101
|
Boast B, Miosge LA, Kuehn HS, Cho V, Athanasopoulos V, McNamara HA, Sontani Y, Mei Y, Howard D, Sutton HJ, Omari SA, Yu Z, Nasreen M, Andrews TD, Cockburn IA, Goodnow CC, Rosenzweig SD, Enders A. A Point Mutation in IKAROS ZF1 Causes a B Cell Deficiency in Mice. THE JOURNAL OF IMMUNOLOGY 2021; 206:1505-1514. [PMID: 33658297 DOI: 10.4049/jimmunol.1901464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/27/2021] [Indexed: 12/26/2022]
Abstract
IKZF1 (IKAROS) is essential for normal lymphopoiesis in both humans and mice. Previous Ikzf1 mouse models have demonstrated the dual role for IKZF1 in both B and T cell development and have indicated differential requirements of each zinc finger. Furthermore, mutations in IKZF1 are known to cause common variable immunodeficiency in patients characterized by a loss of B cells and reduced Ab production. Through N-ethyl-N-nitrosourea mutagenesis, we have discovered a novel Ikzf1 mutant mouse with a missense mutation (L132P) in zinc finger 1 (ZF1) located in the DNA binding domain. Unlike other previously reported murine Ikzf1 mutations, this L132P point mutation (Ikzf1L132P ) conserves overall protein expression and has a B cell-specific phenotype with no effect on T cell development, indicating that ZF1 is not required for T cells. Mice have reduced Ab responses to immunization and show a progressive loss of serum Igs compared with wild-type littermates. IKZF1L132P overexpressed in NIH3T3 or HEK293T cells failed to localize to pericentromeric heterochromatin and bind target DNA sequences. Coexpression of wild-type and mutant IKZF1, however, allows for localization to pericentromeric heterochromatin and binding to DNA indicating a haploinsufficient mechanism of action for IKZF1L132P Furthermore, Ikzf1+/L132P mice have late onset defective Ig production, similar to what is observed in common variable immunodeficiency patients. RNA sequencing revealed a total loss of Hsf1 expression in follicular B cells, suggesting a possible functional link for the humoral immune response defects observed in Ikzf1L132P/L132P mice.
Collapse
Affiliation(s)
- Brigette Boast
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Lisa A Miosge
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Hye Sun Kuehn
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD 20892
| | - Vicky Cho
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Vicki Athanasopoulos
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia.,Centre for Personalised Immunology, John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Hayley A McNamara
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Yovina Sontani
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Yan Mei
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Debbie Howard
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Henry J Sutton
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Sofia A Omari
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia.,Children's Cancer Institute, School of Women's and Children's Health, Lowy Cancer Centre, University of New South Wales, Sydney, New South Wales 2031, Australia
| | - Zhijia Yu
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Mariam Nasreen
- Australian Phenomics Facility, John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia; and
| | - T Daniel Andrews
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Ian A Cockburn
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Christopher C Goodnow
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia
| | - Sergio D Rosenzweig
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD 20892
| | - Anselm Enders
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia;
| |
Collapse
|
102
|
Chatterjee D, Cockburn IA. The challenges of a circumsporozoite protein-based malaria vaccine. Expert Rev Vaccines 2021; 20:113-125. [PMID: 33554669 DOI: 10.1080/14760584.2021.1874924] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION A safe and effective vaccine will likely be necessary for the control or eradication of malaria which kills 400,000 annually. Our most advanced vaccine candidate to date is RTS,S which is based on the Plasmodium falciparum circumsporozoite protein (PfCSP) of the malaria parasite. However, protection by RTS,S is incomplete and short-lived. AREAS COVERED Here we summarize results from recent clinical trials of RTS,S and critically evaluate recent studies that aim to understand the correlates of protective immunity and why vaccine-induced protection is short-lived. In particular, recent systems serology studies have highlighted a key role for the necessity of inducing functional antibodies. In-depth analyses of immune responses to CSP in both mouse models and vaccinated humans have also highlighted difficulties in generating the maintaining high-quality antibody responses. Finally, in recent years biophysical and structural studies of antibody binding to PfCSP have led to a better understanding of how highly potent antibodies can block infection, which can inform vaccine design. EXPERT OPINION We highlight how both structure-guided vaccine design and a better understanding of the immune response to PfCSP can inform a second generation of PfCSP-based vaccines stimulating a broader range of protective targets within PfCSP.
Collapse
Affiliation(s)
- Deepyan Chatterjee
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, the Australian National University, Canberra, Australia
| | - Ian Andrew Cockburn
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, the Australian National University, Canberra, Australia
| |
Collapse
|
103
|
Sutton HJ, Aye R, Idris AH, Vistein R, Nduati E, Kai O, Mwacharo J, Li X, Gao X, Andrews TD, Koutsakos M, Nguyen THO, Nekrasov M, Milburn P, Eltahla A, Berry AA, Kc N, Chakravarty S, Sim BKL, Wheatley AK, Kent SJ, Hoffman SL, Lyke KE, Bejon P, Luciani F, Kedzierska K, Seder RA, Ndungu FM, Cockburn IA. Atypical B cells are part of an alternative lineage of B cells that participates in responses to vaccination and infection in humans. Cell Rep 2021; 34:108684. [PMID: 33567273 PMCID: PMC7873835 DOI: 10.1016/j.celrep.2020.108684] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 11/19/2020] [Accepted: 12/30/2020] [Indexed: 11/29/2022] Open
Abstract
The diversity of circulating human B cells is unknown. We use single-cell RNA sequencing (RNA-seq) to examine the diversity of both antigen-specific and total B cells in healthy subjects and malaria-exposed individuals. This reveals two B cell lineages: a classical lineage of activated and resting memory B cells and an alternative lineage, which includes previously described atypical B cells. Although atypical B cells have previously been associated with disease states, the alternative lineage is common in healthy controls, as well as malaria-exposed individuals. We further track Plasmodium-specific B cells after malaria vaccination in naive volunteers. We find that alternative lineage cells are primed after the initial immunization and respond to booster doses. However, alternative lineage cells develop an atypical phenotype with repeated boosts. The data highlight that atypical cells are part of a wider alternative lineage of B cells that are a normal component of healthy immune responses. Single-cell RNA-seq reveals two distinct B cell lineages An alternative lineage contains CXCR3+ and atypical B cells Alternative B cells are primed after primary vaccination and respond to boosters Alternative B cells adopt a more atypical phenotype following repeated antigen exposure
Collapse
Affiliation(s)
- Henry J Sutton
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Racheal Aye
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia; KEMRI - Wellcome Research Programme/Centre for Geographical Medicine Research (Coast), Kilifi, Kenya
| | - Azza H Idris
- Vaccine Research Center, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rachel Vistein
- Vaccine Research Center, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eunice Nduati
- KEMRI - Wellcome Research Programme/Centre for Geographical Medicine Research (Coast), Kilifi, Kenya; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Oscar Kai
- KEMRI - Wellcome Research Programme/Centre for Geographical Medicine Research (Coast), Kilifi, Kenya
| | - Jedida Mwacharo
- KEMRI - Wellcome Research Programme/Centre for Geographical Medicine Research (Coast), Kilifi, Kenya
| | - Xi Li
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Xin Gao
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - T Daniel Andrews
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Marios Koutsakos
- Department of Microbiology and Immunology, Peter Doherty Institute, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, Peter Doherty Institute, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Maxim Nekrasov
- Australian Cancer Research Foundation Biomolecular Resource Facility, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Peter Milburn
- Australian Cancer Research Foundation Biomolecular Resource Facility, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Auda Eltahla
- School of Medical Science, Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia
| | - Andrea A Berry
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | - Adam K Wheatley
- Department of Microbiology and Immunology, Peter Doherty Institute, University of Melbourne, Melbourne, VIC 3000, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Melbourne, Melbourne, VIC, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute, University of Melbourne, Melbourne, VIC 3000, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Melbourne, Melbourne, VIC, Australia
| | | | - Kirsten E Lyke
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Philip Bejon
- KEMRI - Wellcome Research Programme/Centre for Geographical Medicine Research (Coast), Kilifi, Kenya; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Fabio Luciani
- School of Medical Science, Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, Peter Doherty Institute, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Robert A Seder
- Vaccine Research Center, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Francis M Ndungu
- KEMRI - Wellcome Research Programme/Centre for Geographical Medicine Research (Coast), Kilifi, Kenya; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Ian A Cockburn
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
105
|
Kurtovic L, Boyle MJ, Beeson JG. Epitope masking may limit antibody boosting to malaria vaccines. Immunol Cell Biol 2020; 99:126-129. [PMID: 33152796 DOI: 10.1111/imcb.12415] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We discuss the study by McNamara et al., who report that low levels of antigen-specific antibodies in serum can limit the boosting of antibody and B-cell responses following immunization with live attenuated malaria sporozoites.
Collapse
Affiliation(s)
- Liriye Kurtovic
- Burnet Institute, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
| | - Michelle J Boyle
- Burnet Institute, Melbourne, VIC, Australia.,QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - James G Beeson
- Burnet Institute, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia.,Central Clinical School and Department of Microbiology, Monash University, Melbourne, VIC, Australia.,Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|