101
|
Ichikawa DM, Corbi-Verge C, Shen MJ, Snider J, Wong V, Stagljar I, Kim PM, Noyes MB. A Multireporter Bacterial 2-Hybrid Assay for the High-Throughput and Dynamic Assay of PDZ Domain-Peptide Interactions. ACS Synth Biol 2019; 8:918-928. [PMID: 30969105 DOI: 10.1021/acssynbio.8b00499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The accurate determination of protein-protein interactions has been an important focus of molecular biology toward which much progress has been made due to the continuous development of existing and new technologies. However, current methods can have limitations, including scale and restriction to high affinity interactions, limiting our understanding of a large subset of these interactions. Here, we describe a modified bacterial-hybrid assay that employs combined selectable and scalable reporters that enable the sensitive screening of large peptide libraries followed by the sorting of positive interactions by the level of reporter output. We have applied this tool to characterize a set of human and E. coli PDZ domains. Our results are consistent with prior characterization of these proteins, and the improved sensitivity increases our ability to predict known and novel in vivo binding partners. This approach allows for the recovery of a wide range of affinities with a high throughput method that does not sacrifice the scale of the screen.
Collapse
Affiliation(s)
- David M. Ichikawa
- Department of Biochemistry Molecular Pharmacology and Institute for Systems Genetics, NYU Langone Health, New York, New York 10016, United States
| | - Carles Corbi-Verge
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Michael J. Shen
- Department of Biochemistry Molecular Pharmacology and Institute for Systems Genetics, NYU Langone Health, New York, New York 10016, United States
| | - Jamie Snider
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Victoria Wong
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Igor Stagljar
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Philip M. Kim
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Department of Computer Science, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Marcus B. Noyes
- Department of Biochemistry Molecular Pharmacology and Institute for Systems Genetics, NYU Langone Health, New York, New York 10016, United States
| |
Collapse
|
102
|
Homeobox Genes and Hepatocellular Carcinoma. Cancers (Basel) 2019; 11:cancers11050621. [PMID: 31058850 PMCID: PMC6562709 DOI: 10.3390/cancers11050621] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/27/2019] [Accepted: 04/27/2019] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common type of cancer, and is the third leading cause of cancer-related deaths each year. It involves a multi-step progression and is strongly associated with chronic inflammation induced by the intake of environmental toxins and/or viral infections (i.e., hepatitis B and C viruses). Although several genetic dysregulations are considered to be involved in disease progression, the detailed regulatory mechanisms are not well defined. Homeobox genes that encode transcription factors with homeodomains control cell growth, differentiation, and morphogenesis in embryonic development. Recently, more aberrant expressions of Homeobox genes were found in a wide variety of human cancer, including HCC. In this review, we summarize the currently available evidence related to the role of Homeobox genes in the development of HCC. The objective is to determine the roles of this conserved transcription factor family and its potential use as a therapeutic target in future investigations.
Collapse
|
103
|
Brandt JP, Rossillo M, Du Z, Ichikawa D, Barnes K, Chen A, Noyes M, Bao Z, Ringstad N. Lineage context switches the function of a C. elegans Pax6 homolog in determining a neuronal fate. Development 2019; 146:dev168153. [PMID: 30890567 PMCID: PMC6503985 DOI: 10.1242/dev.168153] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 03/11/2019] [Indexed: 01/26/2023]
Abstract
The sensory nervous system of C. elegans comprises cells with varied molecular and functional characteristics, and is, therefore, a powerful model for understanding mechanisms that generate neuronal diversity. We report here that VAB-3, a C. elegans homolog of the homeodomain-containing protein Pax6, has opposing functions in regulating expression of a specific chemosensory fate. A homeodomain-only short isoform of VAB-3 is expressed in BAG chemosensory neurons, where it promotes gene expression and cell function. In other cells, a long isoform of VAB-3, comprising a Paired homology domain and a homeodomain, represses expression of ETS-5, a transcription factor required for expression of BAG fate. Repression of ets-5 requires the Eyes Absent homolog EYA-1 and the Six-class homeodomain protein CEH-32. We determined sequences that mediate high-affinity binding of ETS-5, VAB-3 and CEH-32. The ets-5 locus is enriched for ETS-5-binding sites but lacks sequences that bind VAB-3 and CEH-32, suggesting that these factors do not directly repress ets-5 expression. We propose that a promoter-selection system together with lineage-specific expression of accessory factors allows VAB-3/Pax6 to either promote or repress expression of specific cell fates in a context-dependent manner. This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Julia P Brandt
- Skirball Institute of Biomolecular Medicine, Helen L. and Martin S. Kimmel Center for Biology and Medicine, and Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| | - Mary Rossillo
- Skirball Institute of Biomolecular Medicine, Helen L. and Martin S. Kimmel Center for Biology and Medicine, and Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| | - Zhuo Du
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - David Ichikawa
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA
| | - Kristopher Barnes
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Allison Chen
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Marcus Noyes
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA
| | - Zhirong Bao
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Niels Ringstad
- Skirball Institute of Biomolecular Medicine, Helen L. and Martin S. Kimmel Center for Biology and Medicine, and Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| |
Collapse
|
104
|
The human HOXA9 protein uses paralog-specific residues of the homeodomain to interact with TALE-class cofactors. Sci Rep 2019; 9:5664. [PMID: 30952900 PMCID: PMC6450960 DOI: 10.1038/s41598-019-42096-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 03/22/2019] [Indexed: 12/15/2022] Open
Abstract
HOX proteins interact with PBX and MEIS cofactors, which belong to the TALE-class of homeodomain (HD)-containing transcription factors. Although the formation of HOX-PBX complexes depends on a unique conserved HOX motif called hexapeptide (HX), the additional presence of MEIS induces a remodeling of the interaction, leading to a global dispensability of the HX motif for trimeric complex formation in the large majority of HOX proteins. In addition, it was shown that the anterior HOXB3 and central HOXA7 and HOXC8 proteins could use different alternative TALE interaction motifs, with or without the HX motif, depending on the DNA-binding site and cell context. Here we dissected the molecular interaction properties of the human posterior HOXA9 protein with its TALE cofactors, PBX1 and MEIS1. Analysis was performed on different DNA-binding sites in vitro and by doing Bimolecular Fluorescence Complementation (BiFC) in different cell lines. Notably, we observed that the HOXA9-TALE interaction relies consistently on the redundant activity of the HX motif and two paralog-specific residues of the HOXA9 HD. Together with previous work, our results show that HOX proteins interact with their generic TALE cofactors through various modalities, ranging from unique and context-independent to versatile and context-dependent TALE binding interfaces.
Collapse
|
105
|
Luo Z, Rhie SK, Farnham PJ. The Enigmatic HOX Genes: Can We Crack Their Code? Cancers (Basel) 2019; 11:cancers11030323. [PMID: 30866492 PMCID: PMC6468460 DOI: 10.3390/cancers11030323] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/01/2019] [Accepted: 03/01/2019] [Indexed: 02/06/2023] Open
Abstract
Homeobox genes (HOX) are a large family of transcription factors that direct the formation of many body structures during early embryonic development. There are 39 genes in the subgroup of homeobox genes that constitute the human HOX gene family. Correct embryonic development of flies and vertebrates is, in part, mediated by the unique and highly regulated expression pattern of the HOX genes. Disruptions in these fine-tuned regulatory mechanisms can lead to developmental problems and to human diseases such as cancer. Unfortunately, the molecular mechanisms of action of the HOX family of transcription factors are severely under-studied, likely due to idiosyncratic details of their structure, expression, and function. We suggest that a concerted and collaborative effort to identify interacting protein partners, produce genome-wide binding profiles, and develop HOX network inhibitors in a variety of human cell types will lead to a deeper understanding of human development and disease. Within, we review the technological challenges and possible approaches needed to achieve this goal.
Collapse
Affiliation(s)
- Zhifei Luo
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
| | - Suhn K Rhie
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
| | - Peggy J Farnham
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
106
|
Maiti S, Acharya B, Boorla VS, Manna B, Ghosh A, De S. Dynamic Studies on Intrinsically Disordered Regions of Two Paralogous Transcription Factors Reveal Rigid Segments with Important Biological Functions. J Mol Biol 2019; 431:1353-1369. [PMID: 30802457 DOI: 10.1016/j.jmb.2019.02.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/31/2019] [Accepted: 02/15/2019] [Indexed: 10/27/2022]
Abstract
Long stretches of intrinsically disordered regions (IDRs) are abundantly present in eukaryotic transcription factors. Although their biological significance is well appreciated, the underlying structural and dynamic mechanisms of their function are still not clear. Using solution NMR spectroscopy, we have studied the structural and dynamic features of two paralogous HOX transcription factors, SCR and DFD, from Drosophila. Both proteins have a conserved DNA-binding homeodomain and a long stretch of functionally important IDR. Using NMR dynamics, we determined flexibility of each residue in these proteins. The flexibility of the residues in the disordered region is not uniform. In both proteins, the IDRs have short stretches of consecutive residues with relatively less flexibility, that is, higher rigidity. We show that one such rigid segment is specifically recognized by another co-transcription factor, thus highlighting the importance of these rigid segments in IDR-mediated protein-protein interactions. Using molecular dynamics simulation, we further show that the rigid segments sample less conformations compared to the rest of the residues in the disordered region. The restrained conformational sampling of these rigid residues should lower the loss in conformational entropy during their interactions with binding partners resulting in sequence specific binding. This work provides experimental evidence of a "rigid-segment" model of IDRs, where functionally important rigid segments are connected by highly flexible linkers. Furthermore, a comparative study of IDRs in paralogous proteins reveals that in spite of low-sequence conservation, the rigid and flexible segments are sequentially maintained to preserve related functions and regulations of these proteins.
Collapse
Affiliation(s)
- Snigdha Maiti
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Bidisha Acharya
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Veda Sheersh Boorla
- Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Bharat Manna
- School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Amit Ghosh
- School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Soumya De
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India.
| |
Collapse
|
107
|
Orlomoski R, Bogle A, Loss J, Simons R, Dresch JM, Drewell RA, Spratt DE. Rapid and efficient purification of Drosophila homeodomain transcription factors for biophysical characterization. Protein Expr Purif 2019; 158:9-14. [PMID: 30738927 DOI: 10.1016/j.pep.2019.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 02/03/2019] [Indexed: 10/27/2022]
Abstract
Homeodomain transcription factors (HD TFs) are a large class of evolutionarily conserved DNA binding proteins that contain a basic 60-amino acid region required for binding to specific DNA sites. In Drosophila melanogaster, many of these HD TFs are expressed in the early embryo and control transcription of target genes in development through their interaction with cis-regulatory modules. Previous studies where some of the Drosophila HD TFs were purified required the use of strong denaturants (i.e. 6 M urea) and multiple chromatography columns, making the downstream biochemical examination of the isolated protein difficult. To circumvent these obstacles, we have developed a streamlined expression and purification protocol to produce large yields of Drosophila HD TFs. Using the HD TFs FUSHI-TARAZU (FTZ), ANTENNAPEDIA (ANTP), ABDOMINAL-A (ABD-A), ABDOMINAL-B (ABD-B), and ULTRABITHORAX (UBX) as examples, we demonstrate that our 3-day protocol involving the overexpression of His6-SUMO fusion constructs in E. coli followed by a Ni2+-IMAC, SUMO-tag cleavage with the SUMO protease Ulp1, and a heparin column purification produces pure, soluble protein in biological buffers around pH 7 in the absence of denaturants. Electrophoretic mobility shift assays (EMSA) confirm that the purified HD proteins are functional and nuclear magnetic resonance (NMR) spectra confirm that the purified HDs are well-folded. These purified HD TFs can be used in future biophysical experiments to structurally and biochemically characterize how and why these HD TFs bind to different DNA sequences and further probe how nucleotide differences contribute to TF-DNA specificity in the HD family.
Collapse
Affiliation(s)
- Rachel Orlomoski
- Gustaf H. Carlson School of Chemistry & Biochemistry, Clark University, 950 Main St, Worcester, MA, 01610, USA; Department of Biology, Clark University, 950 Main St, Worcester, MA, 01610, USA
| | - Aaron Bogle
- Gustaf H. Carlson School of Chemistry & Biochemistry, Clark University, 950 Main St, Worcester, MA, 01610, USA; Department of Biology, Clark University, 950 Main St, Worcester, MA, 01610, USA
| | - Jeanmarie Loss
- Gustaf H. Carlson School of Chemistry & Biochemistry, Clark University, 950 Main St, Worcester, MA, 01610, USA; Department of Biology, Clark University, 950 Main St, Worcester, MA, 01610, USA
| | - Rylee Simons
- Gustaf H. Carlson School of Chemistry & Biochemistry, Clark University, 950 Main St, Worcester, MA, 01610, USA; Department of Biology, Clark University, 950 Main St, Worcester, MA, 01610, USA
| | - Jacqueline M Dresch
- Department of Math & Computer Science, Clark University, 950 Main St, Worcester, MA, 01610, USA
| | - Robert A Drewell
- Department of Biology, Clark University, 950 Main St, Worcester, MA, 01610, USA.
| | - Donald E Spratt
- Gustaf H. Carlson School of Chemistry & Biochemistry, Clark University, 950 Main St, Worcester, MA, 01610, USA.
| |
Collapse
|
108
|
Yasuoka Y, Tando Y, Kubokawa K, Taira M. Evolution of cis-regulatory modules for the head organizer gene goosecoid in chordates: comparisons between Branchiostoma and Xenopus. ZOOLOGICAL LETTERS 2019; 5:27. [PMID: 31388442 PMCID: PMC6679436 DOI: 10.1186/s40851-019-0143-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 07/12/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND In cephalochordates (amphioxus), the notochord runs along the dorsal to the anterior tip of the body. In contrast, the vertebrate head is formed anterior to the notochord, as a result of head organizer formation in anterior mesoderm during early development. A key gene for the vertebrate head organizer, goosecoid (gsc), is broadly expressed in the dorsal mesoderm of amphioxus gastrula. Amphioxus gsc expression subsequently becomes restricted to the posterior notochord from the early neurula. This has prompted the hypothesis that a change in expression patterns of gsc led to development of the vertebrate head during chordate evolution. However, molecular mechanisms of head organizer evolution involving gsc have never been elucidated. RESULTS To address this question, we compared cis-regulatory modules of vertebrate organizer genes between amphioxus, Branchiostoma japonicum, and frogs, Xenopus laevis and Xenopus tropicalis. Here we show conservation and diversification of gene regulatory mechanisms through cis-regulatory modules for gsc, lim1/lhx1, and chordin in Branchiostoma and Xenopus. Reporter analysis using Xenopus embryos demonstrates that activation of gsc by Nodal/FoxH1 signal through the 5' upstream region, that of lim1 by Nodal/FoxH1 signal through the first intron, and that of chordin by Lim1 through the second intron, are conserved between amphioxus and Xenopus. However, activation of gsc by Lim1 and Otx through the 5' upstream region in Xenopus are not conserved in amphioxus. Furthermore, the 5' region of amphioxus gsc recapitulated the amphioxus-like posterior mesoderm expression of the reporter gene in transgenic Xenopus embryos. CONCLUSIONS On the basis of this study, we propose a model, in which the gsc gene acquired the cis-regulatory module bound with Lim1 and Otx at its 5' upstream region to be activated persistently in anterior mesoderm, in the vertebrate lineage. Because Gsc globally represses trunk (notochord) genes in the vertebrate head organizer, this cooption of gsc in vertebrates appears to have resulted in inhibition of trunk genes and acquisition of the head organizer and its derivative prechordal plate.
Collapse
Affiliation(s)
- Yuuri Yasuoka
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495 Japan
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045 Japan
| | - Yukiko Tando
- Center for Advance Marine Research, Ocean Research Institute, The University of Tokyo, 1-15-1, Minamidai, Nakano-ku, Tokyo, 164-8639 Japan
- Present address: Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575 Japan
| | - Kaoru Kubokawa
- Center for Advance Marine Research, Ocean Research Institute, The University of Tokyo, 1-15-1, Minamidai, Nakano-ku, Tokyo, 164-8639 Japan
- Present address: SIRC, Teikyo University, 2-11-1, Itabashi-ku, Tokyo, 173-8605 Japan
| | - Masanori Taira
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
- Present address: Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551 Japan
| |
Collapse
|
109
|
Phylogenetic and mutational analyses of human LEUTX, a homeobox gene implicated in embryogenesis. Sci Rep 2018; 8:17421. [PMID: 30479355 PMCID: PMC6258689 DOI: 10.1038/s41598-018-35547-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/06/2018] [Indexed: 02/06/2023] Open
Abstract
Recently, human PAIRED-LIKE homeobox transcription factor (TF) genes were discovered whose expression is limited to the period of embryo genome activation up to the 8-cell stage. One of these TFs is LEUTX, but its importance for human embryogenesis is still subject to debate. We confirmed that human LEUTX acts as a TAATCC-targeting transcriptional activator, like other K50-type PAIRED-LIKE TFs. Phylogenetic comparisons revealed that Leutx proteins are conserved across Placentalia and comprise two conserved domains, the homeodomain, and a Leutx-specific domain containing putative transcriptional activation motifs (9aaTAD). Examination of human genotype resources revealed 116 allelic variants in LEUTX. Twenty-four variants potentially affect function, but they occur only heterozygously at low frequency. One variant affects a DNA-specificity determining residue, mutationally reachable by a one-base transition. In vitro and in silico experiments showed that this LEUTX mutation (alanine to valine at position 54 in the homeodomain) results in a transactivational loss-of-function to a minimal TAATCC-containing promoter and a 36 bp motif enriched in genes involved in embryo genome activation. A compensatory change in residue 47 restores function. The results support the notion that human LEUTX functions as a transcriptional activator important for human embryogenesis.
Collapse
|
110
|
Zandvakili A, Uhl JD, Campbell I, Salomone J, Song YC, Gebelein B. The cis-regulatory logic underlying abdominal Hox-mediated repression versus activation of regulatory elements in Drosophila. Dev Biol 2018; 445:226-236. [PMID: 30468713 DOI: 10.1016/j.ydbio.2018.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 11/12/2018] [Indexed: 11/19/2022]
Abstract
During development diverse transcription factor inputs are integrated by cis-regulatory modules (CRMs) to yield cell-specific gene expression. Defining how CRMs recruit the appropriate combinations of factors to either activate or repress gene expression remains a challenge. In this study, we compare and contrast the ability of two CRMs within the Drosophila embryo to recruit functional Hox transcription factor complexes. The DCRE CRM recruits Ultrabithorax (Ubx) and Abdominal-A (Abd-A) Hox complexes that include the Extradenticle (Exd) and Homothorax (Hth) transcription factors to repress the Distal-less leg selector gene, whereas the RhoA CRM selectively recruits Abd-A/Exd/Hth complexes to activate rhomboid and stimulate Epidermal Growth Factor secretion in sensory cell precursors. By swapping binding sites between these elements, we found that the RhoA Exd/Hth/Hox site configuration that mediates Abd-A specific activation can convey transcriptional repression by both Ubx and Abd-A when placed into the DCRE. We further show that the orientation and spacing of Hox sites relative to additional binding sites within the RhoA and DCRE is critical to mediate cell- and segment-specific output. These results indicate that the configuration of Exd, Hth, and Hox site within RhoA is neither Abd-A specific nor activation specific. Instead Hox specific output is largely dependent upon the presence of appropriately spaced and oriented binding sites for additional TF inputs. Taken together, these studies provide insight into the cis-regulatory logic used to generate cell-specific outputs via recruiting Hox transcription factor complexes.
Collapse
Affiliation(s)
- Arya Zandvakili
- Graduate Program in Molecular and Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA; Medical-Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Juli D Uhl
- Graduate Program in Molecular and Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA; Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Ian Campbell
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
| | - Joseph Salomone
- Graduate Program in Molecular and Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA; Medical-Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Yuntao Charlie Song
- Graduate Program in Molecular and Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Brian Gebelein
- Division of Developmental Biology, Cincinnati Children's Hospital, 3333 Burnet Ave, MLC 7007, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
111
|
Joo S, Wang MH, Lui G, Lee J, Barnas A, Kim E, Sudek S, Worden AZ, Lee JH. Common ancestry of heterodimerizing TALE homeobox transcription factors across Metazoa and Archaeplastida. BMC Biol 2018; 16:136. [PMID: 30396330 PMCID: PMC6219170 DOI: 10.1186/s12915-018-0605-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/25/2018] [Indexed: 12/22/2022] Open
Abstract
Background Complex multicellularity requires elaborate developmental mechanisms, often based on the versatility of heterodimeric transcription factor (TF) interactions. Homeobox TFs in the TALE superclass are deeply embedded in the gene regulatory networks that orchestrate embryogenesis. Knotted-like homeobox (KNOX) TFs, homologous to animal MEIS, have been found to drive the haploid-to-diploid transition in both unicellular green algae and land plants via heterodimerization with other TALE superclass TFs, demonstrating remarkable functional conservation of a developmental TF across lineages that diverged one billion years ago. Here, we sought to delineate whether TALE-TALE heterodimerization is ancestral to eukaryotes. Results We analyzed TALE endowment in the algal radiations of Archaeplastida, ancestral to land plants. Homeodomain phylogeny and bioinformatics analysis partitioned TALEs into two broad groups, KNOX and non-KNOX. Each group shares previously defined heterodimerization domains, plant KNOX-homology in the KNOX group and animal PBC-homology in the non-KNOX group, indicating their deep ancestry. Protein-protein interaction experiments showed that the TALEs in the two groups all participated in heterodimerization. Conclusions Our study indicates that the TF dyads consisting of KNOX/MEIS and PBC-containing TALEs must have evolved early in eukaryotic evolution. Based on our results, we hypothesize that in early eukaryotes, the TALE heterodimeric configuration provided transcription-on switches via dimerization-dependent subcellular localization, ensuring execution of the haploid-to-diploid transition only when the gamete fusion is correctly executed between appropriate partner gametes. The TALE switch then diversified in the several lineages that engage in a complex multicellular organization. Electronic supplementary material The online version of this article (10.1186/s12915-018-0605-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sunjoo Joo
- Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada
| | - Ming Hsiu Wang
- Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada
| | - Gary Lui
- Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada
| | - Jenny Lee
- Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada
| | - Andrew Barnas
- Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada
| | - Eunsoo Kim
- Division of Invertebrate Zoology and Sackler Institute for Comparative Genomics, American Museum of Natural History, 200 Central Park West, New York, NY, 10024, USA
| | - Sebastian Sudek
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Rd, Moss Landing, CA, 95039, USA
| | - Alexandra Z Worden
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Rd, Moss Landing, CA, 95039, USA
| | - Jae-Hyeok Lee
- Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
112
|
Specificity landscapes unmask submaximal binding site preferences of transcription factors. Proc Natl Acad Sci U S A 2018; 115:E10586-E10595. [PMID: 30341220 DOI: 10.1073/pnas.1811431115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We have developed Differential Specificity and Energy Landscape (DiSEL) analysis to comprehensively compare DNA-protein interactomes (DPIs) obtained by high-throughput experimental platforms and cutting edge computational methods. While high-affinity DNA binding sites are identified by most methods, DiSEL uncovered nuanced sequence preferences displayed by homologous transcription factors. Pairwise analysis of 726 DPIs uncovered homolog-specific differences at moderate- to low-affinity binding sites (submaximal sites). DiSEL analysis of variants of 41 transcription factors revealed that many disease-causing mutations result in allele-specific changes in binding site preferences. We focused on a set of highly homologous factors that have different biological roles but "read" DNA using identical amino acid side chains. Rather than direct readout, our results indicate that DNA noncontacting side chains allosterically contribute to sculpt distinct sequence preferences among closely related members of transcription factor families.
Collapse
|
113
|
Liu Q, Onal P, Datta RR, Rogers JM, Schmidt-Ott U, Bulyk ML, Small S, Thornton JW. Ancient mechanisms for the evolution of the bicoid homeodomain's function in fly development. eLife 2018; 7:e34594. [PMID: 30298815 PMCID: PMC6177261 DOI: 10.7554/elife.34594] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 07/28/2018] [Indexed: 12/14/2022] Open
Abstract
The ancient mechanisms that caused developmental gene regulatory networks to diversify among distantly related taxa are not well understood. Here we use ancestral protein reconstruction, biochemical experiments, and developmental assays of transgenic animals carrying reconstructed ancestral genes to investigate how the transcription factor Bicoid (Bcd) evolved its central role in anterior-posterior patterning in flies. We show that most of Bcd's derived functions are attributable to evolutionary changes within its homeodomain (HD) during a phylogenetic interval >140 million years ago. A single substitution from this period (Q50K) accounts almost entirely for the evolution of Bcd's derived DNA specificity in vitro. In transgenic embryos expressing the reconstructed ancestral HD, however, Q50K confers activation of only a few of Bcd's transcriptional targets and yields a very partial rescue of anterior development. Adding a second historical substitution (M54R) confers regulation of additional Bcd targets and further rescues anterior development. These results indicate that two epistatically interacting mutations played a major role in the evolution of Bcd's controlling regulatory role in early development. They also show how ancestral sequence reconstruction can be combined with in vivo characterization of transgenic animals to illuminate the historical mechanisms of developmental evolution.
Collapse
Affiliation(s)
- Qinwen Liu
- Department of Ecology and EvolutionUniversity of ChicagoChicagoUnited States
| | - Pinar Onal
- Department of BiologyNew York UniversityNew YorkUnited States
| | - Rhea R Datta
- Department of BiologyNew York UniversityNew YorkUnited States
| | - Julia M Rogers
- Committee on Higher Degrees in BiophysicsHarvard UniversityCambridgeUnited States
- Division of Genetics, Department of MedicineBrigham and Women’s Hospital and Harvard Medical SchoolBostonUnited States
| | - Urs Schmidt-Ott
- Department of Organismal Biology and AnatomyUniversity of ChicagoChicagoUnited States
| | - Martha L Bulyk
- Committee on Higher Degrees in BiophysicsHarvard UniversityCambridgeUnited States
- Division of Genetics, Department of MedicineBrigham and Women’s Hospital and Harvard Medical SchoolBostonUnited States
- Department of PathologyBrigham and Women’s Hospital and Harvard Medical SchoolBostonUnited States
| | - Stephen Small
- Department of BiologyNew York UniversityNew YorkUnited States
| | - Joseph W Thornton
- Department of Ecology and EvolutionUniversity of ChicagoChicagoUnited States
- Department of Human GeneticsUniversity of ChicagoChicagoUnited States
| |
Collapse
|
114
|
Saurin AJ, Delfini MC, Maurel-Zaffran C, Graba Y. The Generic Facet of Hox Protein Function. Trends Genet 2018; 34:941-953. [PMID: 30241969 DOI: 10.1016/j.tig.2018.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/07/2018] [Accepted: 08/21/2018] [Indexed: 11/16/2022]
Abstract
Hox transcription factors are essential to promote morphological diversification of the animal body. A substantial number of studies have focused on how Hox proteins reach functional specificity, an issue that arises from the fact that these transcription factors control distinct developmental functions despite sharing similar molecular properties. In this review, we highlight that, besides specific functions, for which these transcription factors are renowned, Hox proteins also often have nonspecific functions. We next discuss some emerging principles of these generic functions and how they relate to specific functions and explore our current grasp of the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Andrew J Saurin
- Aix Marseille Univ, CNRS, IBDM, Marseille, France; http://www.ibdm.univ-mrs.fr/equipe/mechanisms-of-gene-regulation-by-transcription-factors/.
| | - Marie Claire Delfini
- Aix Marseille Univ, CNRS, IBDM, Marseille, France; http://www.ibdm.univ-mrs.fr/equipe/mechanisms-of-gene-regulation-by-transcription-factors/
| | - Corinne Maurel-Zaffran
- Aix Marseille Univ, CNRS, IBDM, Marseille, France; http://www.ibdm.univ-mrs.fr/equipe/mechanisms-of-gene-regulation-by-transcription-factors/
| | - Yacine Graba
- Aix Marseille Univ, CNRS, IBDM, Marseille, France; http://www.ibdm.univ-mrs.fr/equipe/mechanisms-of-gene-regulation-by-transcription-factors/.
| |
Collapse
|
115
|
Rogers JM, Bulyk ML. Diversification of transcription factor-DNA interactions and the evolution of gene regulatory networks. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2018; 10:e1423. [PMID: 29694718 PMCID: PMC6202284 DOI: 10.1002/wsbm.1423] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/23/2018] [Accepted: 03/11/2018] [Indexed: 01/17/2023]
Abstract
Sequence-specific transcription factors (TFs) bind short DNA sequences in the genome to regulate the expression of target genes. In the last decade, numerous technical advances have enabled the determination of the DNA-binding specificities of many of these factors. Large-scale screens of many TFs enabled the creation of databases of TF DNA-binding specificities, typically represented as position weight matrices (PWMs). Although great progress has been made in determining and predicting binding specificities systematically, there are still many surprises to be found when studying a particular TF's interactions with DNA in detail. Paralogous TFs' binding specificities can differ in subtle ways, in a manner that is not immediately apparent from looking at their PWMs. These differences affect gene regulatory outputs and enable TFs to rewire transcriptional networks over evolutionary time. This review discusses recent observations made in the study of TF-DNA interactions that highlight the importance of continued in-depth analysis of TF-DNA interactions and their inherent complexity. This article is categorized under: Biological Mechanisms > Regulatory Biology.
Collapse
Affiliation(s)
- Julia M. Rogers
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Committee on Higher Degrees in Biophysics, Harvard University, Cambridge, MA, 02138, USA
| | - Martha L. Bulyk
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Committee on Higher Degrees in Biophysics, Harvard University, Cambridge, MA, 02138, USA
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
116
|
Datta RR, Ling J, Kurland J, Ren X, Xu Z, Yucel G, Moore J, Shokri L, Baker I, Bishop T, Struffi P, Levina R, Bulyk ML, Johnston RJ, Small S. A feed-forward relay integrates the regulatory activities of Bicoid and Orthodenticle via sequential binding to suboptimal sites. Genes Dev 2018; 32:723-736. [PMID: 29764918 PMCID: PMC6004077 DOI: 10.1101/gad.311985.118] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/17/2018] [Indexed: 11/25/2022]
Abstract
Datta et al. define three major classes of enhancers that are differentially sensitive to binding and transcriptional activation by Bicoid (Bcd) and Orthodenticle (Otd). The specific activities of enhancers in each class are mediated by DNA motif variants preferentially bound by Bcd or Otd and the presence or absence of sites for cofactors that interact with these proteins. The K50 (lysine at amino acid position 50) homeodomain (HD) protein Orthodenticle (Otd) is critical for anterior patterning and brain and eye development in most metazoans. In Drosophila melanogaster, another K50HD protein, Bicoid (Bcd), has evolved to replace Otd's ancestral function in embryo patterning. Bcd is distributed as a long-range maternal gradient and activates transcription of a large number of target genes, including otd. Otd and Bcd bind similar DNA sequences in vitro, but how their transcriptional activities are integrated to pattern anterior regions of the embryo is unknown. Here we define three major classes of enhancers that are differentially sensitive to binding and transcriptional activation by Bcd and Otd. Class 1 enhancers are initially activated by Bcd, and activation is transferred to Otd via a feed-forward relay (FFR) that involves sequential binding of the two proteins to the same DNA motif. Class 2 enhancers are activated by Bcd and maintained by an Otd-independent mechanism. Class 3 enhancers are never bound by Bcd, but Otd binds and activates them in a second wave of zygotic transcription. The specific activities of enhancers in each class are mediated by DNA motif variants preferentially bound by Bcd or Otd and the presence or absence of sites for cofactors that interact with these proteins. Our results define specific patterning roles for Bcd and Otd and provide mechanisms for coordinating the precise timing of gene expression patterns during embryonic development.
Collapse
Affiliation(s)
- Rhea R Datta
- Center for Developmental Genetics, Department of Biology, New York University, New York, New York 10003, USA
| | - Jia Ling
- Center for Developmental Genetics, Department of Biology, New York University, New York, New York 10003, USA
| | - Jesse Kurland
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.,Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Xiaotong Ren
- Center for Developmental Genetics, Department of Biology, New York University, New York, New York 10003, USA
| | - Zhe Xu
- Center for Developmental Genetics, Department of Biology, New York University, New York, New York 10003, USA
| | - Gozde Yucel
- Center for Developmental Genetics, Department of Biology, New York University, New York, New York 10003, USA
| | - Jackie Moore
- Center for Developmental Genetics, Department of Biology, New York University, New York, New York 10003, USA
| | - Leila Shokri
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.,Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Isabel Baker
- Center for Developmental Genetics, Department of Biology, New York University, New York, New York 10003, USA
| | - Timothy Bishop
- Center for Developmental Genetics, Department of Biology, New York University, New York, New York 10003, USA
| | - Paolo Struffi
- Center for Developmental Genetics, Department of Biology, New York University, New York, New York 10003, USA
| | - Rimma Levina
- Center for Developmental Genetics, Department of Biology, New York University, New York, New York 10003, USA
| | - Martha L Bulyk
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.,Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Robert J Johnston
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Stephen Small
- Center for Developmental Genetics, Department of Biology, New York University, New York, New York 10003, USA
| |
Collapse
|
117
|
Baird-Titus JM, Thapa M, Doerdelmann T, Combs KA, Rance M. Lysine Side-Chain Dynamics in the Binding Site of Homeodomain/DNA Complexes As Observed by NMR Relaxation Experiments and Molecular Dynamics Simulations. Biochemistry 2018; 57:2796-2813. [PMID: 29664630 DOI: 10.1021/acs.biochem.8b00195] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An important but poorly characterized contribution to the thermodynamics of protein-DNA interactions is the loss of entropy that occurs from restricting the conformational freedom of amino acid side chains. The effect of restricting the flexibility of several side chains at a protein-DNA interface may be comparable in many cases to the other factors that determine the binding thermodynamics and may, therefore, play a key role in dictating the binding affinity and/or specificity. Because the entropic contributions, including the presence and influence of side-chain dynamics, are especially difficult to estimate based on structural information, it is important to pursue experimental and theoretical studies that can provide direct information regarding these issues. We report on studies of a model system, the homeodomain/DNA complex, focusing on the Lys50 class of homeodomains where a key lysine residue in position 50 was shown previously to be critical for binding site specificity. NMR methodology was employed for determining the dynamics of lysine side-chain amino groups via 15N relaxation measurements in the Lys50-class homeodomains from the Drosophila protein Bicoid and the human protein Pitx2. In the case of Pitx2, complexes with both a consensus and a nonconsensus DNA binding site were examined. NMR-derived order parameters indicated moderate to substantial conformational freedom for the lysine NH3+ group in the complexes studied. To complement the experimental NMR measurements, molecular dynamics simulations were performed for the consensus complexes to gain further, detailed insights regarding the dynamics of the Lys50 side chain and other important residues in the protein-DNA interface.
Collapse
Affiliation(s)
- Jamie M Baird-Titus
- Department of Chemistry and Physical Sciences , Mount St. Joseph University , Cincinnati , Ohio 45233 , United States
| | - Mahendra Thapa
- Department of Physics , University of Cincinnati , Cincinnati , Ohio 45220 , United States
| | - Thomas Doerdelmann
- Department of Molecular Genetics, Biochemistry and Microbiology , University of Cincinnati College of Medicine , Cincinnati , Ohio 45267 , United States
| | - Kelly A Combs
- Department of Molecular Genetics, Biochemistry and Microbiology , University of Cincinnati College of Medicine , Cincinnati , Ohio 45267 , United States
| | - Mark Rance
- Department of Molecular Genetics, Biochemistry and Microbiology , University of Cincinnati College of Medicine , Cincinnati , Ohio 45267 , United States
| |
Collapse
|
118
|
Eksi SE, Barmina O, McCallough CL, Kopp A, Orenic TV. A Distalless-responsive enhancer of the Hox gene Sex combs reduced is required for segment- and sex-specific sensory organ development in Drosophila. PLoS Genet 2018; 14:e1007320. [PMID: 29634724 PMCID: PMC5909922 DOI: 10.1371/journal.pgen.1007320] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 04/20/2018] [Accepted: 03/19/2018] [Indexed: 11/18/2022] Open
Abstract
Hox genes are involved in the patterning of animal body parts at multiple levels of regulatory hierarchies. Early expression of Hox genes in different domains along the embryonic anterior-posterior (A/P) axis in insects, vertebrates, and other animals establishes segmental or regional identity. However, Hox gene function is also required later in development for the patterning and morphogenesis of limbs and other organs. In Drosophila, spatiotemporal modulation of Sex combs reduced (Scr) expression within the first thoracic (T1) leg underlies the generation of segment- and sex-specific sense organ patterns. High Scr expression in defined domains of the T1 leg is required for the development of T1-specific transverse bristle rows in both sexes and sex combs in males, implying that the patterning of segment-specific sense organs involves incorporation of Scr into the leg development and sex determination gene networks. We sought to gain insight into this process by identifying the cis-and trans-regulatory factors that direct Scr expression during leg development. We have identified two cis-regulatory elements that control spatially modulated Scr expression within T1 legs. One of these enhancers directs sexually dimorphic expression and is required for the formation of T1-specific bristle patterns. We show that the Distalless and Engrailed homeodomain transcription factors act through sequences in this enhancer to establish elevated Scr expression in spatially defined domains. This enhancer functions to integrate Scr into the intrasegmental gene regulatory network, such that Scr serves as a link between leg patterning, sex determination, and sensory organ development.
Collapse
Affiliation(s)
- Sebnem Ece Eksi
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Olga Barmina
- Department of Evolution and Ecology, University of California-Davis, Davis, CA, United States of America
| | - Christopher L. McCallough
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Artyom Kopp
- Department of Evolution and Ecology, University of California-Davis, Davis, CA, United States of America
- * E-mail: (AK); (TVO)
| | - Teresa Vales Orenic
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States of America
- * E-mail: (AK); (TVO)
| |
Collapse
|
119
|
Abstract
Transcription factors (TFs) control gene expression by binding to genomic DNA in a sequence-specific manner. Mutations in TF binding sites are increasingly found to be associated with human disease, yet we currently lack robust methods to predict these sites. Here, we developed a versatile maximum likelihood framework named No Read Left Behind (NRLB) that infers a biophysical model of protein-DNA recognition across the full affinity range from a library of in vitro selected DNA binding sites. NRLB predicts human Max homodimer binding in near-perfect agreement with existing low-throughput measurements. It can capture the specificity of the p53 tetramer and distinguish multiple binding modes within a single sample. Additionally, we confirm that newly identified low-affinity enhancer binding sites are functional in vivo, and that their contribution to gene expression matches their predicted affinity. Our results establish a powerful paradigm for identifying protein binding sites and interpreting gene regulatory sequences in eukaryotic genomes.
Collapse
|
120
|
Laktionov PP, Maksimov DA, Romanov SE, Antoshina PA, Posukh OV, White-Cooper H, Koryakov DE, Belyakin SN. Genome-wide analysis of gene regulation mechanisms during Drosophila spermatogenesis. Epigenetics Chromatin 2018; 11:14. [PMID: 29609617 PMCID: PMC5879934 DOI: 10.1186/s13072-018-0183-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/22/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND During Drosophila spermatogenesis, testis-specific meiotic arrest complex (tMAC) and testis-specific TBP-associated factors (tTAF) contribute to activation of hundreds of genes required for meiosis and spermiogenesis. Intriguingly, tMAC is paralogous to the broadly expressed complex Myb-MuvB (MMB)/dREAM and Mip40 protein is shared by both complexes. tMAC acts as a gene activator in spermatocytes, while MMB/dREAM was shown to repress gene activity in many cell types. RESULTS Our study addresses the intricate interplay between tMAC, tTAF, and MMB/dREAM during spermatogenesis. We used cell type-specific DamID to build the DNA-binding profiles of Cookie monster (tMAC), Cannonball (tTAF), and Mip40 (MMB/dREAM and tMAC) proteins in male germline cells. Incorporating the whole transcriptome analysis, we characterized the regulatory effects of these proteins and identified their gene targets. This analysis revealed that tTAFs complex is involved in activation of achi, vis, and topi meiosis arrest genes, implying that tTAFs may indirectly contribute to the regulation of Achi, Vis, and Topi targets. To understand the relationship between tMAC and MMB/dREAM, we performed Mip40 DamID in tTAF- and tMAC-deficient mutants demonstrating meiosis arrest phenotype. DamID profiles of Mip40 were highly dynamic across the stages of spermatogenesis and demonstrated a strong dependence on tMAC in spermatocytes. Integrative analysis of our data indicated that MMB/dREAM represses genes that are not expressed in spermatogenesis, whereas tMAC recruits Mip40 for subsequent gene activation in spermatocytes. CONCLUSIONS Discovered interdependencies allow to formulate a renewed model for tMAC and tTAFs action in Drosophila spermatogenesis demonstrating how tissue-specific genes are regulated.
Collapse
Affiliation(s)
- Petr P Laktionov
- Institute of Molecular and Cellular Biology SB RAS, 8/2 Lavrentyev Ave, Novosibirsk, Russia, 630090
| | - Daniil A Maksimov
- Institute of Molecular and Cellular Biology SB RAS, 8/2 Lavrentyev Ave, Novosibirsk, Russia, 630090
| | - Stanislav E Romanov
- Institute of Molecular and Cellular Biology SB RAS, 8/2 Lavrentyev Ave, Novosibirsk, Russia, 630090
| | - Polina A Antoshina
- Institute of Molecular and Cellular Biology SB RAS, 8/2 Lavrentyev Ave, Novosibirsk, Russia, 630090
| | - Olga V Posukh
- Institute of Molecular and Cellular Biology SB RAS, 8/2 Lavrentyev Ave, Novosibirsk, Russia, 630090
| | | | - Dmitry E Koryakov
- Institute of Molecular and Cellular Biology SB RAS, 8/2 Lavrentyev Ave, Novosibirsk, Russia, 630090.,Novosibirsk State University, Novosibirsk, Russia, 630090
| | - Stepan N Belyakin
- Institute of Molecular and Cellular Biology SB RAS, 8/2 Lavrentyev Ave, Novosibirsk, Russia, 630090. .,Novosibirsk State University, Novosibirsk, Russia, 630090.
| |
Collapse
|
121
|
Gan KA, Carrasco Pro S, Sewell JA, Fuxman Bass JI. Identification of Single Nucleotide Non-coding Driver Mutations in Cancer. Front Genet 2018; 9:16. [PMID: 29456552 PMCID: PMC5801294 DOI: 10.3389/fgene.2018.00016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 01/12/2018] [Indexed: 12/14/2022] Open
Abstract
Recent whole-genome sequencing studies have identified millions of somatic variants present in tumor samples. Most of these variants reside in non-coding regions of the genome potentially affecting transcriptional and post-transcriptional gene regulation. Although a few hallmark examples of driver mutations in non-coding regions have been reported, the functional role of the vast majority of somatic non-coding variants remains to be determined. This is because the few driver variants in each sample must be distinguished from the thousands of passenger variants and because the logic of regulatory element function has not yet been fully elucidated. Thus, variants prioritized based on mutational burden and location within regulatory elements need to be validated experimentally. This is generally achieved by combining assays that measure physical binding, such as chromatin immunoprecipitation, with those that determine regulatory activity, such as luciferase reporter assays. Here, we present an overview of in silico approaches used to prioritize somatic non-coding variants and the experimental methods used for functional validation and characterization.
Collapse
Affiliation(s)
- Kok A Gan
- Department of Biology, Boston University, Boston, MA, United States
| | | | - Jared A Sewell
- Department of Biology, Boston University, Boston, MA, United States
| | | |
Collapse
|
122
|
Catarino RR, Stark A. Assessing sufficiency and necessity of enhancer activities for gene expression and the mechanisms of transcription activation. Genes Dev 2018; 32:202-223. [PMID: 29491135 PMCID: PMC5859963 DOI: 10.1101/gad.310367.117] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Enhancers are important genomic regulatory elements directing cell type-specific transcription. They assume a key role during development and disease, and their identification and functional characterization have long been the focus of scientific interest. The advent of next-generation sequencing and clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9-based genome editing has revolutionized the means by which we study enhancer biology. In this review, we cover recent developments in the prediction of enhancers based on chromatin characteristics and their identification by functional reporter assays and endogenous DNA perturbations. We discuss that the two latter approaches provide different and complementary insights, especially in assessing enhancer sufficiency and necessity for transcription activation. Furthermore, we discuss recent insights into mechanistic aspects of enhancer function, including findings about cofactor requirements and the role of post-translational histone modifications such as monomethylation of histone H3 Lys4 (H3K4me1). Finally, we survey how these approaches advance our understanding of transcription regulation with respect to promoter specificity and transcriptional bursting and provide an outlook covering open questions and promising developments.
Collapse
Affiliation(s)
- Rui R Catarino
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Alexander Stark
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), 1030 Vienna, Austria
| |
Collapse
|
123
|
Madsen JGS, Rauch A, Van Hauwaert EL, Schmidt SF, Winnefeld M, Mandrup S. Integrated analysis of motif activity and gene expression changes of transcription factors. Genome Res 2018; 28:243-255. [PMID: 29233921 PMCID: PMC5793788 DOI: 10.1101/gr.227231.117] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 12/01/2017] [Indexed: 01/01/2023]
Abstract
The ability to predict transcription factors based on sequence information in regulatory elements is a key step in systems-level investigation of transcriptional regulation. Here, we have developed a novel tool, IMAGE, for precise prediction of causal transcription factors based on transcriptome profiling and genome-wide maps of enhancer activity. High precision is obtained by combining a near-complete database of position weight matrices (PWMs), generated by compiling public databases and systematic prediction of PWMs for uncharacterized transcription factors, with a state-of-the-art method for PWM scoring and a novel machine learning strategy, based on both enhancers and promoters, to predict the contribution of motifs to transcriptional activity. We applied IMAGE to published data obtained during 3T3-L1 adipocyte differentiation and showed that IMAGE predicts causal transcriptional regulators of this process with higher confidence than existing methods. Furthermore, we generated genome-wide maps of enhancer activity and transcripts during human mesenchymal stem cell commitment and adipocyte differentiation and used IMAGE to identify positive and negative transcriptional regulators of this process. Collectively, our results demonstrate that IMAGE is a powerful and precise method for prediction of regulators of gene expression.
Collapse
Affiliation(s)
- Jesper Grud Skat Madsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Alexander Rauch
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Elvira Laila Van Hauwaert
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Søren Fisker Schmidt
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Marc Winnefeld
- Research and Development, Beiersdorf AG, 20245 Hamburg, Germany
| | - Susanne Mandrup
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| |
Collapse
|
124
|
Sociale M, Wulf AL, Breiden B, Klee K, Thielisch M, Eckardt F, Sellin J, Bülow MH, Löbbert S, Weinstock N, Voelzmann A, Schultze J, Sandhoff K, Bauer R. Ceramide Synthase Schlank Is a Transcriptional Regulator Adapting Gene Expression to Energy Requirements. Cell Rep 2018; 22:967-978. [DOI: 10.1016/j.celrep.2017.12.090] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/10/2017] [Accepted: 12/25/2017] [Indexed: 10/18/2022] Open
|
125
|
Zhou X, Guo Y, Zhao P, Sun MX. Comparative Analysis of WUSCHEL-Related Homeobox Genes Revealed Their Parent-of-Origin and Cell Type-Specific Expression Pattern During Early Embryogenesis in Tobacco. FRONTIERS IN PLANT SCIENCE 2018; 9:311. [PMID: 29662495 PMCID: PMC5890105 DOI: 10.3389/fpls.2018.00311] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/22/2018] [Indexed: 05/05/2023]
Abstract
WUSCHEL-related homeobox (WOX) gene is a plant-specific clade of homeobox transcription factors. Increasing evidences reveal that WOXs play critical roles in early embryogenesis, which involves zygote development, initiation of zygote division, and apical or basal cell lineage establishment. However, how WOXs regulate these developmental events remains largely unknown, and even detailed expression pattern in gametes and early proembryos is not yet available. Here, 13 WOX family genes were identified in Nicotiana tabacum genome. Comparative analysis of 13 WOX family genes with their homologs in Arabidopsis thaliana reveals relatively conserved expression pattern of WUS and WOX5 in shoot/root apical meristem. Whereas variations were also found, e.g., lacking homolog of WOX8 (a marker for suspensor cell) in tobacco genome and the expression of WOX2/WOX9 in both apical cell and basal cell. Transient transcriptional activity analysis revealed that WOXs in WUS clade have repressive activities for their target's transcription, whereas WOXs in ancient and intermediate clade have activation activities, giving a molecular basis for the phylogenetic classification of tobacco WOXs into three major clades. Expression pattern analysis revealed that some WOXs (e.g., WOX 13a) expressed in both male and female gametes and some WOXs (e.g., WOX 11 and WOX 13b) displayed the characteristics of parent-of-origin genes. Interestingly, some WOXs (e.g., WOX2 and WOX9), which are essential for early embryo patterning, were de novo transcribed in zygote, indicating relevant mechanism for embryo pattern formation is only established in zygote right after fertilization and not carried in by gametes. We also found that most WOXs displayed a stage-specific and cell type-specific expression pattern. Taken together, this work provides a detailed landscape of WOXs in tobacco during fertilization and early embryogenesis, which will facilitate the understanding of their specific roles in these critical developmental processes of embryogenesis.
Collapse
|
126
|
Chiu TP, Rao S, Mann RS, Honig B, Rohs R. Genome-wide prediction of minor-groove electrostatic potential enables biophysical modeling of protein-DNA binding. Nucleic Acids Res 2017; 45:12565-12576. [PMID: 29040720 PMCID: PMC5716191 DOI: 10.1093/nar/gkx915] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 09/28/2017] [Indexed: 12/16/2022] Open
Abstract
Protein–DNA binding is a fundamental component of gene regulatory processes, but it is still not completely understood how proteins recognize their target sites in the genome. Besides hydrogen bonding in the major groove (base readout), proteins recognize minor-groove geometry using positively charged amino acids (shape readout). The underlying mechanism of DNA shape readout involves the correlation between minor-groove width and electrostatic potential (EP). To probe this biophysical effect directly, rather than using minor-groove width as an indirect measure for shape readout, we developed a methodology, DNAphi, for predicting EP in the minor groove and confirmed the direct role of EP in protein–DNA binding using massive sequencing data. The DNAphi method uses a sliding-window approach to mine results from non-linear Poisson–Boltzmann (NLPB) calculations on DNA structures derived from all-atom Monte Carlo simulations. We validated this approach, which only requires nucleotide sequence as input, based on direct comparison with NLPB calculations for available crystal structures. Using statistical machine-learning approaches, we showed that adding EP as a biophysical feature can improve the predictive power of quantitative binding specificity models across 27 transcription factor families. High-throughput prediction of EP offers a novel way to integrate biophysical and genomic studies of protein–DNA binding.
Collapse
Affiliation(s)
- Tsu-Pei Chiu
- Computational Biology and Bioinformatics Program, Departments of Biological Sciences, Chemistry, Physics & Astronomy, and Computer Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Satyanarayan Rao
- Computational Biology and Bioinformatics Program, Departments of Biological Sciences, Chemistry, Physics & Astronomy, and Computer Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Richard S Mann
- Departments of Systems Biology and Biochemistry & Molecular Biophysics, Mortimer B. Zuckerman Institute, Columbia University, New York, NY 10032, USA
| | - Barry Honig
- Departments of Systems Biology and Biochemistry & Molecular Biophysics, Mortimer B. Zuckerman Institute, Columbia University, New York, NY 10032, USA.,Howard Hughes Medical Institute, New York, NY 10032, USA
| | - Remo Rohs
- Computational Biology and Bioinformatics Program, Departments of Biological Sciences, Chemistry, Physics & Astronomy, and Computer Science, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
127
|
Castro-Mondragon JA, Jaeger S, Thieffry D, Thomas-Chollier M, van Helden J. RSAT matrix-clustering: dynamic exploration and redundancy reduction of transcription factor binding motif collections. Nucleic Acids Res 2017; 45:e119. [PMID: 28591841 PMCID: PMC5737723 DOI: 10.1093/nar/gkx314] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 06/04/2017] [Indexed: 01/08/2023] Open
Abstract
Transcription factor (TF) databases contain multitudes of binding motifs (TFBMs) from various sources, from which non-redundant collections are derived by manual curation. The advent of high-throughput methods stimulated the production of novel collections with increasing numbers of motifs. Meta-databases, built by merging these collections, contain redundant versions, because available tools are not suited to automatically identify and explore biologically relevant clusters among thousands of motifs. Motif discovery from genome-scale data sets (e.g. ChIP-seq) also produces redundant motifs, hampering the interpretation of results. We present matrix-clustering, a versatile tool that clusters similar TFBMs into multiple trees, and automatically creates non-redundant TFBM collections. A feature unique to matrix-clustering is its dynamic visualisation of aligned TFBMs, and its capability to simultaneously treat multiple collections from various sources. We demonstrate that matrix-clustering considerably simplifies the interpretation of combined results from multiple motif discovery tools, and highlights biologically relevant variations of similar motifs. We also ran a large-scale application to cluster ∼11 000 motifs from 24 entire databases, showing that matrix-clustering correctly groups motifs belonging to the same TF families, and drastically reduced motif redundancy. matrix-clustering is integrated within the RSAT suite (http://rsat.eu/), accessible through a user-friendly web interface or command-line for its integration in pipelines.
Collapse
Affiliation(s)
| | | | - Denis Thieffry
- IBENS, Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, F-75005 Paris, France
| | - Morgane Thomas-Chollier
- IBENS, Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, F-75005 Paris, France
| | - Jacques van Helden
- Aix Marseille Univ, INSERM, TAGC, Theory and Approaches of Genomic Complexity, UMR_S 1090, Marseille, France
| |
Collapse
|
128
|
Sandberg M, Flandin P, Silberberg S, Su-Feher L, Price JD, Hu JS, Kim C, Visel A, Nord AS, Rubenstein JLR. Transcriptional Networks Controlled by NKX2-1 in the Development of Forebrain GABAergic Neurons. Neuron 2017; 91:1260-1275. [PMID: 27657450 DOI: 10.1016/j.neuron.2016.08.020] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 07/01/2016] [Accepted: 08/08/2016] [Indexed: 12/31/2022]
Abstract
The embryonic basal ganglia generates multiple projection neurons and interneuron subtypes from distinct progenitor domains. Combinatorial interactions of transcription factors and chromatin are thought to regulate gene expression. In the medial ganglionic eminence, the NKX2-1 transcription factor controls regional identity and, with LHX6, is necessary to specify pallidal projection neurons and forebrain interneurons. Here, we dissected the molecular functions of NKX2-1 by defining its chromosomal binding, regulation of gene expression, and epigenetic state. NKX2-1 binding at distal regulatory elements led to a repressed epigenetic state and transcriptional repression in the ventricular zone. Conversely, NKX2-1 is required to establish a permissive chromatin state and transcriptional activation in the sub-ventricular and mantle zones. Moreover, combinatorial binding of NKX2-1 and LHX6 promotes transcriptionally permissive chromatin and activates genes expressed in cortical migrating interneurons. Our integrated approach provides a foundation for elucidating transcriptional networks guiding the development of the MGE and its descendants.
Collapse
Affiliation(s)
- Magnus Sandberg
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Pierre Flandin
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Shanni Silberberg
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Linda Su-Feher
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, CA 95817, USA; Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA 95616, USA
| | - James D Price
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jia Sheng Hu
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Carol Kim
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Axel Visel
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA; School of Natural Sciences, University of California, Merced, CA 95343, USA
| | - Alex S Nord
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, CA 95817, USA; Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA 95616, USA.
| | - John L R Rubenstein
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
129
|
Martín M, Ostalé CM, de Celis JF. Patterning of the Drosophila L2 vein is driven by regulatory interactions between region-specific transcription factors expressed in response to Dpp signalling. Development 2017; 144:3168-3176. [PMID: 28760811 DOI: 10.1242/dev.143461] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 07/25/2017] [Indexed: 01/31/2023]
Abstract
Pattern formation relies on the generation of transcriptional landscapes regulated by signalling pathways. A paradigm of epithelial patterning is the distribution of vein territories in the Drosophila wing disc. In this tissue, Decapentaplegic signalling regulates its target genes at different distances from the source of the ligand. The transformation of signalling into coherent territories of gene expression requires regulatory cross-interactions between these target genes. Here, we analyse the mechanisms generating the domain of knirps expression in the presumptive L2 vein of the wing imaginal disc. We find that knirps is regulated by four Decapentaplegic target genes encoding the transcription factors aristaless, spalt major, spalt-related and optix The expression of optix is activated by Dpp and repressed by the Spalt proteins, becoming restricted to the most anterior region of the wing blade. In turn, the expression of knirps is activated by Aristaless and repressed by Optix and the Spalt proteins. In this manner, the expression of knirps becomes restricted to those cells where Spalt levels are sufficient to repress optix, but not sufficient to repress knirps.
Collapse
Affiliation(s)
- Mercedes Martín
- Centro de Biología Molecular 'Severo Ochoa', CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Cristina M Ostalé
- Centro de Biología Molecular 'Severo Ochoa', CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Jose F de Celis
- Centro de Biología Molecular 'Severo Ochoa', CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| |
Collapse
|
130
|
Hiwatari M, Seki M, Akahoshi S, Yoshida K, Miyano S, Shiraishi Y, Tanaka H, Chiba K, Ogawa S, Takita J. Molecular studies reveal MLL-MLLT10/AF10 and ARID5B-MLL gene fusions displaced in a case of infantile acute lymphoblastic leukemia with complex karyotype. Oncol Lett 2017; 14:2295-2299. [PMID: 28781666 PMCID: PMC5530220 DOI: 10.3892/ol.2017.6430] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 05/18/2017] [Indexed: 02/02/2023] Open
Abstract
The present report describes a unique infantile acute lymphoblastic leukemia (ALL) case with cryptic mixed-lineage leukemia (MLL) rearrangements with 11q23 chromosomal translocation. MLL break-apart signals were identified by fluorescence in situ hybridization, and transcriptome sequencing revealed MLL-myeloid/lymphoid or mixed-lineage leukemia; translocated To, 10 (MLLT10)/AF10 fusion transcripts. Analysis also revealed a previously unreported MLLT10/AF10-homeobox protein Mohawk (MKX) transcript, where the 5′ portion of MLLT10/AF10 at 10p12.31 was fused out-of-frame with the 3′ portion of MKX at 10p12.1, which is closely located to MLLT10/AF10. Furthermore, the reciprocal 3′-MLL gene segment was fused in-frame to AT-rich interaction domain (ARID)5B at 10q21. Previously, common allelic variants in ARID5B, which are directly associated with hematopoietic differentiation and development, have been repeatedly and significantly associated with childhood ALL. The heterozygous genotype in ARID5B (RefSNP: rs10821936) increased the risk for leukemia with MLL-rearrangement. In particular, single nucleotide polymorphisms of ARID5B conferred increased risk for MLL-MLLT3/AF9. Based on these findings, the authors propose that while the presence of reciprocal MLL alleles has been detected in this patient, different pathological disease mechanisms may be at play due to individual recombination events.
Collapse
Affiliation(s)
- Mitsuteru Hiwatari
- Department of Pediatrics, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655, Japan.,Department of Cell Therapy and Transplantation Medicine, University of Tokyo, Tokyo 113-8655, Japan
| | - Masafumi Seki
- Department of Pediatrics, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| | - Shogo Akahoshi
- Department of Pediatrics, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| | - Kenichi Yoshida
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Satoru Miyano
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.,Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Yuichi Shiraishi
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Hiroko Tanaka
- Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Kenichi Chiba
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Junko Takita
- Department of Pediatrics, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| |
Collapse
|
131
|
Conservation and innovation in the DUX4-family gene network. Nat Genet 2017; 49:935-940. [PMID: 28459454 PMCID: PMC5446306 DOI: 10.1038/ng.3846] [Citation(s) in RCA: 238] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 03/22/2017] [Indexed: 12/13/2022]
Abstract
Facioscapulohumeral dystrophy (FSHD; OMIM #158900, #158901) is caused by mis-expression of the DUX4 transcription factor in skeletal muscle1. Animal models of FSHD are hampered by incomplete knowledge of the conservation of the DUX4 transcriptional program in other species2–5. Despite divergence of their binding motifs, both mouse Dux and human DUX4 activate genes associated with cleavage-stage embryos, including MERV-L and ERVL-MaLR retrotransposons, in mouse and human muscle cells respectively. When expressed in mouse cells, human DUX4 maintained modest activation of cleavage-stage genes driven by conventional promoters, but did not activate MERV-L-promoted genes. These findings indicate that the ancestral DUX4-factor regulated genes characteristic of cleavage-stage embryos driven by conventional promoters, whereas divergence of the DUX4/Dux homeodomains correlates with retrotransposon specificity. These results provide insight into how species balance conservation of a core transcriptional program with innovation at retrotransposon promoters and provide a basis for animal models that recreate the FSHD transcriptome.
Collapse
|
132
|
Tissue-specific enhancer repression through molecular integration of cell signaling inputs. PLoS Genet 2017; 13:e1006718. [PMID: 28394894 PMCID: PMC5402979 DOI: 10.1371/journal.pgen.1006718] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 04/24/2017] [Accepted: 03/27/2017] [Indexed: 11/19/2022] Open
Abstract
Drosophila leg morphogenesis occurs under the control of a relatively well-known genetic cascade, which mobilizes both cell signaling pathways and tissue-specific transcription factors. However, their cross-regulatory interactions, deployed to refine leg patterning, remain poorly characterized at the gene expression level. Within the genetically interacting landscape that governs limb development, the bric-à-brac2 (bab2) gene is required for distal leg segmentation. We have previously shown that the Distal-less (Dll) homeodomain and Rotund (Rn) zinc-finger activating transcription factors control limb-specific bab2 expression by binding directly a single critical leg/antennal enhancer (LAE) within the bric-à-brac locus. By genetic and molecular analyses, we show here that the EGFR-responsive C15 homeodomain and the Notch-regulated Bowl zinc-finger transcription factors also interact directly with the LAE enhancer as a repressive duo. The appendage patterning gene bab2 is the first identified direct target of the Bowl repressor, an Odd-skipped/Osr family member. Moreover, we show that C15 acts on LAE activity independently of its regular partner, the Aristaless homeoprotein. Instead, we find that C15 interacts physically with the Dll activator through contacts between their homeodomain and binds competitively with Dll to adjacent cognate sites on LAE, adding potential new layers of regulation by C15. Lastly, we show that C15 and Bowl activities regulate also rn expression. Our findings shed light on how the concerted action of two transcriptional repressors, in response to cell signaling inputs, shapes and refines gene expression along the limb proximo-distal axis in a timely manner. Limb morphogenesis is controlled by a well-known genetic cascade, mobilizing both cell signaling and tissue-specific transcription factors (TFs). However, how their concerted action refines gene expression remains to be deciphered. It is thus crucial to understand how cell signaling inputs are integrated by transcriptional “enhancers”. The Drosophila leg provides a good paradigm to dissect the molecular mechanisms underlying gene regulation. Here, we used the bric-a-brac2 (bab2) gene as a model to study the integrated regulation of patterning genes implicated in tarsal segmentation. bab2 expression in the leg primordium is dynamic and complex, going from initial broad distal expression to precisely positioned tarsal rings. By genetic and molecular analyses, we show here that the cell signaling-responding TFs C15 and Bowl interact directly with the limb-specific bab2 enhancer as a repressive duo. Moreover, C15 acts independently of its partner Aristaless through physical interaction with the Dll activator. We propose that Dll induces early circular bab2 expression pattern, then EGFR signaling-induced C15 in the distalmost cells competes with Dll for LAE binding and resolves bab2 pattern as a ring. Taken together our data shed light on how the concerted action of a quartet of transcription factors reshapes gene expression during limb proximo-distal axis development.
Collapse
|
133
|
Rodríguez-Martínez JA, Reinke AW, Bhimsaria D, Keating AE, Ansari AZ. Combinatorial bZIP dimers display complex DNA-binding specificity landscapes. eLife 2017; 6:e19272. [PMID: 28186491 PMCID: PMC5349851 DOI: 10.7554/elife.19272] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 02/06/2017] [Indexed: 01/06/2023] Open
Abstract
How transcription factor dimerization impacts DNA-binding specificity is poorly understood. Guided by protein dimerization properties, we examined DNA binding specificities of 270 human bZIP pairs. DNA interactomes of 80 heterodimers and 22 homodimers revealed that 72% of heterodimer motifs correspond to conjoined half-sites preferred by partnering monomers. Remarkably, the remaining motifs are composed of variably-spaced half-sites (12%) or 'emergent' sites (16%) that cannot be readily inferred from half-site preferences of partnering monomers. These binding sites were biochemically validated by EMSA-FRET analysis and validated in vivo by ChIP-seq data from human cell lines. Focusing on ATF3, we observed distinct cognate site preferences conferred by different bZIP partners, and demonstrated that genome-wide binding of ATF3 is best explained by considering many dimers in which it participates. Importantly, our compendium of bZIP-DNA interactomes predicted bZIP binding to 156 disease associated SNPs, of which only 20 were previously annotated with known bZIP motifs.
Collapse
Affiliation(s)
| | - Aaron W Reinke
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Devesh Bhimsaria
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Unites States
| | - Amy E Keating
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, United States
| | - Aseem Z Ansari
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
- The Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, United States
| |
Collapse
|
134
|
Ortiz-Lombardia M, Foos N, Maurel-Zaffran C, Saurin AJ, Graba Y. Hox functional diversity: Novel insights from flexible motif folding and plastic protein interaction. Bioessays 2017; 39. [PMID: 28092121 DOI: 10.1002/bies.201600246] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
How the formidable diversity of forms emerges from developmental and evolutionary processes is one of the most fascinating questions in biology. The homeodomain-containing Hox proteins were recognized early on as major actors in diversifying animal body plans. The molecular mechanisms underlying how this transcription factor family controls a large array of context- and cell-specific biological functions is, however, still poorly understood. Clues to functional diversity have emerged from studies exploring how Hox protein activity is controlled through interactions with PBC class proteins, also evolutionary conserved HD-containing proteins. Recent structural data and molecular dynamic simulations add further mechanistic insights into Hox protein mode of action, suggesting that flexible folding of protein motifs allows for plastic protein interaction. As we discuss in this review, these findings define a novel type of Hox-PBC interaction, weak and dynamic instead of strong and static, hence providing novel clues to understanding Hox transcriptional specificity and diversity.
Collapse
Affiliation(s)
- Miguel Ortiz-Lombardia
- Aix-Marseille-Université, CNRS UMR 7257, AFMB, Marseille, France.,Aix-Marseille-Université, CNRS UMR 7256, AFMB, Marseille, France
| | - Nicolas Foos
- Aix-Marseille-Université, CNRS UMR 7257, AFMB, Marseille, France
| | | | - Andrew J Saurin
- Aix-Marseille-Université, CNRS UMR 7288, case 907, IBDM, Marseille, France
| | - Yacine Graba
- Aix-Marseille-Université, CNRS UMR 7288, case 907, IBDM, Marseille, France
| |
Collapse
|
135
|
Retinal Expression of the Drosophila eyes absent Gene Is Controlled by Several Cooperatively Acting Cis-regulatory Elements. PLoS Genet 2016; 12:e1006462. [PMID: 27930646 PMCID: PMC5145141 DOI: 10.1371/journal.pgen.1006462] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 11/04/2016] [Indexed: 12/15/2022] Open
Abstract
The eyes absent (eya) gene of the fruit fly, Drosophila melanogaster, is a member of an evolutionarily conserved gene regulatory network that controls eye formation in all seeing animals. The loss of eya leads to the complete elimination of the compound eye while forced expression of eya in non-retinal tissues is sufficient to induce ectopic eye formation. Within the developing retina eya is expressed in a dynamic pattern and is involved in tissue specification/determination, cell proliferation, apoptosis, and cell fate choice. In this report we explore the mechanisms by which eya expression is spatially and temporally governed in the developing eye. We demonstrate that multiple cis-regulatory elements function cooperatively to control eya transcription and that spacing between a pair of enhancer elements is important for maintaining correct gene expression. Lastly, we show that the loss of eya expression in sine oculis (so) mutants is the result of massive cell death and a progressive homeotic transformation of retinal progenitor cells into head epidermis. Activation of a gene requires interactions between enhancer and promoter elements. It has been known for some time that transcription of a gene expressed in a complex pattern or in multiple tissues is regulated by an array of enhancers. Recent studies have also demonstrated that multiple enhancers can regulate a single expression pattern within a single tissue. In this study we asked how the expression pattern of eyes absent (eya) is regulated at the level of the enhancer in the developing retina. We found that several adjacently positioned enhancer elements function cooperatively to control temporal and spatial expression of eya and that the spacing between two of these cis-regulatory elements is important to their function. This study shows the importance of enhancer cooperation and architecture in regulating complex and dynamically changing expression patterns.
Collapse
|
136
|
Bobola N, Merabet S. Homeodomain proteins in action: similar DNA binding preferences, highly variable connectivity. Curr Opin Genet Dev 2016; 43:1-8. [PMID: 27768937 DOI: 10.1016/j.gde.2016.09.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 09/28/2016] [Indexed: 12/18/2022]
Abstract
Homeodomain proteins are evolutionary conserved proteins present in the entire eukaryote kingdom. They execute functions that are essential for life, both in developing and adult organisms. Most homeodomain proteins act as transcription factors and bind DNA to control the activity of other genes. In contrast to their similar DNA binding specificity, homeodomain proteins execute highly diverse and context-dependent functions. Several factors, including genome accessibility, DNA shape, combinatorial binding and the ability to interact with many transcriptional partners, diversify the activity of homeodomain proteins and culminate in the activation of highly dynamic, context-specific transcriptional programs. Clarifying how homeodomain transcription factors work is central to our understanding of development, disease and evolution.
Collapse
Affiliation(s)
- Nicoletta Bobola
- School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK.
| | - Samir Merabet
- Institut de Génomique Fonctionnelle de Lyon, Centre National de Recherche Scientifique, Ecole Normale Supérieure de Lyon, France.
| |
Collapse
|
137
|
Field A, Xiang J, Anderson WR, Graham P, Pick L. Activation of Ftz-F1-Responsive Genes through Ftz/Ftz-F1 Dependent Enhancers. PLoS One 2016; 11:e0163128. [PMID: 27723822 PMCID: PMC5056698 DOI: 10.1371/journal.pone.0163128] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/03/2016] [Indexed: 12/11/2022] Open
Abstract
The orphan nuclear receptor Ftz-F1 is expressed in all somatic nuclei in Drosophila embryos, but mutations result in a pair-rule phenotype. This was explained by the interaction of Ftz-F1 with the homeodomain protein Ftz that is expressed in stripes in the primordia of segments missing in either ftz-f1 or ftz mutants. Ftz-F1 and Ftz were shown to physically interact and coordinately activate the expression of ftz itself and engrailed by synergistic binding to composite Ftz-F1/Ftz binding sites. However, attempts to identify additional target genes on the basis of Ftz-F1/ Ftz binding alone has met with only limited success. To discern rules for Ftz-F1 target site selection in vivo and to identify additional target genes, a microarray analysis was performed comparing wildtype and ftz-f1 mutant embryos. Ftz-F1-responsive genes most highly regulated included engrailed and nine additional genes expressed in patterns dependent on both ftz and ftz-f1. Candidate enhancers for these genes were identified by combining BDTNP Ftz ChIP-chip data with a computational search for Ftz-F1 binding sites. Of eight enhancer reporter genes tested in transgenic embryos, six generated expression patterns similar to the corresponding endogenous gene and expression was lost in ftz mutants. These studies identified a new set of Ftz-F1 targets, all of which are co-regulated by Ftz. Comparative analysis of enhancers containing Ftz/Ftz-F1 binding sites that were or were not bona fide targets in vivo suggested that GAF negatively regulates enhancers that contain Ftz/Ftz-F1 binding sites but are not actually utilized. These targets include other regulatory factors as well as genes involved directly in morphogenesis, providing insight into how pair-rule genes establish the body pattern.
Collapse
Affiliation(s)
- Amanda Field
- Department of Entomology and Program in Molecular & Cell Biology, University of Maryland, College Park, Maryland, 20742, United States of America
| | - Jie Xiang
- Department of Entomology and Program in Molecular & Cell Biology, University of Maryland, College Park, Maryland, 20742, United States of America
| | - W. Ray Anderson
- Department of Entomology and Program in Molecular & Cell Biology, University of Maryland, College Park, Maryland, 20742, United States of America
| | - Patricia Graham
- Department of Entomology and Program in Molecular & Cell Biology, University of Maryland, College Park, Maryland, 20742, United States of America
| | - Leslie Pick
- Department of Entomology and Program in Molecular & Cell Biology, University of Maryland, College Park, Maryland, 20742, United States of America
- * E-mail:
| |
Collapse
|
138
|
Threshold-dependent transcriptional discrimination underlies stem cell homeostasis. Proc Natl Acad Sci U S A 2016; 113:E6298-E6306. [PMID: 27671653 DOI: 10.1073/pnas.1607669113] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transcriptional mechanisms that underlie the dose-dependent regulation of gene expression in animal development have been studied extensively. However, the mechanisms of dose-dependent transcriptional regulation in plant development have not been understood. In Arabidopsis shoot apical meristems, WUSCHEL (WUS), a stem cell-promoting transcription factor, accumulates at a higher level in the rib meristem and at a lower level in the central zone where it activates its own negative regulator, CLAVATA3 (CLV3). How WUS regulates CLV3 levels has not been understood. Here we show that WUS binds a group of cis-elements, cis- regulatory module, in the CLV3-regulatory region, with different affinities and conformations, consisting of monomers at lower concentration and as dimers at a higher level. By deleting cis elements, manipulating the WUS-binding affinity and the homodimerization threshold of cis elements, and manipulating WUS levels, we show that the same cis elements mediate both the activation and repression of CLV3 at lower and higher WUS levels, respectively. The concentration-dependent transcriptional discrimination provides a mechanistic framework to explain the regulation of CLV3 levels that is critical for stem cell homeostasis.
Collapse
|
139
|
The combination of sequence-specific and nonspecific DNA-binding modes of transcription factor SATB1. Biochem J 2016; 473:3321-39. [PMID: 27462121 DOI: 10.1042/bcj20160236] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/26/2016] [Indexed: 02/07/2023]
Abstract
Transcription factor SATB1 (special AT-rich sequence binding protein 1) contains multiple DNA-binding domains (DBDs), i.e. two CUT-domain repeats (CUTr1 and CUTr2 from the N-terminus) and a homeodomain, and binds to the matrix attachment region (MAR) of DNA. Although CUTr1 and the homeodomain, but not CUTr2, are known to contribute to DNA binding, different research groups have not reached a consensus on which DBD is responsible for recognition of the target sequence in MAR, 5'-TAATA-3'. Here, we used isothermal titration calorimetry to demonstrate that CUTr1 has binding specificity to this motif, whereas the homeodomain shows affinity for a variety of DNAs without specificity. In line with nonspecific DNA-binding properties of the homeodomain, a mutation of the invariant Asn at position 51 of the homeodomain (typically in contact with the A base in a sequence-specific binding mode) did not affect the binding affinity significantly. The NMR analyses and computational modeling of the homeodomain, however, revealed the tertiary structure and DNA-binding mode that are typical of homeodomains capable of sequence-specific binding. We believe that the lack of highly conserved basic residues in the helix relevant to the base recognition loosens its fitting into the DNA groove and impairs the specific binding. The two DBDs, when fused in tandem, showed strong binding to DNA containing the 5'-TAATA-3' motif with an affinity constant >10(8) M(-1) and retained nonspecific binding activity. The combination of the sequence-specific and nonspecific DNA-binding modes of SATB1 should be advantageous in a search for target loci during transcriptional regulation.
Collapse
|
140
|
Levati E, Sartini S, Ottonello S, Montanini B. Dry and wet approaches for genome-wide functional annotation of conventional and unconventional transcriptional activators. Comput Struct Biotechnol J 2016; 14:262-70. [PMID: 27453771 PMCID: PMC4941109 DOI: 10.1016/j.csbj.2016.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/21/2016] [Accepted: 06/23/2016] [Indexed: 02/06/2023] Open
Abstract
Transcription factors (TFs) are master gene products that regulate gene expression in response to a variety of stimuli. They interact with DNA in a sequence-specific manner using a variety of DNA-binding domain (DBD) modules. This allows to properly position their second domain, called "effector domain", to directly or indirectly recruit positively or negatively acting co-regulators including chromatin modifiers, thus modulating preinitiation complex formation as well as transcription elongation. At variance with the DBDs, which are comprised of well-defined and easily recognizable DNA binding motifs, effector domains are usually much less conserved and thus considerably more difficult to predict. Also not so easy to identify are the DNA-binding sites of TFs, especially on a genome-wide basis and in the case of overlapping binding regions. Another emerging issue, with many potential regulatory implications, is that of so-called "moonlighting" transcription factors, i.e., proteins with an annotated function unrelated to transcription and lacking any recognizable DBD or effector domain, that play a role in gene regulation as their second job. Starting from bioinformatic and experimental high-throughput tools for an unbiased, genome-wide identification and functional characterization of TFs (especially transcriptional activators), we describe both established (and usually well affordable) as well as newly developed platforms for DNA-binding site identification. Selected combinations of these search tools, some of which rely on next-generation sequencing approaches, allow delineating the entire repertoire of TFs and unconventional regulators encoded by the any sequenced genome.
Collapse
Affiliation(s)
| | | | - Simone Ottonello
- Corresponding author at: Department of Life Sciences, University of Parma, Parco Area delle Scienze 23/A, 43124 Parma, Italy.Department of Life SciencesUniversity of ParmaParco Area delle Scienze 23/AParma43124Italy
| | | |
Collapse
|
141
|
Dresch JM, Zellers RG, Bork DK, Drewell RA. Nucleotide Interdependency in Transcription Factor Binding Sites in the Drosophila Genome. GENE REGULATION AND SYSTEMS BIOLOGY 2016; 10:21-33. [PMID: 27330274 PMCID: PMC4907338 DOI: 10.4137/grsb.s38462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/17/2016] [Accepted: 04/28/2016] [Indexed: 01/14/2023]
Abstract
A long-standing objective in modern biology is to characterize the molecular components that drive the development of an organism. At the heart of eukaryotic development lies gene regulation. On the molecular level, much of the research in this field has focused on the binding of transcription factors (TFs) to regulatory regions in the genome known as cis-regulatory modules (CRMs). However, relatively little is known about the sequence-specific binding preferences of many TFs, especially with respect to the possible interdependencies between the nucleotides that make up binding sites. A particular limitation of many existing algorithms that aim to predict binding site sequences is that they do not allow for dependencies between nonadjacent nucleotides. In this study, we use a recently developed computational algorithm, MARZ, to compare binding site sequences using 32 distinct models in a systematic and unbiased approach to explore nucleotide dependencies within binding sites for 15 distinct TFs known to be critical to Drosophila development. Our results indicate that many of these proteins have varying levels of nucleotide interdependencies within their DNA recognition sequences, and that, in some cases, models that account for these dependencies greatly outperform traditional models that are used to predict binding sites. We also directly compare the ability of different models to identify the known KRUPPEL TF binding sites in CRMs and demonstrate that a more complex model that accounts for nucleotide interdependencies performs better when compared with simple models. This ability to identify TFs with critical nucleotide interdependencies in their binding sites will lead to a deeper understanding of how these molecular characteristics contribute to the architecture of CRMs and the precise regulation of transcription during organismal development.
Collapse
Affiliation(s)
- Jacqueline M. Dresch
- Department of Mathematics and Computer Science, Clark University, Worcester, MA, USA
| | - Rowan G. Zellers
- Computer Science Department, Harvey Mudd College, Claremont, CA, USA
- Mathematics Department, Harvey Mudd College, Claremont, CA, USA
| | - Daniel K. Bork
- Computer Science Department, Harvey Mudd College, Claremont, CA, USA
- Mathematics Department, Harvey Mudd College, Claremont, CA, USA
| | | |
Collapse
|
142
|
Pettie KP, Dresch JM, Drewell RA. Spatial distribution of predicted transcription factor binding sites in Drosophila ChIP peaks. Mech Dev 2016; 141:51-61. [PMID: 27264535 DOI: 10.1016/j.mod.2016.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 04/24/2016] [Accepted: 06/01/2016] [Indexed: 11/19/2022]
Abstract
In the development of the Drosophila embryo, gene expression is directed by the sequence-specific interactions of a large network of protein transcription factors (TFs) and DNA cis-regulatory binding sites. Once the identity of the typically 8-10bp binding sites for any given TF has been determined by one of several experimental procedures, the sequences can be represented in a position weight matrix (PWM) and used to predict the location of additional TF binding sites elsewhere in the genome. Often, alignments of large (>200bp) genomic fragments that have been experimentally determined to bind the TF of interest in Chromatin Immunoprecipitation (ChIP) studies are trimmed under the assumption that the majority of the binding sites are located near the center of all the aligned fragments. In this study, ChIP/chip datasets are analyzed using the corresponding PWMs for the well-studied TFs; CAUDAL, HUNCHBACK, KNIRPS and KRUPPEL, to determine the distribution of predicted binding sites. All four TFs are critical regulators of gene expression along the anterio-posterior axis in early Drosophila development. For all four TFs, the ChIP peaks contain multiple binding sites that are broadly distributed across the genomic region represented by the peak, regardless of the prediction stringency criteria used. This result suggests that ChIP peak trimming may exclude functional binding sites from subsequent analyses.
Collapse
Affiliation(s)
- Kade P Pettie
- Department of Biology, Amherst College, Amherst, MA 01002, United States
| | - Jacqueline M Dresch
- Department of Mathematics and Computer Science, Clark University, 950 Main Street, Worcester, MA 01610, United States
| | - Robert A Drewell
- Biology Department, Clark University, 950 Main Street, Worcester, MA 01610, United States
| |
Collapse
|
143
|
Takiya S, Tsubota T, Kimoto M. Regulation of Silk Genes by Hox and Homeodomain Proteins in the Terminal Differentiated Silk Gland of the Silkworm Bombyx mori. J Dev Biol 2016; 4:E19. [PMID: 29615585 PMCID: PMC5831788 DOI: 10.3390/jdb4020019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/08/2016] [Accepted: 05/17/2016] [Indexed: 12/15/2022] Open
Abstract
The silk gland of the silkworm Bombyx mori is a long tubular organ that is divided into several subparts along its anteroposterior (AP) axis. As a trait of terminal differentiation of the silk gland, several silk protein genes are expressed with unique regional specificities. Most of the Hox and some of the homeobox genes are also expressed in the differentiated silk gland with regional specificities. The expression patterns of Hox genes in the silk gland roughly correspond to those in embryogenesis showing "colinearity". The central Hox class protein Antennapedia (Antp) directly regulates the expression of several middle silk gland-specific silk genes, whereas the Lin-1/Isl-1/Mec3 (LIM)-homeodomain transcriptional factor Arrowhead (Awh) regulates the expression of posterior silk gland-specific genes for silk fiber proteins. We summarize our results and discuss the usefulness of the silk gland of Bombyx mori for analyzing the function of Hox genes. Further analyses of the regulatory mechanisms underlying the region-specific expression of silk genes will provide novel insights into the molecular bases for target-gene selection and regulation by Hox and homeodomain proteins.
Collapse
Affiliation(s)
- Shigeharu Takiya
- Shigeharu Takiya, Division of Biological Sciences and Center for Genome Dynamics, Faculty of Science, Hokkaido University, North 10, West 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan.
- Graduate School of Life Science, Hokkaido University, North 10, West 8, Kita-ku, Sapporo 060-0810, Japan.
| | - Takuya Tsubota
- Transgenic Silkworm Research Unit, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan.
| | - Mai Kimoto
- Graduate School of Life Science, Hokkaido University, North 10, West 8, Kita-ku, Sapporo 060-0810, Japan.
| |
Collapse
|
144
|
Dror I, Rohs R, Mandel-Gutfreund Y. How motif environment influences transcription factor search dynamics: Finding a needle in a haystack. Bioessays 2016; 38:605-12. [PMID: 27192961 PMCID: PMC5023137 DOI: 10.1002/bies.201600005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Transcription factors (TFs) have to find their binding sites, which are distributed throughout the genome. Facilitated diffusion is currently the most widely accepted model for this search process. Based on this model the TF alternates between one-dimensional sliding along the DNA, and three-dimensional bulk diffusion. In this view, the non-specific associations between the proteins and the DNA play a major role in the search dynamics. However, little is known about how the DNA properties around the motif contribute to the search. Accumulating evidence showing that TF binding sites are embedded within a unique environment, specific to each TF, leads to the hypothesis that the search process is facilitated by favorable DNA features that help to improve the search efficiency. Here, we review the field and present the hypothesis that TF-DNA recognition is dictated not only by the motif, but is also influenced by the environment in which the motif resides.
Collapse
Affiliation(s)
- Iris Dror
- Department of Biology, Technion - Israel Institute of Technology, Technion City, Haifa, Israel.,Departments of Biological Sciences, Chemistry, Physics, and Computer Science, Molecular and Computational Biology Program, University of Southern California, Los Angeles, CA, USA
| | - Remo Rohs
- Departments of Biological Sciences, Chemistry, Physics, and Computer Science, Molecular and Computational Biology Program, University of Southern California, Los Angeles, CA, USA
| | - Yael Mandel-Gutfreund
- Department of Biology, Technion - Israel Institute of Technology, Technion City, Haifa, Israel
| |
Collapse
|
145
|
Abstract
Hox proteins are a deeply conserved group of transcription factors originally defined for their critical roles in governing segmental identity along the antero-posterior (AP) axis in
Drosophila. Over the last 30 years, numerous data generated in evolutionarily diverse taxa have clearly shown that changes in the expression patterns of these genes are closely associated with the regionalization of the AP axis, suggesting that
Hox genes have played a critical role in the evolution of novel body plans within Bilateria. Despite this deep functional conservation and the importance of these genes in AP patterning, key questions remain regarding many aspects of
Hox biology. In this commentary, we highlight recent reports that have provided novel insight into the origins of the mammalian
Hox cluster, the role of
Hox genes in the generation of a limbless body plan, and a novel putative mechanism in which
Hox genes may encode specificity along the AP axis. Although the data discussed here offer a fresh perspective, it is clear that there is still much to learn about
Hox biology and the roles it has played in the evolution of the Bilaterian body plan.
Collapse
Affiliation(s)
- Steven M Hrycaj
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, 48109-2200, USA
| | - Deneen M Wellik
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, 48109-2200, USA; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, 48109-2200, USA
| |
Collapse
|
146
|
Abstract
Metazoans encode clusters of paralogous Hox genes that are critical for proper development of the body plan. However, there are a number of unresolved issues regarding how paralogous Hox factors achieve specificity to control distinct cell fates. First, how do Hox paralogs, which have very similar DNA binding preferences in vitro, drive different transcriptional programs in vivo? Second, the number of potential Hox binding sites within the genome is vast compared to the number of sites bound. Hence, what determines where in the genome Hox factors bind? Third, what determines whether a Hox factor will activate or repress a specific target gene? Here, we review the current evidence that is beginning to shed light onto these questions. In particular, we highlight how cooperative interactions with other transcription factors (especially PBC and HMP proteins) and the sequences of cis-regulatory modules provide a basis for the mechanisms of Hox specificity. We conclude by integrating a number of the concepts described throughout the review in a case study of a highly interrogated Drosophila cis-regulatory module named “The Distal-less Conserved Regulatory Element” (DCRE).
Collapse
Affiliation(s)
- Arya Zandvakili
- Molecular and Developmental Biology Graduate Program, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Medical-Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA;
| | - Brian Gebelein
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Correspondence: ; Tel.: +1-513-636-3366
| | | | | |
Collapse
|
147
|
Franco-Zorrilla JM, Solano R. Identification of plant transcription factor target sequences. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:21-30. [PMID: 27155066 DOI: 10.1016/j.bbagrm.2016.05.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/01/2016] [Accepted: 05/02/2016] [Indexed: 12/15/2022]
Abstract
Regulation of gene expression depends on specific cis-regulatory sequences located in the gene promoter regions. These DNA sequences are recognized by transcription factors (TFs) in a sequence-specific manner, and their identification could help to elucidate the regulatory networks that underlie plant physiological responses to developmental programs or to environmental adaptation. Here we review recent advances in high throughput methodologies for the identification of plant TF binding sites. Several approaches offer a map of the TF binding locations in vivo and of the dynamics of the gene regulatory networks. As an alternative, high throughput in vitro methods provide comprehensive determination of the DNA sequences recognized by TFs. These advances are helping to decipher the regulatory lexicon and to elucidate transcriptional network hierarchies in plants in response to internal or external cues. This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer.
Collapse
Affiliation(s)
- José M Franco-Zorrilla
- Genomics Unit, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain.
| | - Roberto Solano
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| |
Collapse
|
148
|
Uhl JD, Zandvakili A, Gebelein B. A Hox Transcription Factor Collective Binds a Highly Conserved Distal-less cis-Regulatory Module to Generate Robust Transcriptional Outcomes. PLoS Genet 2016; 12:e1005981. [PMID: 27058369 PMCID: PMC4825978 DOI: 10.1371/journal.pgen.1005981] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 03/16/2016] [Indexed: 12/19/2022] Open
Abstract
cis-regulatory modules (CRMs) generate precise expression patterns by integrating numerous transcription factors (TFs). Surprisingly, CRMs that control essential gene patterns can differ greatly in conservation, suggesting distinct constraints on TF binding sites. Here, we show that a highly conserved Distal-less regulatory element (DCRE) that controls gene expression in leg precursor cells recruits multiple Hox, Extradenticle (Exd) and Homothorax (Hth) complexes to mediate dual outputs: thoracic activation and abdominal repression. Using reporter assays, we found that abdominal repression is particularly robust, as neither individual binding site mutations nor a DNA binding deficient Hth protein abolished cooperative DNA binding and in vivo repression. Moreover, a re-engineered DCRE containing a distinct configuration of Hox, Exd, and Hth sites also mediated abdominal Hox repression. However, the re-engineered DCRE failed to perform additional segment-specific functions such as thoracic activation. These findings are consistent with two emerging concepts in gene regulation: First, the abdominal Hox/Exd/Hth factors utilize protein-protein and protein-DNA interactions to form repression complexes on flexible combinations of sites, consistent with the TF collective model of CRM organization. Second, the conserved DCRE mediates multiple cell-type specific outputs, consistent with recent findings that pleiotropic CRMs are associated with conserved TF binding and added evolutionary constraints. Enhancers are regulatory elements that interact with transcription factor proteins to control cell-specific gene expression during development. Surprisingly, only a subset of enhancers are highly conserved at the sequence level, even though the expression patterns they control are often conserved and essential for proper development. Why some enhancer sequences are highly conserved whereas others are not is not well understood. In this study, we characterize a highly conserved enhancer that regulates gene expression in leg precursor cells. We find that this enhancer has dual regulatory activities that include gene activation in thoracic segments and gene repression in abdominal segments. Surprisingly, we show that the conserved enhancer can tolerate numerous sequence changes yet mediate robust transcription factor binding and abdominal repression. These findings are consistent with abdominal transcription factors binding numerous different configurations of binding sites. So, why is this enhancer highly conserved? We found that overlapping sequences within the enhancer also contribute to thoracic activation, suggesting the enhancer sequences are under added functional constraints. Altogether, our results provide new insights into why some enhancers are highly conserved at the sequence level while others can tolerate sequence changes.
Collapse
Affiliation(s)
- Juli D Uhl
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, Ohio, United States of America.,Graduate Program in Molecular and Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio, United States of America
| | - Arya Zandvakili
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, Ohio, United States of America.,Graduate Program in Molecular and Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio, United States of America
| | - Brian Gebelein
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, Ohio, United States of America
| |
Collapse
|
149
|
Merabet S, Mann RS. To Be Specific or Not: The Critical Relationship Between Hox And TALE Proteins. Trends Genet 2016; 32:334-347. [PMID: 27066866 DOI: 10.1016/j.tig.2016.03.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 10/22/2022]
Abstract
Hox proteins are key regulatory transcription factors that act in different tissues of the embryo to provide specific spatial and temporal coordinates to each cell. These patterning functions often depend on the presence of the TALE-homeodomain class cofactors, which form cooperative DNA-binding complexes with all Hox proteins. How this family of cofactors contributes to the highly diverse and specific functions of Hox proteins in vivo remains an important unsolved question. We review here the most recent advances in understanding the molecular mechanisms underlying Hox-TALE function. In particular, we discuss the role of DNA shape, DNA-binding affinity, and protein-protein interaction flexibility in dictating Hox-TALE specificity. We propose several models to explain how these mechanisms are integrated with each other in the context of the many distinct functions that Hox and TALE factors carry out in vivo.
Collapse
Affiliation(s)
- Samir Merabet
- Institut de Génomique Fonctionnelle de Lyon, Centre National de Recherche Scientifique, Ecole Normale Supérieure de Lyon, France.
| | | |
Collapse
|
150
|
Mariotto A, Pavlova O, Park HS, Huber M, Hohl D. HOPX: The Unusual Homeodomain-Containing Protein. J Invest Dermatol 2016; 136:905-911. [PMID: 27017330 DOI: 10.1016/j.jid.2016.01.032] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 12/23/2015] [Accepted: 01/04/2016] [Indexed: 01/15/2023]
Abstract
The homeodomain-only protein homeobox (HOPX) is the smallest known member of the homeodomain-containing protein family, atypically unable to bind DNA. HOPX is widely expressed in diverse tissues, where it is critically involved in the regulation of proliferation and differentiation. In human skin, HOPX controls epidermal formation through the regulation of late differentiation markers, and HOPX expression correlates with the level of differentiation in cutaneous pathologies. In mouse skin, Hopx was additionally identified as a lineage tracing marker of quiescent hair follicle stem cells. This review discusses current knowledge of HOPX structure and function in normal and pathological conditions.
Collapse
Affiliation(s)
- Anita Mariotto
- Laboratory of Cutaneous Biology, Service of Dermatology and Venereology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Olesya Pavlova
- Laboratory of Cutaneous Biology, Service of Dermatology and Venereology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Hyun-Sook Park
- Laboratory of Cutaneous Biology, Service of Dermatology and Venereology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Marcel Huber
- Laboratory of Cutaneous Biology, Service of Dermatology and Venereology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Daniel Hohl
- Laboratory of Cutaneous Biology, Service of Dermatology and Venereology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland.
| |
Collapse
|