101
|
Yao H, Zhou Q, Kan XT, Niu YB, Naeem M, Wei TB, Lin Q, Zhang YM. A signal amplification strategy for ultrasensitive detecting H2PO4− using metal coordinated supramolecular gel. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114500] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
102
|
CO2 and photo-controlled reversible conversion of supramolecular assemblies based on water soluble pillar[5]arene and coumarin-containing guest. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.03.058] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
103
|
Abstract
The synthesis and application of promising polymeric materials–pillararene-based conjugated porous polymers–are discussed and summarized in this review.
Collapse
Affiliation(s)
- Huacheng Zhang
- School of Chemical Engineering and Technology
- Xi'an Jiaotong University
- Xi'an
- China
| | - Jie Han
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Energy)
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Chao Li
- Department of Laboratory
- Shandong University Hospital
- Jinan 250100
- China
| |
Collapse
|
104
|
Yu S, Wang Y, Chatterjee S, Liang F, Zhu F, Li H. Pillar[5]arene-functionalized nanochannel platform for detecting chiral drugs. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
105
|
Butkiewicz H, Sashuk V, Danylyuk O. Incorporation of carboxylated pillar[5]arene and strontium( ii) into supramolecular coordination complexes of different nuclearities. CrystEngComm 2021. [DOI: 10.1039/d1ce00334h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The nuclearity of the coordination complexes of carboxylated pillar[5]arene and strontium(ii) can be varied with the aid of phenanthroline as a coligand.
Collapse
Affiliation(s)
- Helena Butkiewicz
- Institute of Physical Chemistry
- Polish Academy of Sciences
- 01-224 Warsaw
- Poland
| | - Volodymyr Sashuk
- Institute of Physical Chemistry
- Polish Academy of Sciences
- 01-224 Warsaw
- Poland
| | - Oksana Danylyuk
- Institute of Physical Chemistry
- Polish Academy of Sciences
- 01-224 Warsaw
- Poland
| |
Collapse
|
106
|
Jia PP, Xu L, Hu YX, Li WJ, Wang XQ, Ling QH, Shi X, Yin GQ, Li X, Sun H, Jiang Y, Yang HB. Orthogonal Self-Assembly of a Two-Step Fluorescence-Resonance Energy Transfer System with Improved Photosensitization Efficiency and Photooxidation Activity. J Am Chem Soc 2020; 143:399-408. [DOI: 10.1021/jacs.0c11370] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Pei-Pei Jia
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P. R. China
| | - Lin Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P. R. China
| | - Yi-Xiong Hu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P. R. China
| | - Wei-Jian Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P. R. China
| | - Xu-Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P. R. China
| | - Qing-Hui Ling
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P. R. China
| | - Xueliang Shi
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P. R. China
| | - Guang-Qiang Yin
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China
| | - Haitao Sun
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, P. R. China
| | - Yanrong Jiang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, P. R. China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P. R. China
| |
Collapse
|
107
|
Notti A, Pisagatti I, Nastasi F, Patanè S, Parisi MF, Gattuso G. Stimuli-Responsive Internally Ion-Paired Supramolecular Polymer Based on a Bis-pillar[5]arene Dicarboxylic Acid Monomer. J Org Chem 2020; 86:1676-1684. [PMID: 33369427 PMCID: PMC7871325 DOI: 10.1021/acs.joc.0c02501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
A novel
bis-pillar[5]arene dicarboxylic acid self-assembles in
the presence of 1,12-diaminododecane to yield overall neutral, internally
ion-paired supramolecular polymers. Their aggregation, binding mode,
and morphology can be tuned by external stimuli such as solvent polarity,
concentration, and base treatment.
Collapse
Affiliation(s)
- Anna Notti
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Ilenia Pisagatti
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Francesco Nastasi
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Salvatore Patanè
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Melchiorre F Parisi
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Giuseppe Gattuso
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
108
|
Wang K, Jordan JH, Velmurugan K, Tian X, Zuo M, Hu XY, Wang L. Role of Functionalized Pillararene Architectures in Supramolecular Catalysis. Angew Chem Int Ed Engl 2020; 60:9205-9214. [PMID: 32794352 DOI: 10.1002/anie.202010150] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Indexed: 12/14/2022]
Abstract
The many useful features possessed by pillararenes (PAs; e.g. rigid, capacious, and hydrophobic cavities, as well as exposed functional groups) have led to a tremendous increase in their popularity since their first discovery in 2008. In this Minireview, we emphasize the use of functionalized PAs and their assembled supramolecular materials in the field of catalysis. We aim to provide a fundamental understanding and mechanism of the role PAs play in catalytic process. The topics are subdivided into catalysis promoted by the PA rim/cavity, PA-based nanomaterials, and PA-based polymeric materials. To the best of our knowledge, this is the first overview on PA-based catalysis. This Minireview not only summarizes the fabrications and applications of PAs in catalysis but also anticipates future research efforts in applying supramolecular hosts in catalysis.
Collapse
Affiliation(s)
- Kaiya Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Jacobs H Jordan
- The Southern Regional Research Center, Agricultural Research Service, USDA, New Orleans, LA, 70124, USA
| | - Krishnasamy Velmurugan
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Xueqi Tian
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Minzan Zuo
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Xiao-Yu Hu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Leyong Wang
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
109
|
Wang K, Jordan JH, Velmurugan K, Tian X, Zuo M, Hu X, Wang L. Role of Functionalized Pillararene Architectures in Supramolecular Catalysis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Kaiya Wang
- College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 211106 China
| | - Jacobs H. Jordan
- The Southern Regional Research Center Agricultural Research Service, USDA New Orleans LA 70124 USA
| | - Krishnasamy Velmurugan
- College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 211106 China
| | - Xueqi Tian
- College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 211106 China
| | - Minzan Zuo
- College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 211106 China
| | - Xiao‐Yu Hu
- College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 211106 China
| | - Leyong Wang
- Key Laboratory of Mesoscopic Chemistry of MOE School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|
110
|
Li B, Xu K, Wang Y, Su H, Cui L, Li C. Selective complexation and efficient separation of cis/ trans-1,2-dichloroethene isomers by a pillar[5]arene. RSC Adv 2020; 10:45112-45115. [PMID: 35516283 PMCID: PMC9058647 DOI: 10.1039/d0ra09307f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 11/10/2020] [Indexed: 01/10/2023] Open
Abstract
The complexation and separation of industrially important cis- and trans-1,2-dichloroethene (cis- and trans-DCE) isomers using perethylated pillar[5]arene (EtP5) are described. EtP5 exhibits considerable binding capability for the trans-DCE isomer over the cis-DCE in organic solution. Furthermore, nonporous adaptive crystals (NACs) of EtP5 can efficiently separate trans-DCE from a 50 : 50 (v/v) cis/trans-isomer mixture.
Collapse
Affiliation(s)
- Bin Li
- College of Science, Center for Supramolecular Chemistry and Catalysis, Shanghai University Shanghai 200444 P. R. China
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University Tianjin 300387 P. R. China
| | - Kaidi Xu
- College of Science, Center for Supramolecular Chemistry and Catalysis, Shanghai University Shanghai 200444 P. R. China
| | - Yiliang Wang
- College of Science, Center for Supramolecular Chemistry and Catalysis, Shanghai University Shanghai 200444 P. R. China
| | - Hang Su
- College of Science, Center for Supramolecular Chemistry and Catalysis, Shanghai University Shanghai 200444 P. R. China
| | - Lei Cui
- College of Science, Center for Supramolecular Chemistry and Catalysis, Shanghai University Shanghai 200444 P. R. China
| | - Chunju Li
- College of Science, Center for Supramolecular Chemistry and Catalysis, Shanghai University Shanghai 200444 P. R. China
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University Tianjin 300387 P. R. China
| |
Collapse
|
111
|
Ueno M, Tomita T, Arakawa H, Kakuta T, Yamagishi TA, Terakawa J, Daikoku T, Horike SI, Si S, Kurayoshi K, Ito C, Kasahara A, Tadokoro Y, Kobayashi M, Fukuwatari T, Tamai I, Hirao A, Ogoshi T. Pillar[6]arene acts as a biosensor for quantitative detection of a vitamin metabolite in crude biological samples. Commun Chem 2020; 3:183. [PMID: 36703437 PMCID: PMC9814258 DOI: 10.1038/s42004-020-00430-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/10/2020] [Indexed: 01/29/2023] Open
Abstract
Metabolic syndrome is associated with obesity, hypertension, and dyslipidemia, and increased cardiovascular risk. Therefore, quick and accurate measurements of specific metabolites are critical for diagnosis; however, detection methods are limited. Here we describe the synthesis of pillar[n]arenes to target 1-methylnicotinamide (1-MNA), which is one metabolite of vitamin B3 (nicotinamide) produced by the cancer-associated nicotinamide N-methyltransferase (NNMT). We found that water-soluble pillar[5]arene (P5A) forms host-guest complexes with both 1-MNA and nicotinamide, and water-soluble pillar[6]arene (P6A) selectively binds to 1-MNA at the micromolar level. P6A can be used as a "turn-off sensor" by photoinduced electron transfer (detection limit is 4.38 × 10-6 M). In our cell-free reaction, P6A is used to quantitatively monitor the activity of NNMT. Moreover, studies using NNMT-deficient mice reveal that P6A exclusively binds to 1-MNA in crude urinary samples. Our findings demonstrate that P6A can be used as a biosensor to quantify 1-MNA in crude biological samples.
Collapse
Affiliation(s)
- Masaya Ueno
- grid.9707.90000 0001 2308 3329Division of Molecular Genetics, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 Japan ,grid.9707.90000 0001 2308 3329WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 Japan
| | - Takuya Tomita
- grid.9707.90000 0001 2308 3329Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 Japan
| | - Hiroshi Arakawa
- grid.9707.90000 0001 2308 3329Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 Japan
| | - Takahiro Kakuta
- grid.9707.90000 0001 2308 3329WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 Japan ,grid.9707.90000 0001 2308 3329Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 Japan
| | - Tada-aki Yamagishi
- grid.9707.90000 0001 2308 3329Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 Japan
| | - Jumpei Terakawa
- grid.9707.90000 0001 2308 3329Institute for Experimental Animals, Advanced Science Research Center, Kanazawa University, Takara-machi, Kanazawa, 920-8641 Japan
| | - Takiko Daikoku
- grid.9707.90000 0001 2308 3329Institute for Experimental Animals, Advanced Science Research Center, Kanazawa University, Takara-machi, Kanazawa, 920-8641 Japan
| | - Shin-ichi Horike
- grid.9707.90000 0001 2308 3329Division of Functional Genomics, Advanced Science Research Center, Kanazawa University, Takara-machi, Kanazawa, 920-8641 Japan
| | - Sha Si
- grid.9707.90000 0001 2308 3329Division of Molecular Genetics, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 Japan ,grid.9707.90000 0001 2308 3329WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 Japan
| | - Kenta Kurayoshi
- grid.9707.90000 0001 2308 3329Division of Molecular Genetics, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 Japan
| | - Chiaki Ito
- grid.9707.90000 0001 2308 3329Division of Molecular Genetics, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 Japan
| | - Atsuko Kasahara
- grid.9707.90000 0001 2308 3329Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 Japan
| | - Yuko Tadokoro
- grid.9707.90000 0001 2308 3329Division of Molecular Genetics, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 Japan ,grid.9707.90000 0001 2308 3329WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 Japan
| | - Masahiko Kobayashi
- grid.9707.90000 0001 2308 3329Division of Molecular Genetics, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 Japan ,grid.9707.90000 0001 2308 3329WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 Japan
| | - Tsutomu Fukuwatari
- grid.412698.00000 0001 1500 8310Department of Nutrition, School of Human Cultures, The University of Shiga Prefecture, 2500 Hassaka, Hikone, Shiga 522-8533 Japan
| | - Ikumi Tamai
- grid.9707.90000 0001 2308 3329Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 Japan
| | - Atsushi Hirao
- grid.9707.90000 0001 2308 3329Division of Molecular Genetics, Cancer and Stem Cell Research Program, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 Japan ,grid.9707.90000 0001 2308 3329WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 Japan
| | - Tomoki Ogoshi
- grid.9707.90000 0001 2308 3329WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 Japan ,grid.258799.80000 0004 0372 2033Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering Kyoto University, Kyoto, 615-8510 Japan
| |
Collapse
|
112
|
Li RH, Ma J, Sun Y, Li H. Tailoring two-dimensional surfaces with pillararenes based host–guest chemistry. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.06.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
113
|
Zhang X, Wang X, Wang B, Ding ZJ, Li C. Carbon-carbon double bond in pillar[5]arene cavity: Selective binding of cis/trans-olefin isomers. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.02.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
114
|
Kubota R, Lyu X, Minami T. Suppression of Malachite Green-Induced Toxicity to Human Liver Cells Utilizing Host-Guest Chemistry of Cucurbit[7]uril. ANAL SCI 2020; 37:525-528. [PMID: 33229827 DOI: 10.2116/analsci.20scn02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We investigated a host-guest complex between cucurbit[7]uril and malachite green, and its effect on the toxicity to human liver cells. The host-guest complexation was evaluated by a UV/vis titration and electrospray-ionization mass spectrometry. Interestingly, the host-guest complex resulted in remarkable suppression of the toxicity of malachite green in its practical concentration range (ca. ∼6 μM). This study is one step forward to the active control of the biological effects of potent toxicants utilizing host-guest chemistry.
Collapse
Affiliation(s)
- Riku Kubota
- Institute of Industrial Science, The University of Tokyo
| | - Xiaojun Lyu
- Institute of Industrial Science, The University of Tokyo
| | | |
Collapse
|
115
|
Mao L, Hu Y, Tu Q, Jiang WL, Zhao XL, Wang W, Yuan D, Wen J, Shi X. Highly efficient synthesis of non-planar macrocycles possessing intriguing self-assembling behaviors and ethene/ethyne capture properties. Nat Commun 2020; 11:5806. [PMID: 33199747 PMCID: PMC7669899 DOI: 10.1038/s41467-020-19677-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 10/21/2020] [Indexed: 01/24/2023] Open
Abstract
It has been a challenging topic and perpetual task to design and synthesize covalent macrocycles with characteristic self-assembling behaviors and excellent host-guest properties in supramolecular chemistry. Herein, we present a family of macrocyclic diphenylamine[n]arenes (DPA[n]s, n = 3-7) consisting of methyldiphenylamine units through a facile one-pot synthesis strategy. Unlike many other reported macrocyclic arenes, the resultant non-planar DPA[n]s feature intrinsic π-π stacking interactions, interesting self-assembling behaviors and ethene/ethyne capture properties. Specifically, strong multiple intermolecular edge-to-face aromatic interactions in DPA[3] have been systematically investigated both in solid and solution states. The intriguing findings on the intermolecular edge-to-face stacking interaction mode in the macrocycle would further highlight the importance of noncovalent π-π interaction in supramolecular self-assembly. This study will also shed light on the macrocyclic and supramolecular chemistry and, we expect, will provide a direction for design and synthesis of covalent macrocycles in this area.
Collapse
Affiliation(s)
- Lijun Mao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, 200062, Shanghai, People's Republic of China
| | - Yang Hu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, 200062, Shanghai, People's Republic of China
| | - Qian Tu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, 200062, Shanghai, People's Republic of China
| | - Wei-Ling Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, 200062, Shanghai, People's Republic of China
| | - Xiao-Li Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, 200062, Shanghai, People's Republic of China
| | - Wenjing Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fujian, Fuzhou, People's Republic of China
| | - Daqiang Yuan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fujian, Fuzhou, People's Republic of China
| | - Jin Wen
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 16610, Prague 6, Czech Republic
| | - Xueliang Shi
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N. Zhongshan Road, 200062, Shanghai, People's Republic of China.
| |
Collapse
|
116
|
Fa S, Egami K, Adachi K, Kato K, Ogoshi T. Sequential Chiral Induction and Regulator‐Assisted Chiral Memory of Pillar[5]arenes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Shixin Fa
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University, Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Kouichi Egami
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University, Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Keisuke Adachi
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University, Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Kenichi Kato
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University, Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University, Katsura, Nishikyo-ku Kyoto 615-8510 Japan
- WPI Nano Life Science Institute (WPI-NanoLSI) Kanazawa University, Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
| |
Collapse
|
117
|
Fa S, Egami K, Adachi K, Kato K, Ogoshi T. Sequential Chiral Induction and Regulator‐Assisted Chiral Memory of Pillar[5]arenes. Angew Chem Int Ed Engl 2020; 59:20353-20356. [DOI: 10.1002/anie.202010050] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/17/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Shixin Fa
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University, Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Kouichi Egami
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University, Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Keisuke Adachi
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University, Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Kenichi Kato
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University, Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University, Katsura, Nishikyo-ku Kyoto 615-8510 Japan
- WPI Nano Life Science Institute (WPI-NanoLSI) Kanazawa University, Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
| |
Collapse
|
118
|
Zhang H, Liu Z, Xin F, Zhao Y. Metal-ligated pillararene materials: From chemosensors to multidimensional self-assembled architectures. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213425] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
119
|
Lou XY, Yang YW. Pillar[n]arene-Based Supramolecular Switches in Solution and on Surfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003263. [PMID: 32924206 DOI: 10.1002/adma.202003263] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/17/2020] [Indexed: 06/11/2023]
Abstract
The design and synthesis of new synthetic macrocycles has driven the rapid development of supramolecular chemistry and materials. Pillar[n]arenes, as a new type of macrocyclic compounds, are used as a promising type of building blocks for switchable supramolecular systems due to their versatile functionalization and the ability of binding toward various guest molecules. A number of guests can form inclusion complexes with pillar[n]arenes and their derivatives in solution, which are sensitive to different external triggers. Interestingly, the pursuit of complex stimuli-responsive functional materials and devices has largely motivated the shift of pillar[n]arene-based switches from solution media to surfaces for controllable macroscopic motions on solid platforms. Facilitated by the facile modification of pillar[n]arenes on various solid supports and the dynamic binding of host-guest complexes, numerous functional hybrid materials with adjustable physical or chemical properties and integrated functionalities have been reported in the last decade. Here, the advance of supramolecular switches in solution and on surfaces based on pillar[n]arenes and derivatives with an emphasis on the efforts and the latest contributions from the field is discussed.
Collapse
Affiliation(s)
- Xin-Yue Lou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Ying-Wei Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
120
|
Li B, Li S, Wang B, Meng Z, Wang Y, Meng Q, Li C. Capture of Sulfur Mustard by Pillar[5]arene: From Host-Guest Complexation to Efficient Adsorption Using Nonporous Adaptive Crystals. iScience 2020; 23:101443. [PMID: 32829284 PMCID: PMC7452326 DOI: 10.1016/j.isci.2020.101443] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/17/2020] [Accepted: 08/05/2020] [Indexed: 12/23/2022] Open
Abstract
Sulfur mustard (SM) has been the most frequently used chemical warfare agent. Here, we present the efficient containment of SM and its simulants by per-ethylated pillar[5]arene (EtP5). EtP5 exhibited strong binding abilities toward SM and its simulants not only in solution but also in the solid state. The association constant (Ka) between SM and EtP5 was determined as (6.2 ± 0.6) × 103 M-1 in o-xylene-d10. Single crystal structure of SM@EtP5 showed that a 1:1 inclusion complex was formed, which was driven by multiple C-H···π/Cl/S and S···π interactions. In addition, activated crystal materials of EtP5 (EtP5α) could effectively adsorb SM simulants at solid-vapor phase; powder X-ray diffraction patterns and host-guest crystal structures indicated that the uptake process triggered a solid-state structural transformation. More interestingly, the captured guest molecules could be stably contained in EtP5α for at least 6 months in air at room temperature.
Collapse
Affiliation(s)
- Bin Li
- College of Science, Center for Supramolecular Chemistry and Catalysis, Shanghai University, Shanghai 200444, P. R. China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Shuo Li
- College of Science, Center for Supramolecular Chemistry and Catalysis, Shanghai University, Shanghai 200444, P. R. China
| | - Bin Wang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Zhao Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Yongan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Qingbin Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Chunju Li
- College of Science, Center for Supramolecular Chemistry and Catalysis, Shanghai University, Shanghai 200444, P. R. China
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| |
Collapse
|
121
|
Hua B, Zhang C, Zhou W, Shao L, Wang Z, Wang L, Zhu H, Huang F. Pillar[5]arene-Based Solid-State Supramolecular Polymers with Suppressed Aggregation-Caused Quenching Effects and Two-Photon Excited Emission. J Am Chem Soc 2020; 142:16557-16561. [PMID: 32916045 DOI: 10.1021/jacs.0c08751] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein we develop a new pillar[5]arene-mediated supramolecular polymerization strategy to control the assembly of dyes 4,7-di-2-thienyl-2,1,3-benzothiadiazole and 4,7-di-2-thienyl-2,1,3-benzoselenadiazole in the solid state. The resulting supramolecular polymeric structures drive the dye aggregates in the solid state from parallel alignments to highly ordered "head-to-tail" structures, which effectively suppresses excimer formation and thus aggregation-caused quenching effects and enhances the solid-state emission efficiency by almost 1 order of magnitude. This, together with two-photon excited emission, endows these solid-state polymers with exciting potential in optoelectronic, photonic, and bioimaging applications.
Collapse
Affiliation(s)
- Bin Hua
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Chi Zhang
- State Key Laboratory of Modern Optical Instrumentation, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Wei Zhou
- State Key Laboratory of Modern Optical Instrumentation, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Li Shao
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Zedong Wang
- Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Linjun Wang
- Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Haiming Zhu
- State Key Laboratory of Modern Optical Instrumentation, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.,Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
122
|
Wu JR, Wang Y, Yang YW. Elongated-Geminiarene: Syntheses, Solid-State Conformational Investigations, and Application in Aromatics/Cyclic Aliphatics Separation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003490. [PMID: 32697434 DOI: 10.1002/smll.202003490] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 06/18/2020] [Indexed: 06/11/2023]
Abstract
Energy-saving separation and purification of industrially important compounds with similar physical and chemical properties by novel molecular crystalline materials are of great importance and highly desired. Here a newly enlarged version of geminiarene, namely elongated-geminiarene (ElGA), is first designed and synthesized. Taking advantages of both geminiarenes and biphenarenes, ElGA shows great features including scalable synthesis, nanometer-sized cavity, rich blend of conformational features, and excellent solid-state host-guest properties. Significantly, the functional crystalline materials of ElGA are highly effective in the separation of aromatics and cyclic aliphatics, showing a preference for dimethylbenzene over its corresponding hydrogenation products and paving a new avenue for separation science and industry.
Collapse
Affiliation(s)
- Jia-Rui Wu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Yan Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Ying-Wei Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
123
|
Hadar M, Kaizerman-Kane D, Zafrani Y, Cohen Y. Temperature-Dependent and pH-Responsive Pillar[5]arene-Based Complexes and Hydrogen-Bond-Based Supramolecular Pentagonal Boxes in Water. Chemistry 2020; 26:11250-11255. [PMID: 32259332 DOI: 10.1002/chem.202000972] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Indexed: 01/02/2023]
Abstract
Supramolecular systems in water are of paramount importance and those based on hydrogen bonds are both intriguing and scarce. Here, after studying the peculiar host-guest complexes formed between per-dimethylamino-pillar[5]arene (1) and the bis-sulfonates 2 a-c, we describe the formation of the first hydrogen-bond-based supramolecular pentagonal boxes (SPBs), which are stable in water. These pH-responsive SPBs are constructed from 1 as a body, benzene polycarboxylic acids 3 a,b as lid compounds, and 2 a-c as guests. We demonstrate that encapsulation of 2 a-c in pillar[5]arene 1 and in the highly stable water-soluble SPBs, that is, 1(3 a)2 and 1(3 b)2 , is both temperature and pH dependent and, quite interestingly, depends, on the nature of the lid compounds used for capping the boxes even at high pH. We also highlight the difference in the 1 H NMR characteristics of 2 b and 2 c in the cavity of 1 and the SPBs.
Collapse
Affiliation(s)
- Maya Hadar
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Dana Kaizerman-Kane
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Yossi Zafrani
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness-Ziona, 74000, Israel
| | - Yoram Cohen
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| |
Collapse
|
124
|
Wu J, Yang Y. Synthetic Macrocycle‐Based Nonporous Adaptive Crystals for Molecular Separation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006999] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jia‐Rui Wu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC) College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Ying‐Wei Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC) College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| |
Collapse
|
125
|
Rashvand Avei M, Etezadi S, Captain B, Kaifer AE. Visualization and quantitation of electronic communication pathways in a series of redox-active pillar[6]arene-based macrocycles. Commun Chem 2020; 3:117. [PMID: 36703347 PMCID: PMC9814560 DOI: 10.1038/s42004-020-00363-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/23/2020] [Indexed: 01/29/2023] Open
Abstract
While oxidized pillar[5]arenes with 1-5 benzoquinone units are known, very few examples of oxidized pillar[6]arenes have been reported. We describe here the synthesis, characterization and electrochemical behavior of a series of macrocyclic hosts prepared by the stepwise oxidation of 1,4-diethoxypillar[6]arene, resulting in high-yield and high-purity isolation of two constitutional isomers for each macrocycle, in which two, three or four 1,4-diethoxybenzene units are replaced by benzoquinone residues. A careful structural comparison with their counterparts in the pillar[5]arene framework indicates that the geometries of the macrocycles are better described as non-Euclidean hyperbolic hexagons and elliptic pentagons, respectively. A comprehensive computational study to determine anisotropic induced current density (ACID) allows us to visualize and quantify through-space and through-bond communication pathways along the macrocyclic belt. Experimental and simulated voltammetric data, as well as UV-vis spectra, of the new macrocycles afford insights into the various electronic communication pathways in these compounds.
Collapse
Affiliation(s)
- Mehdi Rashvand Avei
- grid.26790.3a0000 0004 1936 8606Department of Chemistry, University of Miami, Coral Gables, FL 33124 USA
| | - Sedigheh Etezadi
- grid.26790.3a0000 0004 1936 8606Department of Chemistry, University of Miami, Coral Gables, FL 33124 USA
| | - Burjor Captain
- grid.26790.3a0000 0004 1936 8606Department of Chemistry, University of Miami, Coral Gables, FL 33124 USA
| | - Angel E. Kaifer
- grid.26790.3a0000 0004 1936 8606Department of Chemistry, University of Miami, Coral Gables, FL 33124 USA
| |
Collapse
|
126
|
Wu JR, Yang YW. Synthetic Macrocycle-Based Nonporous Adaptive Crystals for Molecular Separation. Angew Chem Int Ed Engl 2020; 60:1690-1701. [PMID: 32634274 DOI: 10.1002/anie.202006999] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Indexed: 12/13/2022]
Abstract
The exploitation of new materials for adsorptive separation of industrially important hydrocarbons is of great importance in both scientific research and petrochemical industry. Nonporous adaptive crystals (NACs) as a robust class of synthetic materials have drawn much attention during the past five years for their superior performance in adsorption and separation. Pillararenes are the main family of macrocyclic arenes used for NACs construction, where the structure-function relationship has been intensively studied. In the past two years, some emerging types of synthetic macrocyclic arenes have been successfully brought into this research field, showing the gradual enrichment and diversification of NACs materials. This Minireview summarizes the recent advances of synthetic macrocycle-based NACs, which are categorized by various practical applications in molecular separation. Besides, NACs-based vapochromic supramolecular systems are also discussed. Finally, future perspectives and challenges of NACs are given. We envisage that this Minireview will be a useful and timely reference for those who are interested in new molecular and supramolecular crystals for storage and separation applications.
Collapse
Affiliation(s)
- Jia-Rui Wu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Ying-Wei Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
127
|
Mirzaei S, Castro E, Sánchez RH. Tubularenes. Chem Sci 2020; 11:8089-8094. [PMID: 34123082 PMCID: PMC8163370 DOI: 10.1039/d0sc03384g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/14/2020] [Accepted: 07/13/2020] [Indexed: 01/05/2023] Open
Abstract
We report the synthesis and characterization of conjugated, conformationally rigid, and electroactive carbon-based nanotubes that we term tubularenes. These structures are constructed from a resorcin[n b]arene base. Cyclization of the conjugated aromatic nanotube is achieved in one-pot eight-fold C-C bond formation via Suzuki-Miyaura cross-coupling. DFT calculations indicate a buildup of strain energy in excess of 90 kcal mol-1. The resulting architectures contain large internal void spaces >260 Å3, are fluorescent, and able to accept up to 4 electrons. This represents the first scaffolding approach that provides conjugated nanotube architectures.
Collapse
Affiliation(s)
- Saber Mirzaei
- Department of Chemistry, University of Pittsburgh 219 Parkman Ave. Pittsburgh Pennsylvania 15260 USA
| | - Edison Castro
- Department of Chemistry, University of Pittsburgh 219 Parkman Ave. Pittsburgh Pennsylvania 15260 USA
| | - Raúl Hernández Sánchez
- Department of Chemistry, University of Pittsburgh 219 Parkman Ave. Pittsburgh Pennsylvania 15260 USA
| |
Collapse
|
128
|
Fang Y, Deng Y, Dehaen W. Tailoring pillararene-based receptors for specific metal ion binding: From recognition to supramolecular assembly. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213313] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
129
|
Gao C, Kwong CHT, Sun C, Li Z, Lu S, Yang YW, Lee SMY, Wang R. Selective Decoating-Induced Activation of Supramolecularly Coated Toxic Nanoparticles for Multiple Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:25604-25615. [PMID: 32406668 DOI: 10.1021/acsami.0c05013] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In spite of the rapid emergence of numerous nanoparticles (NPs) for biomedical applications, it is often challenging to precisely control, or effectively tame, the bioactivity/toxicity of NPs, thereby exhibiting limited applications in biomedical areas. Herein, we report the construction of hyaluronic acid (HA)-laminated, otherwise toxic methylviologen (MV), NPs via ternary host-guest complexation among cucurbit[8]uril, trans-azobenzene-conjugated HA, and MV-functionalized polylactic acid NPs (MV-NPs). The high, nonspecific toxicity of MV-NPs was effectively shielded (turned off) by HA lamination, as demonstrated in cells, zebrafish, and mouse models. The supramolecular host-guest interaction-mediated HA coating offered several HA-MV-NP modalities, including hyaluronidase locally and photoirradiation remotely, to precisely remove HA lamination on demand, thereby endowing materials with the capability of selective decoating-induced activation (DIA) for applications as a user-friendly herbicide, a selective antibacterial agent, or an anticancer nanomedicine. This work offers facile supramolecular coating and DIA strategies to effectively tame and precisely control the bioactivity and toxicity of functional nanomaterials for diverse applications.
Collapse
Affiliation(s)
- Cheng Gao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao 999078, China
| | - Cheryl H T Kwong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao 999078, China
| | - Chen Sun
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao 999078, China
| | - Zheng Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, Changchun 130012, China
| | - Siyu Lu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Ying-Wei Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, Changchun 130012, China
| | - Simon M Y Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao 999078, China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao 999078, China
| |
Collapse
|
130
|
Zhang G, Moosa B, Chen A, Khashab NM. Separation and Detection of
meta
‐ and
ortho
‐Substituted Benzene Isomers by Using a Water‐Soluble Pillar[5]arene. Chempluschem 2020; 85:1244-1248. [DOI: 10.1002/cplu.202000275] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/13/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Gengwu Zhang
- Smart Hybrid Materials Laboratory (SHMs) Advanced Membranes and Porous Materials Center (AMPMC)King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Basem Moosa
- Smart Hybrid Materials Laboratory (SHMs) Advanced Membranes and Porous Materials Center (AMPMC)King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Aiping Chen
- Clean Combustion Research Center (CCRC)King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Niveen M. Khashab
- Smart Hybrid Materials Laboratory (SHMs) Advanced Membranes and Porous Materials Center (AMPMC)King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
131
|
Affiliation(s)
- Jie Yang
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryInternational Joint Research Laboratory of Nano‐Micro Architecture Chemistry (NMAC)College of ChemistryJilin University Changchun P. R. China
| | - Ying‐Wei Yang
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryInternational Joint Research Laboratory of Nano‐Micro Architecture Chemistry (NMAC)College of ChemistryJilin University Changchun P. R. China
| |
Collapse
|
132
|
Li H, Duan Z, Yang Y, Xu F, Chen M, Liang T, Bai Y, Li R. Regulable Aggregation-Induced Emission Supramolecular Polymer and Gel Based on Self-sorting Assembly. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00519] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hui Li
- School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China
| | - Zhaozhao Duan
- School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China
| | - Ying Yang
- School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China
| | - Fenfen Xu
- School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China
| | - Mingfei Chen
- School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China
| | - Tongxiang Liang
- School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China
| | - Yang Bai
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, P. R. China
| | - Riqiang Li
- School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China
| |
Collapse
|
133
|
Zhou Y, Jie K, Zhao R, Huang F. Supramolecular-Macrocycle-Based Crystalline Organic Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1904824. [PMID: 31535778 DOI: 10.1002/adma.201904824] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/27/2019] [Indexed: 06/10/2023]
Abstract
Supramolecular macrocycles are well known as guest receptors in supramolecular chemistry, especially host-guest chemistry. In addition to their wide applications in host-guest chemistry and related areas, macrocycles have also been employed to construct crystalline organic materials (COMs) owing to their particular structures that combine both rigidity and adaptivity. There are two main types of supramolecular-macrocycle-based COMs: those constructed from macrocycles themselves and those prepared from macrocycles with other organic linkers. This review summarizes recent developments in supramolecular-macrocycle-based COMs, which are categorized by various types of macrocycles, including cyclodextrins, calixarenes, resorcinarenes, pyrogalloarenes, cucurbiturils, pillararenes, and others. Effort is made to focus on the structures of supramolecular-macrocycle-based COMs and their structure-function relationships. In addition, the application of supramolecular-macrocycle-based COMs in gas storage or separation, molecular separation, solid-state electrolytes, proton conduction, iodine capture, water or environmental treatment, etc., are also presented. Finally, perspectives and future challenges in the field of supramolecular-macrocycle-based COMs are discussed.
Collapse
Affiliation(s)
- Yujuan Zhou
- State Key Laboratory of Chemical Engineering, Department of Chemistry, Center for Chemistry of High-Performance & Novel Materials, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Kecheng Jie
- State Key Laboratory of Chemical Engineering, Department of Chemistry, Center for Chemistry of High-Performance & Novel Materials, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Run Zhao
- State Key Laboratory of Chemical Engineering, Department of Chemistry, Center for Chemistry of High-Performance & Novel Materials, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Department of Chemistry, Center for Chemistry of High-Performance & Novel Materials, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
134
|
Li WJ, Wang W, Wang XQ, Li M, Ke Y, Yao R, Wen J, Yin GQ, Jiang B, Li X, Yin P, Yang HB. Daisy Chain Dendrimers: Integrated Mechanically Interlocked Molecules with Stimuli-Induced Dimension Modulation Feature. J Am Chem Soc 2020; 142:8473-8482. [PMID: 32302108 DOI: 10.1021/jacs.0c02475] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The precise construction of the high-order mechanically interlocked molecules (MIMs) with well-defined topological arrangements of multiple mechanically interlocked units has been a great challenge. Herein, we present the first successful preparation of a new family of daisy chain dendrimers, in which the individual [c2]daisy chain rotaxane units serve as the branches of dendrimer skeleton. In particular, the third-generation daisy chain dendrimer with 21 [c2]daisy chain rotaxane moieties was realized, which might be among the most complicated discrete high-order MIMs comprised of multiple [c2]daisy chain rotaxane units. Interestingly, such unique topological arrangements of multiple stimuli-responsive [c2]daisy chain rotaxanes endowed the resultant daisy chain dendrimers controllable and reversible nanoscale dimension modulation through the collective and amplified extension/contraction of each [c2]daisy chain rotaxane branch upon the addition of acetate anions or DMSO molecules as external stimulus. Furthermore, on the basis of such an intriguing size switching feature of daisy chain dendrimers, dynamic composite polymer films were constructed through the incorporation of daisy chain dendrimers into polymer films, which could undergo fast, reversible, and controllable shape transformations when DMSO molecules were employed as stimulus. The successful merging of [c2]daisy chain rotaxanes and dendrimers described herein provides not only a brand-new type of high-order mechanically interlocked systems with well-defined topological arrangements of [c2]daisy chain rotaxanes, but also a successful and practical approach toward the construction of supramolecular dynamic materials.
Collapse
Affiliation(s)
- Wei-Jian Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, People's Republic of China
| | - Wei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, People's Republic of China
| | - Xu-Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, People's Republic of China
| | - Mu Li
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Yubin Ke
- Spallation Neutron Source Science Center, Dongguan 523803, China
| | - Rui Yao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, People's Republic of China
| | - Jin Wen
- Institute of Theoretical Chemistry, Faculty of Vienna, University of Vienna, Währinger Strasse 17, Vienna A-1090, Austria.,State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Guang-Qiang Yin
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, People's Republic of China.,Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Bo Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, People's Republic of China
| | - Xiaopeng Li
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Panchao Yin
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, People's Republic of China
| |
Collapse
|
135
|
Fa S, Sakata Y, Akine S, Ogoshi T. Non‐Covalent Interactions Enable the Length‐Controlled Generation of Discrete Tubes Capable of Guest Exchange. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916515] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shixin Fa
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Yoko Sakata
- Graduate School of Natural Science and Technology Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
- WPI Nano Life Science Institute (WPI-NanoLSI) Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
| | - Shigehisa Akine
- Graduate School of Natural Science and Technology Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
- WPI Nano Life Science Institute (WPI-NanoLSI) Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
- WPI Nano Life Science Institute (WPI-NanoLSI) Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
| |
Collapse
|
136
|
Fa S, Sakata Y, Akine S, Ogoshi T. Non‐Covalent Interactions Enable the Length‐Controlled Generation of Discrete Tubes Capable of Guest Exchange. Angew Chem Int Ed Engl 2020; 59:9309-9313. [DOI: 10.1002/anie.201916515] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Shixin Fa
- Department of Synthetic Chemistry and Biological ChemistryGraduate School of EngineeringKyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Yoko Sakata
- Graduate School of Natural Science and TechnologyKanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
- WPI Nano Life Science Institute (WPI-NanoLSI)Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
| | - Shigehisa Akine
- Graduate School of Natural Science and TechnologyKanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
- WPI Nano Life Science Institute (WPI-NanoLSI)Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological ChemistryGraduate School of EngineeringKyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
- WPI Nano Life Science Institute (WPI-NanoLSI)Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
| |
Collapse
|
137
|
Grommet AB, Feller M, Klajn R. Chemical reactivity under nanoconfinement. NATURE NANOTECHNOLOGY 2020; 15:256-271. [PMID: 32303705 DOI: 10.1038/s41565-020-0652-2] [Citation(s) in RCA: 359] [Impact Index Per Article: 71.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/28/2020] [Indexed: 06/11/2023]
Abstract
Confining molecules can fundamentally change their chemical and physical properties. Confinement effects are considered instrumental at various stages of the origins of life, and life continues to rely on layers of compartmentalization to maintain an out-of-equilibrium state and efficiently synthesize complex biomolecules under mild conditions. As interest in synthetic confined systems grows, we are realizing that the principles governing reactivity under confinement are the same in abiological systems as they are in nature. In this Review, we categorize the ways in which nanoconfinement effects impact chemical reactivity in synthetic systems. Under nanoconfinement, chemical properties can be modulated to increase reaction rates, enhance selectivity and stabilize reactive species. Confinement effects also lead to changes in physical properties. The fluorescence of light emitters, the colours of dyes and electronic communication between electroactive species can all be tuned under confinement. Within each of these categories, we elucidate design principles and strategies that are widely applicable across a range of confined systems, specifically highlighting examples of different nanocompartments that influence reactivity in similar ways.
Collapse
Affiliation(s)
- Angela B Grommet
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Moran Feller
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Rafal Klajn
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
138
|
Affiliation(s)
- Sandra Kosiorek
- Institute of Physical Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Nazar Rad
- Institute of Physical Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Volodymyr Sashuk
- Institute of Physical Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| |
Collapse
|
139
|
Guo L, Du J, Wang Y, Shi K, Ma E. Advances in diversified application of pillar[n]arenes. J INCL PHENOM MACRO 2020. [DOI: 10.1007/s10847-020-00986-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
140
|
Yu S, Gilbert N, Zhu F, Dhinakaran MK, Liang F, Li H. Pillar[5]arene Promoted Selective Spreading of Chlormequat Droplets on a Hydrophobic Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:1950-1955. [PMID: 32052634 DOI: 10.1021/acs.langmuir.9b03961] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Promoting the spreading and deposition of agricultural sprays on the crop surface is of great significance for effective utilization of these chemicals. Selective host-guest interaction established between chlormequat and hydroxyl pillar[5]arene was well utilized in the present work for effective spreading of chlormequat droplets over the hydrophobic surface, which was silanized with triethoxy (octyl) silane and then assembled with hydroxybenzene pillar[5]arene molecules. Therefore, this surface was facile for the assembly of chlormequat in droplets and ultimately increased the selective adhesion of chlormequat through host-guest interactions. Moreover, the pillar[5]arene-fabricated surface shows considerable potential applications for rapid detection of chlormequat in environmental monitoring and also provides a novel approach for improving the chlormequat efficiency.
Collapse
Affiliation(s)
- Sheng Yu
- The State Key Laboratory of Refractories and Metallurgy, Coal Conversion and New Carbon Materials Hubei Key Laboratory, School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Nsengiyumva Gilbert
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, International Joint Research Centre for Intelligent Biosensor Technology and Health, Chemical Biology Canter, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Fei Zhu
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, International Joint Research Centre for Intelligent Biosensor Technology and Health, Chemical Biology Canter, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Manivannan Kalavathi Dhinakaran
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, International Joint Research Centre for Intelligent Biosensor Technology and Health, Chemical Biology Canter, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Feng Liang
- The State Key Laboratory of Refractories and Metallurgy, Coal Conversion and New Carbon Materials Hubei Key Laboratory, School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Haibing Li
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, International Joint Research Centre for Intelligent Biosensor Technology and Health, Chemical Biology Canter, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
141
|
Yang J, Yang YW. Metal-Organic Frameworks for Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906846. [PMID: 32026590 DOI: 10.1002/smll.201906846] [Citation(s) in RCA: 423] [Impact Index Per Article: 84.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/03/2020] [Indexed: 05/21/2023]
Abstract
Metal-organic frameworks (MOFs) are an interesting and useful class of coordination polymers, constructed from metal ion/cluster nodes and functional organic ligands through coordination bonds, and have attracted extensive research interest during the past decades. Due to the unique features of diverse compositions, facile synthesis, easy surface functionalization, high surface areas, adjustable porosity, and tunable biocompatibility, MOFs have been widely used in hydrogen/methane storage, catalysis, biological imaging and sensing, drug delivery, desalination, gas separation, magnetic and electronic devices, nonlinear optics, water vapor capture, etc. Notably, with the rapid development of synthetic methods and surface functionalization strategies, smart MOF-based nanocomposites with advanced bio-related properties have been designed and fabricated to meet the growing demands of MOF materials for biomedical applications. This work outlines the synthesis and functionalization and the recent advances of MOFs in biomedical fields, including cargo (drugs, nucleic acids, proteins, and dyes) delivery for cancer therapy, bioimaging, antimicrobial, biosensing, and biocatalysis. The prospects and challenges in the field of MOF-based biomedical materials are also discussed.
Collapse
Affiliation(s)
- Jie Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Ying-Wei Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, P. R. China
| |
Collapse
|
142
|
Jie K, Zhou Y, Sun Q, Li B, Zhao R, Jiang DE, Guo W, Chen H, Yang Z, Huang F, Dai S. Mechanochemical synthesis of pillar[5]quinone derived multi-microporous organic polymers for radioactive organic iodide capture and storage. Nat Commun 2020; 11:1086. [PMID: 32107383 PMCID: PMC7046611 DOI: 10.1038/s41467-020-14892-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/22/2020] [Indexed: 01/03/2023] Open
Abstract
The incorporation of supramolecular macrocycles into porous organic polymers may endow the material with enhanced uptake of specific guests through host−guest interactions. Here we report a solvent and catalyst-free mechanochemical synthesis of pillar[5]quinone (P5Q) derived multi-microporous organic polymers with hydrophenazine linkages (MHP-P5Q), which show a unique 3-step N2 adsorption isotherm. In comparison with analogous microporous hydrophenazine-linked organic polymers (MHPs) obtained using simple twofold benzoquinones, MHP-P5Q is demonstrated to have a superior performance in radioactive iodomethane (CH3I) capture and storage. Mechanistic studies show that the rigid pillar[5]arene cavity has additional binding sites though host−guest interactions as well as the halogen bond (−I⋯N = C−) and chemical adsorption in the multi-microporous MHP-P5Q mainly account for the rapid and high-capacity adsorption and long-term storage of CH3I. Incorporation of supramolecular macrocycles into porous organic polymers can increase uptake of guest molecules through host−guest interactions. Here the authors report a pillar[5]quinone derived multi-microporous organic polymer, which show a superior performance in radioactive iodomethane capture and storage.
Collapse
Affiliation(s)
- Kecheng Jie
- Department of Chemistry, The University of Tennessee, Knoxville, TN, 37996-1600, USA.,Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6201, USA
| | - Yujuan Zhou
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, 310027, Hangzhou, P. R. China
| | - Qi Sun
- College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, P. R. China
| | - Bo Li
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
| | - Run Zhao
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, 310027, Hangzhou, P. R. China
| | - De-En Jiang
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
| | - Wei Guo
- Department of Chemistry, The University of Tennessee, Knoxville, TN, 37996-1600, USA.,Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6201, USA
| | - Hao Chen
- Department of Chemistry, The University of Tennessee, Knoxville, TN, 37996-1600, USA.,College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, P. R. China
| | - Zhenzhen Yang
- Department of Chemistry, The University of Tennessee, Knoxville, TN, 37996-1600, USA.,Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6201, USA
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, 310027, Hangzhou, P. R. China
| | - Sheng Dai
- Department of Chemistry, The University of Tennessee, Knoxville, TN, 37996-1600, USA. .,Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6201, USA.
| |
Collapse
|
143
|
Li E, Jie K, Liu M, Sheng X, Zhu W, Huang F. Vapochromic crystals: understanding vapochromism from the perspective of crystal engineering. Chem Soc Rev 2020; 49:1517-1544. [PMID: 32016241 DOI: 10.1039/c9cs00098d] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Vapochromic materials, which undergo colour and/or emission changes upon exposure to certain vapours or gases, have received increasing attention recently because of their wide range of applications in, e.g., chemical sensors, light-emitting diodes, and environmental monitors. Vapochromic crystals, as a specific kind of vapochromic materials, can be investigated from the perspective of crystal engineering to understand the mechanism of vapochromism. Moreover, understanding the vapochromism mechanism will be beneficial to design and prepare task-specific vapochromic crystals as one kind of low-cost 'electronic nose' to detect toxic gases or volatile organic compounds. This review provides important information in a broad scientific context to develop new vapochromic materials, which covers organometallic or coordination complexes and organic crystals, as well as the different mechanisms of the related vapochromic behaviour. In addition, recent examples of supramolecular vapochromic crystals and metal-organic-framework (MOFs) vapochromic crystals are introduced.
Collapse
Affiliation(s)
- Errui Li
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| | | | | | | | | | | |
Collapse
|
144
|
Wu J, Li B, Yang Y. Separation of Bromoalkanes Isomers by Nonporous Adaptive Crystals of Leaning Pillar[6]arene. Angew Chem Int Ed Engl 2020; 59:2251-2255. [DOI: 10.1002/anie.201911965] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/24/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Jia‐Rui Wu
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryInternational Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC)College of ChemistryJilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Bao Li
- State Key Laboratory of Supramolecular Structure and MaterialsInstitute of Theoretical ChemistryJilin University Changchun 130012 P. R. China
| | - Ying‐Wei Yang
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryInternational Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC)College of ChemistryJilin University 2699 Qianjin Street Changchun 130012 P. R. China
| |
Collapse
|
145
|
Zhou J, Yu G, Li Q, Wang M, Huang F. Separation of Benzene and Cyclohexane by Nonporous Adaptive Crystals of a Hybrid[3]arene. J Am Chem Soc 2020; 142:2228-2232. [DOI: 10.1021/jacs.9b13548] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jiong Zhou
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Guocan Yu
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Qing Li
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Mengbin Wang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| |
Collapse
|
146
|
Affiliation(s)
- Harekrushna Behera
- Department of ChemistryFudan University 220 Handan Road Shanghai 200433 China
| | - Lu Yang
- Department of ChemistryWestern University London Ontario Canada
| | - Jun‐Li Hou
- Department of ChemistryFudan University 220 Handan Road Shanghai 200433 China
| |
Collapse
|
147
|
Lei S, Xiao H, Zeng Y, Tung C, Wu L, Cong H. BowtieArene: A Dual Macrocycle Exhibiting Stimuli‐Responsive Fluorescence. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913340] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Sheng‐Nan Lei
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsKey Laboratory of Bio-inspired Materials and Interfacial ScienceTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100190 China
| | - Hongyan Xiao
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsKey Laboratory of Bio-inspired Materials and Interfacial ScienceTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100190 China
| | - Yi Zeng
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsKey Laboratory of Bio-inspired Materials and Interfacial ScienceTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100190 China
| | - Chen‐Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsKey Laboratory of Bio-inspired Materials and Interfacial ScienceTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100190 China
| | - Li‐Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsKey Laboratory of Bio-inspired Materials and Interfacial ScienceTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100190 China
| | - Huan Cong
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsKey Laboratory of Bio-inspired Materials and Interfacial ScienceTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
148
|
Lei S, Xiao H, Zeng Y, Tung C, Wu L, Cong H. BowtieArene: A Dual Macrocycle Exhibiting Stimuli‐Responsive Fluorescence. Angew Chem Int Ed Engl 2020; 59:10059-10065. [DOI: 10.1002/anie.201913340] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/02/2019] [Indexed: 11/12/2022]
Affiliation(s)
- Sheng‐Nan Lei
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsKey Laboratory of Bio-inspired Materials and Interfacial ScienceTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100190 China
| | - Hongyan Xiao
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsKey Laboratory of Bio-inspired Materials and Interfacial ScienceTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100190 China
| | - Yi Zeng
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsKey Laboratory of Bio-inspired Materials and Interfacial ScienceTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100190 China
| | - Chen‐Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsKey Laboratory of Bio-inspired Materials and Interfacial ScienceTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100190 China
| | - Li‐Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsKey Laboratory of Bio-inspired Materials and Interfacial ScienceTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100190 China
| | - Huan Cong
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsKey Laboratory of Bio-inspired Materials and Interfacial ScienceTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
149
|
Xiao T, Zhou L, Sun XQ, Huang F, Lin C, Wang L. Supramolecular polymers fabricated by orthogonal self-assembly based on multiple hydrogen bonding and macrocyclic host–guest interactions. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.05.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
150
|
Shen L, Zhao Y, Dai D, Yang YW, Wu B, Yang XJ. Stabilization of Grignard reagents by a pillar[5]arene host – Schlenk equilibria and Grignard reactions. Chem Commun (Camb) 2020; 56:1381-1384. [DOI: 10.1039/c9cc08728a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Grignard reagents with linear alkyl chains are encapsulated and stabilized by pillar[5]arene while preserving their reactivity in Grignard reactions.
Collapse
Affiliation(s)
- Lingyi Shen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi’an 710069
- China
| | - Yanxia Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi’an 710069
- China
| | - Dihua Dai
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC)
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Ying-Wei Yang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC)
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Biao Wu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi’an 710069
- China
| | - Xiao-Juan Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi’an 710069
- China
| |
Collapse
|