101
|
Sohn KC, Lee EJ, Shin JM, Lim EH, No Y, Lee JY, Yoon TY, Lee YH, Im M, Lee Y, Seo YJ, Lee JH, Kim CD. Regulation of keratinocyte differentiation by O-GlcNAcylation. J Dermatol Sci 2014; 75:10-5. [PMID: 24802710 DOI: 10.1016/j.jdermsci.2014.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 04/04/2014] [Accepted: 04/21/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND O-linked β-N-acetylglucosamine (O-GlcNAc) modification is one of the posttranslational modification, emerging as an important regulatory mechanism in various cellular events. OBJECTIVE We attempted to investigate whether O-GlcNAcylation is involved in keratinocyte differentiation. METHODS Immunohistochemistry and Western blot were performed to demonstrate O-GlcNAcylation in keratinocyte differentiation. RESULTS During calcium-induced keratinocyte differentiation, overall O-GlcNAcylation was decreased in a temporal manner. We focused our attention on transcription factor Sp-1, which is implicated in keratinocyte differentiation. Total Sp-1 level did not change during keratinocyte differentiation. However, O-GlcNAcylated Sp-1 was decreased in a keratinocyte differentiation-dependent manner. Interestingly, transcriptional activity of Sp-1, in terms of involucrin and loricrin promoter activities, was markedly increased by overexpression of O-GlcNAcase (OGA). In addition, membrane permeable non-O-GlcNAcylated Sp-1 did show transcriptional activity, while membrane permeable O-GlcNAcylated Sp-1 did not, suggesting O-GlcNAcylated Sp-1 is an inactive form in keratinocyte differentiation. CONCLUSION Our results reveal that O-GlcNAcylation is a dynamic regulatory mechanism for keratinocyte differentiation.
Collapse
Affiliation(s)
- Kyung-Cheol Sohn
- Department of Dermatology and Research Institute for Medical Sciences, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Eun Jin Lee
- Department of Dermatology and Research Institute for Medical Sciences, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jung-Min Shin
- Department of Dermatology and Research Institute for Medical Sciences, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Eun-Hwa Lim
- Department of Dermatology and Research Institute for Medical Sciences, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Yoonoo No
- Department of Dermatology, School of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
| | - Ji Yeoun Lee
- Department of Dermatology, School of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
| | - Tae Young Yoon
- Department of Dermatology, School of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
| | - Young Ho Lee
- Department of Anatomy, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Myung Im
- Department of Dermatology and Research Institute for Medical Sciences, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Young Lee
- Department of Dermatology and Research Institute for Medical Sciences, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Young-Joon Seo
- Department of Dermatology and Research Institute for Medical Sciences, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jeung-Hoon Lee
- Department of Dermatology and Research Institute for Medical Sciences, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Chang Deok Kim
- Department of Dermatology and Research Institute for Medical Sciences, School of Medicine, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
102
|
Suila H, Hirvonen T, Ritamo I, Natunen S, Tuimala J, Laitinen S, Anderson H, Nystedt J, Räbinä J, Valmu L. Extracellular o-linked N-acetylglucosamine is enriched in stem cells derived from human umbilical cord blood. Biores Open Access 2014; 3:39-44. [PMID: 24804163 PMCID: PMC3995142 DOI: 10.1089/biores.2013.0050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Stem cells have a unique ability to self-renew and differentiate into diverse cell types. Currently, stem cells from various sources are being explored as a promising new treatment for a variety of human diseases. A diverse set of functional and phenotypical markers are used in the characterization of specific therapeutic stem cell populations. The glycans on the stem cell surface respond rapidly to alterations in cellular state and signaling and are therefore ideal for identifying even minor changes in cell populations. Many stem cell markers are based on cell surface glycan epitopes including the widely used markers SSEA-3, SSEA-4, Tra 1-60, and Tra 1-81. We have now discovered by mRNA analysis that a novel glycosyltranferase, epidermal growth factor (EGF) domain-specific O-linked GlcNAc transferase (EOGT), is highly expressed in stem cells. EOGT is responsible for adding O-linked N-acetylglucosamine (O-GlcNAc) to folded EGF domains on extracellular proteins, such as those on the Notch receptors. We were able to show by immunological assays that human umbilical cord blood–derived mesenchymal stromal cells display O-GlcNAc, the product of EOGT, and that O-GlcNAc is further elongated with galactose to form O-linked N-acetyllactosamine. We suggest that these novel glycans are involved in the fine tuning of Notch receptor signaling pathways in stem cells.
Collapse
Affiliation(s)
- Heli Suila
- Finnish Red Cross Blood Service , Helsinki, Finland
| | - Tia Hirvonen
- Finnish Red Cross Blood Service , Helsinki, Finland
| | - Ilja Ritamo
- Finnish Red Cross Blood Service , Helsinki, Finland
| | - Suvi Natunen
- Finnish Red Cross Blood Service , Helsinki, Finland
| | | | | | | | | | | | - Leena Valmu
- Finnish Red Cross Blood Service , Helsinki, Finland
| |
Collapse
|
103
|
Harwood KR, Hanover JA. Nutrient-driven O-GlcNAc cycling - think globally but act locally. J Cell Sci 2014; 127:1857-67. [PMID: 24762810 DOI: 10.1242/jcs.113233] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Proper cellular functioning requires that cellular machinery behave in a spatiotemporally regulated manner in response to global changes in nutrient availability. Mounting evidence suggests that one way this is achieved is through the establishment of physically defined gradients of O-GlcNAcylation (O-linked addition of N-acetylglucosamine to serine and threonine residues) and O-GlcNAc turnover. Because O-GlcNAcylation levels are dependent on the nutrient-responsive hexosamine signaling pathway, this modification is uniquely poised to inform upon the nutritive state of an organism. The enzymes responsible for O-GlcNAc addition and removal are encoded by a single pair of genes: both the O-GlcNAc transferase (OGT) and the O-GlcNAcase (OGA, also known as MGEA5) genes are alternatively spliced, producing protein variants that are targeted to discrete cellular locations where they must selectively recognize hundreds of protein substrates. Recent reports suggest that in addition to their catalytic functions, OGT and OGA use their multifunctional domains to anchor O-GlcNAc cycling to discrete intracellular sites, thus allowing them to establish gradients of deacetylase, kinase and phosphatase signaling activities. The localized signaling gradients established by targeted O-GlcNAc cycling influence many important cellular processes, including lipid droplet remodeling, mitochondrial functioning, epigenetic control of gene expression and proteostasis. As such, the tethering of the enzymes of O-GlcNAc cycling appears to play a role in ensuring proper spatiotemporal responses to global alterations in nutrient supply.
Collapse
Affiliation(s)
- Katryn R Harwood
- Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda MD 20892-0851, USA
| | | |
Collapse
|
104
|
Yuzwa SA, Vocadlo DJ. O-GlcNAc and neurodegeneration: biochemical mechanisms and potential roles in Alzheimer's disease and beyond. Chem Soc Rev 2014; 43:6839-58. [PMID: 24759912 DOI: 10.1039/c4cs00038b] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Alzheimer disease (AD) is a growing problem for aging populations worldwide. Despite significant efforts, no therapeutics are available that stop or slow progression of AD, which has driven interest in the basic causes of AD and the search for new therapeutic strategies. Longitudinal studies have clarified that defects in glucose metabolism occur in patients exhibiting Mild Cognitive Impairment (MCI) and glucose hypometabolism is an early pathological change within AD brain. Further, type 2 diabetes mellitus (T2DM) is a strong risk factor for the development of AD. These findings have stimulated interest in the possibility that disrupted glucose regulated signaling within the brain could contribute to the progression of AD. One such process of interest is the addition of O-linked N-acetylglucosamine (O-GlcNAc) residues onto nuclear and cytoplasmic proteins within mammals. O-GlcNAc is notably abundant within brain and is present on hundreds of proteins including several, such as tau and the amyloid precursor protein, which are involved in the pathophysiology AD. The cellular levels of O-GlcNAc are coupled to nutrient availability through the action of just two enzymes. O-GlcNAc transferase (OGT) is the glycosyltransferase that acts to install O-GlcNAc onto proteins and O-GlcNAcase (OGA) is the glycoside hydrolase that acts to remove O-GlcNAc from proteins. Uridine 5'-diphosphate-N-acetylglucosamine (UDP-GlcNAc) is the donor sugar substrate for OGT and its levels vary with cellular glucose availability because it is generated from glucose through the hexosamine biosynthetic pathway (HBSP). Within the brains of AD patients O-GlcNAc levels have been found to be decreased and aggregates of tau appear to lack O-GlcNAc entirely. Accordingly, glucose hypometabolism within the brain may result in disruption of the normal functions of O-GlcNAc within the brain and thereby contribute to downstream neurodegeneration. While this hypothesis remains largely speculative, recent studies using different mouse models of AD have demonstrated the protective benefit of pharmacologically increased brain O-GlcNAc levels. In this review we summarize the state of knowledge in the area of O-GlcNAc as it pertains to AD while also addressing some of the basic biochemical roles of O-GlcNAc and how these might contribute to protecting against AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Scott A Yuzwa
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Dr, Burnaby, BC V5A 1S6, Canada
| | | |
Collapse
|
105
|
Kolybaba A, Classen AK. Sensing cellular states--signaling to chromatin pathways targeting Polycomb and Trithorax group function. Cell Tissue Res 2014; 356:477-93. [PMID: 24728925 DOI: 10.1007/s00441-014-1824-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 01/22/2014] [Indexed: 02/06/2023]
Abstract
Cells respond to extra- and intra-cellular signals by dynamically changing their gene expression patterns. After termination of the original signal, new expression patterns are maintained by epigenetic DNA and histone modifications. This represents a powerful mechanism that enables long-term phenotypic adaptation to transient signals. Adaptation of epigenetic landscapes is important for mediating cellular differentiation during development and allows adjustment to altered environmental conditions throughout life. Work over the last decade has begun to elucidate the way that extra- and intra-cellular signals lead to changes in gene expression patterns by directly modulating the function of chromatin-associated proteins. Here, we review key signaling-to-chromatin pathways that are specifically thought to target Polycomb and Trithorax group complexes, a classic example of epigenetically acting gene silencers and activators important in development, stem cell differentiation and cancer. We discuss the influence that signals triggered by kinase cascades, metabolic fluctuations and cell-cycle dynamics have on the function of these protein complexes. Further investigation into these pathways will be important for understanding the mechanisms that maintain epigenetic stability and those that promote epigenetic plasticity.
Collapse
Affiliation(s)
- Addie Kolybaba
- Ludwig Maximilians University Munich, Faculty of Biology, Grosshaderner Strasse 2-4, 82152, Planegg-Martinsried, Germany
| | | |
Collapse
|
106
|
Ayers BJ, Glawar AFG, Martínez RF, Ngo N, Liu Z, Fleet GWJ, Butters TD, Nash RJ, Yu CY, Wormald MR, Nakagawa S, Adachi I, Kato A, Jenkinson SF. Nine of 16 Stereoisomeric Polyhydroxylated Proline Amides Are Potent β-N-Acetylhexosaminidase Inhibitors. J Org Chem 2014; 79:3398-409. [DOI: 10.1021/jo500157p] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Benjamin J. Ayers
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Andreas F. G. Glawar
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
- Oxford
Glycobiology Institute, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
| | - R. Fernando Martínez
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Nigel Ngo
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Zilei Liu
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - George W. J. Fleet
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Terry D. Butters
- Oxford
Glycobiology Institute, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
| | - Robert J. Nash
- Phytoquest Limited,
IBERS, Plas Gogerddan, Ceredigion, Aberystwyth, SY23 3EB, U.K
| | - Chu-Yi Yu
- CAS
Key Laboratory of Molecular Recognition and Function, Institute of
Chemistry, Chinese Academy of Science, Beijing 100190, China
| | - Mark R. Wormald
- Oxford
Glycobiology Institute, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
| | - Shinpei Nakagawa
- Department
of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Isao Adachi
- Department
of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Atsushi Kato
- Department
of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Sarah F. Jenkinson
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
107
|
Oosterveer MH, Schoonjans K. Hepatic glucose sensing and integrative pathways in the liver. Cell Mol Life Sci 2014; 71:1453-67. [PMID: 24196749 PMCID: PMC11114046 DOI: 10.1007/s00018-013-1505-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/17/2013] [Accepted: 10/18/2013] [Indexed: 12/21/2022]
Abstract
The hepatic glucose-sensing system is a functional network of enzymes and transcription factors that is critical for the maintenance of energy homeostasis and systemic glycemia. Here we review the recent literature on its components and metabolic actions. Glucokinase (GCK) is generally considered as the initial postprandial glucose-sensing component, which acts as the gatekeeper for hepatic glucose metabolism and provides metabolites that activate the transcription factor carbohydrate response element binding protein (ChREBP). Recently, liver receptor homolog 1 (LRH-1) has emerged as an upstream regulator of the central GCK-ChREBP axis, with a critical role in the integration of hepatic intermediary metabolism in response to glucose. Evidence is also accumulating that O-linked β-N-acetylglucosaminylation (O-GlcNAcylation) and acetylation can act as glucose-sensitive modifications that may contribute to hepatic glucose sensing by targeting regulatory proteins and the epigenome. Further elucidation of the components and functional roles of the hepatic glucose-sensing system may contribute to the future treatment of liver diseases associated with deregulated glucose sensors.
Collapse
Affiliation(s)
- Maaike H. Oosterveer
- Department of Pediatrics and Laboratory Medicine, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Kristina Schoonjans
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
108
|
Kumar A, Singh PK, Parihar R, Dwivedi V, Lakhotia SC, Ganesh S. Decreased O-linked GlcNAcylation protects from cytotoxicity mediated by huntingtin exon1 protein fragment. J Biol Chem 2014; 289:13543-53. [PMID: 24648514 DOI: 10.1074/jbc.m114.553321] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
O-GlcNAcylation is an important post-translational modification of proteins and is known to regulate a number of pathways involved in cellular homeostasis. This involves dynamic and reversible modification of serine/threonine residues of different cellular proteins catalyzed by O-linked N-acetylglucosaminyltransferase and O-linked N-acetylglucosaminidase in an antagonistic manner. We report here that decreasing O-GlcNAcylation enhances the viability of neuronal cells expressing polyglutamine-expanded huntingtin exon 1 protein fragment (mHtt). We further show that O-GlcNAcylation regulates the basal autophagic process and that suppression of O-GlcNAcylation significantly increases autophagic flux by enhancing the fusion of autophagosome with lysosome. This regulation considerably reduces toxic mHtt aggregates in eye imaginal discs and partially restores rhabdomere morphology and vision in a fly model for Huntington disease. This study is significant in unraveling O-GlcNAcylation-dependent regulation of an autophagic process in mediating mHtt toxicity. Therefore, targeting the autophagic process through the suppression of O-GlcNAcylation may prove to be an important therapeutic approach in Huntington disease.
Collapse
Affiliation(s)
- Amit Kumar
- From the Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016 and
| | | | | | | | | | | |
Collapse
|
109
|
Semba RD, Huang H, Lutty GA, Van Eyk JE, Hart GW. The role of O-GlcNAc signaling in the pathogenesis of diabetic retinopathy. Proteomics Clin Appl 2014; 8:218-31. [PMID: 24550151 DOI: 10.1002/prca.201300076] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 09/24/2013] [Accepted: 10/04/2013] [Indexed: 12/14/2022]
Abstract
Diabetic retinopathy is a leading cause of blindness worldwide. Despite laser and surgical treatments, antiangiogenic and other therapies, and strict metabolic control, many patients progress to visual impairment and blindness. New insights are needed into the pathophysiology of diabetic retinopathy in order to develop new methods to improve the detection and treatment of disease and the prevention of blindness. Hyperglycemia and diabetes result in increased flux through the hexosamine biosynthetic pathway, which, in turn, results in increased PTM of Ser/Thr residues of proteins by O-linked β-N-acetylglucosamine (O-GlcNAc). O-GlcNAcylation is involved in regulation of many nuclear and cytoplasmic proteins in a manner similar to protein phosphorylation. Altered O-GlcNAc signaling has been implicated in the pathogenesis of diabetes and may play an important role in the pathogenesis of diabetic retinopathy. The goal of this review is to summarize the biology of the hexosamine biosynthesis pathway and O-GlcNAc signaling, to present the current evidence for the role of O-GlcNAc signaling in diabetes and diabetic retinopathy, and to discuss future directions for research on O-GlcNAc in the pathogenesis of diabetic retinopathy.
Collapse
Affiliation(s)
- Richard D Semba
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | |
Collapse
|
110
|
Li B, Kohler JJ. Glycosylation of the nuclear pore. Traffic 2014; 15:347-61. [PMID: 24423194 DOI: 10.1111/tra.12150] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 01/09/2014] [Accepted: 01/13/2014] [Indexed: 01/09/2023]
Abstract
The O-linked β-N-acetylglucosamine (O-GlcNAc) posttranslational modification was first discovered 30 years ago and is highly concentrated in the nuclear pore. In the years since the discovery of this single sugar modification, substantial progress has been made in understanding the biochemistry of O-GlcNAc and its regulation. Nonetheless, O-GlcNAc modification of proteins continues to be overlooked, due in large part to the lack of reliable methods available for its detection. Recently, a new crop of immunological and chemical detection reagents has changed the research landscape. Using these tools, approximately 1000 O-GlcNAc-modified proteins have been identified. While other forms of glycosylation are typically associated with extracellular proteins, O-GlcNAc is abundant on nuclear and cytoplasmic proteins. In particular, phenylalanine-glycine nucleoporins are heavily O-GlcNAc-modified. Recent experiments are beginning to provide insight into the functional implications of O-GlcNAc modification on certain proteins, but its role in the nuclear pore has remained enigmatic. However, tantalizing new results suggest that O-GlcNAc may play roles in regulating nucleocytoplasmic transport.
Collapse
Affiliation(s)
- Bin Li
- Department of Biochemistry, University of Texas Southwestern Medical Centre, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | | |
Collapse
|
111
|
O-GlcNAcylation regulates EZH2 protein stability and function. Proc Natl Acad Sci U S A 2014; 111:1355-60. [PMID: 24474760 DOI: 10.1073/pnas.1323226111] [Citation(s) in RCA: 184] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
O-linked N-acetylglucosamine (GlcNAc) transferase (OGT) is the only known enzyme that catalyzes the O-GlcNAcylation of proteins at the Ser or Thr side chain hydroxyl group. OGT participates in transcriptional and epigenetic regulation, and dysregulation of OGT has been implicated in diseases such as cancer. However, the underlying mechanism is largely unknown. Here we show that OGT is required for the trimethylation of histone 3 at K27 to form the product H3K27me3, a process catalyzed by the histone methyltransferase enhancer of zeste homolog 2 (EZH2) in the polycomb repressive complex 2 (PRC2). H3K27me3 is one of the most important histone modifications to mark the transcriptionally silenced chromatin. We found that the level of H3K27me3, but not other H3 methylation products, was greatly reduced upon OGT depletion. OGT knockdown specifically down-regulated the protein stability of EZH2, without altering the levels of H3K27 demethylases UTX and JMJD3, and disrupted the integrity of the PRC2 complex. Furthermore, the interaction of OGT and EZH2/PRC2 was detected by coimmunoprecipitation and cosedimentation experiments. Importantly, we identified that serine 75 is the site for EZH2 O-GlcNAcylation, and the EZH2 mutant S75A exhibited reduction in stability. Finally, microarray and ChIP analysis have characterized a specific subset of potential tumor suppressor genes subject to repression via the OGT-EZH2 axis. Together these results indicate that OGT-mediated O-GlcNAcylation at S75 stabilizes EZH2 and hence facilitates the formation of H3K27me3. The study not only uncovers a functional posttranslational modification of EZH2 but also reveals a unique epigenetic role of OGT in regulating histone methylation.
Collapse
|
112
|
Abstract
The liver is a vital organ responsible for maintaining nutrient homeostasis. After a meal, insulin stimulates glycogen and lipid synthesis in the liver; in the fasted state, glucagon induces gluconeogenesis and ketogenesis, which produce glucose and ketone bodies for other tissues to use as energy sources. These metabolic changes involve spatiotemporally co-ordinated signaling cascades. O-linked β-N-acetylglucosamine (O-GlcNAc) modification has been recognized as a nutrient sensor and regulatory molecular switch. This review highlights mechanistic insights into spatiotemporal regulation of liver metabolism by O-GlcNAc modification and discusses its pathophysiological implications in insulin resistance, non-alcoholic fatty liver disease, and fibrosis.
Collapse
Affiliation(s)
- Kaisi Zhang
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, CT, USA
- Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Ruonan Yin
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, CT, USA
- Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Xiaoyong Yang
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, CT, USA
- Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
- *Correspondence: Xiaoyong Yang, Yale University School of Medicine, 310 Cedar Street, BML 329C, New Haven, CT 06519, USA e-mail:
| |
Collapse
|
113
|
Wang S, Shen DL, Lafont D, Vercoutter-Edouart AS, Mortuaire M, Shi Y, Maniti O, Girard-Egrot A, Lefebvre T, Pinto BM, Vocadlo D, Vidal S. Design of glycosyltransferase inhibitors targeting human O-GlcNAc transferase (OGT). MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00063c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Inhibition of glycosyltransferases requires the design of neutral inhibitors to allow cell permeation as mimicks of their natural dianionic substrates.
Collapse
|
114
|
Jóźwiak P, Forma E, Bryś M, Krześlak A. O-GlcNAcylation and Metabolic Reprograming in Cancer. Front Endocrinol (Lausanne) 2014; 5:145. [PMID: 25250015 PMCID: PMC4158873 DOI: 10.3389/fendo.2014.00145] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 08/22/2014] [Indexed: 01/17/2023] Open
Abstract
Although cancer metabolism has received considerable attention over the past decade, our knowledge on its specifics is still fragmentary. Altered cellular metabolism is one of the most important hallmarks of cancer. Cancer cells exhibit aberrant glucose metabolism characterized by aerobic glycolysis, a phenomenon known as Warburg effect. Accelerated glucose uptake and glycolysis are main characteristics of cancer cells that allow them for intensive growth and proliferation. Accumulating evidence suggests that O-GlcNAc transferase (OGT), an enzyme responsible for modification of proteins with N-acetylglucosamine, may act as a nutrient sensor that links hexosamine biosynthesis pathway to oncogenic signaling and regulation of factors involved in glucose and lipid metabolism. Recent studies suggest that metabolic reprograming in cancer is connected to changes at the epigenetic level. O-GlcNAcylation seems to play an important role in the regulation of the epigenome in response to cellular metabolic status. Through histone modifications and assembly of gene transcription complexes, OGT can impact on expression of genes important for cellular metabolism. This paper reviews recent findings related to O-GlcNAc-dependent regulation of signaling pathways, transcription factors, enzymes, and epigenetic changes involved in metabolic reprograming of cancer.
Collapse
Affiliation(s)
- Paweł Jóźwiak
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Ewa Forma
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Magdalena Bryś
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Anna Krześlak
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
- *Correspondence: Anna Krześlak, Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, Lodz 90-236, Poland e-mail:
| |
Collapse
|
115
|
Abstract
Protein O-GlcNAcylation is an abundant, dynamic and reversible type of protein post-translational modification in animals that has been implicated in signalling processes linked to innate immunity, stress response, growth factor response, transcription, translation and proteosomal degradation. Only two enzymes, O-GlcNAc (O-linked N-acetylglucosamine) transferase and O-GlcNAcase, catalyse the reversible addition of the O-GlcNAc residue to over 1000 target proteins in the human cell. Recent advances in our understanding of the structures and mechanisms of these enzymes have resulted in the development of potent and selective inhibitors. The present review gives an overview of these inhibitors and how they have been used on cell lines, primary cells and animals to modulate O-GlcNAc levels and study the effects on signal transduction.
Collapse
|
116
|
Li Z, Yi W. Regulation of cancer metabolism by O-GlcNAcylation. Glycoconj J 2013; 31:185-91. [PMID: 24323367 DOI: 10.1007/s10719-013-9515-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 11/25/2013] [Accepted: 11/26/2013] [Indexed: 01/15/2023]
Abstract
Cancer cells exhibit increased uptake of glucose and glutamine, and rewire the metabolic flux toward anabolic pathways important for cell growth and proliferation. Understanding how this altered metabolism is regulated has recently emerged as an intense research focus in cancer biology. O-linked β-N-acetylglucosamine (O-GlcNAc) is a reversible posttranslational modification of serine and/or threonine residues of nuclear and cytosolic proteins. O-GlcNAcylation has been identified in numerous proteins that are involved in many important cellular functions, including transcription, translation, signal transduction, and stress responses. More recently, increasing evidence indicates that O-GlcNAcylation plays important roles in regulating cancer metabolic reprogramming by modifying key transcription factors, metabolic enzymes and major oncogenic signaling pathways. Thus, O-GlcNAcylation emerges as a novel regulatory mechanism linking altered metabolism to cancer pathogenesis.
Collapse
Affiliation(s)
- Zhonghua Li
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | | |
Collapse
|
117
|
Dassanayaka S, Jones SP. O-GlcNAc and the cardiovascular system. Pharmacol Ther 2013; 142:62-71. [PMID: 24287310 DOI: 10.1016/j.pharmthera.2013.11.005] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 11/01/2013] [Indexed: 12/28/2022]
Abstract
The cardiovascular system is capable of robust changes in response to physiologic and pathologic stimuli through intricate signaling mechanisms. The area of metabolism has witnessed a veritable renaissance in the cardiovascular system. In particular, the post-translational β-O-linkage of N-acetylglucosamine (O-GlcNAc) to cellular proteins represents one such signaling pathway that has been implicated in the pathophysiology of cardiovascular disease. This highly dynamic protein modification may induce functional changes in proteins and regulate key cellular processes including translation, transcription, and cell death. In addition, its potential interplay with phosphorylation provides an additional layer of complexity to post-translational regulation. The hexosamine biosynthetic pathway generally requires glucose to form the nucleotide sugar, UDP-GlcNAc. Accordingly, O-GlcNAcylation may be altered in response to nutrient availability and cellular stress. Recent literature supports O-GlcNAcylation as an autoprotective response in models of acute stress (hypoxia, ischemia, oxidative stress). Models of sustained stress, such as pressure overload hypertrophy, and infarct-induced heart failure, may also require protein O-GlcNAcylation as a partial compensatory mechanism. Yet, in models of Type II diabetes, O-GlcNAcylation has been implicated in the subsequent development of vascular, and even cardiac, dysfunction. This review will address this apparent paradox and discuss the potential mechanisms of O-GlcNAc-mediated cardioprotection and cardiovascular dysfunction. This discussion will also address potential targets for pharmacologic interventions and the unique considerations related to such targets.
Collapse
Affiliation(s)
- Sujith Dassanayaka
- Institute of Molecular Cardiology, Diabetes and Obesity Center, Division of Cardiovascular Medicine, Department of Medicine, University of Louisville, Louisville, KY, USA; Department of Physiology and Biophysics, University of Louisville, Louisville, KY, USA
| | - Steven P Jones
- Institute of Molecular Cardiology, Diabetes and Obesity Center, Division of Cardiovascular Medicine, Department of Medicine, University of Louisville, Louisville, KY, USA; Department of Physiology and Biophysics, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
118
|
Cecioni S, Vocadlo DJ. Tools for probing and perturbing O-GlcNAc in cells and in vivo. Curr Opin Chem Biol 2013; 17:719-28. [PMID: 23906602 DOI: 10.1016/j.cbpa.2013.06.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 06/20/2013] [Accepted: 06/26/2013] [Indexed: 02/06/2023]
Abstract
Intracellular glycosylation of nuclear and cytoplasmic proteins involves the addition of N-acetylglucosamine (O-GlcNAc) to serine and threonine residues. This dynamic modification occurs on hundreds of proteins and is involved in various essential biological processes. Because O-GlcNAc is substoichiometric and labile, identifying proteins and sites of modification has been challenging and generally requires proteome enrichment. Here we review recent advances on the implementation of chemical tools to perturb, to detect, and to map O-GlcNAc in living systems. Metabolic and chemoenzymatic labels along with bioorthogonal reactions and quantitative proteomics are enabling investigation of the role of O-GlcNAc in various processes including transcriptional regulation, neurodegeneration, and cell signaling.
Collapse
Affiliation(s)
- Samy Cecioni
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | | |
Collapse
|