101
|
Zhou X, Dai Q, Huang X, Qin Z. Preparation and characterizations of antibacterial–antioxidant film from soy protein isolate incorporated with mangosteen peel extract. E-POLYMERS 2021. [DOI: 10.1515/epoly-2021-0058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Abstract
The mangosteen peel extract (MPE) was used to obtain soy protein isolate (SPI) films. The results show that MPE exhibited a high content of total phenolics and antioxidant activity. Moreover, the MPE can enhance the antibacterial–antioxidant properties, UV-visible light barrier properties, and water-resistant properties of the SPI films. The presence of MPE resulted in an increase in water vapor permeability and hydrophobicity. The extract addition also reduced the film’s crystallinity along with a decrease in the mechanical property and lowering of the maximum degradation temperature. Attenuated total reflectance Fourier transform infrared spectroscopy revealed that the polyphenols in MPE could interact with SPI through hydrogen bonds and hydrophobic interactions, and the addition of MPE changed the secondary structure of SPI with a decrease in β-sheets and an increase in β-turns and random coils. Scanning electron microscopy showed that all the films exhibited smooth and homogenous morphology on the surface and on some layers through cross-sectional images. Our results suggested that the MPE would be a promising ingredient to make SPI films used as an active packaging material.
Collapse
Affiliation(s)
- Xin Zhou
- School of Resources, Environment and Materials, Guangxi University , Nanning 530000 , China
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, Guangxi University , Nanning 530000 , China
| | - Qingyin Dai
- School of Resources, Environment and Materials, Guangxi University , Nanning 530000 , China
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, Guangxi University , Nanning 530000 , China
| | - Xi Huang
- School of Resources, Environment and Materials, Guangxi University , Nanning 530000 , China
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, Guangxi University , Nanning 530000 , China
| | - Zhiyong Qin
- School of Resources, Environment and Materials, Guangxi University , Nanning 530000 , China
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, Guangxi University , Nanning 530000 , China
| |
Collapse
|
102
|
Synthesizing Various Organic Polyacid Compounds for Modifying Forward Osmosis Membranes to Enhance Separation Performance. MEMBRANES 2021; 11:membranes11080597. [PMID: 34436360 PMCID: PMC8399665 DOI: 10.3390/membranes11080597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 11/24/2022]
Abstract
In order to overcome the challenges of low permeate flux (Jp) and the accompanying reverse solute flux (JS) during the forward osmosis (FO) membrane separation process, we synthesized four hybrid materials of polyacid-based organic compounds and incorporated them into the selective polyamide (PA) layer to make novel thin-film nanocomposite (TFN) FO membranes. The Jp and JS of each membrane were evaluated and used along with membrane selectivity (Jp/JS) as indicators of membrane separation performance. The fabricated and modified membranes were also characterized for ridge and valley surface morphologies with increasing hydrophilicity and finger-shaped parallel channels in the PSf substrate. Moreover, two highly hydrophilic nanoparticles of graphene oxide (GO) and titanium oxide (TiO2) were introduced with the hybrid materials for PA modification, which can further enhance the Jp of the TFN membranes. The highest Jp of the TFN membranes achieved 12.1 L/m2-h using 0.1% curcumin-acetoguanamine @ cerium polyacid (CATCP) and 0.0175% GO. The characteristic peaks of the hybrid materials were detected on the membrane surface using attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, evidencing successful incorporation of the hybrid materials during membrane modification. Here, we present the novel TFN membranes using hybrid materials for separation applications. The reactions for synthesizing the hybrid materials and for incorporating them with PA layer are proposed.
Collapse
|
103
|
Roy S, Rhim JW. Preparation of pectin/agar-based functional films integrated with zinc sulfide nano petals for active packaging applications. Colloids Surf B Biointerfaces 2021; 207:111999. [PMID: 34325297 DOI: 10.1016/j.colsurfb.2021.111999] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 01/18/2023]
Abstract
Here we report on the robust synthesis of zinc sulfide nanoparticles (ZnSNP) using a simple one-pot reaction. The prepared ZnSNP was characterized and confirmed to be a petal-shaped nanoparticle. The ZnSNP was added to fabricate the pectin/agar-based functional composite film. The integration of ZnSNP has greatly improved the physical properties of the film, such as mechanical and UV protection properties, without significantly changing the transparency of the film. The addition of the nanofillers did not affect the film's hydrophobicity, water vapor barrier, and thermal properties. Moreover, the composite film showed intense antibacterial activity against foodborne pathogenic bacteria, E. coli and L. monocytogenes. The functional bio-nanocomposite films based on pectin/agar have high potential in active packaging applications.
Collapse
Affiliation(s)
- Swarup Roy
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Jong-Whan Rhim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
104
|
Aragón-Gutiérrez A, Heras-Mozos R, Gallur M, López D, Gavara R, Hernández-Muñoz P. Hot-Melt-Extruded Active Films Prepared from EVOH/Trans-Cinnamaldehyde Blends Intended for Food Packaging Applications. Foods 2021; 10:1591. [PMID: 34359460 PMCID: PMC8304191 DOI: 10.3390/foods10071591] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/25/2022] Open
Abstract
In this work, novel active films based on ethylene vinyl alcohol copolymer (EVOH) and cinnamaldehyde (CIN) were successfully obtained employing a hybrid technique consisting of a two-step protocol involving the preparation of a polymeric EVOH-CIN masterbatch by solvent-casting for its further utilization in the preparation of bioactive EVOH-based films by melt extrusion processing. The influence of CIN over the EVOH matrix was studied in terms of optical, morphological, thermal, and mechanical properties. Optically transparent films were obtained and the incorporation of cinnamaldehyde resulted in yellow-colored films, producing a blocking effect in the UV region. A decrease in the glass transition temperature was observed in the formulations containing cinnamaldehyde, indicating a plasticizing effect. This phenomenon was confirmed by an increase in the elongation at break values of the extruded films. Results from thermogravimetric analysis determined a slight decrease in the thermal stability of EVOH provoked by the vaporization of the bioactive compound. Bioactive properties of the films were also studied; the presence of residual cinnamaldehyde in EVOH after being subjected to an extrusion process conferred some radical scavenging activity determined by the DPPH assay whereas films were able to exert antifungal activity in vapor phase against Penicillium expansum. Therefore, the present work shows the potential of the hybrid technique employed in this study for the preparation of bioactive films by a ready industrial process technology for food packaging applications.
Collapse
Affiliation(s)
- Alejandro Aragón-Gutiérrez
- Grupo de Tecnología de Envases y Embalajes, Instituto Tecnológico del Embalaje, Transporte y Logística, ITENE, Unidad Asociada al CSIC, calle de Albert Einstein 1, 46980 Valencia, Spain;
| | - Raquel Heras-Mozos
- Instituto de Agroquímica y Tecnología de Alimentos, IATA-CSIC, calle del Catedrático Agustín Escardino Benlloch 7, 46980 Valencia, Spain; (R.H.-M.); (R.G.)
| | - Miriam Gallur
- Grupo de Tecnología de Envases y Embalajes, Instituto Tecnológico del Embalaje, Transporte y Logística, ITENE, Unidad Asociada al CSIC, calle de Albert Einstein 1, 46980 Valencia, Spain;
| | - Daniel López
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, calle Juan de la Cierva 3, 28006 Madrid, Spain;
| | - Rafael Gavara
- Instituto de Agroquímica y Tecnología de Alimentos, IATA-CSIC, calle del Catedrático Agustín Escardino Benlloch 7, 46980 Valencia, Spain; (R.H.-M.); (R.G.)
| | - Pilar Hernández-Muñoz
- Instituto de Agroquímica y Tecnología de Alimentos, IATA-CSIC, calle del Catedrático Agustín Escardino Benlloch 7, 46980 Valencia, Spain; (R.H.-M.); (R.G.)
| |
Collapse
|
105
|
Gelatin-Based Film Integrated with Copper Sulfide Nanoparticles for Active Packaging Applications. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11146307] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gelatin-based multifunctional composite films were prepared by reinforcing various amounts of copper sulfide nanoparticles (CuSNP, 0.0, 0.5, 1.0, and 2.0 wt %), and the effect of CuSNP on the film was evaluated by analyzing its physical and antibacterial properties. CuSNP makes a compatible film with gelatin. The inclusion of CuSNP significantly enhanced the UV blocking, mechanical strength, and water vapor barrier properties of the gelatin film. The inclusion of CuSNP of 1.0 wt % or less did not affect the transparency of the gelatin film. When 2.0 wt % of CuSNP was mixed, the hydrophilicity of the gelatin film did not change noticeably, but its thermal properties slightly increased. Moreover, the gelatin/CuSNP composite film presented effective antibacterial activity against E. coli and some activity against L. monocytogenes. Gelatin/CuSNP composite films with better functional and physical properties can be used for food packaging or biomedical applications.
Collapse
|
106
|
Ahammed S, Liu F, Wu J, Khin MN, Yokoyama WH, Zhong F. Effect of transglutaminase crosslinking on solubility property and mechanical strength of gelatin-zein composite films. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106649] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
107
|
Trigo-Gutierrez JK, Vega-Chacón Y, Soares AB, Mima EGDO. Antimicrobial Activity of Curcumin in Nanoformulations: A Comprehensive Review. Int J Mol Sci 2021; 22:7130. [PMID: 34281181 PMCID: PMC8267827 DOI: 10.3390/ijms22137130] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/21/2021] [Accepted: 06/28/2021] [Indexed: 01/10/2023] Open
Abstract
Curcumin (CUR) is a natural substance extracted from turmeric that has antimicrobial properties. Due to its ability to absorb light in the blue spectrum, CUR is also used as a photosensitizer (PS) in antimicrobial Photodynamic Therapy (aPDT). However, CUR is hydrophobic, unstable in solutions, and has low bioavailability, which hinders its clinical use. To circumvent these drawbacks, drug delivery systems (DDSs) have been used. In this review, we summarize the DDSs used to carry CUR and their antimicrobial effect against viruses, bacteria, and fungi, including drug-resistant strains and emergent pathogens such as SARS-CoV-2. The reviewed DDSs include colloidal (micelles, liposomes, nanoemulsions, cyclodextrins, chitosan, and other polymeric nanoparticles), metallic, and mesoporous particles, as well as graphene, quantum dots, and hybrid nanosystems such as films and hydrogels. Free (non-encapsulated) CUR and CUR loaded in DDSs have a broad-spectrum antimicrobial action when used alone or as a PS in aPDT. They also show low cytotoxicity, in vivo biocompatibility, and improved wound healing. Although there are several in vitro and some in vivo investigations describing the nanotechnological aspects and the potential antimicrobial application of CUR-loaded DDSs, clinical trials are not reported and further studies should translate this evidence to the clinical scenarios of infections.
Collapse
Affiliation(s)
| | | | | | - Ewerton Garcia de Oliveira Mima
- Laboratory of Applied Microbiology, Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (Unesp), Araraquara 14800-000, Brazil; (J.K.T.-G.); (Y.V.-C.); (A.B.S.)
| |
Collapse
|
108
|
Effect of curcumin, betanin and anthocyanin containing colourants addition on gelatin films properties for intelligent films development. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106593] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
109
|
Development and Characterization of Active Gelatin Films Loaded with Rapeseed Meal Extracts. MATERIALS 2021; 14:ma14112869. [PMID: 34071860 PMCID: PMC8198830 DOI: 10.3390/ma14112869] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 12/19/2022]
Abstract
The use of industrial waste as a material for the development of natural innovative and active packaging is economically and environmentally appealing. The aim of this study was to develop and characterize active gelatin films incorporating rapeseed oil industry waste. Water (RM-WE) and methanolic (RM-MWE) extracts of rapeseed meal (RM) were used as active agents in film formulations. The active films were produced by a casting technique. The physicochemical, mechanical, optical, morphological, radical scavenging, and antibacterial properties of the films were analyzed. The addition of RM-WE and RM-MWE in the concentrations range between 4 and 12% promoted an increase of Young's modulus (YM) and radical scavenging properties of films investigated by the direct QUick, Easy, New, CHEap and Reproducible procedure using 2,2-diphenyl-1-picrylhydrazyl (QUENCHERDPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6- sulfonic acid) (QUENCHERABTS) radicals. The antibacterial properties of films were examined against five bacterial strains: E. coli, S. enterica, M. luteus, L. monocytogenes, and S. aureus. Additionally, color and opacity of the control and fortified films differed significantly. The gelatin films with RM extracts are resistant to the microbial spoilage and could be used to produce active packaging for food that is vulnerable to rancidity effects.
Collapse
|
110
|
Xu J, Li X, Xu Y, Wang A, Xu Z, Wu X, Li D, Mu C, Ge L. Dihydromyricetin-Loaded Pickering Emulsions Stabilized by Dialdehyde Cellulose Nanocrystals for Preparation of Antioxidant Gelatin–Based Edible Films. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02664-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
111
|
Effect of Curcumin-Hydroxypropyl-$$\beta$$-Cyclodextrin Complex and the Complex Loaded Gelatin Carrageenan Microparticles on the Various Chemical and Biological Properties. J Pharm Innov 2021. [DOI: 10.1007/s12247-021-09559-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
112
|
Vargas Romero E, Lim LT, Suárez Mahecha H, Bohrer BM. The Effect of Electrospun Polycaprolactone Nonwovens Containing Chitosan and Propolis Extracts on Fresh Pork Packaged in Linear Low-Density Polyethylene Films. Foods 2021; 10:foods10051110. [PMID: 34067772 PMCID: PMC8156044 DOI: 10.3390/foods10051110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 12/04/2022] Open
Abstract
Fresh meat products are highly perishable and require optimal packaging conditions to maintain and potentially extend shelf-life. Recently, researchers have developed functional, active packaging systems that are capable of interacting with food products, package headspace, and/or the environment to enhance product shelf-life. Among these systems, antimicrobial/antioxidant active packaging has gained considerable interest for delaying/preventing microbial growth and deteriorative oxidation reactions. This study evaluated the effectiveness of active linear low-density polyethylene (LLDPE) films coated with a polycaprolactone/chitosan nonwoven (Film 1) or LLDPE films coated with a polycaprolactone/chitosan nonwoven fortified with Colombian propolis extract (Film 2). The active LLDPE films were evaluated for the preservation of fresh pork loin (longissimus dorsi) chops during refrigerated storage at 4 °C for up to 20 d. The meat samples were analyzed for pH, instrumental color, purge loss, thiobarbituric acid reactive substances (TBARS), and microbial stability (aerobic mesophilic and psychrophilic bacteria). The incorporation of the propolis-containing nonwoven layer provided antioxidant and antimicrobial properties to LLDPE film, as evidenced by improved color stability, no differences in lipid oxidation, and a delay of 4 d for the onset of bacteria growth of pork chops during the refrigerated storage period.
Collapse
Affiliation(s)
- Emeli Vargas Romero
- Instituto de Ciencia y Tecnología de Alimentos, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (E.V.R.); (H.S.M.)
| | - Loong-Tak Lim
- Department of Food Science, University of Guelph, Guelph, ON N1G-2W1, Canada;
| | - Héctor Suárez Mahecha
- Instituto de Ciencia y Tecnología de Alimentos, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (E.V.R.); (H.S.M.)
| | - Benjamin M. Bohrer
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA
- Correspondence: ; Tel.: +1-614-247-4951
| |
Collapse
|
113
|
Roy S, Rhim JW. Fabrication of bioactive binary composite film based on gelatin/chitosan incorporated with cinnamon essential oil and rutin. Colloids Surf B Biointerfaces 2021; 204:111830. [PMID: 33984610 DOI: 10.1016/j.colsurfb.2021.111830] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/02/2021] [Accepted: 05/04/2021] [Indexed: 12/16/2022]
Abstract
Chitosan/gelatin-based functional films were fabricated by incorporating cinnamon essential oil (CEO) and rutin for active packaging application. The functional fillers were evenly distributed in the polymer matrix and formed a film compatible with the chitosan/gelatin polymer matrix. However, the functional material did not affect the physical properties such as mechanical, thermal, and water vapor barrier properties of the film but exhibited high light transmittance with enhanced UV blocking properties. The rutin release from the composite film was evaluated using various food simulant solutions and found that rutin was released faster in acidic and alcoholic solutions. The chitosan/gelatin-based composite film showed potent antimicrobial and antioxidant activities. In addition, the combined use of CEO and rutin showed a synergistic effect of functional properties. The CEO and rutin-added chitosan/gelatin-based films with improved physical and functional properties can be used for active food packaging applications.
Collapse
Affiliation(s)
- Swarup Roy
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Jong-Whan Rhim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
114
|
Bouhanna I, Boussaa A, Boumaza A, Rigano D, Maisto M, Basile A, Rollini M, Limbo S, Idoui T. Characterization and antibacterial activity of gelatin‐based film incorporated with
Arbutus unedo
L. fruit extract on
Sardina pilchardus. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Imane Bouhanna
- Laboratory of Biotechnology Environment and Health University of Mohammed Seddik Ben yahia Jijel Algeria
| | - Abdelhalim Boussaa
- Faculty of Nature and Life Sciences Department of molecular and cellular biology University of Abbes Laghrour Khenchela Algeria
| | - Abdecharif Boumaza
- Laboratoire des Structures, Propriétés et Interactions Interatomiques (LASPI2A), Faculté des sciences et technologies Université Abbes Laghrour Khenchela Algeria
| | - Daniela Rigano
- Department of Pharmacy School of Medicine and Surgery University of Naples Federico II Naples Italy
| | - Maria Maisto
- Department of Pharmacy School of Medicine and Surgery University of Naples Federico II Naples Italy
| | - Adriana Basile
- Department of Biology University of Naples “Federico II” Naples Italy
| | - Manuela Rollini
- DeFENS Department of Food, Environmental and Nutritional Sciences Università degli Studi di Milano Milan Italy
| | - Sara Limbo
- DeFENS Department of Food, Environmental and Nutritional Sciences Università degli Studi di Milano Milan Italy
| | - Tayeb Idoui
- Laboratory of Biotechnology Environment and Health University of Mohammed Seddik Ben yahia Jijel Algeria
| |
Collapse
|
115
|
Hasheminya SM, Dehghannya J. Development and characterization of novel edible films based on Cordia dichotoma gum incorporated with Salvia mirzayanii essential oil nanoemulsion. Carbohydr Polym 2021; 257:117606. [DOI: 10.1016/j.carbpol.2020.117606] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/25/2020] [Accepted: 12/30/2020] [Indexed: 11/16/2022]
|
116
|
Cellulose Nanofiber-Based Nanocomposite Films Reinforced with Zinc Oxide Nanorods and Grapefruit Seed Extract. NANOMATERIALS 2021; 11:nano11040877. [PMID: 33808228 PMCID: PMC8066394 DOI: 10.3390/nano11040877] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/15/2021] [Accepted: 03/26/2021] [Indexed: 12/05/2022]
Abstract
Here, we report the fabrication and characterization of cellulose nanofiber (CNF)-based nanocomposite films reinforced with zinc oxide nanorods (ZnOs) and grapefruit seed extract (GSE). The CNF is isolated via a combination of chemical and physical methods, and the ZnO is prepared using a simple precipitation method. The ZnO and GSE are used as functional nanofillers to produce a CNF/ZnO/GSE film. Physical (morphology, chemical interactions, optical, mechanical, thermal stability, etc.) and functional (antimicrobial and antioxidant activities) film properties are tested. The incorporation of ZnO and GSE does not impact the crystalline structure, mechanical properties, or thermal stability of the CNF film. Nanocomposite films are highly transparent with improved ultraviolet blocking and vapor barrier properties. Moreover, the films exhibit effective antimicrobial and antioxidant actions. CNF/ZnO/GSE nanocomposite films with better quality and superior functional properties have many possibilities for active food packaging use.
Collapse
|
117
|
Riahi Z, Priyadarshi R, Rhim JW, Bagheri R. Gelatin-based functional films integrated with grapefruit seed extract and TiO2 for active food packaging applications. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106314] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
118
|
Fabrication of eugenol loaded gelatin nanofibers by electrospinning technique as active packaging material. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110800] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
119
|
Rojas A, Velásquez E, Piña C, Galotto MJ, López de Dicastillo C. Designing active mats based on cellulose acetate/polycaprolactone core/shell structures with different release kinetics. Carbohydr Polym 2021; 261:117849. [PMID: 33766345 DOI: 10.1016/j.carbpol.2021.117849] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 02/20/2021] [Accepted: 02/20/2021] [Indexed: 12/18/2022]
Abstract
Core/shell electrospun mats based on cellulose acetate (CA) and polycaprolactone (PCL) were developed as novel active materials for releasing quercetin (Quer) and curcumin (Cur). The effect of polymeric uniaxial and coaxial electrospun systems and the chemical structures of Quer and Cur on the structural, thermal, and mass transfer properties of the developed mats were investigated. Release modelling indicated that the diffusion of the active agents from the uniaxial PCL fibers was highly dependent on the type of food simulant. Higher diffusion coefficients were obtained for both active agents in acid food simulant due to the higher swelling of the electrospun mats. In addition, CA/PCL coaxial structures slowed down the diffusion of both active agents into both food simulants. CA increased the retention of the active compounds in the polymer structure, resulting in partition coefficients values higher than the values obtained for uniaxial active PCL mats.
Collapse
Affiliation(s)
- Adrián Rojas
- University of Santiago of Chile (USACH), Packaging Innovation Center (LABEN-Chile), 9170201, Santiago, Chile; University of Santiago of Chile (USACH), Center for the Development of Nanoscience and Nanotechnology (CEDENNA), 9170201, Santiago, Chile.
| | - Eliezer Velásquez
- University of Santiago of Chile (USACH), Packaging Innovation Center (LABEN-Chile), 9170201, Santiago, Chile; University of Santiago of Chile (USACH), Center for the Development of Nanoscience and Nanotechnology (CEDENNA), 9170201, Santiago, Chile.
| | - Constanza Piña
- University of Santiago of Chile (USACH), Packaging Innovation Center (LABEN-Chile), 9170201, Santiago, Chile; University of Santiago of Chile (USACH), Center for the Development of Nanoscience and Nanotechnology (CEDENNA), 9170201, Santiago, Chile.
| | - María José Galotto
- University of Santiago of Chile (USACH), Packaging Innovation Center (LABEN-Chile), 9170201, Santiago, Chile; University of Santiago of Chile (USACH), Center for the Development of Nanoscience and Nanotechnology (CEDENNA), 9170201, Santiago, Chile; University of Santiago of Chile (USACH), Technological Faculty, Food Science and Technology Department, 9170201, Santiago, Chile.
| | - Carol López de Dicastillo
- University of Santiago of Chile (USACH), Packaging Innovation Center (LABEN-Chile), 9170201, Santiago, Chile; University of Santiago of Chile (USACH), Center for the Development of Nanoscience and Nanotechnology (CEDENNA), 9170201, Santiago, Chile; University of Santiago of Chile (USACH), Technological Faculty, Food Science and Technology Department, 9170201, Santiago, Chile.
| |
Collapse
|
120
|
Functional biocompatible nanocomposite films consisting of selenium and zinc oxide nanoparticles embedded in gelatin/cellulose nanofiber matrices. Int J Biol Macromol 2021; 175:87-97. [PMID: 33485892 DOI: 10.1016/j.ijbiomac.2021.01.135] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023]
Abstract
In recent decades, environmental concerns and increasing consumer demand for healthy and nutritious food products with prolonged shelf life have made the food packaging industry pay more attention to the preparation of multifunctional biodegradable packaging films based on biopolymers containing active components such as antioxidant and antimicrobial agents. In this study, bio-nanocomposite films were fabricated from gelatin (G) and cellulose nanofibers (CNFs), and different concentrations of zinc oxide (ZnO) and/or Selenium (Se) nanoparticles (NPs) by the casting method. The mechanical, barrier, optical, and structural (FTIR, XRD, and SEM) properties of the films were investigated along with their antibacterial and antioxidant features. The incorporation of ZnO and Se NPs improved the physicomechanical and water resistance of G/CNF films. In this regard, the maximum tensile strength value was obtained for the G/CNF containing 5% w/w ZnO NPs (G/CNF/ZnO3) and G/CNF containing 0.1% w/w Se NPs (G/CNF/Se2) films (~2.20-fold and ~2.13-fold higher than the G/CNF film, respectively). Also, G/CNF with 3% w/w ZnO NPs (G/CNF/ZnO2) film had the lowest water vapor permeability and water solubility among all films. Results of the disc diffusion assay showed a stronger antibacterial effect of ZnO NPs compared with Se NPs. The bacterial susceptibility to the antibacterial films was as follows: Listeria monocytogenes > Escherichia coli > Staphylococcus aureus > Pseudomonas fluorescens. The G/CNF films incorporated with Se nanoparticles possessed the higher property of scavenging free radicals in comparison films containing ZnO nanoparticles. Also, the combination of Se NPs and ZnO NPs enhanced the antioxidant effect of the films. In conclusion, gelatin-based edible films containing CNFs, ZnO NPs, and Se NPs can be used in the development of active food packaging products.
Collapse
|
121
|
Roy S, Rhim JW. Preparation of Gelatin/Carrageenan-Based Color-Indicator Film Integrated with Shikonin and Propolis for Smart Food Packaging Applications. ACS APPLIED BIO MATERIALS 2020. [DOI: 10.1021/acsabm.0c01353] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Swarup Roy
- Department of Food and Nutrition, BioNanocomposite Research Institute, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jong-Whan Rhim
- Department of Food and Nutrition, BioNanocomposite Research Institute, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| |
Collapse
|
122
|
Preparation of bioactive functional poly(lactic acid)/curcumin composite film for food packaging application. Int J Biol Macromol 2020; 162:1780-1789. [DOI: 10.1016/j.ijbiomac.2020.08.094] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 11/23/2022]
|
123
|
Kuang J, Gao J, Xie S, Lei Q, Fang W, Xie H, Lu X. Phase behaviors and curcumin encapsulation performance of Gemini surfactant microemulsion. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113786] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
124
|
Roy S, Rhim JW. Curcumin Incorporated Poly(Butylene Adipate-co-Terephthalate) Film with Improved Water Vapor Barrier and Antioxidant Properties. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4369. [PMID: 33008066 PMCID: PMC7579151 DOI: 10.3390/ma13194369] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/18/2020] [Accepted: 09/28/2020] [Indexed: 01/15/2023]
Abstract
Curcumin incorporated poly(butylene adipate-co-terephthalate) (PBAT) based film was fabricated. Curcumin has uniformly distributed in the PBAT matrix to form a bright yellow PBAT/curcumin film. The PBAT/curcumin film has slightly reduced tensile strength and flexibility than the neat PBAT film, while the thermal stability of the film has not changed significantly. The blending of curcumin significantly decreased the water vapor permeability of the PBAT film. Additionally, the PBAT/curcumin film showed potent antioxidant activity with some antimicrobial activity. The PBAT/curcumin films with improved water vapor barrier and additional functions can be used for active packaging applications.
Collapse
Affiliation(s)
| | - Jong-Whan Rhim
- Department of Food and Nutrition, BioNanocomposite Research Institute, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea;
| |
Collapse
|
125
|
Synthesis of Antibacterial Gelatin/Sodium Alginate Sponges and Their Antibacterial Activity. Polymers (Basel) 2020; 12:polym12091926. [PMID: 32858972 PMCID: PMC7564498 DOI: 10.3390/polym12091926] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022] Open
Abstract
In the present study, sponges with the antibiotic tetracycline hydrochloride (TCH) loaded into alginate incorporated with gelatin (G/SA) were fabricated. The G/SA sponges were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and thermogravimetric (TG) analysis. G/SA sponges show a three-dimensional network structure with high porosity. An excellent swelling behavior and a controlled TCH release performance are observed from G/SA sponges. Moreover, they exhibit good antibacterial activity against both Gram-positive and Gram-negative bacteria.
Collapse
|
126
|
Chiaoprakobkij N, Suwanmajo T, Sanchavanakit N, Phisalaphong M. Curcumin-Loaded Bacterial Cellulose/Alginate/Gelatin as A Multifunctional Biopolymer Composite Film. Molecules 2020; 25:E3800. [PMID: 32825570 PMCID: PMC7503693 DOI: 10.3390/molecules25173800] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 12/18/2022] Open
Abstract
Multifunctional biopolymer composites comprising mechanically-disintegrated bacterial cellulose, alginate, gelatin and curcumin plasticized with glycerol were successfully fabricated through a simple, facile, cost-effective mechanical blending and casting method. SEM images indicate a well-distributed structure of the composites. The water contact angles existed in the range of 50-70°. Measured water vapor permeability values were 300-800 g/m2/24 h, which were comparable with those of commercial dressing products. No release of curcumin from the films was observed during the immersion in PBS and artificial saliva, and the fluid uptakes were in the range of 100-700%. Films were stretchable and provided appropriate stiffness and enduring deformation. Hydrated films adhered firmly onto the skin. In vitro mucoadhesion time was found in the range of 0.5-6 h with porcine mucosa as model membrane under artificial saliva medium. The curcumin-loaded films had substantial antibacterial activity against E. coli and S. aureus. The films showed non-cytotoxicity to human keratinocytes and human gingival fibroblasts but exhibited potent anticancer activity in oral cancer cells. Therefore, these curcumin-loaded films showed their potential for use as leave-on skin applications. These versatile films can be further developed to achieve desirable characteristics for local topical patches for wound care, periodontitis and oral cancer treatment.
Collapse
Affiliation(s)
- Nadda Chiaoprakobkij
- Biomedical Engineering Program, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand;
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thapanar Suwanmajo
- Centre of Excellence in Materials Science and Technology, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Neeracha Sanchavanakit
- Center of Excellence for Regenerative Dentistry, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Muenduen Phisalaphong
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
127
|
Valdés García A, Juárez Serrano N, Beltrán Sanahuja A, Garrigós MC. Novel Antioxidant Packaging Films Based on Poly(ε-Caprolactone) and Almond Skin Extract: Development and Effect on the Oxidative Stability of Fried Almonds. Antioxidants (Basel) 2020; 9:E629. [PMID: 32708916 PMCID: PMC7402149 DOI: 10.3390/antiox9070629] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/26/2022] Open
Abstract
Antioxidant films based on poly(ε-caprolactone) (PCL) containing almond skin extract (ASE) were developed for food packaging applications. The effect of ASE incorporation on the morphological, structural, colour, mechanical, thermal, barrier and antioxidant properties of the prepared films were evaluated. The structural, tensile and thermal properties of the films were not altered due to ASE addition. Although no significant differences were observed for the oxygen permeability of samples, some increase in water absorption and water vapour permeability was observed for active films due to the hydrophilic character of ASE phenolic compounds, suggesting the suitability of this novel packaging for fatty foods conservation. ASE conferred antioxidant properties to PCL films as determined by the DPPH radical scavenging activity. The efficiency of the developed films was evaluated by the real packaging application of fried almonds at different ASE contents (0, 3, 6 wt.%) up to 56 days at 40 °C. The evolution of peroxide and p-anisidine values, hexanal content, fatty acid profile and characteristic spectroscopy bands showed that active films improved fried almonds stability. The results suggested the potential of PCL/ASE films as sustainable and antioxidant food packaging systems to offer protection against lipid oxidation in foods.
Collapse
Affiliation(s)
- Arantzazu Valdés García
- Analytical Chemistry, Nutrition and Food Science Department, University of Alicante, PO Box 99, E-03080 Alicante, Spain; (N.J.S.); (A.B.S.); (M.C.G.)
| | | | | | | |
Collapse
|
128
|
Jamróz E, Khachatryan G, Kopel P, Juszczak L, Kawecka A, Krzyściak P, Kucharek M, Bębenek Z, Zimowska M. Furcellaran nanocomposite films: The effect of nanofillers on the structural, thermal, mechanical and antimicrobial properties of biopolymer films. Carbohydr Polym 2020; 240:116244. [DOI: 10.1016/j.carbpol.2020.116244] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 11/25/2022]
|
129
|
Roy S, Rhim JW. Anthocyanin food colorant and its application in pH-responsive color change indicator films. Crit Rev Food Sci Nutr 2020; 61:2297-2325. [PMID: 32543217 DOI: 10.1080/10408398.2020.1776211] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recently, interest in smart packaging, which can show the color change of the packaging film according to the state of the food and evaluate the quality or freshness of the packaged food in real-time, is increasing. As a color indicator, a natural colorant, anthocyanin, drew a lot of attention due to their various colors as well as useful functions properties such as antioxidant activity and anti-carcinogenic and anti-inflammatory effects, prevention of cardiovascular disease, obesity, and diabetes. In particular, the pH-responsive color-changing function of anthocyanins is useful for making color indicator smart packaging films. This review addressed the latest information on the use of natural pigment anthocyanins for intelligent and active food packaging applications. Recent studies on eco-friendly biodegradable polymer-based color indicator films incorporated with anthocyanins have been addressed. Also, studies on the use of smart packaging films to monitor the freshness of foods such as milk, meat, and fish were reviewed. This review highlights the potential and challenges for the use of anthocyanins as pH-responsive color-changing films for intelligent food packaging applications, which may be beneficial for further development of smart color indicator films for practical use.
Collapse
Affiliation(s)
- Swarup Roy
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Dongdaemun-gu, Seoul, Republic of Korea
| | - Jong-Whan Rhim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Dongdaemun-gu, Seoul, Republic of Korea
| |
Collapse
|
130
|
Jamróz E, Kopel P. Polysaccharide and Protein Films with Antimicrobial/Antioxidant Activity in the Food Industry: A Review. Polymers (Basel) 2020; 12:E1289. [PMID: 32512853 PMCID: PMC7361989 DOI: 10.3390/polym12061289] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 12/15/2022] Open
Abstract
From an economic point of view, the spoilage of food products during processing and distribution has a negative impact on the food industry. Lipid oxidation and deterioration caused by the growth of microorganisms are the main problems during storage of food products. In order to reduce losses and extend the shelf-life of food products, the food industry has designed active packaging as an alternative to the traditional type. In the review, the benefits of active packaging materials containing biopolymers (polysaccharides and/or proteins) and active compounds (plant extracts, essential oils, nanofillers, etc.) are highlighted. The antioxidant and antimicrobial activity of this type of film has also been highlighted. In addition, the impact of active packaging on the quality and durability of food products during storage has been described.
Collapse
Affiliation(s)
- Ewelina Jamróz
- Department of Chemistry, Faculty of Food Technology, University of Agriculture, ul. Balicka 122, PL-30-149 Kraków, Poland;
| | - Pavel Kopel
- Department of Inorganic Chemistry, Faculty of Science, Palacky University, 17. Listopadu 12, CZ-771 46 Olomouc, Czech Republic
| |
Collapse
|