101
|
Abstract
Macrophages are present in all vertebrate tissues, from mid-gestation throughout life, constituting a widely dispersed organ system. They promote homeostasis by responding to internal and external changes within the body, not only as phagocytes in defence against microbes and in clearance of dead and senescent cells, but also through trophic, regulatory and repair functions. In this review, we describe macrophage phenotypic heterogeneity in different tissue environments, drawing particular attention to organ-specific functions.
Collapse
Affiliation(s)
- Siamon Gordon
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City, 33302, Taiwan. .,Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK.
| | - Annette Plüddemann
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Woodstock Road, Oxford, OX2 6GG, UK
| |
Collapse
|
102
|
Abstract
In metazoans, removal of cells in situ is involved in larval maturation, metamorphosis, and embryonic development. In adults, such cell removal plays a role in the homeostatic maintenance of cell numbers and tissue integrity as well as in the response to cell injury and damage. This removal involves uptake of the whole or fragmented target cells into phagocytes. Depending on the organism, these latter may be near-neighbor tissue cells and/or professional phagocytes such as, in vertebrates, members of the myeloid family of cells, especially macrophages. The uptake processes appear to involve specialized and highly conserved recognition ligands and receptors, intracellular signaling in the phagocytes, and mechanisms for ingestion. The recognition of cells destined for this form of removal is critical and, significantly, is distinguished for the most part from the recognition of foreign materials and organisms by the innate and adaptive immune systems. In keeping with the key role of cell removal in maintaining tissue homeostasis, constant cell removal is normally silent, i.e., does not initiate a local tissue reaction. This article discusses these complex and wide-ranging processes in general terms as well as the implications when these processes are disrupted in inflammation, immunity, and disease.
Collapse
Affiliation(s)
- Peter M Henson
- Department of Pediatrics, National Jewish Health, and Departments of Immunology and Medicine, University of Colorado, Denver, Colorado 80206;
| |
Collapse
|
103
|
Witherel CE, Gurevich D, Collin JD, Martin P, Spiller KL. Host–Biomaterial Interactions in Zebrafish. ACS Biomater Sci Eng 2017; 4:1233-1240. [DOI: 10.1021/acsbiomaterials.6b00760] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Claire E. Witherel
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104 United States
| | | | - John D. Collin
- Bristol Royal Infirmary, University Hospitals Bristol NHS Trust, Upper Maudlin Street, Bristol BS2 8HW, United Kingdom
| | | | | |
Collapse
|
104
|
Development of fusogenic glass surfaces that impart spatiotemporal control over macrophage fusion: Direct visualization of multinucleated giant cell formation. Biomaterials 2017; 128:160-171. [PMID: 28340410 DOI: 10.1016/j.biomaterials.2017.02.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 02/21/2017] [Accepted: 02/26/2017] [Indexed: 01/07/2023]
Abstract
Implantation of synthetic material, including vascular grafts, pacemakers, etc. results in the foreign body reaction and the formation of multinucleated giant cells (MGCs) at the exterior surface of the implant. Despite the long-standing premise that fusion of mononucleated macrophages results in the formation of MGCs, to date, no published study has shown fusion in context with living specimens. This is due to the fact that optical-quality glass, which is required for the majority of live imaging techniques, does not promote macrophage fusion. Consequently, the morphological changes that macrophages undergo during fusion as well as the mechanisms that govern this process remain ill-defined. In this study, we serendipitously identified a highly fusogenic glass surface and discovered that the capacity to promote fusion was due to oleamide contamination. When adsorbed on glass, oleamide and other molecules that contain long-chain hydrocarbons promoted high levels of macrophage fusion. Adhesion, an essential step for macrophage fusion, was apparently mediated by Mac-1 integrin (CD11b/CD18, αMβ2) as determined by single cell force spectroscopy and adhesion assays. Micropatterned glass further increased fusion and enabled a remarkable degree of spatiotemporal control over MGC formation. Using these surfaces, we reveal the kinetics that govern MGC formation in vitro. We anticipate that the spatiotemporal control afforded by these surfaces will expedite studies designed to identify the mechanism(s) of macrophage fusion and MGC formation with implication for the design of novel biomaterials.
Collapse
|
105
|
Pepys MB. Immunotherapeutic clearance of systemic amyloid deposits by antibodies to serum amyloid P component. Amyloid 2017; 24:5-6. [PMID: 28019722 DOI: 10.1080/13506129.2016.1269735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Mark B Pepys
- a Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Royal Free Campus, University College London , London , UK
| |
Collapse
|
106
|
In vivo cellular reactions to different biomaterials—Physiological and pathological aspects and their consequences. Semin Immunol 2017. [DOI: 10.1016/j.smim.2017.06.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
107
|
Lavie L, Dyugovskaya L, Polyakov A, Rogovoy O, Leder E. Development and Identification of a Novel Subpopulation of Human Neutrophil-derived Giant Phagocytes In Vitro. J Vis Exp 2017:54826. [PMID: 28190059 PMCID: PMC5352295 DOI: 10.3791/54826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Neutrophils (PMN) are best known for their phagocytic functions against invading pathogens and microorganisms. They have the shortest half-life amongst leukocytes and in their non-activated state are constitutively committed to apoptosis. When recruited to inflammatory sites to resolve inflammation, they produce an array of cytotoxic molecules with potent antimicrobial killing. Yet, when these powerful cytotoxic molecules are released in an uncontrolled manner they can damage surrounding tissues. In recent years however, neutrophil versatility is increasingly evidenced, by demonstrating plasticity and immunoregulatory functions. We have recently identified a new neutrophil-derived subpopulation, which develops spontaneously in standard culture conditions without the addition of cytokines/growth factors such as granulocyte colony-stimulating factor (GM-CSF)/interleukin (IL)-4. Their phagocytic abilities of neutrophil remnants largely contribute to increase their size immensely; therefore they were termed giant phagocytes (Gϕ). Unlike neutrophils, Gϕ are long lived in culture. They express the cluster of differentiation (CD) neutrophil markers CD66b/CD63/CD15/CD11b/myeloperoxidase (MPO)/neutrophil elastase (NE), and are devoid of the monocytic lineage markers CD14/CD16/CD163 and the dendritic CD1c/CD141 markers. They also take-up latex and zymosan, and respond by oxidative burst to stimulation with opsonized-zymosan and PMA. Gϕ also express the scavenger receptors CD68/CD36, and unlike neutrophils, internalize oxidized-low density lipoprotein (oxLDL). Moreover, unlike fresh neutrophils, or cultured monocytes, they respond to oxLDL uptake by increased reactive oxygen species (ROS) production. Additionally, these phagocytes contain microtubule-associated protein-1 light chain 3B (LC3B) coated vacuoles, indicating the activation of autophagy. Using specific inhibitors it is evident that both phagocytosis and autophagy are prerequisites for their development and likely NADPH oxidase dependent ROS. We describe here a method for the preparation of this new subpopulation of long-lived, neutrophil-derived phagocytic cells in culture, their identification and their currently known characteristics. This protocol is essential for obtaining and characterizing Gϕ in order to further investigate their significance and functions.
Collapse
Affiliation(s)
- Lena Lavie
- The Lloyd Rigler Sleep Apnea Research Laboratory, Unit of Anatomy and Cell Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Insitute of Technology;
| | - Larissa Dyugovskaya
- The Lloyd Rigler Sleep Apnea Research Laboratory, Unit of Anatomy and Cell Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Insitute of Technology
| | - Andrey Polyakov
- The Lloyd Rigler Sleep Apnea Research Laboratory, Unit of Anatomy and Cell Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Insitute of Technology
| | - Oksana Rogovoy
- The Lloyd Rigler Sleep Apnea Research Laboratory, Unit of Anatomy and Cell Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Insitute of Technology
| | - Eva Leder
- The Lloyd Rigler Sleep Apnea Research Laboratory, Unit of Anatomy and Cell Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Insitute of Technology
| |
Collapse
|
108
|
Abstract
Integrins comprise a large family of αβ heterodimeric cell adhesion receptors that are expressed on all cells except red blood cells and that play essential roles in the regulation of cell growth and function. The leukocyte integrins, which include members of the β
1, β
2, β
3, and β
7 integrin family, are critical for innate and adaptive immune responses but also can contribute to many inflammatory and autoimmune diseases when dysregulated. This review focuses on the β
2 integrins, the principal integrins expressed on leukocytes. We review their discovery and role in host defense, the structural basis for their ligand recognition and activation, and their potential as therapeutic targets.
Collapse
Affiliation(s)
- M Amin Arnaout
- Leukocyte Biology & Inflammation Program, Structural Biology Program, Nephrology, Center for Regenerative Medicine, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
109
|
McClean CM, Tobin DM. Macrophage form, function, and phenotype in mycobacterial infection: lessons from tuberculosis and other diseases. Pathog Dis 2016; 74:ftw068. [PMID: 27402783 DOI: 10.1093/femspd/ftw068] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2016] [Indexed: 02/07/2023] Open
Abstract
Macrophages play a central role in mycobacterial pathogenesis. Recent work has highlighted the importance of diverse macrophage types and phenotypes that depend on local environment and developmental origins. In this review, we highlight how distinct macrophage phenotypes may influence disease progression in tuberculosis. In addition, we draw on work investigating specialized macrophage populations important in cancer biology and atherosclerosis in order to suggest new areas of investigation relevant to mycobacterial pathogenesis. Understanding the mechanisms controlling the repertoire of macrophage phenotypes and behaviors during infection may provide opportunities for novel control of disease through modulation of macrophage form and function.
Collapse
Affiliation(s)
- Colleen M McClean
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, DUMC 3020, Durham, NC 27710, USA Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA Medical Scientist Training Program, Duke University School of Medicine, Durham, NC 27710, USA
| | - David M Tobin
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, DUMC 3020, Durham, NC 27710, USA Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
110
|
The Role of Integrins αMβ2 (Mac-1, CD11b/CD18) and αDβ2 (CD11d/CD18) in Macrophage Fusion. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2105-2116. [PMID: 27315778 DOI: 10.1016/j.ajpath.2016.04.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/11/2016] [Accepted: 04/06/2016] [Indexed: 11/22/2022]
Abstract
The subfamily of β2 integrins is implicated in macrophage fusion, a hallmark of chronic inflammation. Among β2 family members, integrin Mac-1 (αMβ2, CD11b/CD18) is abundantly expressed on monocyte/macrophages and mediates critical adhesive reactions of these cells. However, the role of Mac-1 in macrophage fusion leading to the formation of multinucleated giant cells remains unclear. Moreover, the role of integrin αDβ2 (CD11d/CD18), a receptor with recognition specificity overlapping that of Mac-1, is unknown. We found that multinucleated giant cells are formed in the inflamed mouse peritoneum during the resolution phase of inflammation, and their numbers were approximately twofold higher in wild-type mice than in Mac-1(-/-) mice. Analyses of isolated inflammatory peritoneal macrophages showed that IL-4-induced fusion of Mac-1-deficient cells was strongly reduced compared with wild-type counterparts. The examination of adhesive reactions known to be required for fusion showed that spreading, but not adhesion and migration, was reduced in Mac-1-deficient macrophages. Fusion of αDβ2-deficient macrophages was also significantly decreased, albeit to a smaller degree. Deficiency of intercellular adhesion molecule 1, a counter-receptor for Mac-1 and αDβ2, did not alter the fusion rate. The results indicate that both Mac-1 and αDβ2 support macrophage fusion with Mac-1 playing a dominant role and suggest that Mac-1 may mediate cell-cell interactions with a previously unrecognized counter-receptor(s).
Collapse
|
111
|
Imaizumi Y, Eguchi K, Imada H, Hidano K, Niijima S, Kawata H, Fukushima N, Saito T, Hiroe M, Kario K. Electron Microscopy of Contact Between a Monocyte and a Multinucleated Giant Cell in Cardiac Sarcoidosis. Can J Cardiol 2016; 32:1577.e19-1577.e20. [PMID: 27133542 DOI: 10.1016/j.cjca.2016.02.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 02/07/2016] [Accepted: 02/19/2016] [Indexed: 11/25/2022] Open
Affiliation(s)
- Yuki Imaizumi
- Division of Cardiology, Jichi Medical University, Tochigi, Japan.
| | - Kazuo Eguchi
- Division of Cardiology, Jichi Medical University, Tochigi, Japan
| | - Hiroki Imada
- Department of Pathology, Dokkyo Medical University Koshigaya Hospital, Saitama, Japan
| | - Kiyomi Hidano
- Division of Pathology, Jichi Medical University, Tochigi, Japan
| | - Satoshi Niijima
- Division of Cardiology, Jichi Medical University, Tochigi, Japan
| | | | | | - Tsunenori Saito
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan
| | - Michiaki Hiroe
- Department of Cardiology, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kazuomi Kario
- Division of Cardiology, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
112
|
Garash R, Bajpai A, Marcinkiewicz BM, Spiller KL. Drug delivery strategies to control macrophages for tissue repair and regeneration. Exp Biol Med (Maywood) 2016; 241:1054-63. [PMID: 27190256 PMCID: PMC4950366 DOI: 10.1177/1535370216649444] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Tissue repair and regeneration is a complex process. Our bodies have an excellent capacity to regenerate damaged tissues in many situations. However, tissue healing is impaired in injuries that exceed a critical size or are exacerbated by chronic inflammatory diseases like diabetes. In these instances, biomaterials and drug delivery strategies are often required to facilitate tissue regeneration by providing physical and biochemical cues. Inflammation is the body's response to injury. It is critical for wound healing and biomaterial integration and vascularization, as long as the timing is well controlled. For example, chronic inflammation is well known to impair healing in chronic wounds. In this review, we highlight the importance of a well-controlled inflammatory response, primarily mediated by macrophages in tissue repair and regeneration and discuss various strategies designed to promote regeneration by controlling macrophage behavior. These strategies include temporally controlled delivery of anti-inflammatory drugs, delivery of macrophages as cellular therapy, controlled release of cytokines that modulate macrophage phenotype, and the design of nanoparticles that exploit the inherent phagocytic behavior of macrophages. A clear outcome of this review is that a deeper understanding of the role and timing of complex macrophage phenotypes or activation states is required to fully harness their abilities with drug delivery strategies.
Collapse
Affiliation(s)
- Reham Garash
- Biomaterials and Regenerative Medicine Laboratory, School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | - Anamika Bajpai
- Biomaterials and Regenerative Medicine Laboratory, School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | - Brandon M Marcinkiewicz
- Biomaterials and Regenerative Medicine Laboratory, School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | - Kara L Spiller
- Biomaterials and Regenerative Medicine Laboratory, School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| |
Collapse
|
113
|
Yu T, Wang W, Nassiri S, Kwan T, Dang C, Liu W, Spiller KL. Temporal and spatial distribution of macrophage phenotype markers in the foreign body response to glutaraldehyde-crosslinked gelatin hydrogels. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2016; 27:721-42. [PMID: 26902292 DOI: 10.1080/09205063.2016.1155881] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Currently, it is not well understood how changes in biomaterial properties affect the foreign body response (FBR) or macrophage behavior. Because failed attempts at biomaterial degradation by macrophages have been linked to frustrated phagocytosis, a defining feature of the FBR, we hypothesized that increased hydrogel crosslinking density (and decreased degradability) would exacerbate the FBR. Gelatin hydrogels were crosslinked with glutaraldehyde (0.05, 0.1, and 0.3%) and implanted subcutaneously in C57BL/6 mice over the course of 3 weeks. Interestingly, changes in hydrogel crosslinking did not affect the thickness of the fibrous capsule surrounding the hydrogels, expression of the pan-macrophage marker F480, expression of three macrophage phenotype markers (iNOS, Arg1, CD163), or expression of the myofibroblast marker aSMA, determined using semi-quantitative immunohistochemical analysis. With respect to temporal changes, the level of expression of the M1 marker (iNOS) remained relatively constant throughout the study, while the M2 markers Arg1 and CD163 increased over time. Expression of these M2 markers was highly correlated with fibrous capsule thickness. Differences in spatial distribution of staining also were noted, with the strongest staining for iNOS at the hydrogel surface and increasing expression of the myofibroblast marker aSMA toward the outer edge of the fibrous capsule. These results confirm previous reports that macrophages in the FBR exhibit characteristics of both M1 and M2 phenotypes. Understanding the effects (or lack of effects) of biomaterial properties on the FBR and macrophage phenotype may aid in the rational design of biomaterials to integrate with surrounding tissue.
Collapse
Affiliation(s)
- Tony Yu
- a School of Biomedical Engineering, Science, and Health Systems , Drexel University , Philadelphia , PA , USA
| | - Wenbo Wang
- b Shanghai Key Tissue Engineering Laboratory , Shanghai Jiao Tong University , Shanghai , China
| | - Sina Nassiri
- a School of Biomedical Engineering, Science, and Health Systems , Drexel University , Philadelphia , PA , USA
| | - Thomas Kwan
- c Institute of Science and Technology in Medicine , Keele University , Stoke-on-Trent , UK
| | - Chau Dang
- a School of Biomedical Engineering, Science, and Health Systems , Drexel University , Philadelphia , PA , USA
| | - Wei Liu
- b Shanghai Key Tissue Engineering Laboratory , Shanghai Jiao Tong University , Shanghai , China
| | - Kara L Spiller
- a School of Biomedical Engineering, Science, and Health Systems , Drexel University , Philadelphia , PA , USA
| |
Collapse
|
114
|
Gordon S. Phagocytosis: An Immunobiologic Process. Immunity 2016; 44:463-475. [DOI: 10.1016/j.immuni.2016.02.026] [Citation(s) in RCA: 352] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/09/2016] [Accepted: 02/23/2016] [Indexed: 12/27/2022]
|