101
|
Ji S, Liu Q, Zhang S, Chen Q, Wang C, Zhang W, Xiao C, Li Y, Nian C, Li J, Li J, Geng J, Hong L, Xie C, He Y, Chen X, Li X, Yin ZY, You H, Lin KH, Wu Q, Yu C, Johnson RL, Wang L, Chen L, Wang F, Zhou D. FGF15 Activates Hippo Signaling to Suppress Bile Acid Metabolism and Liver Tumorigenesis. Dev Cell 2019; 48:460-474.e9. [PMID: 30745141 DOI: 10.1016/j.devcel.2018.12.021] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/13/2018] [Accepted: 12/26/2018] [Indexed: 12/25/2022]
Abstract
The external factors that modulate Hippo signaling remain elusive. Here, we report that FGF15 activates Hippo signaling to suppress bile acid metabolism, liver overgrowth, and tumorigenesis. FGF15 is induced by FXR in ileal enterocytes in response to increased amounts of intestinal bile. We found that circulating enterohepatic FGF15 stimulates hepatic receptor FGFR4 to recruit and phosphorylate NF2, which relieves the inhibitory effect of Raf on the Hippo kinases Mst1/2, thereby switching FGFR4's role from pro-oncogenic to anti-tumor signaling. The activated Mst1/2 subsequently phosphorylates and stabilizes SHP to downregulate the key bile acid-synthesis enzyme Cyp7a1 expression, thereby limiting bile acid synthesis. In contrast, Mst1/2 deficiency impairs bile acid metabolism and remarkably increases Cyp7a1 expression and bile acid production. Importantly, pharmacological depletion of intestinal bile abrogates Mst1/2-mutant-driven liver overgrowth and oncogenesis. Therefore, FGF15-Hippo signaling along the gut-liver axis acts as a sensor of bile acid availability to restrain liver size and tumorigenesis.
Collapse
Affiliation(s)
- Suyuan Ji
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; Cancer Research Center of Xiamen University, Xiamen, Fujian 361102, China
| | - Qingxu Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; Cancer Research Center of Xiamen University, Xiamen, Fujian 361102, China
| | - Shihao Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; Cancer Research Center of Xiamen University, Xiamen, Fujian 361102, China
| | - Qinghua Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Cong Wang
- School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang 325030, China
| | - Weiji Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Chen Xiao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yuxi Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Cheng Nian
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jiaxin Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Junhong Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jing Geng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Lixin Hong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Changchuan Xie
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Ying He
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xing Chen
- Department of Laboratory Medicine, The First Affiliated Hospital, Medical College of Xiamen University, Xiamen, Fujian 361003, China
| | - Xun Li
- Department of Laboratory Medicine, The First Affiliated Hospital, Medical College of Xiamen University, Xiamen, Fujian 361003, China
| | - Zhen-Yu Yin
- Department of Hepatobiliary Surgery, Zhongshan Hospital of Xiamen University, Xiamen, Fujian 361004, China
| | - Han You
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Kwang-Huei Lin
- Department of Biochemistry, College of Medicine, Chang Gung University, Liver Research Center, Chang Gung Memorial Hospital, TaoYuan 333, Taiwan
| | - Qiao Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Chundong Yu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Randy L Johnson
- Department of Biochemistry and Molecular Biology, University of Texas, M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Li Wang
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA; The Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| | - Lanfen Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Fen Wang
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Dawang Zhou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; Cancer Research Center of Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
102
|
Diao J, Zhang C, Zhang D, Wang X, Zhang J, Ma C, Deng K, Jiang T, Jia W, Xu T. Role and mechanisms of a three-dimensional bioprinted microtissue model in promoting proliferation and invasion of growth-hormone-secreting pituitary adenoma cells. Biofabrication 2019; 11:025006. [PMID: 30537696 DOI: 10.1088/1758-5090/aaf7ea] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Growth-hormone-secreting pituitary adenoma (GHSPA) is a benign tumour with a high incidence and large economic burden, which greatly affects quality of life. The aetiological factors are yet to be clarified for GHSPA. Conventional two-dimensional (2D) monolayer culture of tumour cells cannot ideally reflect the growth status of tumours in the physiological environment, and insufficiencies of in vitro models have severely restricted the progress of cancer research. Three-dimensional (3D) bioprinting technology is being increasingly used in various fields of biology and medicine, which allows recapitulation of the in vivo growth environment of tumour cells. In this study, a GHSPA microtissue model was established using 3D bioprinting. Tumour cells in the 3D environment exhibited more active cell cycle progression, secretion, proliferation, invasion, and tumourigenesis compared with those in the 2D environment. Furthermore, the molecular mechanisms of the 3D-printed microtissue model were explored. We demonstrated that the 3D-printed microtissue provides an excellent in vitro model at the tissue level for oncological research and may facilitate in-depth studies on the aetiology, treatment, drug resistance, and long-term prognosis of GHSPA .
Collapse
Affiliation(s)
- Jinfu Diao
- Neurosurgical Department, Beijing Tiantan Hospital, Capital Medical University, 6 Tiantan Xili, Dongcheng District, Beijing 100050, People's Republic of China. Beijing Neurosurgical Institute, Capital Medical University, 6 Tiantan Xili, Dongcheng District, Beijing 100050, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Li Z, Qi DL, Singh HP, Zou Y, Shen B, Cobrinik D. A novel thyroid hormone receptor isoform, TRβ2-46, promotes SKP2 expression and retinoblastoma cell proliferation. J Biol Chem 2019; 294:2961-2969. [PMID: 30643022 DOI: 10.1074/jbc.ac118.006041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/07/2019] [Indexed: 12/13/2022] Open
Abstract
Retinoblastoma is a childhood retinal tumor that develops from cone photoreceptor precursors in response to inactivating RB1 mutations and loss of functional RB protein. The cone precursor's response to RB loss involves cell type-specific signaling circuitry that helps to drive tumorigenesis. One component of the cone precursor circuitry, the thyroid hormone receptor β2 (TRβ2), enables the aberrant proliferation of diverse RB-deficient cells in part by opposing the down-regulation of S-phase kinase-associated protein 2 (SKP2) by the more widely expressed and tumor-suppressive TRβ1. However, it is unclear how TRβ2 opposes TRβ1 to enable SKP2 expression and cell proliferation. Here, we show that in human retinoblastoma cells TRβ2 mRNA encodes two TRβ2 protein isoforms: a predominantly cytoplasmic 54-kDa protein (TRβ2-54) corresponding to the well-characterized full-length murine Trβ2 and an N-terminally truncated and exclusively cytoplasmic 46-kDa protein (TRβ2-46) that starts at Met-79. Whereas TRβ2 knockdown decreased SKP2 expression and impaired retinoblastoma cell cycle progression, re-expression of TRβ2-46 but not TRβ2-54 stabilized SKP2 and restored proliferation to an extent similar to that of ectopic SKP2 restoration. We conclude that TRβ2-46 is an oncogenic thyroid hormone receptor isoform that promotes SKP2 expression and SKP2-dependent retinoblastoma cell proliferation.
Collapse
Affiliation(s)
- Zhengke Li
- From The Vision Center and The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California 90027, .,Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, California 91010.,Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614, and
| | - Dong-Lai Qi
- From The Vision Center and The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California 90027
| | - Hardeep P Singh
- From The Vision Center and The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California 90027
| | - Yue Zou
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614, and
| | - Binghui Shen
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, California 91010
| | - David Cobrinik
- From The Vision Center and The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California 90027, .,Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, and USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, California 90033
| |
Collapse
|
104
|
Abstract
Whole-genome and centrosome duplication as a consequence of cytokinesis failure can drive tumorigenesis in experimental model systems. However, whether cytokinesis failure is in fact an important cause of human cancers has remained unclear. In this Review, we summarize evidence that whole-genome-doubling events are frequently observed in human cancers and discuss the contribution that cytokinesis defects can make to tumorigenesis. We provide an overview of the potential causes of cytokinesis failure and discuss how tetraploid cells that are generated through cytokinesis defects are used in cancer as a transitory state on the route to aneuploidy. Finally, we discuss how cytokinesis defects can facilitate genetic diversification within the tumour to promote cancer development and could constitute the path of least resistance in tumour evolution.
Collapse
Affiliation(s)
- Susanne M A Lens
- Oncode Institute, Utrecht, Netherlands.
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.
| | - René H Medema
- Oncode Institute, Utrecht, Netherlands.
- Division of Cell Biology and Cancer Genomics Center, The Netherlands Cancer Institute, Amsterdam, Netherlands.
| |
Collapse
|
105
|
Gjelsvik KJ, Besen-McNally R, Losick VP. Solving the Polyploid Mystery in Health and Disease. Trends Genet 2019; 35:6-14. [PMID: 30470486 PMCID: PMC6457904 DOI: 10.1016/j.tig.2018.10.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/12/2018] [Accepted: 10/22/2018] [Indexed: 01/12/2023]
Abstract
Polyploidy (the more than doubling of a cell's genome) frequently arises during organogenesis, tissue repair, and age-associated diseases. Despite its prevalence, major gaps exist in how polyploid cells emerge and affect tissue function. Studies have begun to elucidate the signals required for polyploid cell growth as well as the advantages and disadvantages of polyploidy in health and disease. This review highlights the recent advances on the role and regulation of polyploidy in Drosophila and vertebrate models. The newly discovered versatility of polyploid cells has the potential to provide alternative strategies to promote tissue growth and repair, while limiting disease and dysfunction.
Collapse
Affiliation(s)
- K J Gjelsvik
- MDI Biological Laboratory, 159 Old Bar Harbor Road, Bar Harbor, ME 04609, USA
| | - R Besen-McNally
- MDI Biological Laboratory, 159 Old Bar Harbor Road, Bar Harbor, ME 04609, USA
| | - V P Losick
- MDI Biological Laboratory, 159 Old Bar Harbor Road, Bar Harbor, ME 04609, USA.
| |
Collapse
|
106
|
Wang L, Zhu Z, Han L, Zhao L, Weng J, Yang H, Wu S, Chen K, Wu L, Chen T. A curcumin derivative, WZ35, suppresses hepatocellular cancer cell growthviadownregulating YAP-mediated autophagy. Food Funct 2019; 10:3748-3757. [PMID: 31172987 DOI: 10.1039/c8fo02448k] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
HCC is a common cancer type in the world. Here, we found WZ35, a novel derivative of curcumin, could notably suppress HCC cell growthviainhibiting YAP controlled autophagy, highlighting the potent anti-tumor activity of WZ35 in liver cancer therapy.
Collapse
Affiliation(s)
- Lihua Wang
- School of Ophthalmology and Optometry
- Eye Hospital
- Wenzhou Medical University
- Wenzhou 325000
- China
| | - Zheng Zhu
- Laboratory Animal Centre
- Wenzhou Medical University
- Wenzhou
- China
| | - Lei Han
- Laboratory Animal Centre
- Wenzhou Medical University
- Wenzhou
- China
| | - Liqian Zhao
- Laboratory Animal Centre
- Wenzhou Medical University
- Wenzhou
- China
| | - Jialei Weng
- Laboratory Animal Centre
- Wenzhou Medical University
- Wenzhou
- China
| | - Hongbao Yang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province
- The First Affiliated Hospital of Wenzhou Medical University
- Wenzhou 325000
- China
| | - Shijia Wu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province
- The First Affiliated Hospital of Wenzhou Medical University
- Wenzhou 325000
- China
| | - Kaiyuan Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province
- The First Affiliated Hospital of Wenzhou Medical University
- Wenzhou 325000
- China
| | - Liang Wu
- Department of Pathology
- First Affiliated Hospital of WenZhou Medical University
- Wenzhou 325000
- China
| | - Tongke Chen
- Laboratory Animal Centre
- Wenzhou Medical University
- Wenzhou
- China
| |
Collapse
|
107
|
Wang Y, Xu X, Maglic D, Dill MT, Mojumdar K, Ng PKS, Jeong KJ, Tsang YH, Moreno D, Bhavana VH, Peng X, Ge Z, Chen H, Li J, Chen Z, Zhang H, Han L, Du D, Creighton CJ, Mills GB, Camargo F, Liang H. Comprehensive Molecular Characterization of the Hippo Signaling Pathway in Cancer. Cell Rep 2018; 25:1304-1317.e5. [PMID: 30380420 PMCID: PMC6326181 DOI: 10.1016/j.celrep.2018.10.001] [Citation(s) in RCA: 336] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/02/2018] [Accepted: 09/28/2018] [Indexed: 01/15/2023] Open
Abstract
Hippo signaling has been recognized as a key tumor suppressor pathway. Here, we perform a comprehensive molecular characterization of 19 Hippo core genes in 9,125 tumor samples across 33 cancer types using multidimensional "omic" data from The Cancer Genome Atlas. We identify somatic drivers among Hippo genes and the related microRNA (miRNA) regulators, and using functional genomic approaches, we experimentally characterize YAP and TAZ mutation effects and miR-590 and miR-200a regulation for TAZ. Hippo pathway activity is best characterized by a YAP/TAZ transcriptional target signature of 22 genes, which shows robust prognostic power across cancer types. Our elastic-net integrated modeling further reveals cancer-type-specific pathway regulators and associated cancer drivers. Our results highlight the importance of Hippo signaling in squamous cell cancers, characterized by frequent amplification of YAP/TAZ, high expression heterogeneity, and significant prognostic patterns. This study represents a systems-biology approach to characterizing key cancer signaling pathways in the post-genomic era.
Collapse
Affiliation(s)
- Yumeng Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiaoyan Xu
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Pathophysiology, College of Basic Medicine Science, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Dejan Maglic
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Boston, MA 02115, USA
| | - Michael T Dill
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Boston, MA 02115, USA
| | - Kamalika Mojumdar
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Patrick Kwok-Shing Ng
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kang Jin Jeong
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yiu Huen Tsang
- Department of Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Daniela Moreno
- Department of Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Xinxin Peng
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhongqi Ge
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hu Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jun Li
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhongyuan Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Statistics, Rice University, Houston, TX 77005, USA
| | - Huiwen Zhang
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
| | - Leng Han
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
| | - Di Du
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chad J Creighton
- Duncan Cancer Center-Biostatistics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gordon B Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Fernando Camargo
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Boston, MA 02115, USA.
| | - Han Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA; Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
108
|
Shen H, Yang N, Truskinovsky A, Chen Y, Mussell AL, Nowak NJ, Kobzik L, Frangou C, Zhang J. Targeting TAZ-Driven Human Breast Cancer by Inhibiting a SKP2-p27 Signaling Axis. Mol Cancer Res 2018; 17:250-262. [PMID: 30237296 DOI: 10.1158/1541-7786.mcr-18-0332] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/05/2018] [Accepted: 08/31/2018] [Indexed: 12/21/2022]
Abstract
Deregulated expression of the transcriptional coactivator with PDZ-binding motif (WWTR1/TAZ) is a common feature of basal-like breast cancer (BLBC). Yet, how oncogenic TAZ regulates cell-cycle progression and proliferation in breast cancer remains poorly understood, and whether TAZ is required for tumor maintenance has not been established. Here, using an integrative oncogenomic approach, TAZ-dependent cellular programs essential for tumor growth and progression were identified. Significantly, TAZ-driven tumor cells required sustained TAZ expression, given that its withdrawal impaired both genesis and maintenance of solid tumors. Moreover, temporal inhibition of TAZ diminished the metastatic burden in established macroscopic pulmonary metastases. Mechanistic investigation revealed that TAZ controls distinct gene profiles that determine cancer cell fate through cell-cycle networks, including a specific, causal role for S-phase kinase-associated protein 2 (SKP2) in mediating the neoplastic state. Together, this study elucidates the molecular events that underpin the role of TAZ in BLBC and link to SKP2, a convergent communication node for multiple cancer signaling pathways, as a key downstream effector molecule. IMPLICATIONS: Understanding the molecular role of TAZ and its link to SKP2, a signaling convergent point and key regulator in BLBC, represents an important step toward the identification of novel therapeutic targets for TAZ-dependent breast cancer.
Collapse
Affiliation(s)
- He Shen
- Department of Cancer Genetics and Genomics, Roswell Park Cancer Institute, Buffalo, New York
| | - Nuo Yang
- Department of Anesthesiology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, New York, New York
| | | | - Yanmin Chen
- Department of Cancer Genetics and Genomics, Roswell Park Cancer Institute, Buffalo, New York
| | - Ashley L Mussell
- Department of Cancer Genetics and Genomics, Roswell Park Cancer Institute, Buffalo, New York
| | - Norma J Nowak
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, New York, New York
| | - Lester Kobzik
- Harvard TH Chan School of Public Health, Molecular and Integrative Physiological Sciences, Boston, Massachusetts
| | - Costa Frangou
- Harvard TH Chan School of Public Health, Molecular and Integrative Physiological Sciences, Boston, Massachusetts.
| | - Jianmin Zhang
- Department of Cancer Genetics and Genomics, Roswell Park Cancer Institute, Buffalo, New York.
| |
Collapse
|
109
|
Sun L, Huang Y, Liu Y, Zhao Y, He X, Zhang L, Wang F, Zhang Y. Ipatasertib, a novel Akt inhibitor, induces transcription factor FoxO3a and NF-κB directly regulates PUMA-dependent apoptosis. Cell Death Dis 2018; 9:911. [PMID: 30185800 PMCID: PMC6125489 DOI: 10.1038/s41419-018-0943-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/27/2018] [Accepted: 07/30/2018] [Indexed: 12/27/2022]
Abstract
Colon cancer is one of the three common malignant tumors, with a lower survival rate. Ipatasertib, a novel highly selective ATP-competitive pan-Akt inhibitor, shows a strong antitumor effect in a variety of carcinoma, including colon cancer. However, there is a lack of knowledge about the precise underlying mechanism of clinical therapy for colon cancer. We conducted this study to determine that ipatasertib prevented colon cancer growth through PUMA-dependent apoptosis. Ipatasertib led to p53-independent PUMA activation by inhibiting Akt, thereby activating both FoxO3a and NF-κB synchronously that will directly bind to PUMA promoter, up-regulating PUMA transcription and Bax-mediated intrinsic mitochondrial apoptosis. Remarkably, Akt/FoxO3a/PUMA is the major pathway while Akt/NF-κB/PUMA is the secondary pathway of PUMA activation induced by ipatasertib in colon cancer. Knocking out PUMA eliminated ipatasertib-induced apoptosis both in vitro and in vivo (xenografts). Furthermore, PUMA is also indispensable in combinational therapies of ipatasertib with some conventional or novel drugs. Collectively, our study demonstrated that PUMA induction by FoxO3a and NF-κB is a critical step to suppress the growth of colon cancer under the therapy with ipatasertib, which provides some theoretical basis for clinical assessment.
Collapse
Affiliation(s)
- Li Sun
- College of Biology, Hunan University, Changsha, 410082, China.,Department of Out-patient, Affiliated Hospital of Hebei University of Engineering, Handan, 056002, China
| | - Yuan Huang
- College of Biology, Hunan University, Changsha, 410082, China
| | - Yeying Liu
- College of Biology, Hunan University, Changsha, 410082, China
| | - Yujie Zhao
- College of Biology, Hunan University, Changsha, 410082, China
| | - Xiaoxiao He
- College of Biology, Hunan University, Changsha, 410082, China
| | - Lingling Zhang
- Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, 410013, China.
| | - Feng Wang
- Department of Gastroenterology, The Tenth People's Hospital of Shanghai, Tongji University, Shanghai, 200072, China. .,Shenzhen Institute, Hunan University, Shenzhen, China.
| | - Yingjie Zhang
- College of Biology, Hunan University, Changsha, 410082, China. .,Shenzhen Institute, Hunan University, Shenzhen, China.
| |
Collapse
|
110
|
Abstract
How the organ size is adjusted to the proper size during development and how organs know that they reach the original size during regeneration remain long-standing questions. Based on studies using multiple model organisms and approaches for over 20 years, a consensus has been established that the Hippo pathway plays crucial roles in controlling organ size and maintaining tissue homeostasis. Given the significance of these processes, the dysregulation of the Hippo pathway has also implicated various diseases, such as tissue degeneration and cancer. By regulating the downstream transcriptional coactivators YAP and TAZ, the Hippo pathway coordinates cell proliferation and apoptosis in response to a variety of signals including cell contact inhibition, polarity, mechanical sensation and soluble factors. Since the core components and their functions of the Hippo pathway are evolutionarily conserved, this pathway serves as a global regulator of organ size control. Therefore, further investigation of the regulatory mechanisms will provide physiological insights to better understand tissue homeostasis. In this review, the historical developments and current understandings of the regulatory mechanism of Hippo signaling pathway are discussed.
Collapse
Affiliation(s)
- Wantae Kim
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Eek-Hoon Jho
- Departement of Life Science, University of Seoul, Seoul 02504, Korea
| |
Collapse
|
111
|
Liu M, Jiang K, Lin G, Liu P, Yan Y, Ye T, Yao G, Barr MP, Liang D, Wang Y, Gong P, Meng S, Piao H. Ajuba inhibits hepatocellular carcinoma cell growth via targeting of β-catenin and YAP signaling and is regulated by E3 ligase Hakai through neddylation. J Exp Clin Cancer Res 2018; 37:165. [PMID: 30041665 PMCID: PMC6057013 DOI: 10.1186/s13046-018-0806-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 06/20/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Aberrant activation of β-catenin and Yes-associated protein (YAP) signaling pathways has been associated with hepatocellular carcinoma (HCC) progression. The LIM domain protein Ajuba regulates β-catenin and YAP signaling and is implicated in tumorigenesis. However, roles and mechanism of Ajuba expression in HCC cells remain unclear. The E3 ligase Hakai has been shown to interact with other Ajuba family members and whether Hakai interacts and regulates Ajuba is unknown. METHODS HCC cell lines stably depleted of Ajuba or Hakai were established using lentiviruses expressing shRNAs against Ajuba or Hakai. The effects of Ajuba on HCC cells were determined by a number of cell-based analyses including anchorage-independent growth, three dimension cultures and trans-well invasion assay. In vivo tumor growth was determined in a xenograft model and Ajuba expression in tumor sections was examined by immunohistochemistry. Co-immunoprecipitation, confocal microscopy and immunoblot assay were used to examine the expression and interaction between Ajuba and Hakai. RESULTS Depletion of Ajuba in HCC cells significantly enhanced anchorage-independent growth, invasion, the formation of spheroids and tumor growth in a xenograft model, suggesting a tumor suppressor function for Ajuba in HCC. Mechanistically, Ajuba depletion triggered E-cadherin loss and β-catenin translocation with increased Cyclin D1 levels. In addition, depletion of Ajuba upregulated the levels of YAP and its target gene CYR61. Furthermore, siRNA-mediated knockdown of either β-catenin or YAP attenuated the pro-tumor effects by Ajuba depletion on HCC cells. Notably, Ajuba stability in HCC cells was regulated by Hakai, an E3 ligase for E-cadherin. Hakai interacted with Ajuba via its HYB domain and induced Ajuba neddylation, which was antagonized by the neddylation inhibitor, MLN4924, but not MG132. We further show that overexpression of Hakai in HCC cells markedly increased anchorage-independent growth, spheroid-formation ability and tumor growth in xenografts whereas Hakai depletion resulted in these opposite effects, indicating an oncogenic role for Hakai in HCC. Hakai also induced β-catenin translocation with increased levels of Cyclin D1. CONCLUSIONS Our data suggest a role for Ajuba and Hakai in HCC, and uncover the mechanism underlying the regulation of Ajuba stability.
Collapse
Affiliation(s)
- Min Liu
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, 9 Lvshun Road South, Dalian, 116044 China
| | - Ke Jiang
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, 9 Lvshun Road South, Dalian, 116044 China
- Department of neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No. 44 Xiaoheyan Road, Dadong District, Shenyang, 110042 Liaoning Province China
| | - Guibin Lin
- Huizhou No. 3 People’s Hospital, Affiliated Hospital of Guangzhou Medical University, No. 1 Xuebei Street, Qiaodong Road, Huizhou, 615000 China
| | - Peng Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Dalian Medical University, No. 222 Zhongshan Road, Dalian, 116021 China
| | - Yumei Yan
- The First Department of Ultrasound, The First Affiliated Hospital, Dalian Medical University, No. 222 Zhongshan Road, Dalian, 116021 China
| | - Tian Ye
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, 9 Lvshun Road South, Dalian, 116044 China
| | - Gang Yao
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, 9 Lvshun Road South, Dalian, 116044 China
| | - Martin P. Barr
- Thoracic Oncology Research Group, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St. James’s Hospital & Trinity College, Dublin, Ireland
| | - Dapeng Liang
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, 9 Lvshun Road South, Dalian, 116044 China
| | - Yang Wang
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, 9 Lvshun Road South, Dalian, 116044 China
| | - Peng Gong
- Department of general surgery, Shenzhen University General Hospital, No. 1098 Xueyuan Road, Shenzhen, 518055 China
- Carson International Cancer Research Centre, Shenzhen University School of Medicine, No.3688 Nanhai Road, Shenzhen, 518060 China
| | - Songshu Meng
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, 9 Lvshun Road South, Dalian, 116044 China
| | - Haozhe Piao
- Department of neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No. 44 Xiaoheyan Road, Dadong District, Shenyang, 110042 Liaoning Province China
| |
Collapse
|
112
|
Abstract
Polyploid cells, which contain multiple copies of the typically diploid genome, are widespread in plants and animals. Polyploidization can be developmentally programmed or stress induced, and arises from either cell-cell fusion or a process known as endoreplication, in which cells replicate their DNA but either fail to complete cytokinesis or to progress through M phase entirely. Polyploidization offers cells several potential fitness benefits, including the ability to increase cell size and biomass production without disrupting cell and tissue structure, and allowing improved cell longevity through higher tolerance to genomic stress and apoptotic signals. Accordingly, recent studies have uncovered crucial roles for polyploidization in compensatory cell growth during tissue regeneration in the heart, liver, epidermis and intestine. Here, we review current knowledge of the molecular pathways that generate polyploidy and discuss how polyploidization is used in tissue repair and regeneration.
Collapse
Affiliation(s)
| | - Bruce A Edgar
- Huntsman Cancer Institute, Salt Lake City, UT 84112, USA
| |
Collapse
|
113
|
Yao F, Zhou Z, Kim J, Hang Q, Xiao Z, Ton BN, Chang L, Liu N, Zeng L, Wang W, Wang Y, Zhang P, Hu X, Su X, Liang H, Sun Y, Ma L. SKP2- and OTUD1-regulated non-proteolytic ubiquitination of YAP promotes YAP nuclear localization and activity. Nat Commun 2018; 9:2269. [PMID: 29891922 PMCID: PMC5995870 DOI: 10.1038/s41467-018-04620-y] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 05/07/2018] [Indexed: 12/19/2022] Open
Abstract
Dysregulation of YAP localization and activity is associated with pathological conditions such as cancer. Although activation of the Hippo phosphorylation cascade is known to cause cytoplasmic retention and inactivation of YAP, emerging evidence suggests that YAP can be regulated in a Hippo-independent manner. Here, we report that YAP is subject to non-proteolytic, K63-linked polyubiquitination by the SCFSKP2 E3 ligase complex (SKP2), which is reversed by the deubiquitinase OTUD1. The non-proteolytic ubiquitination of YAP enhances its interaction with its nuclear binding partner TEAD, thereby inducing YAP's nuclear localization, transcriptional activity, and growth-promoting function. Independently of Hippo signaling, mutation of YAP's K63-linkage specific ubiquitination sites K321 and K497, depletion of SKP2, or overexpression of OTUD1 retains YAP in the cytoplasm and inhibits its activity. Conversely, overexpression of SKP2 or loss of OTUD1 leads to nuclear localization and activation of YAP. Altogether, our study sheds light on the ubiquitination-mediated, Hippo-independent regulation of YAP.
Collapse
Affiliation(s)
- Fan Yao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Zhicheng Zhou
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jongchan Kim
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Qinglei Hang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Zhenna Xiao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Baochau N Ton
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Liang Chang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Na Liu
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Liyong Zeng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Wenqi Wang
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA
| | - Yumeng Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Peijing Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Xiaoyu Hu
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xiaohua Su
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Han Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yutong Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Li Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA. .,The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
114
|
|
115
|
Liu Z, Li Y, Li W, Xiao C, Liu D, Dong C, Zhang M, Mäkilä E, Kemell M, Salonen J, Hirvonen JT, Zhang H, Zhou D, Deng X, Santos HA. Multifunctional Nanohybrid Based on Porous Silicon Nanoparticles, Gold Nanoparticles, and Acetalated Dextran for Liver Regeneration and Acute Liver Failure Theranostics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1703393. [PMID: 29024054 DOI: 10.1002/adma.201703393] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 08/24/2017] [Indexed: 05/17/2023]
Abstract
Herein, a novel nanohybrid based on porous silicon, gold nanoparticles (Au NPs), and acetalated dextran (DPSi/DAu@AcDEX) is reported to encapsulate and deliver one drug and increase the computer tomography (CT) signal for acute-liver-failure (ALF) theranostics. A microfluidic-assisted method is used to co-encapsulate different NPs in a single step. By alternating the surface properties of different NPs and by modulating the composition of the organic phase, both PSi and Au NPs are effectively encapsulated into the polymer matrix simultaneously, thus further achieving a multifunctional application. This system can be used to identify pathologically changes in the tissues and selectively deliver drugs to these sites. The loading of a therapeutic compound (XMU-MP-1) improves the drug solubility, precise, in situ drug delivery, and the drug-functioning time. In vivo results confirm a superior treatment effect and better compliance of this newly developed nanoformulation than free compound. This nanosystem plays a crucial role in targeting the lesion area, thus increasing the local drug concentration important for ALF reverse-effect. Moreover, the residence of Au NPs within the matrix further endows our system for CT-imaging. Altogether, these results support that this nanohybrid is a potential theranostic platform for ALF.
Collapse
Affiliation(s)
- Zehua Liu
- Division of Pharmaceutical Chemistry and Technology, Drug Research Program, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Yunzhan Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling, Network, School of Life Sciences, Xiamen University, 361101, Fujian, China
- State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, School of Life Sciences, Xiamen University, 361101, Fujian, China
| | - Wei Li
- Division of Pharmaceutical Chemistry and Technology, Drug Research Program, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Chen Xiao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling, Network, School of Life Sciences, Xiamen University, 361101, Fujian, China
- State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, School of Life Sciences, Xiamen University, 361101, Fujian, China
| | - Dongfei Liu
- Division of Pharmaceutical Chemistry and Technology, Drug Research Program, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, FI-00014, Helsinki, Finland
| | - Chao Dong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling, Network, School of Life Sciences, Xiamen University, 361101, Fujian, China
- State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, School of Life Sciences, Xiamen University, 361101, Fujian, China
| | - Ming Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling, Network, School of Life Sciences, Xiamen University, 361101, Fujian, China
- State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, School of Life Sciences, Xiamen University, 361101, Fujian, China
| | - Ermei Mäkilä
- Laboratory of Industrial Physics, Department of Physics, University of Turku, FI-20014, Turku, Finland
| | - Marianna Kemell
- Department of Chemistry, University of Helsinki, FI-00014, Helsinki, Finland
| | - Jarno Salonen
- Laboratory of Industrial Physics, Department of Physics, University of Turku, FI-20014, Turku, Finland
| | - Jouni T Hirvonen
- Division of Pharmaceutical Chemistry and Technology, Drug Research Program, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Hongbo Zhang
- Department of Pharmaceutical Science, Åbo Akademi University, FI-20520, Turku, Finland
- Turku Center of Biotechnology, Åbo Akademi University, FI-20520, Turku, Finland
| | - Dawang Zhou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling, Network, School of Life Sciences, Xiamen University, 361101, Fujian, China
- State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, School of Life Sciences, Xiamen University, 361101, Fujian, China
| | - Xianming Deng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling, Network, School of Life Sciences, Xiamen University, 361101, Fujian, China
- State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, School of Life Sciences, Xiamen University, 361101, Fujian, China
| | - Hélder A Santos
- Division of Pharmaceutical Chemistry and Technology, Drug Research Program, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, FI-00014, Helsinki, Finland
| |
Collapse
|
116
|
Vittoria MA, Shenk EM, O'Rourke KP, Bolgioni AF, Lim S, Kacprzak V, Quinton RJ, Ganem NJ. A genome-wide microRNA screen identifies regulators of tetraploid cell proliferation. Mol Biol Cell 2018; 29:1682-1692. [PMID: 29791254 PMCID: PMC6080710 DOI: 10.1091/mbc.e18-02-0141] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Tetraploid cells, which are most commonly generated by errors in cell division, are genomically unstable and have been shown to promote tumorigenesis. Recent genomic studies have estimated that ∼40% of all solid tumors have undergone a genome-doubling event during their evolution, suggesting a significant role for tetraploidy in driving the development of human cancers. To safeguard against the deleterious effects of tetraploidy, nontransformed cells that fail mitosis and become tetraploid activate both the Hippo and p53 tumor suppressor pathways to restrain further proliferation. Tetraploid cells must therefore overcome these antiproliferative barriers to ultimately drive tumor development. However, the genetic routes through which spontaneously arising tetraploid cells adapt to regain proliferative capacity remain poorly characterized. Here, we conducted a comprehensive gain-of-function genome-wide screen to identify microRNAs (miRNAs) that are sufficient to promote the proliferation of tetraploid cells. Our screen identified 23 miRNAs whose overexpression significantly promotes tetraploid proliferation. The vast majority of these miRNAs facilitate tetraploid growth by enhancing mitogenic signaling pathways (e.g., miR-191-3p); however, we also identified several miRNAs that impair the p53/p21 pathway (e.g., miR-523-3p), and a single miRNA (miR-24-3p) that potently inactivates the Hippo pathway via down-regulation of the tumor suppressor gene NF2. Collectively, our data reveal several avenues through which tetraploid cells may regain the proliferative capacity necessary to drive tumorigenesis.
Collapse
Affiliation(s)
- Marc A Vittoria
- Department of Pharmacology and Experimental Therapeutics, University School of Medicine, Boston, MA 02118
| | - Elizabeth M Shenk
- Department of Pharmacology and Experimental Therapeutics, University School of Medicine, Boston, MA 02118.,Department of Biomedical Engineering, Boston University, Boston, MA 02118
| | - Kevin P O'Rourke
- Weill Cornell Medicine/Rockefeller University/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10065
| | - Amanda F Bolgioni
- Department of Pharmacology and Experimental Therapeutics, University School of Medicine, Boston, MA 02118
| | - Sanghee Lim
- Department of Pharmacology and Experimental Therapeutics, University School of Medicine, Boston, MA 02118
| | - Victoria Kacprzak
- Department of Pharmacology and Experimental Therapeutics, University School of Medicine, Boston, MA 02118
| | - Ryan J Quinton
- Department of Pharmacology and Experimental Therapeutics, University School of Medicine, Boston, MA 02118
| | - Neil J Ganem
- Department of Pharmacology and Experimental Therapeutics, University School of Medicine, Boston, MA 02118.,Division of Hematology and Oncology, Department of Medicine, Boston University School of Medicine, Boston, MA 02118
| |
Collapse
|
117
|
Role of Hippo signaling in regulating immunity. Cell Mol Immunol 2018; 15:1003-1009. [PMID: 29568120 DOI: 10.1038/s41423-018-0007-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/14/2018] [Accepted: 01/15/2018] [Indexed: 12/16/2022] Open
Abstract
The Hippo signaling pathway has been established as a key regulator of organ size control, tumor suppression, and tissue regeneration in multiple organisms. Recently, emerging evidence has indicated that Hippo signaling might play an important role in regulating the immune system in both Drosophila and mammals. In particular, patients bearing a loss-of-function mutation of MST1 are reported to have an autosomal recessive primary immunodeficiency syndrome. MST1/2 kinases, the mammalian orthologs of Drosophila Hippo, may activate the non-canonical Hippo signaling pathway via MOB1A/B and/or NDR1/2 or cross-talk with other essential signaling pathways to regulate both innate and adaptive immunity. In this review, we present and discuss recent findings of cellular mechanisms/functions of Hippo signaling in the innate immunity in Drosophila and in mammals, T cell immunity, as well as the implications of Hippo signaling for tumor immunity.
Collapse
|
118
|
Shu Z, Row S, Deng WM. Endoreplication: The Good, the Bad, and the Ugly. Trends Cell Biol 2018; 28:465-474. [PMID: 29567370 DOI: 10.1016/j.tcb.2018.02.006] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/08/2018] [Accepted: 02/15/2018] [Indexed: 01/08/2023]
Abstract
To battle adverse internal and external conditions and maintain homeostasis, diploid organisms employ various cellular processes, such as proliferation and apoptosis. In some tissues, an alternative mechanism, endoreplication, is employed toward similar goals. Endoreplication is an evolutionarily conserved cell cycle program during which cells replicate their genomes without division, resulting in polyploid cells. Importantly, endoreplication is reported to be indispensable for normal development and organ formation across various organisms, from fungi to humans. In recent years, more attention has been drawn to delineating its connections to wound healing and tumorigenesis. In this Review, we discuss mechanisms of endoreplication and polyploidization, their essential and positive roles in normal development and tissue homeostasis, and the relationship between polyploidy and cancer.
Collapse
Affiliation(s)
- Zhiqiang Shu
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Sarayu Row
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Wu-Min Deng
- Department of Biological Science, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
119
|
Cong B, Ohsawa S, Igaki T. JNK and Yorkie drive tumor progression by generating polyploid giant cells in Drosophila. Oncogene 2018. [DOI: 10.1038/s41388-018-0201-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
120
|
Zhang S, Zhou K, Luo X, Li L, Tu HC, Sehgal A, Nguyen LH, Zhang Y, Gopal P, Tarlow BD, Siegwart DJ, Zhu H. The Polyploid State Plays a Tumor-Suppressive Role in the Liver. Dev Cell 2018; 44:447-459.e5. [PMID: 29429824 DOI: 10.1016/j.devcel.2018.01.010] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 12/06/2017] [Accepted: 01/09/2018] [Indexed: 12/17/2022]
Abstract
Most cells in the liver are polyploid, but the functional role of polyploidy is unknown. Polyploidization occurs through cytokinesis failure and endoreduplication around the time of weaning. To interrogate polyploidy while avoiding irreversible manipulations of essential cell-cycle genes, we developed orthogonal mouse models to transiently and potently alter liver ploidy. Premature weaning, as well as knockdown of E2f8 or Anln, allowed us to toggle between diploid and polyploid states. While there was no detectable impact of ploidy alterations on liver function, metabolism, or regeneration, mice with more polyploid hepatocytes suppressed tumorigenesis and mice with more diploid hepatocytes accelerated tumorigenesis in mutagen- and high-fat-induced models. Mechanistically, the diploid state was more susceptible to Cas9-mediated tumor-suppressor loss but was similarly susceptible to MYC oncogene activation, indicating that polyploidy differentially protected the liver from distinct genomic aberrations. This suggests that polyploidy evolved in part to prevent malignant outcomes of liver injury.
Collapse
Affiliation(s)
- Shuyuan Zhang
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kejin Zhou
- Simmons Comprehensive Cancer Center, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xin Luo
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lin Li
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ho-Chou Tu
- Alnylam Pharmaceuticals, Cambridge, MA 02142, USA
| | | | - Liem H Nguyen
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yu Zhang
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Purva Gopal
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Branden D Tarlow
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Daniel J Siegwart
- Simmons Comprehensive Cancer Center, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hao Zhu
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
121
|
Yeung YT, Yin S, Lu B, Fan S, Yang R, Bai R, Zhang C, Bode AM, Liu K, Dong Z. Losmapimod Overcomes Gefitinib Resistance in Non-small Cell Lung Cancer by Preventing Tetraploidization. EBioMedicine 2018; 28:51-61. [PMID: 29398601 PMCID: PMC5835564 DOI: 10.1016/j.ebiom.2018.01.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 01/18/2018] [Accepted: 01/18/2018] [Indexed: 02/03/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) is known to play a critical role in non-small cell lung cancer (NSCLC). Constitutively active EGFR mutations, including in-frame deletion in exon 19 and L858R point mutation in exon 21, contribute about 90% of all EGFR-activating mutations in NSCLC. Although oral EGFR-tyrosine kinase inhibitors (TKIs), gefitinib and erlotinib, show dramatic clinical efficacy with significantly prolonged progression-free survival in patients harboring these EGFR-activating mutations, most of these patients will eventually develop acquired resistance. Researchers have recently named genomic instability as one of the hallmarks of cancer. Genomic instability usually involves a transient phase of polyploidization, in particular tetraploidization. Tetraploid cells can undergo asymmetric cell division or chromosome loss, leading to tumor heterogeneity and multidrug resistance. Therefore, identification of signaling pathways involved in tetraploidization is crucial in overcoming drug resistance. In our present study, we found that gefitinib could activate YAP-MKK3/6-p38 MAPK-STAT3 signaling and induce tetraploidization in gefitinib-resistance cells. Using p38 MAPK inhibitors, SB203580 and losmapimod, we could eliminate gefitinib-induced tetraploidization and overcome gefitinib-resistance. In addition, shRNA approach to knockdown p38α MAPK could prevent tetraploidy formation and showed significant inhibition of cancer cell growth. Finally, in an in vivo study, losmapimod could successfully overcome gefitinib resistance using an in-house established patient-derived xenograft (PDX) mouse model. Overall, these findings suggest that losmapimod could be a potential clinical agent to overcome gefitinib resistance in NSCLC. Gefitinib induces tetraploidy formation in gefitinib-resistant NSCLC cells YAP-MKK3/6-p38 MAPK signaling is essential for tetraploidization Losmapimod, a p38 MAPK inhibitor, overcomes gefitinib-resistance both in vitro and PDX xenograft mode
Gefitinib is a targeted drug therapy in non-small cell lung cancer (NSCLC) which shows dramatic clinical efficacy. However, most of these patients eventually develop drug resistance. Although researchers have identified different mechanisms contributing to the drug resistance, developing a single therapy to overcome the drug resistance remains difficult. In this study, we find that tetraploidization of cancer cells through YAP-MKK3/6-p38 MAPK signaling could be one of the common mechanisms in developing the drug resistance. By using losmapimod, we could eliminate tetraploidization and overcome gefitinib resistance in an animal model suggesting that losmapimod could be a potential clinical agent to overcome gefitinib resistance in NSCLC.
Collapse
Affiliation(s)
- Yiu To Yeung
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China; The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Shuying Yin
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Bingbing Lu
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China; Pathophysiology Department, Basic Medical College, Zhengzhou University, Zhengzhou, Henan, China
| | - Suyu Fan
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Ran Yang
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Ruihua Bai
- The Affiliated Cancer Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Chengjuan Zhang
- The Affiliated Cancer Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Kangdong Liu
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China; The Affiliated Cancer Hospital, Zhengzhou University, Zhengzhou, Henan, China; Pathophysiology Department, Basic Medical College, Zhengzhou University, Zhengzhou, Henan, China; Collaborative Innovation Center, Cancer Chemoprevention of Henan, Zhengzhou, Henan, China.
| | - Zigang Dong
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China; The Hormel Institute, University of Minnesota, Austin, MN, USA; The Affiliated Cancer Hospital, Zhengzhou University, Zhengzhou, Henan, China; Pathophysiology Department, Basic Medical College, Zhengzhou University, Zhengzhou, Henan, China; Collaborative Innovation Center, Cancer Chemoprevention of Henan, Zhengzhou, Henan, China.
| |
Collapse
|
122
|
Abstract
The cellular response to external stress signals and DNA damage depends on the activity of ubiquitin ligases (E3s), which regulate numerous cellular processes, including homeostasis, metabolism and cell cycle progression. E3s recognize, interact with and ubiquitylate protein substrates in a temporally and spatially regulated manner. The topology of the ubiquitin chains dictates the fate of the substrates, marking them for recognition and degradation by the proteasome or altering their subcellular localization or assembly into functional complexes. Both genetic and epigenetic alterations account for the deregulation of E3s in cancer. Consequently, the stability and/or activity of E3 substrates are also altered, in some cases leading to downregulation of tumour-suppressor activities and upregulation of oncogenic activities. A better understanding of the mechanisms underlying E3 regulation and function in tumorigenesis is expected to identify novel prognostic markers and to enable the development of the next generation of anticancer therapies. This Review summarizes the oncogenic and tumour-suppressor roles of selected E3s and highlights novel opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Daniela Senft
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92130, USA
| | - Jianfei Qi
- University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Ze'ev A Ronai
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92130, USA
- Technion Integrated Cancer Center, Technion, Israel Institute of Technology Faculty of Medicine, Haifa 31096, Israel
| |
Collapse
|
123
|
Ren H, Zhang Y, Zhu H. MiR-339 depresses cell proliferation via directly targeting S-phase kinase-associated protein 2 mRNA in lung cancer. Thorac Cancer 2018; 9:408-414. [PMID: 29377618 PMCID: PMC5832474 DOI: 10.1111/1759-7714.12597] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 12/21/2022] Open
Abstract
Background S‐phase kinase‐associated protein 2 (Skp2) takes great part in the development of multiple tumors. However, the post‐transcriptional modulation mechanism of Skp2 remains unclear. Here, we present a new regulatory microRNA of Skp2, miR‐339, which directly targets Skp2 to inhibit cell proliferation in lung cancer. Methods The expression of miR‐339 or Skp2 in lung cancer samples was tested by real time‐PCR. The correlation between miR‐339 and Skp2 in lung cancer samples was analyzed by Pearson's correlation coefficient. The effect of miR‐339 or anti‐miR‐339 on Skp2 was evaluated by immunoblotting. The luciferase reporter gene assay was used to test the targeting of miR‐339 on Skp2. 3‐(4,5‐Dimethylthiazol‐2‐yl)‐2,5 diphenyltetrazolium bromide and colony formation analysis were applied to examine the function of miR‐339 targeting Skp2 in lung cancer cells. Results The negative correlation of miR‐339 with Skp2 was found in clinical human lung cancer tissues. Furthermore, Skp2 expression was obviously abated by miR‐339 in lung cancer A549 cells. Mechanistically, we used bioinformatics to predict that miR‐339 could target the 3′‐untranslated region of Skp2 mRNA. Luciferase reporter gene assay demonstrated that miR‐339 could decrease the luciferase activities of the 3′‐untranslated region vector of Skp2. In terms of function, ectopic miR‐339 expression significantly suppressed cell proliferation in lung cancer. Overexpressed Skp2 accelerated miR‐339‐bated proliferation of lung cancer cells. MiR‐339 inhibitor promoted cell proliferation in lung cancer, but Skp2 RNA interference reversed miR‐339 inhibitor‐driven cell proliferation. Conclusion MiR‐339 targets the 3′‐untranslated region of Skp2 mRNA to depress the proliferation of lung cancer cells.
Collapse
Affiliation(s)
- Hong Ren
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yueqiao Zhang
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hongzhou Zhu
- Department of Interventional, Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
124
|
Ilyas S, Fischbach SR, Bronk SF, Hirsova P, Krishnan A, Dhanasekaran R, Smadbeck JB, Smoot RL, Vasmatzis G, Gores GJ. YAP-associated chromosomal instability and cholangiocarcinoma in mice. Oncotarget 2018; 9:5892-5905. [PMID: 29464042 PMCID: PMC5814182 DOI: 10.18632/oncotarget.23638] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 12/08/2017] [Indexed: 12/15/2022] Open
Abstract
Deregulated Hippo pathway signaling is associated with aberrant activation of the downstream effector yes-associated protein (YAP), an emerging key oncogenic mediator in cholangiocarcinoma (CCA). In our prior work, we have demonstrated that biliary transduction of YAP along with Akt as a permissive factor induces CCA in mice. To further delineate the mechanisms associated with YAP-associated biliary oncogenesis, we have established seven malignant murine cell lines from our YAP-driven murine CCA model. These cells express the CCA markers SRY (Sex Determining Region Y)-Box 9 (SOX9), cytokeratin (CK)-7 and 19 but lack hepatocyte nuclear factor 4 alpha and alpha-smooth muscle actin, markers of hepatocellular carcinoma and cancer-associated fibroblasts, respectively. Notably, the murine CCA cells can be readily implanted into mouse livers with resultant orthotopic tumor formation. In this unique syngeneic orthotopic murine model, tumors exhibit histopathologic features resembling human CCA. We analyzed transcriptome data from YAP-associated parent CCA tumor nodules and identified a gene expression pattern associated with chromosomal instability, known as CIN25. Similarly, mate-pair sequencing of the murine CCA cells revealed chromosomal missegregation with gains and losses of several whole chromosomes demonstrating aneuploidy. Of the CIN25 genes, forkhead box M1 (Foxm1), a key cell cycle regulator, was the most significantly upregulated CIN25 gene product. Accordingly, small interfering RNA (siRNA)-mediated silencing of YAP as well as FOXM1 inhibition with thiostrepton induced CCA cell death. These preclinical data imply a role for YAP-mediated chromosomal instability in cholangiocarcinoma, and suggest FOXM1 inhibition as a therapeutic target for CCA.
Collapse
Affiliation(s)
- Sumera Ilyas
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, 55905 MN, USA
| | | | - Steven F. Bronk
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, 55905 MN, USA
| | - Petra Hirsova
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, 55905 MN, USA
- Institute of Clinical Biochemistry and Diagnostics, Charles University, Faculty of Medicine and University Hospital Hradec Kralove, Hradec Kralove 500 05, Czech Republic
- Department of Pharmacology, Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove 500 03, Czech Republic
| | - Anuradha Krishnan
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, 55905 MN, USA
| | - Renumathy Dhanasekaran
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, 94304 CA, USA
| | - James B. Smadbeck
- Department of Biomarker Discovery, Center for Individualized Medicine, Mayo Clinic, Rochester, 55905 MN, USA
| | - Rory L. Smoot
- Department of Surgery, Mayo Clinic, Rochester, 55905 MN, USA
| | - George Vasmatzis
- Department of Biomarker Discovery, Center for Individualized Medicine, Mayo Clinic, Rochester, 55905 MN, USA
| | - Gregory J. Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, 55905 MN, USA
| |
Collapse
|
125
|
Hou T, Li Z, Zhao Y, Zhu WG. Mechanisms controlling the anti-neoplastic functions of FoxO proteins. Semin Cancer Biol 2017; 50:101-114. [PMID: 29155239 DOI: 10.1016/j.semcancer.2017.11.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/18/2017] [Accepted: 11/14/2017] [Indexed: 02/06/2023]
Abstract
The Forkhead box O (FoxO) proteins comprise a family of evolutionarily conserved transcription factors that predominantly function as tumor suppressors. These proteins assume diverse roles in the cellular anti-neoplastic response, including regulation of apoptosis and autophagy, cancer metabolism, cell-cycle arrest, oxidative stress and the DNA damage response. More recently, FoxO proteins have been implicated in cancer immunity and cancer stem-cell (CSC) homeostasis. Interestingly, in some sporadic sub-populations, FoxO protein function may also be manipulated by factors such as β-catenin whereby they instead can facilitate cancer progression via maintenance of CSC properties or promoting drug resistance or metastasis and invasion. This review highlights the essential biological functions of FoxOs and explores the areas that may be exploited in FoxO protein signaling pathways in the development of novel cancer therapeutic agents.
Collapse
Affiliation(s)
- Tianyun Hou
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen 518060, China; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Zhiming Li
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen 518060, China; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Ying Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Wei-Guo Zhu
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen 518060, China; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
126
|
Ma X, Zhao J, Yang F, Liu H, Qi W. Ubiquitin conjugating enzyme E2 L3 promoted tumor growth of NSCLC through accelerating p27kip1 ubiquitination and degradation. Oncotarget 2017; 8:84193-84203. [PMID: 29137415 PMCID: PMC5663587 DOI: 10.18632/oncotarget.20449] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/26/2017] [Indexed: 02/03/2023] Open
Abstract
The molecular pathogenesis of human lung cancer has not been completely clarified. Here, we reported that UBE2L3, a member of the ubiquitin-conjugating enzymes (E2s), were overexpressed in non-small-cell lung cancer (NSCLC) tissues compared with the non-tumor tissues. High expression of UBE2L3 was correlated with advanced tumor stage and adverse outcomes. Knockdown of UBE2L3 inhibited NSCLC cell growth while ectopic expression of UBE2L3 promoted NSCLC cell growth in a cell cycle dependent manner. The results of subcutaneous tumor xenograft studies revealed that knockdown of UBE2L3 attenuated the in vivo tumor growth. Mechanistically, we observed that UBE2L3 could interact with F-box protein Skp2, a member of the SCF (Skp2) ubiquitin ligase complex, and thus promoted the ubiquitination and proteasomal degradation of p27kip1. Furthermore, NSCLC cases with high level of UBE2L3 and low level of p27kip1 had worst prognosis, suggesting that combination of UBE2L3 and p27kip1 is a more powerful prognostic marker for NSCLC patients. Taken together, the current study presented a novel marker for predicting prognosis and a potential therapeutic target for NSCLC patients.
Collapse
Affiliation(s)
- Xingjie Ma
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Junjie Zhao
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Fan Yang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Haitao Liu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Weibo Qi
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| |
Collapse
|