101
|
Gold-seeded Lithium Niobate Nanoparticles: Influence of Gold Surface Coverage on Second Harmonic Properties. NANOMATERIALS 2021; 11:nano11040950. [PMID: 33917921 PMCID: PMC8068263 DOI: 10.3390/nano11040950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/29/2021] [Accepted: 04/02/2021] [Indexed: 12/19/2022]
Abstract
Hybrid nanoparticles composed of an efficient nonlinear optical core and a gold shell can enhance and tune the nonlinear optical emission thanks to the plasmonic effect. However the influence of an incomplete gold shell, i.e., isolated gold nano-islands, is still not well studied. Here LiNbO3 (LN) core nanoparticles of 45 nm were coated with various densities of gold nano-seeds (AuSeeds). As both LN and AuSeeds bear negative surface charge, a positively-charged polymer was first coated onto LN. The number of polymer chains per LN was evaluated at 1210 by XPS and confirmed by fluorescence titration. Then, the surface coverage percentage of AuSeeds onto LN was estimated to a maximum of 30% using ICP-AES. The addition of AuSeeds was also accompanied with surface charge reversal, the negative charge increasing with the higher amount of AuSeeds. Finally, the first hyperpolarizability decreased with the increase of AuSeeds density while depolarization values for Au-seeded LN were close to the one of bare LN, showing a predominance of the second harmonic volumic contribution.
Collapse
|
102
|
|
103
|
Dhiman S, Yadav A, Debnath N, Das S. Application of Core/Shell Nanoparticles in Smart Farming: A Paradigm Shift for Making the Agriculture Sector More Sustainable. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3267-3283. [PMID: 33719438 DOI: 10.1021/acs.jafc.0c05403] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Modern agriculture has entered an era of technological plateau where intervention of smarter technology like nanotechnology is imminently required for making this sector economically and environmentally sustainable. Throughout the world, researchers are trying to exploit the novel properties of several nanomaterials to make agricultural practices more efficient. Core/shell nanoparticles (CSNs) have attracted much attention because of their multiple attractive novel features like high catalytic, optical, and electronic properties for which they are being widely used in sensing, imaging, and medical applications. Though it also has the promise to solve a number of issues related to agriculture, its full potential still remains mostly unexplored. This review provides a panoramic view on application of CSNs in solving several problems related to crop production and precision farming practices where the wastage of resources can be minimized. This review also summarizes different classes of CSNs and their synthesis techniques. It emphasizes and analyzes the probable potential applications of CSNs in the field of crop improvement and crop protection, detection of plant diseases and agrochemical residues, and augmentation of chloroplast mediated photosynthesis. In a nutshell, there is enormous scope to formulate and design CSN-based smart tools for applications in agriculture, making this sector more sustainable.
Collapse
Affiliation(s)
- Shikha Dhiman
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram 122413, India
| | - Annu Yadav
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram 122413, India
| | - Nitai Debnath
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram 122413, India
| | - Sumistha Das
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram 122413, India
| |
Collapse
|
104
|
Chen MZ, Chu CY, Mansel BW, Chang PC. Hierarchical structure in poly(N-vinyl carbazole)/Fe 3O 4 nanocomposites and the relevant magnetic coercivity. SOFT MATTER 2021; 17:3055-3067. [PMID: 33623943 DOI: 10.1039/d0sm02275f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this study, we report the dependence of the nanoparticle dispersion on the zero-conversion initiator efficiency in the nanocomposites formed by poly(N-vinyl carbazole) (PNVK) and acrylic acid-modified iron oxide (AA-Fe3O4) nanoparticles via free radical solution polymerization of the precursor solution, that is, a thorough mixture of 28.5 wt% AA-Fe3O4 nanoparticles and the N-vinyl carbazole (NVK) monomer with the solvent dimethylformamide and azobisisobutyronitrile as an initiator. Here three different types of the dispersion state of AA-Fe3O4 nanoparticles in the PNVK matrix have been distinguished by a combined approach of transmission electron microscopy and small-angle X-ray scattering coupled with real-space models of the nanoparticle assemblies. When the polymerization proceeded with a higher zero-conversion initiator efficiency (f°) by pre-polymerization at 115 °C, the generation of a large amount of free radicals could efficiently induce the dominant surface-initiated polymerization of the NVK monomer with the vinyl groups of tethered acrylic acids; in this case, the constitution of "shorter multiple grafted PNVK chains" threaded AA-Fe3O4 nanoparticles to form particle branches and the branches were joined together from branching points along each branch, thereby forming the network structure. However, once the polymerization was conducted at a lower f° by pre-polymerization at 75 °C, a significant reduction in the generation of free radicals likely greatly reduced the efficiency in the occurrence of surface-initiated polymerization at particle surfaces; nevertheless, the self-polymerization of the NVK monomer could still take place to induce a local demixing between the polymerizing longer PNVK chains and AA-Fe3O4 nanoparticles via the attractive depletion mechanism, thus locally leading to the formation of small aggregates. While if the f° was controlled to be intermediate by polymerization at 100 °C, an optimal balance between the rates of the surface-initiated polymerization and the self-polymerization induced a collective construction built from the network and aggregate structures, exhibiting the structural characteristics of large aggregates. Furthermore, the magnetic coercivity of PNVK/AA-Fe3O4 nanocomposites was found to depend on the dispersion state of the AA-Fe3O4 nanoparticles, presenting a tendency towards enhanced coercivity as the dispersion state changed from large aggregates to small aggregates to network structure.
Collapse
Affiliation(s)
- Meng Z Chen
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan.
| | | | | | | |
Collapse
|
105
|
Eren ED, Moradi MA, Friedrich H, de With G. Building Reversible Nanoraspberries. NANO LETTERS 2021; 21:2232-2239. [PMID: 33600190 PMCID: PMC8031639 DOI: 10.1021/acs.nanolett.0c05059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/16/2021] [Indexed: 06/12/2023]
Abstract
The adsorption mechanism of small positively charged silica nanoparticles (SiO2 NPs) onto larger polystyrene latex nanoparticles (PSL NPs) forming hybrid particles was studied. CryoTEM showed the morphology of these supraparticles to be raspberry-like. After surface modification of the SiO2 NPs, the optimum pH regime to initiate the formation of nanoraspberries was determined. Thereafter, their size evolution was evaluated by dynamic light scattering for different surface charge densities. Reversibility of nanoraspberry formation was shown by cycling the pH of the mixture to make interparticle forces either attractive or repulsive, while their stability was confirmed experimentally. The number of SiO2 NPs on the PSL NPs as determined with cryoTEM matched the theoretically expected maximum number. Understanding and controlling the relevant parameters, such as size and charge of the individual particles and the Debye length, will pave the way to better control of the formation of nanoraspberries and higher-order assemblies thereof.
Collapse
Affiliation(s)
- E. Deniz Eren
- Laboratory
of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - Mohammad-Amin Moradi
- Laboratory
of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - Heiner Friedrich
- Laboratory
of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, 5600MB Eindhoven, The Netherlands
| | - Gijsbertus de With
- Laboratory
of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| |
Collapse
|
106
|
Sivasankari S, Kalaivizhi R, Gowriboy N. Cellulose Acetate (CA) Membrane Tailored with Fe
3
O
4
@ZnO Core Shell Nanoparticles: Fabrication, Structural analysis and Its Adsorption Analysis. ChemistrySelect 2021. [DOI: 10.1002/slct.202004689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Selvam Sivasankari
- Department of Chemistry SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603203 Tamilnadu India
| | - Rajappan Kalaivizhi
- Department of Chemistry SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603203 Tamilnadu India
| | - Natesan Gowriboy
- Department of Chemistry SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603203 Tamilnadu India
| |
Collapse
|
107
|
Farmanbordar H, Amini-Fazl MS, Mohammadi R. pH-Sensitive silica-based core–shell nanogel prepared via RAFT polymerization: investigation of the core size effect on the release profile of doxorubicin. NEW J CHEM 2021. [DOI: 10.1039/d1nj03304b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The novelty of this work is the synthesis of a core–shell nanogel that is based on silica nanoparticles as the core with different sizes via RAFT polymerization and its application to drug delivery.
Collapse
Affiliation(s)
- Hassan Farmanbordar
- Research Laboratory of Advanced Polymer Material, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666, Iran
| | - Mohammad Sadegh Amini-Fazl
- Research Laboratory of Advanced Polymer Material, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666, Iran
| | - Reza Mohammadi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| |
Collapse
|
108
|
Leitner NS, Schroffenegger M, Reimhult E. Polymer Brush-Grafted Nanoparticles Preferentially Interact with Opsonins and Albumin. ACS APPLIED BIO MATERIALS 2020; 4:795-806. [PMID: 33490885 PMCID: PMC7818653 DOI: 10.1021/acsabm.0c01355] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/13/2020] [Indexed: 12/18/2022]
Abstract
![]()
Nanoparticles
find increasing applications in life science and
biomedicine. The fate of nanoparticles in a biological system is determined
by their protein corona, as remodeling of their surface properties
through protein adsorption triggers specific recognition such as cell
uptake and immune system clearance and nonspecific processes such
as aggregation and precipitation. The corona is a result of nanoparticle–protein
and protein–protein interactions and is influenced by particle
design. The state-of-the-art design of biomedical nanoparticles is
the core–shell structure exemplified by superparamagnetic iron
oxide nanoparticles (SPIONs) grafted with dense, well-hydrated polymer
shells used for biomedical magnetic imaging and therapy. Densely grafted
polymer chains form a polymer brush, yielding a highly repulsive barrier
to the formation of a protein corona via nonspecific
particle–protein interactions. However, recent studies showed
that the abundant blood serum protein albumin interacts with dense
polymer brush-grafted SPIONs. Herein, we use isothermal titration
calorimetry to characterize the nonspecific interactions between human
serum albumin, human serum immunoglobulin G, human transferrin, and
hen egg lysozyme with monodisperse poly(2-alkyl-2-oxazoline)-grafted
SPIONs with different grafting densities and core sizes. These particles
show similar protein interactions despite their different “stealth”
capabilities in cell culture. The SPIONs resist attractive interactions
with lysozymes and transferrins, but they both show a significant
exothermic enthalpic and low exothermic entropic interaction with
low stoichiometry for albumin and immunoglobulin G. Our results highlight
that protein size, flexibility, and charge are important to predict
protein corona formation on polymer brush-stabilized nanoparticles.
Collapse
Affiliation(s)
- Nikolaus Simon Leitner
- Institute for Biologically Inspired Materials, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Vienna A-1190, Vienna, Austria
| | - Martina Schroffenegger
- Institute for Biologically Inspired Materials, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Vienna A-1190, Vienna, Austria
| | - Erik Reimhult
- Institute for Biologically Inspired Materials, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Vienna A-1190, Vienna, Austria
| |
Collapse
|
109
|
Solin K, Beaumont M, Rosenfeldt S, Orelma H, Borghei M, Bacher M, Opietnik M, Rojas OJ. Self-Assembly of Soft Cellulose Nanospheres into Colloidal Gel Layers with Enhanced Protein Adsorption Capability for Next-Generation Immunoassays. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004702. [PMID: 33215868 DOI: 10.1002/smll.202004702] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/20/2020] [Indexed: 06/11/2023]
Abstract
Soft cationic core/shell cellulose nanospheres can deform and interpenetrate allowing their self-assembly into densely packed colloidal nanogel layers. Taking advantage of their water-swelling capacity and molecular accessibility, the nanogels are proposed as a new and promising type of coating material to immobilize bioactive molecules on thin films and paper. The specific and nonspecific interactions between the cellulosic nanogel and human immunoglobulin G as well as bovine serum albumin (BSA) are investigated. Confocal microscopy, electroacoustic microgravimetry, and surface plasmon resonance are used to access information about the adsorption behavior and viscoelastic properties of self-assembled nanogels. A significant BSA adsorption capacity on nanogel layers (17 mg m-2 ) is measured, 300% higher compared to typical polymer coatings. This high protein affinity further confirms the promise of the introduced colloidal gel layer, in increasing sensitivity and advancing a new generation of substrates for a variety of applications, including immunoassays, as demonstrated in this work.
Collapse
Affiliation(s)
- Katariina Solin
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, Espoo, FI-00076, Finland
| | - Marco Beaumont
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, Espoo, FI-00076, Finland
- Department of Chemistry, Institute of Chemistry for Renewable Resources, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Strasse 24, Tulln, A-3430, Austria
| | - Sabine Rosenfeldt
- Bavarian Polymer Institute and Department of Chemistry, University of Bayreuth, Bayreuth, D-95440, Germany
| | - Hannes Orelma
- VTT - Technical Research Centre of Finland, Tietotie 4E, P.O. Box 1000, Espoo, FI-02044, Finland
| | - Maryam Borghei
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, Espoo, FI-00076, Finland
| | - Markus Bacher
- Department of Chemistry, Institute of Chemistry for Renewable Resources, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Strasse 24, Tulln, A-3430, Austria
| | | | - Orlando J Rojas
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, Espoo, FI-00076, Finland
- The Bioproducts Institute, Department of Chemical and Biological Engineering, and Department of Chemistry and Wood Science, University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
110
|
Resende G, Dutra GVS, Neta MSB, Araújo OA, Chaves SB, Machado F. Well Defined Poly(Methyl Methacrylate)-Fe 3O 4/Poly(Vinyl Pivalate) Core-Shell Superparamagnetic Nanoparticles: Design and Evaluation of In Vitro Cytotoxicity Activity Against Cancer Cells. Polymers (Basel) 2020; 12:E2868. [PMID: 33266092 PMCID: PMC7760038 DOI: 10.3390/polym12122868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 11/17/2022] Open
Abstract
The objective of this work is to develop and characterize polymeric nanoparticles with core-shell morphology through miniemulsion polymerization combined with seeded emulsion polymerization, aiming at the application in the treatment of vascular tumors via intravascular embolization. The synthesis of the core-shell nanocomposites was divided into two main steps: (i) Formation of the core structure, consisting of poly(methyl methacrylate)/magnetic oxide coated with oleic acid (OM-OA) via miniemulsion and (ii) shell structure produced through seeded emulsion polymerization of vinyl pivalate. Nanocomposites containing about 8 wt.% of OM-OA showed high colloidal stability, mean diameter of 216.8 nm, spherical morphology, saturation magnetization (Ms) of 4.65 emu·g-1 (57.41 emu·g-1 of Fe3O4), preserved superparamagnetic behavior and glass transition temperature (Tg) of 111.8 °C. TEM micrographs confirmed the obtaining of uniformly dispersed magnetic nanoparticles in the PMMA and that the core-shell structure was obtained by seeded emulsion with Ms of 1.35 emu·g-1 (56.25 emu·g-1 of Fe3O4) and Tg of 114.7 °C. In vitro cytotoxicity assays against murine tumor of melanoma (B16F10) and human Keratinocytes (HaCaT) cell lines were carried out showing that the core-shell magnetic polymeric materials (a core, consisting of poly(methyl methacrylate)/Fe3O4 and, a shell, formed by poly(vinyl pivalate)) presented high cell viabilities for both murine melanoma tumor cell lines, B16F10, and human keratinocyte cells, HaCaT.
Collapse
Affiliation(s)
- Graciane Resende
- Laboratório de Desenvolvimento de Processos Químicos, Instituto de Química, Universidade de Brasília, Campus Universitário Darcy Ribeiro, CEP 70910-900 Brasília, DF, Brazil; (G.R.); (G.V.S.D.)
| | - Gabriel V. S. Dutra
- Laboratório de Desenvolvimento de Processos Químicos, Instituto de Química, Universidade de Brasília, Campus Universitário Darcy Ribeiro, CEP 70910-900 Brasília, DF, Brazil; (G.R.); (G.V.S.D.)
| | - Maria S. B. Neta
- Departamento de Genética e Morfologia, Instituto de Biologia, Universidade de Brasília, Campus Universitário Darcy Ribeiro, CEP 70910-900 Brasília, DF, Brazil; (M.S.B.N.); (S.B.C.)
| | - Olacir A. Araújo
- Universidade Estadual de Goiás, Campus Central—Ciências Exatas e Tecnológicas, CP 459, CEP 75132-903 Anápolis, GO, Brazil;
| | - Sacha B. Chaves
- Departamento de Genética e Morfologia, Instituto de Biologia, Universidade de Brasília, Campus Universitário Darcy Ribeiro, CEP 70910-900 Brasília, DF, Brazil; (M.S.B.N.); (S.B.C.)
| | - Fabricio Machado
- Laboratório de Desenvolvimento de Processos Químicos, Instituto de Química, Universidade de Brasília, Campus Universitário Darcy Ribeiro, CEP 70910-900 Brasília, DF, Brazil; (G.R.); (G.V.S.D.)
| |
Collapse
|
111
|
Talone A, Ruggiero L, Slimani S, Imperatori P, Barucca G, Ricci MA, Sodo A, Peddis D. Magnetic mesoporous silica nanostructures: investigation of magnetic properties. NANOTECHNOLOGY 2020; 31:465707. [PMID: 32877370 DOI: 10.1088/1361-6528/abac7c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Magnetic mesoporous silica (MS) nanocomposites provide the possibility of generating multi-functional objects for application in different technological areas. This paper focuses on the magnetic properties of nanocomposites constituted by spinel iron oxide nanoparticles (magnetic nanoparticles (MNPs), < D > ≈ 8-9 nm) embedded in an MS matrix. The mesoporous structure of the silica matrix and the presence of the nanoparticles inside clearly emerge from transmission electron microscopy (TEM) measurements. Low temperature (5 K) field-dependent magnetization measurements reveal saturation magnetization (MS ) close to bulk value (M S bulk ∼ 90 emu g-1) for both MNPs and MNP/MS nanocomposites, indicating that the presence of silica does not affect the magnetic features of the single MNPs. Moreover, the dependence of the remanent magnetization on field (i.e. δM plots) at low temperature has shown a small but evident decrease of interaction in an MNP/MS sample with respect to MNP samples A m2 Kg-1. Finally, a partial orientation of the easy axis is observed when the MNPs are embedded in the silica matrix.
Collapse
Affiliation(s)
- A Talone
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Monterotondo Scalo (RM), Italy. Dipartimento di Scienze, Università degli Studi 'Roma Tre', Roma, Italy
| | | | | | | | | | | | | | | |
Collapse
|
112
|
Prabha S, Durgalakshmi D, Rajendran S, Lichtfouse E. Plant-derived silica nanoparticles and composites for biosensors, bioimaging, drug delivery and supercapacitors: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2020; 19:1667-1691. [PMID: 33199978 PMCID: PMC7658439 DOI: 10.1007/s10311-020-01123-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 10/17/2020] [Indexed: 05/05/2023]
Abstract
Silica nanoparticles have rapidly found applications in medicine, supercapacitors, batteries, optical fibers and concrete materials, because silica nanoparticles have tunable physical, chemical, optical and mechanical properties. In most applications, high-purity silica comes from synthetic organic precursors, yet this approach could be costly, polluting and non-biocompatible. Alternatively, natural silica sources from biomass are often cheap and abundant, yet they contain impurities. Silica can be extracted from corn cob, coffee husk, rice husk, sugarcane bagasse and wheat husk wastes, which are often disposed of in rivers, lands and ponds. These wastes can be used to prepare homogenous silica nanoparticles. Here we review properties, preparation and applications of silica nanoparticles. Preparation includes chemical and biomass methods. Applications include biosensors, bioimaging, drug delivery and supercapacitors. In particular, to fight the COVID-19 pandemic, recent research has shown that silver nanocluster/silica deposited on a mask reduces SARS-Cov-2 infectivity to zero.
Collapse
Affiliation(s)
- S. Prabha
- Department of Medical Physics, Anna University, Chennai, 600025 India
| | - D. Durgalakshmi
- Department of Medical Physics, Anna University, Chennai, 600025 India
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775 Arica, Chile
| | - Eric Lichtfouse
- Aix-Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, Avenue Louis Philibert, 13100 Aix en Provence, France
- International Research Centre for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, 710049 China
| |
Collapse
|
113
|
Wu M, Li X, Guo Q, Li J, Xu G, Li G, Wang J, Zhang X. Magnetic mesoporous silica nanoparticles-aided dual MR/NIRF imaging to identify macrophage enrichment in atherosclerotic plaques. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 32:102330. [PMID: 33171287 DOI: 10.1016/j.nano.2020.102330] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/08/2020] [Accepted: 10/24/2020] [Indexed: 02/06/2023]
Abstract
Active foamy macrophage enrichment drives atherosclerotic plaque initiation and evolution, and is the prominent target for precisely identifying vulnerable plaque. Precise imaging of high-risk plaque allows promotion of treatment and prevention of vascular pathema. However, current iron oxide (IO) nanoparticles-based magnetic resonance (MR) imaging of plaque is often limited by insufficient perfusion and nonspecific accumulation of peri-aortic lymph nodes. Besides that, intrinsic defects of MR also impede its use for accurately identifying plaque details. Herein, by conjugating with PP1 peptide, a novel magnetic mesoporous silica nanoparticle (PIMI) loaded with near-infrared fluorescence (NIRF) dye (IR820) was fabricated to specifically target and quantify macrophage enrichment of atherosclerotic plaque in ApoE-/- mice using dual MR/NIRF imaging. Biocompatibility experiments ulteriorly confirmed the high safety of PIMI nanoparticles in vivo, which lays the foundation of next-generation contrast agent for recognizing macrophage-rich plaque in the near future.
Collapse
Affiliation(s)
- Menglin Wu
- Department of Radiology, Second Hospital of Tianjin Medical University, Tianjin, PR China
| | - Xue Li
- Department of Radiology, Second Hospital of Tianjin Medical University, Tianjin, PR China.
| | - Qi Guo
- Department of Radiology, Second Hospital of Tianjin Medical University, Tianjin, PR China
| | - Jiang Li
- Department of Radiology, Second Hospital of Tianjin Medical University, Tianjin, PR China
| | - Guoping Xu
- Department of Radiology, Second Hospital of Tianjin Medical University, Tianjin, PR China
| | - Guilai Li
- Department of Radiology, Second Hospital of Tianjin Medical University, Tianjin, PR China
| | - Jiahui Wang
- Department of Radiology, Second Hospital of Tianjin Medical University, Tianjin, PR China
| | - Xuening Zhang
- Department of Radiology, Second Hospital of Tianjin Medical University, Tianjin, PR China.
| |
Collapse
|
114
|
Xie R, Batchelor‐McAuley C, Rauwel E, Rauwel P, Compton RG. Electrochemical Characterisation of Co@Co(OH)
2
Core‐Shell Nanoparticles and their Aggregation in Solution. ChemElectroChem 2020. [DOI: 10.1002/celc.202001199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ruo‐Chen Xie
- Department of Chemistry Physical and Theoretical Chemistry Laboratory University of Oxford South Parks Road Oxford OX1 3QZ UK
| | - Christopher Batchelor‐McAuley
- Department of Chemistry Physical and Theoretical Chemistry Laboratory University of Oxford South Parks Road Oxford OX1 3QZ UK
| | - Erwan Rauwel
- Institute of Technology Estonian University of Life Sciences Kreutzwaldi 1 51014 T artu Estonia
- School of Engineering Tallinn University of Technology Akadeemia tee 15 12618 Tallinn Estonia
| | - Protima Rauwel
- Institute of Technology Estonian University of Life Sciences Kreutzwaldi 1 51014 T artu Estonia
| | - Richard G. Compton
- Department of Chemistry Physical and Theoretical Chemistry Laboratory University of Oxford South Parks Road Oxford OX1 3QZ UK
| |
Collapse
|
115
|
Modified magnetic core-shell mesoporous silica nano-formulations with encapsulated quercetin exhibit anti-amyloid and antioxidant activity. J Inorg Biochem 2020; 213:111271. [PMID: 33069945 DOI: 10.1016/j.jinorgbio.2020.111271] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/04/2020] [Accepted: 10/02/2020] [Indexed: 12/28/2022]
Abstract
Targeted tissue drug delivery is a challenge in contemporary nanotechnologically driven therapeutic approaches, with the interplay interactions between nanohost and encapsulated drug shaping the ultimate properties of transport, release and efficacy of the drug at its destination. Prompted by the need to pursue the synthesis of such hybrid systems, a family of modified magnetic core-shell mesoporous silica nano-formulations was synthesized with encapsulated quercetin, a natural flavonoid with proven bioactivity. The new nanocarriers were produced via the sol-gel process, using tetraethoxysilane as a precursor and bearing a magnetic core of surface-modified monodispersed magnetite colloidal superparamagnetic nanoparticles, subsequently surface-modified with polyethylene glycol 3000 (PEG3k). The arising nano-formulations were evaluated for their textural and structural properties, exhibiting enhanced solubility and stability in physiological media, as evidenced by the loading capacity, entrapment efficiency results and in vitro release studies of their load. Guided by the increased bioavailability of quercetin in its encapsulated form, further evaluation of the biological activity of the magnetic as well as non-magnetic core-shell nanoparticles, pertaining to their anti-amyloid and antioxidant potential, revealed interference with the aggregation of β-amyloid peptide (Aβ) in Alzheimer's disease, reduction of Aβ cellular toxicity and minimization of Aβ-induced Reactive Oxygen Species (ROS) generation. The data indicate that the biological properties of released quercetin are maintained in the presence of the host nanocarriers. Collectively, the findings suggest that the emerging hybrid nano-formulations can function as efficient nanocarriers of hydrophobic natural flavonoids in the development of multifunctional nanomaterials toward therapeutic applications.
Collapse
|
116
|
Hsieh TL, Hung PS, Wang CJ, Tso KC, Wang HY, Cheng CT, Lin YC, Chung RJ, Wei KH, Wu PW, Chen PC. Synthesis of IrO 2 decorated core-shell PS@PPyNH 2 microspheres for bio-interface application. NANOTECHNOLOGY 2020; 31:375605. [PMID: 32454465 DOI: 10.1088/1361-6528/ab9678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this paper, an effective approach is demonstrated for the fabrication of IrO2-decorated polystyrene@functionalized polypyrrole (core@shell; PS@PPyNH2) microspheres. The synthesis begins with the preparation of monodispersive PS microspheres with a diameter of 490 nm, by a process of emulsifier-free emulsion polymerization, followed by a copolymerization process involving pyrrole and PyNH2 monomers in a PS microsphere aqueous suspension, to produce uniform PS@PPyNH2 microspheres with a diameter of 536 nm. The loading of 2 nm IrO2 nanoparticles onto the PS@PPyNH2 microspheres can be easily adjusted by tuning the pH value of the IrO2 colloidal solution and the PS@PPyNH2 suspension. At pH 4, we successfully obtain IrO2-decorated PS@PPyNH2 microspheres via electrostatic attraction and hydrogen bonding simultaneously between the negatively-charged IrO2 nanoparticles and the positively-charged PS@PPyNH2 microspheres. These IrO2-decorated PS@PPyNH2 microspheres exhibit a characteristic cyclic voltammetric profile, similar to that of an IrO2 thin film. The charge storage capacity is 5.19 mA cm-2, a value almost five times greater than that of PS@PPyNH2 microspheres. In addition, these IrO2-decorated PS@PPyNH2 microspheres exhibit excellent cell viability and biocompatibility.
Collapse
Affiliation(s)
- Tsung-Lin Hsieh
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 300, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Kumar R, Mondal K, Panda PK, Kaushik A, Abolhassani R, Ahuja R, Rubahn HG, Mishra YK. Core-shell nanostructures: perspectives towards drug delivery applications. J Mater Chem B 2020; 8:8992-9027. [PMID: 32902559 DOI: 10.1039/d0tb01559h] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nanosystems have shown encouraging outcomes and substantial progress in the areas of drug delivery and biomedical applications. However, the controlled and targeted delivery of drugs or genes can be limited due to their physicochemical and functional properties. In this regard, core-shell type nanoparticles are promising nanocarrier systems for controlled and targeted drug delivery applications. These functional nanoparticles are emerging as a particular class of nanosystems because of their unique advantages, including high surface area, and easy surface modification and functionalization. Such unique advantages can facilitate the use of core-shell nanoparticles for the selective mingling of two or more different functional properties in a single nanosystem to achieve the desired physicochemical properties that are essential for effective targeted drug delivery. Several types of core-shell nanoparticles, such as metallic, magnetic, silica-based, upconversion, and carbon-based core-shell nanoparticles, have been designed and developed for drug delivery applications. Keeping the scope, demand, and challenges in view, the present review explores state-of-the-art developments and advances in core-shell nanoparticle systems, the desired structure-property relationships, newly generated properties, the effects of parameter control, surface modification, and functionalization, and, last but not least, their promising applications in the fields of drug delivery, biomedical applications, and tissue engineering. This review also supports significant future research for developing multi-core and shell-based functional nanosystems to investigate nano-therapies that are needed for advanced, precise, and personalized healthcare systems.
Collapse
Affiliation(s)
- Raj Kumar
- Faculty of Engineering and Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan-52900, Israel.
| | - Kunal Mondal
- Materials Science and Engineering Department, Idaho National Laboratory, Idaho Falls, ID 83415, USA.
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120, Uppsala, Sweden
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Natural Sciences, Division of Sciences, Art, & Mathematics, Florida Polytechnic University, Lakeland, FL-33805, USA
| | - Reza Abolhassani
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, DK-6400, Sønderborg, Denmark.
| | - Rajeev Ahuja
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120, Uppsala, Sweden and Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology (KTH), SE-10044 Stockholm, Sweden
| | - Horst-Günter Rubahn
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, DK-6400, Sønderborg, Denmark.
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, DK-6400, Sønderborg, Denmark.
| |
Collapse
|
118
|
Agarwal RA. Nanoparticles fabrication from as-synthesized two dimensional Zn(II) coordination polymer. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
119
|
Liu Y, Yang G, Jin S, Xu L, Zhao CX. Development of High-Drug-Loading Nanoparticles. Chempluschem 2020; 85:2143-2157. [PMID: 32864902 DOI: 10.1002/cplu.202000496] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/07/2020] [Indexed: 12/20/2022]
Abstract
Formulating drugs into nanoparticles offers many attractive advantages over free drugs including improved bioavailability, minimized toxic side effects, enhanced drug delivery, feasibility of incorporating other functions such as controlled release, imaging agents for imaging, targeting delivery, and loading more than one drug for combination therapies. One of the key parameters is drug loading, which is defined as the mass ratio of drug to drug-loaded nanoparticles. Currently, most nanoparticle systems have relatively low drug loading (<10 wt%), and developing methods to increase drug loading remains a challenge. This Minireview presents an overview of recent research on developing nanoparticles with high drug loading (>10 wt%) from the perspective of synthesis strategies, including post-loading, co-loading, and pre-loading. Based on these three different strategies, various nanoparticle systems with different materials and drugs are summarized and discussed in terms of their synthesis methods, drug loadings, encapsulation efficiencies, release profiles, stabilities, and their applications in drug delivery. The advantages and disadvantages of these strategies are presented with an objective of providing useful design rules for future development of high-drug-loading nanoparticles.
Collapse
Affiliation(s)
- Yun Liu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Guangze Yang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Song Jin
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Letao Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Chun-Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| |
Collapse
|
120
|
Nano‐ and micro‐structure tin (IV) complexes bearing 4‐pyridinecarbacylamidophosphate: Sonochemical synthesis, crystal structure, anti‐cholinesterase activity, and docking studies. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
121
|
Zhang J, Yuan X, Si M, Jiang L, Yu H. Core-shell structured cadmium sulfide nanocomposites for solar energy utilization. Adv Colloid Interface Sci 2020; 282:102209. [PMID: 32721625 DOI: 10.1016/j.cis.2020.102209] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/14/2020] [Accepted: 07/04/2020] [Indexed: 01/02/2023]
Abstract
Solar energy utilization technologies have been widely explored to solve the global energy crisis because the inexhaustible solar energy can be converted into chemical fuel and electricity. Various semiconductors that are crucial for solar energy utilization have been extensively developed. Among them, cadmium sulfide (CdS) has attracted extensive attention due to its suitable band-gap and excellent electrical/optical properties. However, CdS is still limited by rapid charge recombination, instability and low quantum efficiency. Core-shell structures can provide great opportunities for constructing advanced structures with superior properties to overcome the remaining challenges. This review focuses on the significant advances in core-shell structured CdS nanocomposites for solar energy utilization. Initially, the synthetic methods to construct core-shell structured CdS nanocomposites are reviewed. Then the applications in solar energy utilization are discussed, including photocatalytic\photoelectrochemical water splitting, photocatalytic CO2 reduction and solar cells. Finally, the perspectives of core-shell structured CdS nanocomposites for solar energy utilization are proposed.
Collapse
Affiliation(s)
- Jin Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Xingzhong Yuan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China.
| | - Mengying Si
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Longbo Jiang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China.
| | - Hanbo Yu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, PR China
| |
Collapse
|
122
|
Birlik Demirel G, Aygul E, Dag A, Atasoy S, Cimen Z, Cetin B. Folic Acid-Conjugated pH and Redox-Sensitive Ellipsoidal Hybrid Magnetic Nanoparticles for Dual-Triggered Drug Release. ACS APPLIED BIO MATERIALS 2020; 3:4949-4961. [DOI: 10.1021/acsabm.0c00488] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gokcen Birlik Demirel
- Department of Chemistry, Polatlı Faculty of Arts and Sciences, Ankara Hacı Bayram Veli University, 06900 Ankara, Turkey
| | - Ebru Aygul
- Department of Chemistry, Polatlı Faculty of Arts and Sciences, Ankara Hacı Bayram Veli University, 06900 Ankara, Turkey
- Department of Chemistry, Institute of Natural and Applied Sciences, Gazi University, 06500 Ankara, Turkey
| | - Aydan Dag
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bezmialem Vakif University, 34093 Istanbul, Turkey
| | - Sezen Atasoy
- Department of Biochemistry, Faculty of Pharmacy, Bezmialem Vakif University, 34093 Istanbul, Turkey
| | - Zeynep Cimen
- Department of Chemistry, Polatlı Faculty of Arts and Sciences, Ankara Hacı Bayram Veli University, 06900 Ankara, Turkey
- Department of Chemistry, Institute of Natural and Applied Sciences, Gazi University, 06500 Ankara, Turkey
| | - Busra Cetin
- Department of Chemistry, Polatlı Faculty of Arts and Sciences, Ankara Hacı Bayram Veli University, 06900 Ankara, Turkey
- Department of Chemistry, Institute of Natural and Applied Sciences, Gazi University, 06500 Ankara, Turkey
| |
Collapse
|
123
|
Prasanna APS, Venkataprasanna KS, Pannerselvam B, Asokan V, Jeniffer RS, Venkatasubbu GD. Multifunctional ZnO/SiO 2 Core/Shell Nanoparticles for Bioimaging and Drug Delivery Application. J Fluoresc 2020; 30:1075-1083. [PMID: 32621092 DOI: 10.1007/s10895-020-02578-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/23/2020] [Indexed: 11/29/2022]
Abstract
Semiconducting nanoparticles with luminescent properties are used as detection probes and drug carriers in in-vitro and in-vivo analysis. ZnO nanoparticles, due to its biocompatibility and low cost, have shown potential application in bioimaging and drug delivery. Thus, ZnO/SiO2 core/shell nanoparticle was synthesised by wet chemical method for fluorescent probing and drug delivery application. The synthesised core/shell nanomaterial was characterized using XRD, FTIR, UV-VIS spectroscopy, Raman spectroscopy, TEM and PL analysis. The silicon shell enhances the photoluminescence and aqueous stability of the pure ZnO nanoparticles. The porous surface of the shell acts as a carrier for sustained release of curcumin. The synthesized core/shell particle shows high cell viability, hemocompatibility and promising florescent property. Graphical Abstract.
Collapse
Affiliation(s)
- A P S Prasanna
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Chengalpattu District, Tamil Nadu, 603 203, India
| | - K S Venkataprasanna
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Chengalpattu District, Tamil Nadu, 603 203, India
| | | | - Vijayshankar Asokan
- Department of Chemistry and Chemical Engineering, Chalmers University, Gothenburg, Sweden
| | - R Sofia Jeniffer
- Center of Nanotechnology Research (CNR), VIT University, Vellore, Tamilnadu, India
| | - G Devanand Venkatasubbu
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Chengalpattu District, Tamil Nadu, 603 203, India.
| |
Collapse
|
124
|
Abstract
Magnetic drug targeting (MDT) is a noninvasive method for the medical treatment of various diseases of the cardiovascular system. Biocompatible magnetic nanoparticles loaded with medicinal drugs are carried to a tissue target in the human body (in vivo) under the applied magnetic field. The present study examines the MDT technique in various microchannels geometries by adopting the principles of biofluid dynamics (BFD). The blood flow is considered as laminar, pulsatile and the blood as an incompressible and non-Newtonian fluid. A two-phase model is adopted to resolve the blood flow and the motion of magnetic nanoparticles (MNPs). The numerical results are obtained by utilizing a meshless point collocation method (MPCM) alongside with the moving least squares (MLS) approximation. The numerical results are verified by comparing with published numerical results. We investigate the effect of crucial parameters of MDT, including (1) the volume fraction of nanoparticles, (2) the location of the magnetic field, (3) the strength of the magnetic field and its gradient, (4) the way that MNPs approach the targeted area, and (5) the bifurcation angle of the vessel.
Collapse
|
125
|
Yang G, Liu Y, Jin S, Zhao C. Development of Core‐Shell Nanoparticle Drug Delivery Systems Based on Biomimetic Mineralization. Chembiochem 2020; 21:2871-2879. [DOI: 10.1002/cbic.202000105] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/28/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Guangze Yang
- Australian Institute for Bioengineering and Nanotechnology University of Queensland St. Lucia, Queensland 4072 Australia
| | - Yun Liu
- Australian Institute for Bioengineering and Nanotechnology University of Queensland St. Lucia, Queensland 4072 Australia
| | - Song Jin
- Australian Institute for Bioengineering and Nanotechnology University of Queensland St. Lucia, Queensland 4072 Australia
| | - Chun‐Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology University of Queensland St. Lucia, Queensland 4072 Australia
| |
Collapse
|
126
|
Ali A, Ashraf MA, Minhas QA, Naqvi QA, Baqir MA, Choudhury PK. On the Core-Shell Nanoparticle in Fractional Dimensional Space. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2400. [PMID: 32456035 PMCID: PMC7288031 DOI: 10.3390/ma13102400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 12/20/2022]
Abstract
The investigation of core-shell nanoparticles has been greatly exciting in biomedical applications, as this remains of prime importance in targeted drug delivery, sensing, etc. In the present work, the polarizability and scattering features of nanoparticles comprised of nano-sized dielectric/metallic core-shell structures were investigated in the fractional dimensional (FD) space, which essentially relates to the confinement of charged particles. For this purpose, three different kinds of metals-namely aluminum, gold and silver-were considered to form the shell, having a common silicon dioxide (SiO2) nanoparticle as the core. It is noteworthy that the use of noble metal-SiO2 mediums interface remains ideal to realize surface plasmon resonance. The core-shell nanoparticles were considered to have dimensions smaller than the operating wavelength. Under such conditions, the analyses of polarizability and the scattering and absorption cross-sections, and also, the extinction coefficients were taken up under Rayleigh scattering mechanism, emphasizing the effects of a varying FD parameter. Apart from these, the tuning of resonance peaks and the magnitude of surface plasmons due to FD space parameter were also analyzed. It was found that the increase of FD space parameter generally results in blue-shifts in the resonance peaks. Apart from this, the usage of gold and silver shells brings in fairly large shifts in the peak positions of wavelengths, which allows them to be more suitable for a biosensing purpose.
Collapse
Affiliation(s)
- A. Ali
- Department of Electronics, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.A.); (M.A.A.); (Q.A.M.); (Q.A.N.)
| | - M. A. Ashraf
- Department of Electronics, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.A.); (M.A.A.); (Q.A.M.); (Q.A.N.)
| | - Q. A. Minhas
- Department of Electronics, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.A.); (M.A.A.); (Q.A.M.); (Q.A.N.)
| | - Q. A. Naqvi
- Department of Electronics, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.A.); (M.A.A.); (Q.A.M.); (Q.A.N.)
| | - M. A. Baqir
- Department of Electrical and Computer Engineering, Sahiwal Campus, COMSATS University Islamabad, Islamabad 57000, Pakistan;
| | - P. K. Choudhury
- Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor 43600, Malaysia
| |
Collapse
|
127
|
Mahdavi Z, Rezvani H, Keshavarz Moraveji M. Core-shell nanoparticles used in drug delivery-microfluidics: a review. RSC Adv 2020; 10:18280-18295. [PMID: 35517190 PMCID: PMC9053716 DOI: 10.1039/d0ra01032d] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/19/2020] [Indexed: 11/26/2022] Open
Abstract
Developments in the fields of lab-on-a-chip and microfluidic technology have benefited nanomaterial production processes due to fluid miniaturization. The ability to acquire, manage, create, and modify structures on a nanoscale is of great interest in scientific and technological fields. Recently, more attention has been paid to the production of core-shell nanomaterials because of their use in various fields, such as drug delivery. Heterostructured nanomaterials have more reliable performance than the individual core or shell materials. Nanoparticle synthesis is a complex process; therefore, various techniques exist for the production of different types of nanoparticles. Among these techniques, microfluidic methods are unique and reliable routes, which can be used to produce nanoparticles for drug delivery applications.
Collapse
Affiliation(s)
- Zahra Mahdavi
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic) Tehran Iran
| | - Hamed Rezvani
- Department of Petroleum Engineering, Amirkabir University of Technology (Tehran Polytechnic) Tehran Iran
| | | |
Collapse
|
128
|
de Oliveira PN, Moussa A, Milhau N, Dosciatti Bini R, Prouillac C, Ferraz de Oliveira B, Dias GS, Santos IA, Morfin I, Sudre G, Alcouffe P, Delair T, Cótica LF, Trombotto S, Pin D, David L. In situ synthesis of Fe 3O 4 nanoparticles coated by chito-oligosaccharides: physico-chemical characterizations and cytotoxicity evaluation for biomedical applications. NANOTECHNOLOGY 2020; 31:175602. [PMID: 31914426 DOI: 10.1088/1361-6528/ab68f9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Fe3O4 nanoparticles coated with chito-oligosaccharides (COS) were prepared in situ by a simple co-precipitation method through a mixing of iron ions (Fe3+ and Fe2+) and COS aqueous solutions followed by precipitation with ammonia. The impact of COS with different degree of polymerization (DP 10, 24 and 45) and degree of N-acetylation (DA) ∼ 24% and 50% (exhibiting high solubility) on the synthesis and physical properties of the coated magnetic nanoparticles was evaluated. Several advantages were found when the magnetic nanoparticles were prepared in the presence of the studied COS, such as: preparation of functionalized magnetic nanoparticles with narrower size distributions and, consequently, higher saturation magnetization (an increase of up to 22%); and an expressive increasing in the concentration of COS-coated magnetic nanoparticles (up to twice) in the cell viability test in comparison with pure Fe3O4 nanoparticles. Furthermore, among the analyzed samples, the magnetic nanoparticles coated by COS with DA ∼ 50% present a higher cytocompatibility. Our results allow envisioning various biomedical applications, valorizing the use of coated-magnetic nanoparticles for magnetic-field assisted drug delivery, enzyme or cell immobilization, or as a marker for specific cell tracking, among others.
Collapse
Affiliation(s)
- Paula Nunes de Oliveira
- IMP, CNRS UMR 5223, Univ Claude Bernard Lyon 1, Univ Lyon, 15 bd Latarjet, F-69622 Villeurbanne, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Photo-Functionalized Magnetic Nanoparticles as a Nanocarrier of Photodynamic Anticancer Agent for Biomedical Theragnostics. Cancers (Basel) 2020; 12:cancers12030571. [PMID: 32121558 PMCID: PMC7139909 DOI: 10.3390/cancers12030571] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/24/2020] [Accepted: 02/28/2020] [Indexed: 12/18/2022] Open
Abstract
Various theragnostic agents have been devised and developed as cancer treatments; however, existing agents are often limited by their specific functions and complexities. Here, we report multifunctional magnetite (Fe3O4) nanoparticles functionalized with chlorin e6 (Ce6) and folic acid (FA) using a simple fabrication process to be used as theragnostic agents in photodynamic therapy (PDT). The effectiveness of cellular uptake of Fe3O4-Ce6-FA nanoparticles (FCF NPs) and its visualization as well as the photodynamic anticancer activities were evaluated. The mechanism of cancer cell death by the FCF NPs was also verified with qualitative and quantitative methods. Results indicate that FCF NPs have good penetration efficacy, resulting in excellent in vitro fluorescence and magnetic resonance imaging in cancer cells. FCF NPs exhibited promising anticancer activity in an irradiation time- and FCF NPs-dose-dependent manner in various cancer cell lines, leading to apoptotic cell death via morphological changes in cell membrane, nuclear, and DNA damage, and via overexpression of apoptosis-related genes, such as ZFP36L1, CYR61, GADD45G, caspases-2, -3, -9, 10, and -14. This study suggests that FCF NPs may be safely used in cancer therapy via PDT and could be a versatile therapeutic tool and biocompatible theragnostic agent, which may be used in diagnostic imaging.
Collapse
|
130
|
|
131
|
Gupta AK, Singh A, Singh S. Diagnosis of Tuberculosis: Nanodiagnostics Approaches. Nanobiomedicine (Rij) 2020. [PMCID: PMC7122355 DOI: 10.1007/978-981-32-9898-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Tuberculosis (TB) remains one of the most devastating infectious diseases worldwide. The burden of TB is alarmingly high in developing countries, where diagnosis latent TB infection (LTBI), Extra-pulmonary tuberculosis (EPTB), drug-resistant tuberculosis (DR-TB), HIV-associated TB, and paediatric TB is still a challenge. This is mainly due to delayed or misdiagnosis of TB, which continues to fuel its worldwide epidemic. The ideal diagnostic test is still unavailable, and conventional methods remain a necessity for TB diagnosis, though with poor diagnostic ability. The nanoparticles have shown potential for the improvement of drug delivery, reducing treatment frequency and diagnosis of various diseases. The engineering of antigens/antibody nanocarriers represents an exciting front in the field of diagnostics, potentially flagging the way toward development of better diagnostics for TB. This chapter discusses the presently available tests for TB diagnostics and also highlights the recent advancement in the nanotechnology-based detection tests for M. tuberculosis.
Collapse
|
132
|
Tarhan T, Ulu A, Sariçam M, Çulha M, Ates B. Maltose functionalized magnetic core/shell Fe3O4@Au nanoparticles for an efficient l-asparaginase immobilization. Int J Biol Macromol 2020; 142:443-451. [DOI: 10.1016/j.ijbiomac.2019.09.116] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/03/2019] [Accepted: 09/16/2019] [Indexed: 11/24/2022]
|
133
|
Jenjob R, Phakkeeree T, Crespy D. Core–shell particles for drug-delivery, bioimaging, sensing, and tissue engineering. Biomater Sci 2020; 8:2756-2770. [DOI: 10.1039/c9bm01872g] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Core–shell particles offer significant advantages in their use for bioimaging and biosensors.
Collapse
Affiliation(s)
- Ratchapol Jenjob
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong 21210
- Thailand
| | - Treethip Phakkeeree
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong 21210
- Thailand
| | - Daniel Crespy
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong 21210
- Thailand
| |
Collapse
|
134
|
Li J, Yuan Z, Liu H, Feng J, Chen Z. Size-dependent tissue-specific biological effects of core-shell structured Fe 3O 4@SiO 2-NH 2 nanoparticles. J Nanobiotechnology 2019; 17:124. [PMID: 31870377 PMCID: PMC6929447 DOI: 10.1186/s12951-019-0561-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/17/2019] [Indexed: 12/20/2022] Open
Abstract
Background Understanding the in vivo size-dependent pharmacokinetics and toxicity of nanoparticles is crucial to determine their successful development. Systematic studies on the size-dependent biological effects of nanoparticles not only help to unravel unknown toxicological mechanism but also contribute to the possible biological applications of nanomaterial. Methods In this study, the biodistribution and the size-dependent biological effects of Fe3O4@SiO2–NH2 nanoparticles (Fe@Si-NPs) in three diameters (10, 20 and 40 nm) were investigated by ICP-AES, serum biochemistry analysis and NMR-based metabolomic analysis after intravenous administration in a rat model. Results Our findings indicated that biodistribution and biological activities of Fe@Si-NPs demonstrated the obvious size-dependent and tissue-specific effects. Spleen and liver are the target tissues of Fe@Si-NPs, and 20 nm of Fe@Si-NPs showed a possible longer blood circulation time. Quantitative biochemical analysis showed that the alterations of lactate dehydrogenase (LDH) and uric acid (UA) were correlated to some extent with the sizes of Fe@Si-NPs. The untargeted metabolomic analyses of tissue metabolomes (kidney, liver, lung, and spleen) indicated that different sizes of Fe@Si-NPs were involved in the different biochemical mechanisms. LDH, formate, uric acid, and GSH related metabolites were suggested as sensitive indicators for the size-dependent toxic effects of Fe@Si-NPs. The findings from serum biochemical analysis and metabolomic analysis corroborate each other. Thus we proposed a toxicity hypothesis that size-dependent NAD depletion may occur in vivo in response to nanoparticle exposure. To our knowledge, this is the first report that links size-dependent biological effects of nanoparticles with in vivo NAD depletion in rats. Conclusion The integrated metabolomic approach is an effective tool to understand physiological responses to the size-specific properties of nanoparticles. Our results can provide a direction for the future biological applications of Fe@Si-NPs.
Collapse
Affiliation(s)
- Jinquan Li
- School of Pharmaceutical Science (Shenzhen), Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zhongxue Yuan
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, 422 Siming South Road, Siming District, Xiamen, 361005, China
| | - Huili Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jianghua Feng
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, 422 Siming South Road, Siming District, Xiamen, 361005, China.
| | - Zhong Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, 422 Siming South Road, Siming District, Xiamen, 361005, China
| |
Collapse
|
135
|
Shanmuganathan R, LewisOscar F, Shanmugam S, Thajuddin N, Alharbi SA, Alharbi NS, Brindhadevi K, Pugazhendhi A. Core/shell nanoparticles: Synthesis, investigation of antimicrobial potential and photocatalytic degradation of Rhodamine B. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 202:111729. [PMID: 31835161 DOI: 10.1016/j.jphotobiol.2019.111729] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/18/2019] [Accepted: 12/02/2019] [Indexed: 02/03/2023]
Abstract
Bacterial pathogenicity is becoming a major cause of morbidity and mortality around the globe. Researchers are tirelessly finding solutions to cure or prevent infections caused by bacterial pathogens. Nanotechnology is a fast-growing area of research, effectively influencing and preventing bacterial growth. Nanoparticles (NPs) of silver, copper and gold are being used to kill bacterial pathogens in the past years but the toxicity of NPs at higher concentrations remains a major problem. Therefore, in the present study, Co3O4@ZrO2 (CoZ) core/shell NPs were synthesized using a simple sol-gel method. The synthesized NPs were characterized using different analytical techniques revealing the absorption bands at 456 and 277 nm with crystalline size of ~600 nm core/shell. The functional groups and oxidation states were characterized using FTIR analysis. Further bactericidal properties of core/shell of Co3O4@ZrO2 NPs were tested against Gram negative (Escherichia coli, Pseudomonas aeruginosa) and Gram positive (Staphylococcus aureus, Bacillus subitilis) pathogens. The core/shell CoZ NPs showed maximum growth inhibitions against S. aureus and P. aeruginosa. At the highest concentration of 200 μg/mL, the maximum zone of inhibition was observed. The synthesized CoZ NPs was also subjected to photocatalytic degradation of rhodamine B in 180 min under visible light irradiation. The present study could be an innovative and efficient research for both biomedical and wastewater treatment applications.
Collapse
Affiliation(s)
| | - Felix LewisOscar
- Division of Infectious Diseases, Rhode Island Hospital, Brown University Warren Alpert Medical School, Providence, RI, USA
| | | | - Nooruddin Thajuddin
- Division of Microbial Biodiversity and Bioenergy, Department of Microbiology, School of Life Sciences, Bharathidasan University, Tiruchirappalli - 620024, Tamil Nadu, India; Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Naiyf S Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Kathirvel Brindhadevi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
136
|
Palanisamy S, Wang YM. Superparamagnetic iron oxide nanoparticulate system: synthesis, targeting, drug delivery and therapy in cancer. Dalton Trans 2019; 48:9490-9515. [PMID: 31211303 DOI: 10.1039/c9dt00459a] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancer is a global epidemic and is considered a leading cause of death. Various cancer treatments such as chemotherapy, surgery, and radiotherapy are available for the cure but those are generally associated with poor long-term survival rates. Consequently, more advanced and selective methods that have better outcomes, fewer side effects, and high efficacies are highly in demand. Among these is the use of superparamagnetic iron oxide nanoparticles (SPIONs) which act as an innovative kit for battling cancer. Low cost, magnetic properties and toxicity properties enable SPIONs to be widely utilized in biomedical applications. For example, magnetite and maghemite (Fe3O4 and γ-Fe2O3) exhibit superparamagnetic properties and are widely used in drug delivery, diagnosis, and therapy. These materials are termed SPIONs when their size is smaller than 20 nm. This review article aims to provide a brief introduction on SPIONs, focusing on their fundamental magnetism and biological applications. The quality and surface chemistry of SPIONs are crucial in biomedical applications; therefore an in-depth survey of synthetic approaches and surface modifications of SPIONs is provided along with their biological applications such as targeting, site-specific drug delivery and therapy.
Collapse
Affiliation(s)
- Sathyadevi Palanisamy
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, 75 Bo-Ai Street, Hsinchu 300, Taiwan.
| | | |
Collapse
|
137
|
Susarrey-Arce A, Czajkowski KM, Darmadi I, Nilsson S, Tanyeli I, Alekseeva S, Antosiewicz TJ, Langhammer C. A nanofabricated plasmonic core-shell-nanoparticle library. NANOSCALE 2019; 11:21207-21217. [PMID: 31663581 DOI: 10.1039/c9nr08097j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Three-layer core-shell-nanoparticle nanoarchitectures exhibit properties not achievable by single-element nanostructures alone and have great potential to enable rationally designed functionality. However, nanofabrication strategies for crafting core-shell-nanoparticle structure arrays on surfaces are widely lacking, despite the potential of basically unlimited material combinations. Here we present a nanofabrication approach that overcomes this limitation. Using it, we produce a library of nanoarchitectures composed of a metal core and an oxide/nitride shell that is decorated with few-nanometer-sized particles with widely different material combinations. This is enabled by resolving a long-standing challenge in this field, namely the ability to grow a shell layer around a nanofabricated core without prior removal of the lithographically patterned mask, and the possibility to subsequently grow smaller metal nanoparticles locally on the shell only in close proximity of the core. Focusing on the application of such nanoarchitectures in plasmonics, we show experimentally and by Finite-Difference Time-Domain (FDTD) simulations that these structures exhibit significant optical absorption enhancement in small metal nanoparticles grown on the few nanometer thin dielectric shell layer around a plasmonic core, and derive design rules to maximize the effect by the tailored combination of the core and shell materials. We predict that these structures will find application in plasmon-mediated catalysis and nanoplasmonic sensing and spectroscopy.
Collapse
Affiliation(s)
- Arturo Susarrey-Arce
- Department of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden.
| | | | - Iwan Darmadi
- Department of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden.
| | - Sara Nilsson
- Department of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden.
| | - Irem Tanyeli
- Department of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden.
| | - Svetlana Alekseeva
- Department of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden.
| | - Tomasz J Antosiewicz
- Department of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden. and Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland.
| | - Christoph Langhammer
- Department of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden.
| |
Collapse
|
138
|
Pan A, Jakaria MG, Meenach SA, Bothun GD. Radiofrequency and Near-Infrared Responsive Core–Shell Nanostructures Using Layersome Templates for Cancer Treatment. ACS APPLIED BIO MATERIALS 2019; 3:273-281. [DOI: 10.1021/acsabm.9b00797] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
139
|
Maiyo F, Singh M. Folate-Targeted mRNA Delivery Using Chitosan-Functionalized Selenium Nanoparticles: Potential in Cancer Immunotherapy. Pharmaceuticals (Basel) 2019; 12:E164. [PMID: 31690043 PMCID: PMC6958489 DOI: 10.3390/ph12040164] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/19/2019] [Accepted: 10/24/2019] [Indexed: 12/13/2022] Open
Abstract
Systemic messenger RNA (mRNA) delivery, although still in its infancy, holds immense potential for application in cancer vaccination and immunotherapy. Its advantages over DNA transfection make it attractive in applications where transient expression is desired. However, this has proved challenging due to mRNA's instability and susceptibility to degradation. Selenium is important for immune function and modulation, with selenium nanoparticles (SeNPs) finding a niche in biomedicine as drug delivery vehicles, owing to their biocompatibility, low toxicity, and biodegradability. In this investigation, we synthesized chitosan-coated SeNPs with a folic acid targeting moiety for Fluc mRNA delivery to cancer cells in vitro. Synthesized SeNPs were stable and well dispersed, and ranged from 59 to 102 nm in size. Nanoparticles bound and protected mRNA from RNase degradation, while exhibiting low cytotoxicity in the human embryonic kidney (HEK293), breast adenocarcinoma (MCF-7), and nasopharyngeal (KB) cells in culture. Moderate cytotoxicity evidenced in the colorectal carcinoma (Caco-2) and colon carcinoma (HT-29) cells was attributed to apoptosis induction by selenium, as confirmed by acridine orange/ethidium bromide staining. Selenium uptake studies corroborated the transfection results, where significant transgene expression was evident for the overexpressed folate receptor-positive KB cells when compared to the other cells with less or no folate receptors.
Collapse
Affiliation(s)
- Fiona Maiyo
- Nano-Gene and Drug Delivery Group, Discipline of Biochemistry, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa.
| | - Moganavelli Singh
- Nano-Gene and Drug Delivery Group, Discipline of Biochemistry, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa.
| |
Collapse
|
140
|
Kefeni KK, Msagati TAM, Nkambule TT, Mamba BB. Spinel ferrite nanoparticles and nanocomposites for biomedical applications and their toxicity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 107:110314. [PMID: 31761184 DOI: 10.1016/j.msec.2019.110314] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 09/18/2019] [Accepted: 10/13/2019] [Indexed: 12/17/2022]
Abstract
This review focuses on the biomedical applications and toxicity of spinel ferrite nanoparticles (SFNPs) with more emphasis on the recently published work. A critical review is provided on recent advances of SFNPs applications in biomedical areas. The novelty of SFNPs in addressing the bottleneck problems encountered in the areas of health; in particular, for diagnosis and treatment of tumour cells are well reviewed. Furthermore, research gaps, toxicity of SFNPs and areas which still need more attention are highlighted. Based on the result of this review, the SFNPs have unlimited capacity in cancer treatment, disease diagnosis, magnetic resonance imaging, drug delivery and release. Overall, stepping out of the conventional way of treatment is difficult but also essential in bringing long lasting solution for cancer and other diseases treatment. In fact, the toxicity study and commercialisation of the SFNPs based cancer treatment options are the main challenges and need further study, in order to reduce unforeseen consequences.
Collapse
Affiliation(s)
- Kebede K Kefeni
- Nanotechnology and Water Sustainability Research Unit, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, 1710, South Africa.
| | - Titus A M Msagati
- Nanotechnology and Water Sustainability Research Unit, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, 1710, South Africa
| | - Thabo Ti Nkambule
- Nanotechnology and Water Sustainability Research Unit, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, 1710, South Africa
| | - Bhekie B Mamba
- Nanotechnology and Water Sustainability Research Unit, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, 1710, South Africa; State Key Laboratory of Separation Membranes and Membrane Processes, National Centre for International Joint Research on Membrane Science and Technology, Tianjin, 300387, PR China.
| |
Collapse
|
141
|
Corroboration and efficacy of Magneto-Fluorescent (NiZnFe/CdS) Nanostructures Prepared using Differently Processed Core. Sci Rep 2019; 9:15138. [PMID: 31641177 PMCID: PMC6805930 DOI: 10.1038/s41598-019-51631-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 10/04/2019] [Indexed: 11/11/2022] Open
Abstract
The selected and controlled preparation of core@shell nanostructures, which unite the multiple functions of ferromagnetic Ni-Zn ferrite core and CdS shell in a single material with tuneable fluorescence and magnetic properties, have been proposed by the seed mediated aqueous growth process. The shell particle thickness and core of nanostructures were precisely tuned. Current work exhibits the comparative study of core@shell multifunctional nanostructures where core being annealed at two different temperatures. The core@shell nanostructure formation was confirmed by complementary structural, elemental, optical, magnetic and IR measurements. Optical and magnetic characterizations were performed to study elaborative effects of different structural combinations of core@shell nanostructures to achieve best configuration with high-luminescence and magnetic outcomes. The interface of magnetic/nonmagnetic NiZnFe2O4/CdS nanostructures was inspected. Unexpectedly, in some of the core@shell nanostructures presence of substantial exchange-bias was observed in spite of the non-magnetic nature of CdS QDs which is clearly an “optically-active” and “magnetically-inactive” material. Presence of “exchange-bias” was confirmed by the change in “magnetic-anisotropy” as well as shift in susceptibility derivative. Finally, successful formulation of stable and efficient core@shell nanostructures achieved, which shows no exchange-bias and shift. Current findings suggest that these magneto-fluorescent nanostructures can be used in spintronics; and drug delivery-diagnosis-imaging applications in nanomedicine field.
Collapse
|
142
|
Singh P, Srivastava S, Singh SK. Nanosilica: Recent Progress in Synthesis, Functionalization, Biocompatibility, and Biomedical Applications. ACS Biomater Sci Eng 2019; 5:4882-4898. [PMID: 33455238 DOI: 10.1021/acsbiomaterials.9b00464] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Silica nanoparticles (Si-NPs) are widely explored in biomedical applications due to their high surface area, excellent biocompatibility, and tunable pore size. The silica surface can be readily functionalized for wide range of applications such as cellular imaging, biosensing, and targeted drug delivery. This comprehensive review discusses different synthesis methodologies of Si-NPs and their surface functionalization with various functional groups. Nanosilica functionalization methods are discussed in detail, emphasizing their suitability for targeted drug delivery, cancer therapy, bioimaging, and biosensing. The toxicity assessment of nanosilica is also critically reviewed to get a clear focus before employing them for nanomedicine.
Collapse
Affiliation(s)
- Priti Singh
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh 211004, India
| | - Sameer Srivastava
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh 211004, India
| | - Sunil Kumar Singh
- Department of Animal Sciences, School of Basic and Applied Sciences, Central University of Punjab, Mansa Road, Bathinda, Punjab 151001, India
| |
Collapse
|
143
|
Chondroitin-Sulfate-A-Coated Magnetite Nanoparticles: Synthesis, Characterization and Testing to Predict Their Colloidal Behavior in Biological Milieu. Int J Mol Sci 2019; 20:ijms20174096. [PMID: 31443385 PMCID: PMC6747333 DOI: 10.3390/ijms20174096] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/15/2019] [Accepted: 08/20/2019] [Indexed: 12/23/2022] Open
Abstract
Biopolymer coated magnetite nanoparticles (MNPs) are suitable to fabricate biocompatible magnetic fluid (MF). Their comprehensive characterization, however, is a necessary step to assess whether bioapplications are feasible before expensive in vitro and in vivo tests. The MNPs were prepared by co-precipitation, and after careful purification, they were coated by chondroitin-sulfate-A (CSA). CSA exhibits high affinity adsorption to MNPs (H-type isotherm). We could only make stable MF of CSA coated MNPs (CSA@MNPs) under accurate conditions. The CSA@MNP was characterized by TEM (size ~10 nm) and VSM (saturation magnetization ~57 emu/g). Inner-sphere metal–carboxylate complex formation between CSA and MNP was proved by FTIR-ATR and XPS. Electrophoresis and DLS measurements show that the CSA@MNPs at CSA-loading > 0.2 mmol/g were stable at pH > 4. The salt tolerance of the product improved up to ~0.5 M NaCl at pH~6.3. Under favorable redox conditions, no iron leaching from the magnetic core was detected by ICP measurements. Thus, the characterization predicts both chemical and colloidal stability of CSA@MNPs in biological milieu regarding its pH and salt concentration. MTT assays showed no significant impact of CSA@MNP on the proliferation of A431 cells. According to these facts, the CSA@MNPs have a great potential in biocompatible MF preparation for medical applications.
Collapse
|
144
|
Ebadi M, Saifullah B, Buskaran K, Hussein MZ, Fakurazi S. Synthesis and properties of magnetic nanotheranostics coated with polyethylene glycol/5-fluorouracil/layered double hydroxide. Int J Nanomedicine 2019; 14:6661-6678. [PMID: 31695362 PMCID: PMC6707435 DOI: 10.2147/ijn.s214923] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/25/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Cancer treatments are being continually developed. Increasingly more effective and better-targeted treatments are available. As treatment has developed, the outcomes have improved. PURPOSE In this work, polyethylene glycol (PEG), layered double hydroxide (LDH) and 5-fluorouracil (5-FU) were used as a stabilizing agent, a carrier and an anticancer active agent, respectively. CHARACTERIZATION AND METHODS Magnetite nanoparticles (Fe3O4) coated with polyethylene glycol (PEG) and co-coated with 5-fluorouracil/Mg/Al- or Zn/Al-layered double hydroxide were synthesized by co-precipitation technique. Structural, magnetic properties, particle shape, particle size and drug loading percentage of the magnetic nanoparticles were investigated by XRD, TGA, FTIR, DLS, FESEM, TEM, VSM, UV-vis spectroscopy and HPLC techniques. RESULTS XRD, TGA and FTIR studies confirmed the formation of Fe3O4 phase and the presence of iron oxide nanoparticles, polyethylene glycol, LDH and the drug for all the synthesized samples. The size of the nanoparticles co-coated with Mg/Al-LDH is about 27 nm compared to 40 nm when they were co-coated with Zn/Al-LDH, with both showings near uniform spherical shape. The iron oxide nanoparticles retain their superparamagnetic property when they were coated with polyethylene glycol, polyethylene glycol co-coated with Mg/Al-LDH and polyethylene glycol co-coated with Zn/Al-LDH with magnetic saturation value of 56, 40 and 27 emu/g, respectively. The cytotoxicity study reveals that the anticancer nanodelivery system has better anticancer activity than the free drug, 5-FU against liver cancer HepG2 cells and at the same time, it was found to be less toxic to the normal fibroblast 3T3 cells. CONCLUSION These are unique core-shell nanoparticles synthesized with the presence of multiple functionalities are hoped can be used as a multifunctional nanocarrier with the capability of targeted delivery using an external magnetic field and can also be exploited as hypothermia for cancer cells in addition to the chemotherapy property.
Collapse
Affiliation(s)
- Mona Ebadi
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang, Selangor43400, Malaysia
| | - Bullo Saifullah
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang, Selangor43400, Malaysia
- Laboratory for Vaccine and Immunotherapeutic, Institute of Biosciences, Universiti Putra Malaysia, Serdang, Selangor43400, Malaysia
| | - Kalaivani Buskaran
- Laboratory for Vaccine and Immunotherapeutic, Institute of Biosciences, Universiti Putra Malaysia, Serdang, Selangor43400, Malaysia
| | - Mohd Zobir Hussein
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang, Selangor43400, Malaysia
| | - Sharida Fakurazi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor43400, Malaysia
| |
Collapse
|
145
|
Jalili MA, Allafchian A, Karimzadeh F, Nasiri F. Synthesis and characterization of magnetite/Alyssum homolocarpum seed gum/Ag nanocomposite and determination of its antibacterial activity. Int J Biol Macromol 2019; 139:1263-1271. [PMID: 31421169 DOI: 10.1016/j.ijbiomac.2019.08.123] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/06/2019] [Accepted: 08/13/2019] [Indexed: 11/25/2022]
Abstract
Due to applications of silver nanoparticles (Ag NPs) especially in advanced science fields, it is important to produce Ag antibacterial nanocomposites with enhanced antibacterial activity and reusability. Over the past decade researches about natural polymers have emphasized the use of them as nanoparticles coating. In this work, a novel core-shell antibacterial agent was synthesized through a three-step procedure. Fe3O4 nanoparticles (Fe3O4 NPs) were synthesized and coated with a natural polymer called Alyssum homolocarpum seed gum (AHSG). Ag NPs were immobilized on the AHSG resulting in formation of the new nanocomposite with improved antimicrobial properties. The immobilization of Ag NPs prevents the release of toxic Ag+ ions. The Fe3O4@AHSG@Ag nanocomposite could easily be separated from medium using an external magnetic field due to presence of the Fe3O4 superparamagnetic nanoparticles. The as-synthesized nanocomposite was characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, vibrating sample magnetometer and dynamic light scattering. The results showed that the magnetic nanocomposite was synthesized and coated successfully. Finally, results of disk diffusion method demonstrated that the nanocomposite exhibits excellent antibacterial activity against gram-positive and gram-negative bacteria.
Collapse
Affiliation(s)
- Mohammad Amin Jalili
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Alireza Allafchian
- Research Institute for Nanotechnology and Advanced Materials, Isfahan University of Technology, Isfahan 84156-83111, Iran; Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Fathallah Karimzadeh
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Research Institute for Nanotechnology and Advanced Materials, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Faezeh Nasiri
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
146
|
Du Y, Jin J, Liang H, Jiang W. Structural and Physicochemical Properties and Biocompatibility of Linear and Looped Polymer-Capped Gold Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8316-8324. [PMID: 31140816 DOI: 10.1021/acs.langmuir.9b00045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Various polymer brushes with linear and looped conformations have gained considerable attention in the application of biomaterials and nanotechnology. In this work, the linear and looped polymer brush shells based on PEG-SH and SH-PEG-SH chains binding to gold nanoparticles (AuNPs) are synthesized. The structure and topology of the PEGylated AuNPs are systematically investigated. The basic physicochemical parameters of these PEGylated AuNPs such as hydrodynamic size, grafting density, hydrophilicity, colloidal stability, and biocompatibility are determined intensively. The looped polymer topology can remarkably alter physicochemical properties of polymer brushes compared with the linear counterparts. When the molecular weight of PEG is low (1 and 5 kDa), the looped polymer shells have smaller hydrodynamic size and lower grafting density than their linear analogues; when the molecular weight of PEG is high (10 kDa), the looped shells are much thicker and denser than the linear ones. Interestingly, the looped PEGs on AuNPs are more stable in a high-salt environment and have better hydrophilicity, which endow excellent biocompatibility, including protein resistance and cell viability. These results provide a simple approach to design polymer brushes with different topologies on AuNPs, improve the biocompatibility of hybrid AuNPs, and acquire the potential application in the biomedical field.
Collapse
Affiliation(s)
- Yanqiu Du
- State Key Laboratory of Polymer Physics and Chemistry , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022 , PR China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Jing Jin
- State Key Laboratory of Polymer Physics and Chemistry , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022 , PR China
| | - Haojun Liang
- Department of Polymer Science and Engineering , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| | - Wei Jiang
- State Key Laboratory of Polymer Physics and Chemistry , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022 , PR China
| |
Collapse
|
147
|
Lee GC, Seo D, Kim J, Siddique AB, Park H, Kim HJ, Kang H, Lee JY, Lim J, Kim J, Kim S. Cyclic Hydrazide‐Functionalized Poly(ethylene oxide) Frameworks for the Synthesis of pH‐Cleavable Drug‐Carriers and Their Applications for the Stabilization of Gold Nanoparticles. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Geon Chang Lee
- Department of ChemistryKyung Hee University Seoul 02447 Korea
| | - Donghwa Seo
- Department of ChemistryKyung Hee University Seoul 02447 Korea
| | - Junggyu Kim
- Department of ChemistryKyung Hee University Seoul 02447 Korea
| | - Abu B. Siddique
- Department of ChemistryKyung Hee University Seoul 02447 Korea
| | - Hyeonjong Park
- Department of ChemistryKyung Hee University Seoul 02447 Korea
| | - Hyun Jun Kim
- Department of ChemistryKyung Hee University Seoul 02447 Korea
| | - Ho‐Jung Kang
- Department of ChemistryKyung Hee University Seoul 02447 Korea
| | - Jae Yeol Lee
- Department of ChemistryKyung Hee University Seoul 02447 Korea
| | - Jeewoo Lim
- Department of ChemistryKyung Hee University Seoul 02447 Korea
| | - Jungahn Kim
- Department of ChemistryKyung Hee University Seoul 02447 Korea
| | - Sehoon Kim
- Center for TheranosticsKorea Institute of Science and Technology Seoul 02792 Korea
| |
Collapse
|
148
|
Xia N, Li N, Rao W, Yu J, Wu Q, Tan L, Li H, Gou L, Liang P, Li L, Meng X. Multifunctional and flexible ZrO 2-coated EGaIn nanoparticles for photothermal therapy. NANOSCALE 2019; 11:10183-10189. [PMID: 31112189 DOI: 10.1039/c9nr01963d] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
With extensive investigations involving liquid metals (LMs), Ga-based LMs have attracted increasing attention from biomedical researchers because of their good biocompatibility, ideal fluidity, and high thermal conductivity. LMs employed in cancer treatment suffer from high surface tension, thereby yielding unstable nanoparticles (NPs). Here, ZrO2 is coated onto LM NPs to form a stable core-shell nanostructure. In particular, LM NPs coated with ZrO2 and modified by PEG (LM@pZrO2 NPs) still maintain favorable flexibility, which is beneficial for cellular uptake. With regard to the photothermal properties of LM, LM@pZrO2 NPs rapidly warm up and emit the requisite amount of heat under NIR laser radiation. It is confirmed that LM@pZrO2 NPs are more effectively internalized by cells and are beneficial for tumor photothermal therapy. This research provides a coating strategy to fabricate a stable and flexible core-shell LM nanostructure, making it a promising vehicle for nanotheranostics.
Collapse
Affiliation(s)
- Na Xia
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Structure and nanoindentation mechanical properties of novel porous Ti-Ta material with a core-shell structure using the powder metallurgy method. ADV POWDER TECHNOL 2019. [DOI: 10.1016/j.apt.2019.02.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
150
|
Controlled synthesis of metal-organic frameworks coated with noble metal nanoparticles and conducting polymer for enhanced catalysis. J Colloid Interface Sci 2019; 537:262-268. [DOI: 10.1016/j.jcis.2018.11.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/16/2018] [Accepted: 11/09/2018] [Indexed: 01/10/2023]
|