mainly supported by electrostatic interactions, hemiacetal and acetal linkage. To meet tissue engineering requirements, an interconnected porosity was optimized using 0-50 µm salts. While the role of DAC in strengthening the hydrogel was identified, the oxidation ratio of DAC showed no distinct trend. DAC 9% material exhibited the highest indirect and direct cytocompatibility creating spheroid-like structures. DAC/PVA hydrogels showed physical stability and acceptability in vivo that led us to propose our DAC 9%/PVA based material for soft tissue graft application.
Collapse
Affiliation(s)
- Mathilde Stricher
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu, CEDEX CS 60 319, 60 203 Compiègne, France; (M.S.); (C.E.)
| | - Claude-Olivier Sarde
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu, CEDEX CS 60 319, 60 203 Compiègne, France; (C.-O.S.); (E.G.)
| | - Erwann Guénin
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu, CEDEX CS 60 319, 60 203 Compiègne, France; (C.-O.S.); (E.G.)
| | - Christophe Egles
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu, CEDEX CS 60 319, 60 203 Compiègne, France; (M.S.); (C.E.)
| | - Frédéric Delbecq
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu, CEDEX CS 60 319, 60 203 Compiègne, France; (C.-O.S.); (E.G.)
| |
Collapse
|
112
|
Zainul Armir NA, Zulkifli A, Gunaseelan S, Palanivelu SD, Salleh KM, Che Othman MH, Zakaria S. Regenerated Cellulose Products for Agricultural and Their Potential: A Review. Polymers (Basel) 2021; 13:3586. [PMID: 34685346 PMCID: PMC8537589 DOI: 10.3390/polym13203586] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/17/2022] Open
Abstract
Cellulose is one of the most abundant natural polymers with excellent biocompatibility, non-toxicity, flexibility, and renewable source. Regenerated cellulose (RC) products result from the dissolution-regeneration process risen from solvent and anti-solvent reagents, respectively. The regeneration process changes the cellulose chain conformation from cellulose I to cellulose II, leads the structure to have more amorphous regions with improved crystallinity, and inclines towards extensive modification on the RC products such as hydrogel, aerogel, cryogel, xerogel, fibers, membrane, and thin film. Recently, RC products are accentuated to be used in the agriculture field to develop future sustainable agriculture as alternatives to conventional agriculture systems. However, different solvent types and production techniques have great influences on the end properties of RC products. Besides, the fabrication of RC products from solely RC lacks excellent mechanical characteristics. Thus, the flexibility of RC has allowed it to be homogenously blended with other materials to enhance the final products' properties. This review will summarize the properties and preparation of potential RC-based products that reflect its application to replace soil the plantation medium, govern the release of the fertilizer, provide protection on crops and act as biosensors.
Collapse
Affiliation(s)
- Nur Amira Zainul Armir
- Bioresources and Biorefinery Laboratory, Department of Applied Physics, Faculty of Science and Technology, University Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.A.Z.A.); (A.Z.); (S.G.); (S.D.P.)
| | - Amalia Zulkifli
- Bioresources and Biorefinery Laboratory, Department of Applied Physics, Faculty of Science and Technology, University Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.A.Z.A.); (A.Z.); (S.G.); (S.D.P.)
| | - Shamini Gunaseelan
- Bioresources and Biorefinery Laboratory, Department of Applied Physics, Faculty of Science and Technology, University Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.A.Z.A.); (A.Z.); (S.G.); (S.D.P.)
| | - Swarna Devi Palanivelu
- Bioresources and Biorefinery Laboratory, Department of Applied Physics, Faculty of Science and Technology, University Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.A.Z.A.); (A.Z.); (S.G.); (S.D.P.)
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| | - Kushairi Mohd Salleh
- Bioresources and Biorefinery Laboratory, Department of Applied Physics, Faculty of Science and Technology, University Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.A.Z.A.); (A.Z.); (S.G.); (S.D.P.)
| | - Muhamad Hafiz Che Othman
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| | - Sarani Zakaria
- Bioresources and Biorefinery Laboratory, Department of Applied Physics, Faculty of Science and Technology, University Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.A.Z.A.); (A.Z.); (S.G.); (S.D.P.)
| |
Collapse
|
113
|
Raza ZA, Munim SA, Ayub A. Recent developments in polysaccharide-based electrospun nanofibers for environmental applications. Carbohydr Res 2021; 510:108443. [PMID: 34597980 DOI: 10.1016/j.carres.2021.108443] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/20/2022]
Abstract
Electrospinning has become an inevitable approach to produce nanofibrous structures for diverse environmental applications. Polysaccharides, due to their variety of types, biobased origins, and eco-friendly, and renewable nature are wonderful materials for the said purpose. The present review discusses the electrospinning process, the parameters involved in the formation of electrospun nanofibers in general, and the polysaccharides in specific. The selection of materials to be electrospun depends on the processing conditions and properties deemed desirable for specific applications. Thereby, the conditions to electrospun polysaccharides-based nanofibers have been focused on for possible environmental applications including air filtration, water treatment, antimicrobial treatment, environmental sensing, and so forth. The polysaccharide-based electrospun membranes, for instance, due to their active adsorption sites could find significant potential for contaminants removal from the aqueous systems. The study also gives some recommendations to overcome any shortcomings faced during the electrospinning and environmental applications of polysaccharide-based matrices.
Collapse
Affiliation(s)
- Zulfiqar Ali Raza
- Department of Applied Sciences, National Textile University, Faisalabad, 37610, Pakistan.
| | - S A Munim
- Department of Applied Sciences, National Textile University, Faisalabad, 37610, Pakistan
| | - Asif Ayub
- Department of Applied Sciences, National Textile University, Faisalabad, 37610, Pakistan
| |
Collapse
|
114
|
Nie D, Luo Y, Li G, Jin J, Yang S, Li S, Zhang Y, Dai J, Liu R, Zhang W. The Construction of Multi-Incorporated Polylactic Composite Nanofibrous Scaffold for the Potential Applications in Bone Tissue Regeneration. NANOMATERIALS 2021; 11:nano11092402. [PMID: 34578717 PMCID: PMC8465462 DOI: 10.3390/nano11092402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/02/2021] [Accepted: 09/09/2021] [Indexed: 12/24/2022]
Abstract
To improve the bone regeneration ability of pure polymer, varieties of bioactive components were incorporated to a biomolecular scaffold with different structures. In this study, polysilsesquioxane (POSS), pearl powder and dexamethasone loaded porous carbon nanofibers (DEX@PCNFs) were incorporated into polylactic (PLA) nanofibrous scaffold via electrospinning for the application of bone tissue regeneration. The morphology observation showed that the nanofibers were well formed through electrospinning process. The mineralization test of incubation in simulated body fluid (SBF) revealed that POSS incorporated scaffold obtained faster hydroxyapatite depositing ability than pristine PLA nanofibers. Importantly, benefitting from the bioactive components of pearl powder like bone morphogenetic protein (BMP), bone mesenchymal stem cells (BMSCs) cultured on the composite scaffold presented higher proliferation rate. In addition, by further incorporating with DEX@PCNFs, the alkaline phosphatase (ALP) level and calcium deposition were a little higher based on pearl powder. Consequently, the novel POSS, pearl powder and DEX@PCNFs multi-incorporated PLA nanofibrous scaffold can provide better ability to enhance the biocompatibility and accelerate osteogenic differentiation of BMSCs, which has potential applications in bone tissue regeneration.
Collapse
Affiliation(s)
- Du Nie
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, School of Textile and Clothing, Nantong University, Nantong 226001, China; (D.N.); (Y.L.); (S.L.); (Y.Z.)
| | - Yi Luo
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, School of Textile and Clothing, Nantong University, Nantong 226001, China; (D.N.); (Y.L.); (S.L.); (Y.Z.)
| | - Guang Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China; (G.L.); (J.J.); (S.Y.)
| | - Junhong Jin
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China; (G.L.); (J.J.); (S.Y.)
| | - Shenglin Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China; (G.L.); (J.J.); (S.Y.)
| | - Suying Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, School of Textile and Clothing, Nantong University, Nantong 226001, China; (D.N.); (Y.L.); (S.L.); (Y.Z.)
| | - Yu Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, School of Textile and Clothing, Nantong University, Nantong 226001, China; (D.N.); (Y.L.); (S.L.); (Y.Z.)
| | - Jiamu Dai
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, School of Textile and Clothing, Nantong University, Nantong 226001, China; (D.N.); (Y.L.); (S.L.); (Y.Z.)
- Correspondence: (J.D.); (R.L.); (W.Z.)
| | - Rong Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, School of Textile and Clothing, Nantong University, Nantong 226001, China; (D.N.); (Y.L.); (S.L.); (Y.Z.)
- Correspondence: (J.D.); (R.L.); (W.Z.)
| | - Wei Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, School of Textile and Clothing, Nantong University, Nantong 226001, China; (D.N.); (Y.L.); (S.L.); (Y.Z.)
- Correspondence: (J.D.); (R.L.); (W.Z.)
| |
Collapse
|
115
|
Chen L, Hu W, Du M, Song Y, Wu Z, Zheng Q. Bioinspired, Recyclable, Stretchable Hydrogel with Boundary Ultralubrication. ACS APPLIED MATERIALS & INTERFACES 2021; 13:42240-42249. [PMID: 34436862 DOI: 10.1021/acsami.1c12631] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Although hydrogels exhibit excellent low frictional behavior, their friction coefficients cannot meet the requirements for biology, especially at low sliding velocities. Inspired by the natural lubrication mechanism from animals, plants, or even microorganisms, a nonionic surfactant, Tween 80, was introduced into a biofriendly poly(vinyl alcohol) (PVA) hydrogel to construct a composite hydrogel with ultralubrication. Such a combination endows PVA hydrogels with an ultralow coefficient of friction (10-3 to 10-4) under an extremely low sliding velocity (0.01 mm/s). Tween 80 micelles and aggregates, together with hydrophobic molds, induce rough surfaces and high carbon contents on the surface of the hydrogel, promoting excellent lubrication behavior of the composite hydrogel. In addition to the desirable lubrication, this environmentally friendly composite hydrogel also exhibited excellent flexibility at subzero temperatures, tensile properties, and good recyclability. Additionally, the method of introducing Tween 80 into hydrogels to reduce friction is also effective in chemically crosslinked double-network hydrogels.
Collapse
Affiliation(s)
- Lu Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - WenXuan Hu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Miao Du
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yihu Song
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ziliang Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qiang Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
116
|
Jurak M, Wiącek AE, Ładniak A, Przykaza K, Szafran K. What affects the biocompatibility of polymers? Adv Colloid Interface Sci 2021; 294:102451. [PMID: 34098385 DOI: 10.1016/j.cis.2021.102451] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 02/07/2023]
Abstract
In recent decades synthetic polymers have gained increasing popularity, and nowadays they are an integral part of people's daily lives. In addition, owing to their competitive advantage and being susceptible to modification, polymers have stimulated the fast development of innovative technologies in many areas of science. Biopolymers are of particular interest in various branches of medicine, such as implantology of bones, cartilage and skin tissues as well as blood vessels. Biomaterials with such specific applications must have appropriate mechanical and strength characteristics and above all they must be compatible with the surrounding tissues, human blood and its components, i.e. exhibit high hemo- and biocompatibility, low or no thrombo- and carcinogenicity, foreign body response (host response), appropriate osteoconduction, osteoinduction and mineralization. For biocompatibility improvement many surface treatment techniques have been utilized leading to fabricate the polymer biomaterials of required properties, also at nanoscale. This review paper discusses the most important physicochemical and biological factors that affect the biocompatibility, thus the reaction of the living organism after insertion of the polymer-based biomaterials, i.e. surface modification and/or degradation, surface composition (functional groups and charge), size and shapes, hydrophilic-hydrophobic character, wettability and surface free energy, topography (roughness, stiffness), crystalline and amorphous structure, nanostructure, cell adhesion and proliferation, cellular uptake. Particularly, the application of polysaccharides (chitosan, cellulose, starch) in the tissue engineering is emphasized.
Collapse
|
117
|
Pharmaceutical electrospinning and 3D printing scaffold design for bone regeneration. Adv Drug Deliv Rev 2021; 174:504-534. [PMID: 33991588 DOI: 10.1016/j.addr.2021.05.007] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/26/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022]
Abstract
Bone regenerative engineering provides a great platform for bone tissue regeneration covering cells, growth factors and other dynamic forces for fabricating scaffolds. Diversified biomaterials and their fabrication methods have emerged for fabricating patient specific bioactive scaffolds with controlled microstructures for bridging complex bone defects. The goal of this review is to summarize the points of scaffold design as well as applications for bone regeneration based on both electrospinning and 3D bioprinting. It first briefly introduces biological characteristics of bone regeneration and summarizes the applications of different types of material and the considerations for bone regeneration including polymers, ceramics, metals and composites. We then discuss electrospinning nanofibrous scaffold applied for the bone regenerative engineering with various properties, components and structures. Meanwhile, diverse design in the 3D bioprinting scaffolds for osteogenesis especially in the role of drug and bioactive factors delivery are assembled. Finally, we discuss challenges and future prospects in the development of electrospinning and 3D bioprinting for osteogenesis and prominent strategies and directions in future.
Collapse
|
118
|
Noman MT, Amor N, Petru M, Mahmood A, Kejzlar P. Photocatalytic Behaviour of Zinc Oxide Nanostructures on Surface Activation of Polymeric Fibres. Polymers (Basel) 2021; 13:polym13081227. [PMID: 33920272 PMCID: PMC8070503 DOI: 10.3390/polym13081227] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 12/22/2022] Open
Abstract
Zinc oxide (ZnO) in various nano forms (nanoparticles, nanorods, nanosheets, nanowires and nanoflowers) has received remarkable attention worldwide for its functional diversity in different fields i.e., paints, cosmetics, coatings, rubber and composites. The purpose of this article is to investigate the role of photocatalytic activity (role of photogenerated radical scavengers) of nano ZnO (nZnO) for the surface activation of polymeric natural fibres especially cotton and their combined effect in photocatalytic applications. Photocatalytic behaviour is a crucial property that enables nZnO as a potential and competitive candidate for commercial applications. The confirmed features of nZnO were characterised by different analytical tools, i.e., scanning electron microscopy (SEM), field emission SEM (FESEM) and elemental detection spectroscopy (EDX). These techniques confirm the size, morphology, structure, crystallinity, shape and dimensions of nZnO. The morphology and size play a crucial role in surface activation of polymeric fibres. In addition, synthesis methods, variables and some of the critical aspects of nZnO that significantly affect the photocatalytic activity are also discussed in detail. This paper delineates a vivid picture to new comers about the significance of nZnO in photocatalytic applications.
Collapse
Affiliation(s)
- Muhammad Tayyab Noman
- Department of Machinery Construction, Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Studentská 1402/2, 461 17 Liberec 1, Technical University of Liberec, 46117 Liberec, Czech Republic; (N.A.); (M.P.)
- Correspondence: ; Tel.: +420-776396302
| | - Nesrine Amor
- Department of Machinery Construction, Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Studentská 1402/2, 461 17 Liberec 1, Technical University of Liberec, 46117 Liberec, Czech Republic; (N.A.); (M.P.)
| | - Michal Petru
- Department of Machinery Construction, Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Studentská 1402/2, 461 17 Liberec 1, Technical University of Liberec, 46117 Liberec, Czech Republic; (N.A.); (M.P.)
| | - Aamir Mahmood
- Department of Material Engineering, Faculty of Textile Engineering, Studentská 1402/2, 461 17 Liberec 1, Technical University of Liberec, 46117 Liberec, Czech Republic;
| | - Pavel Kejzlar
- Department of Material Science, Faculty of Mechanical Engineering, Studentská 1402/2, 461 17 Liberec 1, Technical University of Liberec, 46117 Liberec, Czech Republic;
| |
Collapse
|
119
|
Hao M, Xiong M, Liu Y, Tan WS, Cai H. Magnetic-driven dynamic culture promotes osteogenesis of mesenchymal stem cell. BIORESOUR BIOPROCESS 2021; 8:15. [PMID: 38650266 PMCID: PMC10992147 DOI: 10.1186/s40643-021-00368-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/03/2021] [Indexed: 01/03/2023] Open
Abstract
Effective nutrient transport and appropriate mechanical stimulation play important roles in production of tissue-engineered bone grafts. In this study, an experimental set-up for magnetic-driven dynamic culture of cells was designed to mimic the microenvironment of the bone tissue. Here, its ability to contribute to osteogenic differentiation was investigated by inoculating human umbilical cord mesenchymal stem cells (HUMSCs) on magnetic scaffolds. The cytocompatibility of the developed magnetic scaffolds was verified for HUMSCs. Magnetic scaffolds seeded with HUMSCs were exposed to magnetic fields. The results showed that magnetic fields did not affect cell activity and promoted HUMSCs osteogenic differentiation. The magnetic scaffolds were magnetically driven for dynamic culture in the experimental set-up to evaluate the influence of HUMSCs osteoblast differentiation. The results indicated that magnetic-driven dynamic culture increased cell alkaline phosphatase (ALP) activity (p < 0.05) and calcium release (p < 0.05) compared with static culture. The effect was demonstrated in the expression of bone-associated genes. Overall, this study showed that magnetic-driven dynamic culture is a promising tool for regenerative bone engineering.
Collapse
Affiliation(s)
- Mengyang Hao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 309#, Shanghai, 200237, People's Republic of China
| | - Minghao Xiong
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 309#, Shanghai, 200237, People's Republic of China
| | - Yangyang Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 309#, Shanghai, 200237, People's Republic of China
| | - Wen-Song Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 309#, Shanghai, 200237, People's Republic of China
| | - Haibo Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 309#, Shanghai, 200237, People's Republic of China.
| |
Collapse
|
120
|
Pita-López ML, Fletes-Vargas G, Espinosa-Andrews H, Rodríguez-Rodríguez R. Physically cross-linked chitosan-based hydrogels for tissue engineering applications: A state-of-the-art review. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110176] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
121
|
Zha L, Zheng Y, Che J, Xiao Y. Mineralization of phosphorylated cellulose/sodium alginate sponges as biomaterials for bone tissue engineering. NEW J CHEM 2021. [DOI: 10.1039/d1nj04397h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The incorporation of SA in the cellulose matrix effectively increased the macroporous ability of composite scaffolds. Furthermore, the phosphorylation has a certain induction capability for the growth of HA.
Collapse
Affiliation(s)
- Li Zha
- Key Laboratory of Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yahui Zheng
- Key Laboratory of Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jianfei Che
- Key Laboratory of Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yinghong Xiao
- Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing, China
| |
Collapse
|
122
|
Govindaraj P, Subramanian S, Raghavachari D. Preparation of gels of chitosan through a hydrothermal reaction in the presence of malonic acid and cinnamaldehyde: characterization and antibacterial activity. NEW J CHEM 2021. [DOI: 10.1039/d1nj04149e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The preparation of composite gels through the hydrothermal reaction of a mixture of chitosan (CH), malonic acid (MLA), urea (UR) and cinnamaldehyde (CA), all of which are sustainable materials, is reported.
Collapse
Affiliation(s)
- Prabha Govindaraj
- Department of Applied Science & Technology, Alagappa College of Technology, Anna University, Chennai 600 025, India
| | - Sivanesan Subramanian
- Department of Applied Science & Technology, Alagappa College of Technology, Anna University, Chennai 600 025, India
| | | |
Collapse
|