101
|
Murteira A, Sowman PF, Nickels L. Does TMS Disruption of the Left Primary Motor Cortex Affect Verb Retrieval Following Exposure to Pantomimed Gestures? Front Neurosci 2019; 12:920. [PMID: 30618552 PMCID: PMC6299802 DOI: 10.3389/fnins.2018.00920] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/23/2018] [Indexed: 11/17/2022] Open
Abstract
Previous research suggests that meaning-laden gestures, even when produced in the absence of language (i.e., pantomimed gestures), influence lexical retrieval. Yet, little is known about the neural mechanisms that underlie this process. Based on embodied cognition theories, many studies have demonstrated motor cortex involvement in the representation of action verbs and in the understanding of actions. The present study aimed to investigate whether the motor system plays a critical role in the behavioral influence of pantomimed gestures on action naming. Continuous theta burst stimulation (cTBS) was applied over the hand area of the left primary motor cortex and to a control site (occipital cortex). An action-picture naming task followed cTBS. In the naming task, participants named action pictures that were preceded by videos of congruent pantomimed gestures, unrelated pantomimed gestures or a control video with no movement (as a neutral, non-gestural condition). In addition to behavioral measures of performance, cTBS-induced changes in corticospinal activity were assessed. We replicated previous finding that exposure to congruent pantomimed gestures facilitates word production, compared to unrelated or neutral primes. However, we found no evidence that the left primary motor area is crucially involved in the mechanism underlying behavioral facilitation effects of gesture on verb production. Although, at the group level, cTBS induced motor cortex suppression, at the individual level we found remarkable variability of cTBS effects on the motor cortex. We found cTBS induction of both inhibition of corticospinal activity (with slower behavioral of responses) and enhancement (with faster behavioral responses). Our findings cast doubt on assumptions that the motor cortex is causally involved in the impact of gestures on action-word processing. Our results also highlight the importance of careful consideration of interindividual variability for the interpretation of cTBS effects.
Collapse
Affiliation(s)
- Ana Murteira
- ARC Centre of Excellence in Cognition and its Disorders, Department of Cognitive Science, Macquarie University, Sydney, NSW, Australia.,International Doctorate of Experimental Approaches to Language and Brain (IDEALAB), Macquarie University, Sydney, NSW, Australia
| | - Paul F Sowman
- ARC Centre of Excellence in Cognition and its Disorders, Department of Cognitive Science, Macquarie University, Sydney, NSW, Australia.,Perception in Action Research Centre, Faculty of Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Lyndsey Nickels
- ARC Centre of Excellence in Cognition and its Disorders, Department of Cognitive Science, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
102
|
Jang KI, Shim M, Lee S, Hwang HJ, Chae JH. Changes in Global and Nodal Networks in Patients With Unipolar Depression After 3-Week Repeated Transcranial Magnetic Stimulation Treatment. Front Psychiatry 2019; 10:686. [PMID: 31649561 PMCID: PMC6794380 DOI: 10.3389/fpsyt.2019.00686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/23/2019] [Indexed: 12/21/2022] Open
Abstract
Objectives: Repeated transcranial magnetic stimulation (rTMS) therapy has been applied in depressive disorders, but its neurobiological effect has not been well understood. Changes in cortical source network after treatment need to be confirmed. The present study investigated the effect of 3-week rTMS therapy on the symptom severity and cortical source network in patients with unipolar depression. Methods: Thirty-five patients with unipolar major depressive disorder participated in the study. High-frequency (10 Hz) rTMS was applied at the left dorsolateral prefrontal cortex during 3 weeks (five consecutive weekdays every week). Clinical symptoms were examined using the Hamilton Rating Scale for Depression and Anxiety. The resting state electroencephalography was recorded with 62 scalp channels before and after rTMS treatment. Results: Clinical symptoms significantly improved after rTMS treatment in both the active (p = 0.001) and sham groups (p = 0.002). However, an increased cortical source network in global and nodal levels was observed only in the active group after a 3-week treatment. Conclusions: The present study indicates that rTMS treatment leads to improved symptoms in patients with unipolar depression. Furthermore, treatment outcome of real effect was assured in changes of cortical source network.
Collapse
Affiliation(s)
- Kuk-In Jang
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Emotion Laboratory, Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Miseon Shim
- Department of Psychiatry, University of Missouri-Kansas City, Center for Behavioral Medicine, Kansas, MO, United States.,Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, South Korea
| | - Sangmin Lee
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Emotion Laboratory, Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Han-Jeong Hwang
- Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, South Korea
| | - Jeong-Ho Chae
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Emotion Laboratory, Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
103
|
Keysers C, Paracampo R, Gazzola V. What neuromodulation and lesion studies tell us about the function of the mirror neuron system and embodied cognition. Curr Opin Psychol 2018; 24:35-40. [PMID: 29734039 PMCID: PMC6173305 DOI: 10.1016/j.copsyc.2018.04.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/28/2018] [Accepted: 04/04/2018] [Indexed: 12/20/2022]
Abstract
We review neuromodulation and lesion studies that address how activations in the mirror neuron system contribute to our perception of observed actions. Past reviews showed disruptions of this parieto-premotor network impair imitation and goal and kinematic processing. Recent studies bring five new themes. First, focal perturbations of a node of that circuit lead to changes across all nodes. Second, primary somatosensory cortex is an integral part of this network suggesting embodied representations are somatosensory-motor. Third, disturbing this network impairs the ability to predict the actions of others in the close (∼300ms) future. Fourth, disruptions impair our ability to coordinate our actions with others. Fifth, disrupting this network, the insula or cingulate also impairs emotion recognition.
Collapse
Affiliation(s)
- Christian Keysers
- Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Art and Sciences (KNAW), Meibergdreef 47, 1105 BA Amsterdam, The Netherlands; Faculty of Social and Behavioural Sciences, University of Amsterdam (UvA), 1001 NK Amsterdam, The Netherlands.
| | - Riccardo Paracampo
- Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Art and Sciences (KNAW), Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | - Valeria Gazzola
- Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Art and Sciences (KNAW), Meibergdreef 47, 1105 BA Amsterdam, The Netherlands; Faculty of Social and Behavioural Sciences, University of Amsterdam (UvA), 1001 NK Amsterdam, The Netherlands
| |
Collapse
|
104
|
Conde V, Tomasevic L, Akopian I, Stanek K, Saturnino GB, Thielscher A, Bergmann TO, Siebner HR. The non-transcranial TMS-evoked potential is an inherent source of ambiguity in TMS-EEG studies. Neuroimage 2018; 185:300-312. [PMID: 30347282 DOI: 10.1016/j.neuroimage.2018.10.052] [Citation(s) in RCA: 216] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/16/2018] [Accepted: 10/18/2018] [Indexed: 10/28/2022] Open
Abstract
Transcranial Magnetic Stimulation (TMS) excites populations of neurons in the stimulated cortex, and the resulting activation may spread to connected brain regions. The distributed cortical response can be recorded with electroencephalography (EEG). Since TMS also stimulates peripheral sensory and motor axons and generates a loud "click" sound, the TMS-evoked EEG potentials (TEPs) reflect not only neural activity induced by transcranial neuronal excitation but also neural activity due to somatosensory and auditory processing. In 17 healthy young individuals, we systematically assessed the contribution of multisensory peripheral stimulation to TEPs using a TMS-compatible EEG system. Real TMS was delivered with a figure-of-eight coil over the left para-median posterior parietal cortex or superior frontal gyrus with the coil being oriented perpendicularly or in parallel to the target gyrus. We also recorded the EEG responses evoked by realistic sham stimulation over the posterior parietal and superior frontal cortex, mimicking the auditory and somatosensory sensations evoked by real TMS. We applied state-of-the-art procedures to attenuate somatosensory and auditory confounds during real TMS, including the placement of a foam layer underneath the coil and auditory noise masking. Despite these precautions, the temporal and spatial features of the cortical potentials evoked by real TMS at the prefrontal and parietal site closely resembled the cortical potentials evoked by realistic sham TMS, both for early and late TEP components. Our findings stress the need to include a peripheral multisensory control stimulation in the design of TMS-EEG studies to enable a dissociation between truly transcranial and non-transcranial components of TEPs.
Collapse
Affiliation(s)
- Virginia Conde
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark; Clinical Neuroscience Laboratory, Institute of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Leo Tomasevic
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark
| | - Irina Akopian
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark
| | - Konrad Stanek
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark; Cognitive Systems, Department of Applied Mathematics and Computer Science, Technical University of Denmark, Denmark
| | - Guilherme B Saturnino
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark; Center for Magnetic Resonance, Department of Electrical Engineering, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Axel Thielscher
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark; Center for Magnetic Resonance, Department of Electrical Engineering, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Til Ole Bergmann
- Department of Neurology & Stroke, Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany; Institute for Medical Psychology and Behavioral Neurobiology, Eberhard Karls University of Tübingen, Otfried-Müller-Straße 25, 72076 Tübingen, Germany
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg, Bispebjerg Bakke 23, 2400 København NV, Denmark.
| |
Collapse
|
105
|
Bertolucci F, Chisari C, Fregni F. The potential dual role of transcallosal inhibition in post-stroke motor recovery. Restor Neurol Neurosci 2018; 36:83-97. [PMID: 29439366 DOI: 10.3233/rnn-170778] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Up to now, the mechanism of motor impairment and recovery after stroke has been thought to be based on the interhemispheric competition model. According to this model, which assumes that suppressing the excitability of contralesional hemisphere will enhance recovery by reducing transcallosal inhibition (TCI) of the stroke hemisphere, many clinical trials used non-invasive brain stimulation to improve motor function. Despite some positive findings, meta-analysis shows an important source of variability in the results, questioning whether the interhemispheric competition model would be exhaustive enough to explain the positive results or whether other mechanisms could explain the motor effects of inhibitory stimulation in the contralesional hemisphere. The goal of this study was to review the relationship between increased TCI and motor impairment after stroke.A systematic review of clinical studies investigating TCI through transcranial magnetic stimulation (TMS) in stroke patients and the relationship of this metric with motor recovery was then performed. After a literary search in PubMed eleven articles were included. The potential role of several covariates was examined and discussed.Overall, the importance of TCI as a putative mechanism for stimulation of the contralesional hemisphere seems to depend on the baseline motor function. In other words, from evidence coming mostly from chronic patients, modulation of abnormal TCI seems to be useful for patients with good motor function and less important in patients with poor motor function. TCI seems to be negatively correlated with mirror movements of the paretic hand. It can be inferred that suppressing the activity of the contralesional hemisphere could be beneficial for patients with good residual motor function and strong TCI, but not for those with poor motor function and weak TCI. Baseline motor function and measure of TCI should be taken into account for stratification of patients in clinical trials and for the design of customized treatment.
Collapse
Affiliation(s)
- Federica Bertolucci
- Department of Neuroscience, Unit of Neurorehabilitation, University Hospital of Pisa, Italy.,Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, USA
| | - Carmelo Chisari
- Department of Neuroscience, Unit of Neurorehabilitation, University Hospital of Pisa, Italy
| | - Felipe Fregni
- Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, USA
| |
Collapse
|
106
|
Gonzalez-Escamilla G, Chirumamilla VC, Meyer B, Bonertz T, von Grotthus S, Vogt J, Stroh A, Horstmann JP, Tüscher O, Kalisch R, Muthuraman M, Groppa S. Excitability regulation in the dorsomedial prefrontal cortex during sustained instructed fear responses: a TMS-EEG study. Sci Rep 2018; 8:14506. [PMID: 30267020 PMCID: PMC6162240 DOI: 10.1038/s41598-018-32781-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 09/11/2018] [Indexed: 01/25/2023] Open
Abstract
Threat detection is essential for protecting individuals from adverse situations, in which a network of amygdala, limbic regions and dorsomedial prefrontal cortex (dmPFC) regions are involved in fear processing. Excitability regulation in the dmPFC might be crucial for fear processing, while abnormal patterns could lead to mental illness. Notwithstanding, non-invasive paradigms to measure excitability regulation during fear processing in humans are missing. To address this challenge we adapted an approach for excitability characterization, combining electroencephalography (EEG) and transcranial magnetic stimulation (TMS) over the dmPFC during an instructed fear paradigm, to dynamically dissect its role in fear processing. Event-related (ERP) and TMS-evoked potentials (TEP) were analyzed to trace dmPFC excitability. We further linked the excitability regulation patterns to individual MRI-derived gray matter structural integrity of the fear network. Increased cortical excitability was demonstrated to threat (T) processing in comparison to no-threat (NT), reflected by increased amplitude of evoked potentials. Furthermore, TMS at dmPFC enhanced the evoked responses during T processing, while the structural integrity of the dmPFC and amygdala predicted the excitability regulation patterns to fear processing. The dmPFC takes a special role during fear processing by dynamically regulating excitability. The applied paradigm can be used to non-invasively track response abnormalities to threat stimuli in healthy subjects or patients with mental disorders.
Collapse
Affiliation(s)
- Gabriel Gonzalez-Escamilla
- Section of Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg University Mainz, 55131, Mainz, Germany
| | - Venkata C Chirumamilla
- Section of Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg University Mainz, 55131, Mainz, Germany
| | - Benjamin Meyer
- Neuroimaging Center Mainz, Focus Program Translational Neuroscience, University Medical Center of the Johannes Gutenberg University Mainz, 55131, Mainz, Germany
| | - Tamara Bonertz
- Section of Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg University Mainz, 55131, Mainz, Germany
| | - Sarah von Grotthus
- Section of Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg University Mainz, 55131, Mainz, Germany
| | - Johannes Vogt
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg University Mainz, 55131, Mainz, Germany
| | - Albrecht Stroh
- Focus Program Translational Neurosciences, Institute for Microscopic Anatomy and Neurobiology, Johannes Gutenberg University Mainz, 55131, Mainz, Germany
| | - Johann-Philipp Horstmann
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg University Mainz, 55131, Mainz, Germany
| | - Oliver Tüscher
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg University Mainz, 55131, Mainz, Germany
| | - Raffael Kalisch
- Neuroimaging Center Mainz, Focus Program Translational Neuroscience, University Medical Center of the Johannes Gutenberg University Mainz, 55131, Mainz, Germany
| | - Muthuraman Muthuraman
- Section of Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg University Mainz, 55131, Mainz, Germany
| | - Sergiu Groppa
- Section of Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg University Mainz, 55131, Mainz, Germany.
| |
Collapse
|
107
|
Hartwigsen G. Flexible Redistribution in Cognitive Networks. Trends Cogn Sci 2018; 22:687-698. [DOI: 10.1016/j.tics.2018.05.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/26/2018] [Accepted: 05/26/2018] [Indexed: 10/14/2022]
|
108
|
Song M, Zhang Y, Cui Y, Yang Y, Jiang T. Brain Network Studies in Chronic Disorders of Consciousness: Advances and Perspectives. Neurosci Bull 2018; 34:592-604. [PMID: 29916113 PMCID: PMC6060221 DOI: 10.1007/s12264-018-0243-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/07/2018] [Indexed: 02/06/2023] Open
Abstract
Neuroimaging has opened new opportunities to study the neural correlates of consciousness, and provided additional information concerning diagnosis, prognosis, and therapeutic interventions in patients with disorders of consciousness. Here, we aim to review neuroimaging studies in chronic disorders of consciousness from the viewpoint of the brain network, focusing on positron emission tomography, functional MRI, functional near-infrared spectroscopy, electrophysiology, and diffusion MRI. To accelerate basic research on disorders of consciousness and provide a panoramic view of unconsciousness, we propose that it is urgent to integrate different techniques at various spatiotemporal scales, and to merge fragmented findings into a uniform "Brainnetome" (Brain-net-ome) research framework.
Collapse
Affiliation(s)
- Ming Song
- National Laboratory of Pattern Recognition, Institute of Automation, The Chinese Academy of Sciences, Beijing, 100190, China
- Brainnetome Center, Institute of Automation, The Chinese Academy of Sciences, Beijing, 100190, China
| | - Yujin Zhang
- National Laboratory of Pattern Recognition, Institute of Automation, The Chinese Academy of Sciences, Beijing, 100190, China
- Brainnetome Center, Institute of Automation, The Chinese Academy of Sciences, Beijing, 100190, China
| | - Yue Cui
- National Laboratory of Pattern Recognition, Institute of Automation, The Chinese Academy of Sciences, Beijing, 100190, China
- Brainnetome Center, Institute of Automation, The Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Yi Yang
- Department of Neurosurgery, PLA Army General Hospital, Beijing, 100700, China
| | - Tianzi Jiang
- National Laboratory of Pattern Recognition, Institute of Automation, The Chinese Academy of Sciences, Beijing, 100190, China.
- Brainnetome Center, Institute of Automation, The Chinese Academy of Sciences, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100190, China.
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Beijing, 100190, China.
- Key Laboratory for Neuroinformation of the Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 625014, China.
- The Queensland Brain Institute, University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
109
|
Fisher R, Zhou J, Fogarty A, Joshi A, Markert M, Deutsch GK, Velez M. Repetitive transcranial magnetic stimulation directed to a seizure focus localized by high-density EEG: A case report. EPILEPSY & BEHAVIOR CASE REPORTS 2018; 10:47-53. [PMID: 29984172 PMCID: PMC6031434 DOI: 10.1016/j.ebcr.2018.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/07/2018] [Accepted: 03/19/2018] [Indexed: 12/29/2022]
Abstract
We demonstrate feasibility of using high-density EEG to map a neocortical seizure focus in conjunction with delivery of magnetic therapy. Our patient had refractory seizures affecting the left leg. A five-day course of placebo stimulation followed a month later by active rTMS was directed to the mapped seizure dipole. Active rTMS resulted in reduced EEG spiking, and shortening of seizure duration compared to placebo. Seizure frequency, however, improved similarly in both placebo and active treatment stages. rTMS-evoked EEG potentials demonstrated that a negative peak at 40 ms - believed to represent GABAergic inhibition - was enhanced by stimulation.
Collapse
Affiliation(s)
- Robert Fisher
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Jing Zhou
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Adam Fogarty
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Aditya Joshi
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Matthew Markert
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Gayle K Deutsch
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Mariel Velez
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States
| |
Collapse
|
110
|
Bona S, Silvanto J, Cattaneo Z. TMS over right OFA affects individuation of faces but not of exemplars of objects. Neuropsychologia 2018; 117:364-370. [PMID: 29966617 DOI: 10.1016/j.neuropsychologia.2018.06.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/26/2018] [Accepted: 06/28/2018] [Indexed: 11/26/2022]
Abstract
In addition to its well-documented role in processing of faces, the occipital face area in the right hemisphere (rOFA) may also play a role in identifying specific individuals within a class of objects. Here we explored this issue by using fMRI-guided TMS. In a first experiment, participants had to judge whether two sequentially presented images of faces or objects represented exactly the same exemplar or two different exemplars of the same class, while receiving online TMS over either the rOFA, the right lateral occipital cortex (rLO) or the Vertex (control). We found that, relative to Vertex, stimulation of rOFA impaired individuation of faces only, with no effect on objects; in contrast, TMS over rLO reduced individuation of objects but not of faces. In a second control experiment participants judged whether a picture representing a fragment of a stimulus belonged or not to the subsequently presented image of a whole stimulus (part-whole matching task). Our results showed that rOFA stimulation selectively disrupted performance with faces, whereas performance with objects (but not with faces) was selectively affected by TMS over rLO. Overall, our findings suggest that rOFA does not contribute to discriminate between exemplars of non-face objects.
Collapse
Affiliation(s)
- Silvia Bona
- Department of Psychology, University of Milano-Bicocca, 20126 Milan, Italy
| | - Juha Silvanto
- University of Westminster, Faculty of Science and Technology, Department of Psychology, 115 New Cavendish Street, W1W 6UW London, UK
| | - Zaira Cattaneo
- Department of Psychology, University of Milano-Bicocca, 20126 Milan, Italy; IRCCS Mondino Foundation, 27100 Pavia, Italy.
| |
Collapse
|
111
|
Zipser CM, Premoli I, Belardinelli P, Castellanos N, Rivolta D, Heidegger T, Müller-Dahlhaus F, Ziemann U. Cortical Excitability and Interhemispheric Connectivity in Early Relapsing-Remitting Multiple Sclerosis Studied With TMS-EEG. Front Neurosci 2018; 12:393. [PMID: 29937712 PMCID: PMC6002497 DOI: 10.3389/fnins.2018.00393] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/22/2018] [Indexed: 12/26/2022] Open
Abstract
Evoked potentials (EPs) are well established in clinical practice for diagnosis and prognosis in multiple sclerosis (MS). However, their value is limited to the assessment of their respective functional systems. Here, we used transcranial magnetic stimulation (TMS) coupled with electroencephalography (TMS-EEG) to investigate cortical excitability and spatiotemporal dynamics of TMS-evoked neural activity in MS patients. Thirteen patients with early relapsing–remitting MS (RRMS) with a median Expanded Disability Status Scale (EDSS) of 1.0 (range 0–2.5) and 16 age- and gender-matched healthy controls received single-pulse TMS of left and right primary motor cortex (L-M1 and R-M1), respectively. Resting motor threshold for L-M1 and R-M1 was increased in MS patients. Latencies and amplitudes of N45, P70, N100, P180, and N280 TMS-evoked EEG potentials (TEPs) were not different between groups, except a significantly increased amplitude of the N280 TEP in the MS group, both for L-M1 and R-M1 stimulation. Interhemispheric signal propagation (ISP), estimated from the area under the curve of TEPs in the non-stimulated vs. stimulated M1, also did not differ between groups. In summary, findings show that ISP and TEPs were preserved in early-stage RRMS, except for an exaggerated N280 amplitude. Our findings indicate that TMS-EEG is feasible in testing excitability and connectivity in cortical neural networks in MS patients, complementary to conventional EPs. However, relevance and pathophysiological correlates of the enhanced N280 will need further study.
Collapse
Affiliation(s)
- Carl M Zipser
- Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Isabella Premoli
- Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Paolo Belardinelli
- Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Nazareth Castellanos
- Nirakara: Instituto de Investigación y Formación en Ciencias Cognitivas, Madrid, Spain
| | - Davide Rivolta
- Department of Education Science, Psychology and Communication Science, University of Bari Aldo Moro, Bari, Italy
| | - Tonio Heidegger
- Department of Neurology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Florian Müller-Dahlhaus
- Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Tübingen, Germany.,Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Mainz, Germany
| | - Ulf Ziemann
- Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
112
|
Duan X, Yao G, Liu Z, Cui R, Yang W. Mechanisms of Transcranial Magnetic Stimulation Treating on Post-stroke Depression. Front Hum Neurosci 2018; 12:215. [PMID: 29899693 PMCID: PMC5988869 DOI: 10.3389/fnhum.2018.00215] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 05/08/2018] [Indexed: 12/13/2022] Open
Abstract
Post-stroke depression (PSD) is a neuropsychiatric affective disorder that can develop after stroke. Patients with PSD show poorer functional and recovery outcomes than patients with stroke who do not suffer from depression. The risk of suicide is also higher in patients with PSD. PSD appears to be associated with complex pathophysiological mechanisms involving both psychological and psychiatric problems that are associated with functional deficits and neurochemical changes secondary to brain damage. Transcranial magnetic stimulation (TMS) is a non-invasive way to investigate cortical excitability via magnetic stimulation of the brain. TMS is currently a valuable tool that can help us understand the pathophysiology of PSD. Although repetitive TMS (rTMS) is an effective treatment for patients with PSD, its mechanism of action remains unknown. Here, we review the known mechanisms underlying rTMS as a tool for better understanding PSD pathophysiology. It should be helpful when considering using rTMS as a therapeutic strategy for PSD.
Collapse
Affiliation(s)
- Xiaoqin Duan
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Gang Yao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Zhongliang Liu
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
113
|
|
114
|
Herrington TM, Briscoe J, Eskandar E. Structural and Functional Network Dysfunction in Parkinson Disease. Radiology 2017; 285:725-727. [PMID: 29155643 DOI: 10.1148/radiol.247172401] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Todd M Herrington
- From the Department of Neurology (T.M.H.) and Nayef Al-Rodhan Laboratories, Department of Neurosurgery (J.B., E.E.), Massachusetts General Hospital, Harvard Medical School, 15 Parkman St, WACC-720, Boston, MA 02114; Geisinger Commonwealth School of Medicine, Scranton, Pa (J.B.); and Howard Hughes Medical Institute, Chevy Chase, Md (J.B.)
| | - Jessica Briscoe
- From the Department of Neurology (T.M.H.) and Nayef Al-Rodhan Laboratories, Department of Neurosurgery (J.B., E.E.), Massachusetts General Hospital, Harvard Medical School, 15 Parkman St, WACC-720, Boston, MA 02114; Geisinger Commonwealth School of Medicine, Scranton, Pa (J.B.); and Howard Hughes Medical Institute, Chevy Chase, Md (J.B.)
| | - Emad Eskandar
- From the Department of Neurology (T.M.H.) and Nayef Al-Rodhan Laboratories, Department of Neurosurgery (J.B., E.E.), Massachusetts General Hospital, Harvard Medical School, 15 Parkman St, WACC-720, Boston, MA 02114; Geisinger Commonwealth School of Medicine, Scranton, Pa (J.B.); and Howard Hughes Medical Institute, Chevy Chase, Md (J.B.)
| |
Collapse
|