101
|
Farmer S, Leung WK, Tsubouchi H. Characterization of meiotic recombination initiation sites using pulsed-field gel electrophoresis. Methods Mol Biol 2011; 745:33-45. [PMID: 21660687 DOI: 10.1007/978-1-61779-129-1_3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
High levels of homologous recombination are induced during meiosis. This meiotic recombination is initiated by programmed formation of DNA double-strand breaks (DSBs) by a conserved meiosis-specific protein, Spo11. Meiotic DSBs are not formed at random along chromosomes but are formed in clusters known as recombination hot spots. To understand the regulation of this initiation step of meiotic recombination, determining the timing and location of meiotic DSBs is essential. In this chapter, we describe a method to detect genome-wide meiotic DSBs by using a combination of pulsed-field gel electrophoresis and Southern blotting.
Collapse
Affiliation(s)
- Sarah Farmer
- MRC Genome Damage and Stability Centre, University of Sussex, Sussex, UK.
| | | | | |
Collapse
|
102
|
Blitzblau HG, Hochwagen A. Genome-wide detection of meiotic DNA double-strand break hotspots using single-stranded DNA. Methods Mol Biol 2011; 745:47-63. [PMID: 21660688 DOI: 10.1007/978-1-61779-129-1_4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The controlled fragmentation of chromosomes by DNA double-strand breaks (DSBs) initiates meiotic recombination, which is essential for meiotic chromosome segregation in most eukaryotes. This chapter describes a straightforward microarray-based approach to measure the genome-wide distribution of meiotic DSBs by detecting the single-stranded DNA (ssDNA) that transiently accumulates at DSB sites during recombination. The protocol outlined here has been optimized to detect meiotic DSBs in Saccharomyces cerevisiae. However, because ssDNA is a universal intermediate of homologous recombination, this method can ostensibly be adapted to discover and analyze programmed or damage-induced DSB hotspots in other organisms whose genome sequence is available.
Collapse
|
103
|
Murat F, Xu JH, Tannier E, Abrouk M, Guilhot N, Pont C, Messing J, Salse J. Ancestral grass karyotype reconstruction unravels new mechanisms of genome shuffling as a source of plant evolution. Genome Res 2010; 20:1545-57. [PMID: 20876790 PMCID: PMC2963818 DOI: 10.1101/gr.109744.110] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 08/24/2010] [Indexed: 11/25/2022]
Abstract
The comparison of the chromosome numbers of today's species with common reconstructed paleo-ancestors has led to intense speculation of how chromosomes have been rearranged over time in mammals. However, similar studies in plants with respect to genome evolution as well as molecular mechanisms leading to mosaic synteny blocks have been lacking due to relevant examples of evolutionary zooms from genomic sequences. Such studies require genomes of species that belong to the same family but are diverged to fall into different subfamilies. Our most important crops belong to the family of the grasses, where a number of genomes have now been sequenced. Based on detailed paleogenomics, using inference from n = 5-12 grass ancestral karyotypes (AGKs) in terms of gene content and order, we delineated sequence intervals comprising a complete set of junction break points of orthologous regions from rice, maize, sorghum, and Brachypodium genomes, representing three different subfamilies and different polyploidization events. By focusing on these sequence intervals, we could show that the chromosome number variation/reduction from the n = 12 common paleo-ancestor was driven by nonrandom centric double-strand break repair events. It appeared that the centromeric/telomeric illegitimate recombination between nonhomologous chromosomes led to nested chromosome fusions (NCFs) and synteny break points (SBPs). When intervals comprising NCFs were compared in their structure, we concluded that SBPs (1) were meiotic recombination hotspots, (2) corresponded to high sequence turnover loci through repeat invasion, and (3) might be considered as hotspots of evolutionary novelty that could act as a reservoir for producing adaptive phenotypes.
Collapse
Affiliation(s)
- Florent Murat
- INRA, UMR 1095, Laboratoire Génétique, Diversité et Ecophysiologie des Céréales, 63100 Clermont Ferrand, France
| | - Jian-Hong Xu
- The Plant Genome Initiative at Rutgers (PGIR), Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Eric Tannier
- INRIA Rhône-Alpes, Université de Lyon 1, CNRS UMR5558, Laboratoire Biométrie et Biologie Évolutive, 69622 Villeurbanne Cedex, France
| | - Michael Abrouk
- INRA, UMR 1095, Laboratoire Génétique, Diversité et Ecophysiologie des Céréales, 63100 Clermont Ferrand, France
| | - Nicolas Guilhot
- INRA, UMR 1095, Laboratoire Génétique, Diversité et Ecophysiologie des Céréales, 63100 Clermont Ferrand, France
| | - Caroline Pont
- INRA, UMR 1095, Laboratoire Génétique, Diversité et Ecophysiologie des Céréales, 63100 Clermont Ferrand, France
| | - Joachim Messing
- The Plant Genome Initiative at Rutgers (PGIR), Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Jérôme Salse
- INRA, UMR 1095, Laboratoire Génétique, Diversité et Ecophysiologie des Céréales, 63100 Clermont Ferrand, France
| |
Collapse
|
104
|
Falk JE, Chan ACH, Hoffmann E, Hochwagen A. A Mec1- and PP4-dependent checkpoint couples centromere pairing to meiotic recombination. Dev Cell 2010; 19:599-611. [PMID: 20951350 DOI: 10.1016/j.devcel.2010.09.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2009] [Revised: 06/20/2010] [Accepted: 08/26/2010] [Indexed: 11/21/2022]
Abstract
The faithful alignment of homologous chromosomes during meiotic prophase requires the coordination of DNA double-strand break (DSB) repair with large-scale chromosome reorganization. Here we identify the phosphatase PP4 (Pph3/Psy2) as a mediator of this process in Saccharomyces cerevisiae. In pp4 mutants, early stages of crossover repair and homology-independent pairing of centromeres are coordinately blocked. We traced the loss of centromere pairing to the persistent phosphorylation of the chromosomal protein Zip1 on serine 75. Zip1-S75 is a consensus site for the ATR-like checkpoint kinase Mec1, and centromere pairing is restored in mec1 mutants. Importantly, Zip1-S75 phosphorylation does not alter chromosome synapsis or DSB repair, indicating that Mec1 separates centromere pairing from the other functions of Zip1. The centromeric localization and persistent activity of PP4 during meiotic prophase suggest a model whereby Zip1-S75 phosphorylation dynamically destabilizes homology-independent centromere pairing in response to recombination initiation, thereby coupling meiotic chromosome dynamics to DSB repair.
Collapse
Affiliation(s)
- Jill E Falk
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | | | | | |
Collapse
|
105
|
Nishant KT, Chen C, Shinohara M, Shinohara A, Alani E. Genetic analysis of baker's yeast Msh4-Msh5 reveals a threshold crossover level for meiotic viability. PLoS Genet 2010; 6. [PMID: 20865162 PMCID: PMC2928781 DOI: 10.1371/journal.pgen.1001083] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 07/22/2010] [Indexed: 12/24/2022] Open
Abstract
During meiosis, the Msh4-Msh5 complex is thought to stabilize single-end invasion intermediates that form during early stages of recombination and subsequently bind to Holliday junctions to facilitate crossover formation. To analyze Msh4-Msh5 function, we mutagenized 57 residues in Saccharomyces cerevisiae Msh4 and Msh5 that are either conserved across all Msh4/5 family members or are specific to Msh4 and Msh5. The Msh5 subunit appeared more sensitive to mutagenesis. We identified msh4 and msh5 threshold (msh4/5-t) mutants that showed wild-type spore viability and crossover interference but displayed, compared to wild-type, up to a two-fold decrease in crossing over on large and medium sized chromosomes (XV, VII, VIII). Crossing over on a small chromosome, however, approached wild-type levels. The msh4/5-t mutants also displayed synaptonemal complex assembly defects. A triple mutant containing a msh4/5-t allele and mutations that decreased meiotic double-strand break levels (spo11-HA) and crossover interference (pch2Δ) showed synergistic defects in spore viability. Together these results indicate that the baker's yeast meiotic cell does not require the ∼90 crossovers maintained by crossover homeostasis to form viable spores. They also show that Pch2-mediated crossover interference is important to maintain meiotic viability when crossovers become limiting.
Collapse
Affiliation(s)
- K. T. Nishant
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Cheng Chen
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Miki Shinohara
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Akira Shinohara
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Eric Alani
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
106
|
Wahls WP, Davidson MK. Discrete DNA sites regulate global distribution of meiotic recombination. Trends Genet 2010; 26:202-8. [PMID: 20381894 PMCID: PMC2860662 DOI: 10.1016/j.tig.2010.02.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 02/20/2010] [Accepted: 02/22/2010] [Indexed: 11/18/2022]
Abstract
Homologous recombination is induced to high levels in meiosis, is initiated by Spo11-catalyzed DNA double-strand breaks (DSBs) and is clustered at hotspots that regulate its positioning in the genome. Recombination is required for proper chromosome segregation in meiosis and defects in its frequency or positioning cause chromosome mis-segregation and, consequently, congenital birth defects such as Down's syndrome. Therefore, elucidating how meiotic recombination is positioned is of fundamental and biomedical interest. Our integration of historical and contemporary advances in the field, plus the re-analysis of published microarray data on the genome-wide distribution of recombination supports a unifying model for such regulation. We posit that discrete DNA sequence motifs position and regulate essentially all recombination across the genome, in much the same way that DNA sites position and regulate transcription. Moreover, we illustrate the use of overlapping mechanisms for the regulation of transcription and meiotic recombination. Bound transcription factors induce histone modifications that position recombination at hotspots.
Collapse
Affiliation(s)
- Wayne P Wahls
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, AR 72205-7199, USA.
| | | |
Collapse
|
107
|
Abstract
Meiotic recombination does not occur randomly along a chromosome, but instead tends to be concentrated in small regions, known as "recombination hotspots." Recombination hotspots are thought to be short-lived in evolutionary time due to their self-destructive nature, as gene conversion favors recombination-suppressing alleles over recombination-promoting alleles during double-strand repair. Consistent with this expectation, hotspots in humans are highly dynamic, with little correspondence in location between humans and chimpanzees. Here, we identify recombination hotspots in two lineages of the yeast Saccharomyces paradoxus, and compare their locations to those found previously in Saccharomyces cerevisiae. Surprisingly, we find considerable overlap between the two species, despite the fact that they are at least 10 times more divergent than humans and chimpanzees. We attribute this unexpected result to the low frequency of sex and outcrossing in these yeasts, acting to reduce the population genetic effect of biased gene conversion. Traces from two other signatures of recombination, namely high mutagenicity and GC-biased gene conversion, are consistent with this interpretation. Thus, recombination hotspots are not inevitably short-lived, but rather their persistence through evolutionary time will be determined by the frequency of outcrossing events in the life cycle.
Collapse
|
108
|
Abstract
Geneticists have long known that centromeres suppress crossing over, but considerable evidence indicates that they appear to recombine. Confirmation of gene conversion in maize centromeres explains this paradox.
Collapse
Affiliation(s)
- Paul B Talbert
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | | |
Collapse
|
109
|
Sasaki M, Lange J, Keeney S. Genome destabilization by homologous recombination in the germ line. Nat Rev Mol Cell Biol 2010; 11:182-95. [PMID: 20164840 PMCID: PMC3073813 DOI: 10.1038/nrm2849] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Meiotic recombination, which promotes proper homologous chromosome segregation at the first meiotic division, normally occurs between allelic sequences on homologues. However, recombination can also take place between non-allelic DNA segments that share high sequence identity. Such non-allelic homologous recombination (NAHR) can markedly alter genome architecture during gametogenesis by generating chromosomal rearrangements. Indeed, NAHR-mediated deletions, duplications, inversions and other alterations have been implicated in numerous human genetic disorders. Studies in yeast have provided insights into the molecular mechanisms of meiotic NAHR as well as the cellular strategies that limit it.
Collapse
Affiliation(s)
- Mariko Sasaki
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, 10065, USA
| | | | | |
Collapse
|
110
|
Székvölgyi L, Nicolas A. From meiosis to postmeiotic events: homologous recombination is obligatory but flexible. FEBS J 2009; 277:571-89. [PMID: 20015080 DOI: 10.1111/j.1742-4658.2009.07502.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sexual reproduction depends on the success of faithful chromosome transmission during meiosis to yield viable gametes. Central to meiosis is the process of recombination between paternal and maternal chromosomes, which boosts the genetic diversity of progeny and ensures normal homologous chromosome segregation. Imperfections in meiotic recombination are the source of de novo germline mutations, abnormal gametes, and infertility. Thus, not surprisingly, cells have developed a variety of mechanisms and tight controls to ensure sufficient and well-distributed recombination events within their genomes, the details of which remain to be fully elucidated. Local and genome-wide studies of normal and genetically engineered cells have uncovered a remarkable stochasticity in the number and positioning of recombination events per chromosome and per cell, which reveals an impressive level of flexibility. In this minireview, we summarize our contemporary understanding of meiotic recombination and its control mechanisms, and address the seemingly paradoxical and poorly understood diversity of recombination sites. Flexibility in the distribution of meiotic recombination events within genomes may reside in regulation at the chromatin level, with histone modifications playing a recently recognized role.
Collapse
Affiliation(s)
- Lóránt Székvölgyi
- Recombination and Genome Instability Unit, Institut Curie, Centre de Recherche, UMR 3244 CNRS, Universite Pierre et Marie Curie, Paris, France
| | | |
Collapse
|
111
|
Buhler C, Shroff R, Lichten M. Genome-wide mapping of meiotic DNA double-strand breaks in Saccharomyces cerevisiae. Methods Mol Biol 2009; 557:143-64. [PMID: 19799181 DOI: 10.1007/978-1-59745-527-5_10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
DNA double-strand breaks (DSBs) initiate meiotic recombination in eukaryotes. We describe two strategies that use microarrays to determine the genome-wide distribution of meiotic DSBs in the yeast Saccharomyces cerevisiae. The first is a chromatin immunoprecipitation (ChIP) approach that targets the Spo11 protein, which remains covalently attached to DSB ends in certain mutant backgrounds. The second approach involves BND cellulose enrichment of the single-strand DNA (ssDNA) recombination intermediate formed by end-resection at DSB sites following Spo11 removal.
Collapse
Affiliation(s)
- Cyril Buhler
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | | |
Collapse
|
112
|
A positive but complex association between meiotic double-strand break hotspots and open chromatin in Saccharomyces cerevisiae. Genome Res 2009; 19:2245-57. [PMID: 19801530 DOI: 10.1101/gr.096297.109] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
During meiosis, chromatin undergoes extensive changes to facilitate recombination, homolog pairing, and chromosome segregation. To investigate the relationship between chromatin organization and meiotic processes, we used formaldehyde-assisted isolation of regulatory elements (FAIRE) to map open chromatin during the transition from mitosis to meiosis in the budding yeast Saccharomyces cerevisiae. We found that meiosis-induced opening of chromatin is associated with meiotic DSB hotpots. The positive association between open chromatin and DSB hotspots is most prominent 3 h into meiosis, when the early meiotic genes DMC1 and HOP1 exhibit maximum transcription and the early recombination genes SPO11 and RAD51 are strongly up-regulated. While the degree of chromatin openness is positively associated with the occurrence of recombination hotspots, many hotspots occur outside of open chromatin. Of particular interest, many DSB hotspots that fell outside of meiotic open chromatin nonetheless occurred in chromatin that had recently been open during mitotic growth. Finally, we find evidence for meiosis-specific opening of chromatin at the regions adjacent to boundaries of subtelomeric sequences, which exhibit specific crossover control patterns hypothesized to be regulated by chromatin.
Collapse
|
113
|
Weber CC, Hurst LD. Protein rates of evolution are predicted by double-strand break events, independent of crossing-over rates. Genome Biol Evol 2009; 1:340-9. [PMID: 20333203 PMCID: PMC2817428 DOI: 10.1093/gbe/evp033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2009] [Indexed: 12/22/2022] Open
Abstract
Theory predicts that, owing to reduced Hill-Robertson interference, genomic regions with high crossing-over rates should experience more efficient selection. In Saccharomyces cerevisiae a negative correlation between the local recombination rate, assayed as meiotic double-strand breaks (DSBs), and the local rate of protein evolution has been considered consistent with such a model. Although DSBs are a prerequisite for crossing-over, they need not result in crossing-over. With recent high-resolution crossover data, we now return to this issue comparing two species of yeast. Strikingly, even allowing for crossover rates, both the rate of premeiotic DSBs and of noncrossover recombination events predict a gene's rate of evolution. This both questions the validity of prior analyses and strongly suggests that any correlation between crossover rates and rates of protein evolution could be owing to slow-evolving genes being prone to DSBs or a direct effect of DSBs on sequence evolution. To ask if classical theory of recombination has any relevance, we determine whether crossover rates predict rates of protein evolution, controlling for noncrossover DSB events, gene ontology (GO) class, gene expression, protein abundance, nucleotide content, and dispensability. We find that genes with high crossing-over rates have low rates of protein evolution after such control, although any correlation is weaker than that previously reported considering meiotic DSBs as a proxy. The data are consistent both with recombination enhancing the efficiency of purifying selection and, independently, with DSBs being associated with low rates of evolution.
Collapse
Affiliation(s)
- Claudia C Weber
- Department of Biology and Biochemistry, University of Bath, Bath, Somerset, UK
| | | |
Collapse
|
114
|
Zanders S, Alani E. The pch2Delta mutation in baker's yeast alters meiotic crossover levels and confers a defect in crossover interference. PLoS Genet 2009; 5:e1000571. [PMID: 19629178 PMCID: PMC2709914 DOI: 10.1371/journal.pgen.1000571] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Accepted: 06/23/2009] [Indexed: 12/24/2022] Open
Abstract
Pch2 is a widely conserved protein that is required in baker's yeast for the organization of meiotic chromosome axes into specific domains. We provide four lines of evidence suggesting that it regulates the formation and distribution of crossover events required to promote chromosome segregation at Meiosis I. First, pch2Δ mutants display wild-type crossover levels on a small (III) chromosome, but increased levels on larger (VII, VIII, XV) chromosomes. Second, pch2Δ mutants show defects in crossover interference. Third, crossovers observed in pch2Δ require both Msh4-Msh5 and Mms4-Mus81 functions. Lastly, the pch2Δ mutation decreases spore viability and disrupts crossover interference in spo11 hypomorph strains that have reduced levels of meiosis-induced double-strand breaks. Based on these and previous observations, we propose a model in which Pch2 functions at an early step in crossover control to ensure that every homolog pair receives an obligate crossover. During meiosis, cells that ultimately become gametes (such as eggs or sperm) undergo a single round of DNA replication followed by two consecutive divisions. In most organisms, the segregation of chromosomes at the first meiotic division is dependent upon genetic exchange, or crossing over, at homologous sites along chromosomes. Crossing over must therefore be regulated to ensure that every pair of matched chromosomes receives at least one crossover. Matched chromosomes that do not receive a crossover frequently undergo missegregation at the first meiotic division, yielding gametes that do not contain the normal chromosome number. Such missegregation events have been linked to human infertility syndromes. We used a genetic approach to study meiotic crossover control in baker's yeast. Our work suggests that Pch2 is required in crossover control during meiosis; mutants lacking Pch2 display altered crossover levels and distribution. Furthermore, pch2 mutations cause enhanced gamete inviability in strains that are mildly defective in initiating recombination. Based on these observations, we hypothesize that Pch2 acts early in crossover control, in steps that occur prior to those proposed for previously characterized crossover-promoting factors.
Collapse
Affiliation(s)
- Sarah Zanders
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Eric Alani
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
115
|
Joshi N, Barot A, Jamison C, Börner GV. Pch2 links chromosome axis remodeling at future crossover sites and crossover distribution during yeast meiosis. PLoS Genet 2009; 5:e1000557. [PMID: 19629172 PMCID: PMC2708914 DOI: 10.1371/journal.pgen.1000557] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Accepted: 06/10/2009] [Indexed: 01/10/2023] Open
Abstract
Segregation of homologous chromosomes during meiosis I depends on appropriately positioned crossovers/chiasmata. Crossover assurance ensures at least one crossover per homolog pair, while interference reduces double crossovers. Here, we have investigated the interplay between chromosome axis morphogenesis and non-random crossover placement. We demonstrate that chromosome axes are structurally modified at future crossover sites as indicated by correspondence between crossover designation marker Zip3 and domains enriched for axis ensemble Hop1/Red1. This association is first detected at the zygotene stage, persists until double Holliday junction resolution, and is controlled by the conserved AAA+ ATPase Pch2. Pch2 further mediates crossover interference, although it is dispensable for crossover formation at normal levels. Thus, interference appears to be superimposed on underlying mechanisms of crossover formation. When recombination-initiating DSBs are reduced, Pch2 is also required for viable spore formation, consistent with further functions in chiasma formation. pch2Δ mutant defects in crossover interference and spore viability at reduced DSB levels are oppositely modulated by temperature, suggesting contributions of two separable pathways to crossover control. Roles of Pch2 in controlling both chromosome axis morphogenesis and crossover placement suggest linkage between these processes. Pch2 is proposed to reorganize chromosome axes into a tiling array of long-range crossover control modules, resulting in chiasma formation at minimum levels and with maximum spacing. In the germ line of sexually reproducing organisms, haploid gametes are generated from diploid precursor cells by a specialized cell division called meiosis. Reduction by half of chromosome numbers during the first meiotic division depends on genetic exchange, resulting in the formation of crossovers. Without crossovers, pairs of homologous chromosomes frequently fail to separate, resulting in unbalanced gametes with a surplus or deficit of individual chromosomes. Along a given chromosome, crossovers form in different locations in different cells, but distribution of crossovers within each cell is controlled in two ways: first, at least one crossover is formed along each homolog pair, irrespective of size; second, a crossover in a given interval reduces the frequency of crossovers in adjacent chromosome regions. Here, we identify functions of the evolutionarily conserved protein Pch2 in suppressing additional crossovers in adjacent regions and ensuring homolog segregation under certain conditions. Pch2 further controls the assembly of chromosome axis protein Hop1 at future crossover sites. Our findings reveal that chromosome axes undergo structural changes at the same positions where crossovers occur. Thus, axis remodeling and crossover placement are linked via Pch2.
Collapse
Affiliation(s)
- Neeraj Joshi
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, Ohio, United States of America
| | - Aekam Barot
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, Ohio, United States of America
| | - Christine Jamison
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, Ohio, United States of America
| | - G. Valentin Börner
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
116
|
GC content and recombination: reassessing the causal effects for the Saccharomyces cerevisiae genome. Genetics 2009; 183:31-8. [PMID: 19546316 DOI: 10.1534/genetics.109.105049] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recombination plays a crucial role in the evolution of genomes. Among many chromosomal features, GC content is one of the most prominent variables that appear to be highly correlated with recombination. However, it is not yet clear (1) whether recombination drives GC content (as proposed, for example, in the biased gene conversion model) or the converse and (2) what are the length scales for mutual influences between GC content and recombination. Here we have reassessed these questions for the model genome Saccharomyces cerevisiae, for which the most refined recombination data are available. First, we confirmed a strong correlation between recombination rate and GC content at local scales (a few kilobases). Second, on the basis of alignments between S. cerevisiae, S. paradoxus, and S. mikatae sequences, we showed that the inferred AT/GC substitution patterns are not correlated with recombination, indicating that GC content is not driven by recombination in yeast. These results thus suggest that, in S. cerevisiae, recombination is determined either by the GC content or by a third parameter, also affecting the GC content. Third, we observed long-range correlations between GC and recombination for chromosome III (for which such correlations were reported experimentally and were the model for many structural studies). However, similar correlations were not detected in the other chromosomes, restraining thus the generality of the phenomenon. These results pave the way for further analyses aimed at the detailed untangling of drives involved in the evolutionary shaping of the yeast genome.
Collapse
|
117
|
Keller PJ, Knop M. Evolution of mutational robustness in the yeast genome: a link to essential genes and meiotic recombination hotspots. PLoS Genet 2009; 5:e1000533. [PMID: 19557188 PMCID: PMC2694357 DOI: 10.1371/journal.pgen.1000533] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 05/22/2009] [Indexed: 01/21/2023] Open
Abstract
Deleterious mutations inevitably emerge in any evolutionary process and are speculated to decisively influence the structure of the genome. Meiosis, which is thought to play a major role in handling mutations on the population level, recombines chromosomes via non-randomly distributed hot spots for meiotic recombination. In many genomes, various types of genetic elements are distributed in patterns that are currently not well understood. In particular, important (essential) genes are arranged in clusters, which often cannot be explained by a functional relationship of the involved genes. Here we show by computer simulation that essential gene (EG) clustering provides a fitness benefit in handling deleterious mutations in sexual populations with variable levels of inbreeding and outbreeding. We find that recessive lethal mutations enforce a selective pressure towards clustered genome architectures. Our simulations correctly predict (i) the evolution of non-random distributions of meiotic crossovers, (ii) the genome-wide anti-correlation of meiotic crossovers and EG clustering, (iii) the evolution of EG enrichment in pericentromeric regions and (iv) the associated absence of meiotic crossovers (cold centromeres). Our results furthermore predict optimal crossover rates for yeast chromosomes, which match the experimentally determined rates. Using a Saccharomyces cerevisiae conditional mutator strain, we show that haploid lethal phenotypes result predominantly from mutation of single loci and generally do not impair mating, which leads to an accumulation of mutational load following meiosis and mating. We hypothesize that purging of deleterious mutations in essential genes constitutes an important factor driving meiotic crossover. Therefore, the increased robustness of populations to deleterious mutations, which arises from clustered genome architectures, may provide a significant selective force shaping crossover distribution. Our analysis reveals a new aspect of the evolution of genome architectures that complements insights about molecular constraints, such as the interference of pericentromeric crossovers with chromosome segregation.
Collapse
Affiliation(s)
- Philipp J. Keller
- European Molecular Biology Laboratory (EMBL), Cell Biology and Biophysics Unit, Heidelberg, Germany
| | - Michael Knop
- European Molecular Biology Laboratory (EMBL), Cell Biology and Biophysics Unit, Heidelberg, Germany
| |
Collapse
|
118
|
Kugou K, Fukuda T, Yamada S, Ito M, Sasanuma H, Mori S, Katou Y, Itoh T, Matsumoto K, Shibata T, Shirahige K, Ohta K. Rec8 guides canonical Spo11 distribution along yeast meiotic chromosomes. Mol Biol Cell 2009; 20:3064-76. [PMID: 19439448 DOI: 10.1091/mbc.e08-12-1223] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Spo11-mediated DNA double-strand breaks (DSBs) that initiate meiotic recombination are temporally and spatially controlled. The meiotic cohesin Rec8 has been implicated in regulating DSB formation, but little is known about the features of their interplay. To elucidate this point, we investigated the genome-wide localization of Spo11 in budding yeast during early meiosis by chromatin immunoprecipitation using high-density tiling arrays. We found that Spo11 is dynamically localized to meiotic chromosomes. Spo11 initially accumulated around centromeres and thereafter localized to arm regions as premeiotic S phase proceeded. During this stage, a substantial proportion of Spo11 bound to Rec8 binding sites. Eventually, some of Spo11 further bound to both DSB and Rec8 sites. We also showed that such a change in a distribution of Spo11 is affected by hydroxyurea treatment. Interestingly, deletion of REC8 influences the localization of Spo11 to centromeres and in some of the intervals of the chromosomal arms. Thus, we observed a lack of DSB formation in a region-specific manner. These observations suggest that Rec8 would prearrange the distribution of Spo11 along chromosomes and will provide clues to understanding temporal and spatial regulation of DSB formation.
Collapse
Affiliation(s)
- Kazuto Kugou
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Locally, meiotic double-strand breaks targeted by Gal4BD-Spo11 occur at discrete sites with a sequence preference. Mol Cell Biol 2009; 29:3500-16. [PMID: 19380488 DOI: 10.1128/mcb.00088-09] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Meiotic recombination is initiated by DNA double-strand breaks (DSBs) that are catalyzed by the type II topoisomerase-like Spo11 protein. Locally, at recombination hot spots, Spo11 introduces DSBs at multiple positions within approximately 75 to 250 bp, corresponding to accessible regions of the chromatin. The molecular basis of this multiplicity of cleavage positions, observed in a population of meiotic cells, remains elusive. To address this issue, we have examined the properties of the Gal4BD-Spo11 fusion protein, which targets meiotic DSBs to regions with Gal4 binding sites (UAS). By single-nucleotide resolution mapping of targeted DSBs, we found that DSB formation was restricted to discrete sites approximately 20 nucleotides from the UAS, defining a "DSB targeting window." Thus, the multiplicity of cleavage positions at natural Spo11 hot spots likely represents binding of Spo11 to different distinct sites within the accessible DNA region in each different meiotic cell. Further, we showed that mutations in the Spo11 moiety affected the DSB distribution in the DSB targeting window and that mutations in the DNA at the Spo11 cleavage site affected DSB position. These results demonstrate that Spo11 itself has sequence preference and contributes to the choice of DSB positions.
Collapse
|
120
|
Martinez-Perez E, Colaiácovo MP. Distribution of meiotic recombination events: talking to your neighbors. Curr Opin Genet Dev 2009; 19:105-12. [PMID: 19328674 PMCID: PMC2729281 DOI: 10.1016/j.gde.2009.02.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2009] [Revised: 02/16/2009] [Accepted: 02/19/2009] [Indexed: 12/30/2022]
Abstract
Accurate chromosome segregation during meiosis is essential for a species' survival. Therefore, a series of events unfold during meiosis, including pairing, synapsis, and recombination between homologous chromosomes, to ultimately ensure the successful completion of this task. This review will focus on how the regulation of crossover recombination events between homologous chromosomes plays a key role in promoting faithful segregation. Although our understanding of the molecular mechanisms by which crossovers are formed has increased significantly, the mechanisms governing the distribution of crossovers along meiotic chromosomes remain largely mysterious. Here, we review the different levels of apparent control of meiotic crossover formation and distribution.
Collapse
Affiliation(s)
- Enrique Martinez-Perez
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - Monica P. Colaiácovo
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
121
|
Lee PS, Greenwell PW, Dominska M, Gawel M, Hamilton M, Petes TD. A fine-structure map of spontaneous mitotic crossovers in the yeast Saccharomyces cerevisiae. PLoS Genet 2009; 5:e1000410. [PMID: 19282969 PMCID: PMC2646836 DOI: 10.1371/journal.pgen.1000410] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Accepted: 02/06/2009] [Indexed: 12/04/2022] Open
Abstract
Homologous recombination is an important mechanism for the repair of DNA damage in mitotically dividing cells. Mitotic crossovers between homologues with heterozygous alleles can produce two homozygous daughter cells (loss of heterozygosity), whereas crossovers between repeated genes on non-homologous chromosomes can result in translocations. Using a genetic system that allows selection of daughter cells that contain the reciprocal products of mitotic crossing over, we mapped crossovers and gene conversion events at a resolution of about 4 kb in a 120-kb region of chromosome V of Saccharomyces cerevisiae. The gene conversion tracts associated with mitotic crossovers are much longer (averaging about 12 kb) than the conversion tracts associated with meiotic recombination and are non-randomly distributed along the chromosome. In addition, about 40% of the conversion events have patterns of marker segregation that are most simply explained as reflecting the repair of a chromosome that was broken in G1 of the cell cycle. Most higher organisms have two copies of several different types of chromosomes. For example, the human female has 23 pairs of chromosomes. Although the chromosome pairs have very similar sequences, they are not identical. Members of a chromosome pair can swap segments from one chromosome to the other; these exchanges are called “recombination.” Most previous studies of recombination have been done in cells undergoing meiosis, the process that leads to the formation of eggs and sperm (gametes). Recombination, however, can also occur in cells that are dividing mitotically. In our study, we examine the properties of mitotic recombination in yeast. We show that mitotic recombination differs from meiotic recombination in two important ways. First, the sizes of the chromosome segments that are non-reciprocally transferred during mitotic recombination are much larger than those transferred during meiotic exchange. Second, in meiosis, most recombination events involve the repair of a single chromosome break, whereas in mitosis, about half of the recombination events appear to involve the repair of two chromosome breaks.
Collapse
Affiliation(s)
- Phoebe S Lee
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | | | | | | | | | | |
Collapse
|
122
|
Ferguson KA, Leung S, Jiang D, Ma S. Distribution of MLH1 foci and inter-focal distances in spermatocytes of infertile men. Hum Reprod 2009; 24:1313-21. [DOI: 10.1093/humrep/dep021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
123
|
Brar GA, Hochwagen A, Ee LSS, Amon A. The multiple roles of cohesin in meiotic chromosome morphogenesis and pairing. Mol Biol Cell 2009; 20:1030-47. [PMID: 19073884 PMCID: PMC2633386 DOI: 10.1091/mbc.e08-06-0637] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 11/18/2008] [Accepted: 12/02/2008] [Indexed: 11/11/2022] Open
Abstract
Sister chromatid cohesion, mediated by cohesin complexes, is laid down during DNA replication and is essential for the accurate segregation of chromosomes. Previous studies indicated that, in addition to their cohesion function, cohesins are essential for completion of recombination, pairing, meiotic chromosome axis formation, and assembly of the synaptonemal complex (SC). Using mutants in the cohesin subunit Rec8, in which phosphorylated residues were mutated to alanines, we show that cohesin phosphorylation is not only important for cohesin removal, but that cohesin's meiotic prophase functions are distinct from each other. We find pairing and SC formation to be dependent on Rec8, but independent of the presence of a sister chromatid and hence sister chromatid cohesion. We identified mutations in REC8 that differentially affect Rec8's cohesion, pairing, recombination, chromosome axis and SC assembly function. These findings define Rec8 as a key determinant of meiotic chromosome morphogenesis and a central player in multiple meiotic events.
Collapse
Affiliation(s)
- Gloria A. Brar
- *David H. Koch Institute for Integrative Cancer Research and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142; and
| | | | - Ly-sha S. Ee
- *David H. Koch Institute for Integrative Cancer Research and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142; and
| | - Angelika Amon
- *David H. Koch Institute for Integrative Cancer Research and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142; and
| |
Collapse
|
124
|
Cotton VE, Hoffmann ER, Abdullah MFF, Borts RH. Interaction of genetic and environmental factors in Saccharomyces cerevisiae meiosis: the devil is in the details. Methods Mol Biol 2009; 557:3-20. [PMID: 19799172 DOI: 10.1007/978-1-59745-527-5_1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
One of the most important principles of scientific endeavour is that the results be reproducible from lab to lab. Although research groups rarely redo the published experiments of their colleagues, research plans almost always rely on the work of someone else. The assumption is that if the same experiment were repeated in another lab, results would be so similar that the same interpretation would be favoured. This notion allows one researcher to compare his/her own results to earlier work from other labs. An essential prerequisite for this is that the experiments are done in identical conditions and therefore the methodology must be clearly stated. While this may be scientific common sense, adherence is difficult because "standard" methods vary from one laboratory to another in subtle ways that are often not reported. More importantly, for many years the field ofyeast meiotic recombination considered typical differences to be innocuous. This chapter will highlight the documented environmental and genetic variables that are known to influence meiotic recombination in Saccharomyces cerevisiae. Other potential methodological sources of variation in meiotic experiments are also discussed. A careful assessment of the effects of these variables, has led to insights into our understanding of the control of recombination and meiosis.
Collapse
Affiliation(s)
- Victoria E Cotton
- Department of Genetics, University of Leicester, Leicester, United Kingdom
| | | | | | | |
Collapse
|
125
|
Murakami H, Borde V, Nicolas A, Keeney S. Gel electrophoresis assays for analyzing DNA double-strand breaks in Saccharomyces cerevisiae at various spatial resolutions. Methods Mol Biol 2009; 557:117-42. [PMID: 19799180 PMCID: PMC3157973 DOI: 10.1007/978-1-59745-527-5_9] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Meiotic recombination is triggered by programmed DNA double-strand breaks (DSBs), which are catalyzed by Spo11 protein in a type II topoisomerase-like manner. Meiotic DSBs can be detected directly using physical assays (gel electrophoresis, Southern blotting, and indirect end-labeling) applied to samples of genomic DNA from sporulating cultures of budding and fission yeast. Such assays are extremely useful for quantifying and characterizing many aspects of the initiation of meiotic recombination, including the timing of DSB formation relative to other events, the distribution of DSBs across the genome, and the influence on DSB formation of mutations in recombination factors and other gene products. By varying the type of gel electrophoresis and other parameters, the spatial resolution of DSB analysis can range from single nucleotides up to whole yeast chromosomes.
Collapse
|
126
|
Borde V, Robine N, Lin W, Bonfils S, Géli V, Nicolas A. Histone H3 lysine 4 trimethylation marks meiotic recombination initiation sites. EMBO J 2008; 28:99-111. [PMID: 19078966 DOI: 10.1038/emboj.2008.257] [Citation(s) in RCA: 289] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 11/06/2008] [Indexed: 01/02/2023] Open
Abstract
The function of histone modifications in initiating and regulating the chromosomal events of the meiotic prophase remains poorly understood. In Saccharomyces cerevisiae, we examined the genome-wide localization of histone H3 lysine 4 trimethylation (H3K4me3) along meiosis and its relationship to gene expression and position of the programmed double-strand breaks (DSBs) that initiate interhomologue recombination, essential to yield viable haploid gametes. We find that the level of H3K4me3 is constitutively higher close to DSB sites, independently of local gene expression levels. Without Set1, the H3K4 methylase, 84% of the DSB sites exhibit a severely reduced DSB frequency, the reduction being quantitatively correlated with the local level of H3K4me3 in wild-type cells. Further, we show that this differential histone mark is already established in vegetative cells, being higher in DSB-prone regions than in regions with no or little DSB. Taken together, our results demonstrate that H3K4me3 is a prominent and preexisting mark of active meiotic recombination initiation sites. Novel perspectives to dissect the various layers of the controls of meiotic DSB formation are discussed.
Collapse
Affiliation(s)
- Valérie Borde
- Institut Curie Centre de Recherche, UMR7147 CNRS, Université Pierre et Marie Curie, Paris, France
| | | | | | | | | | | |
Collapse
|
127
|
Hyppa RW, Cromie GA, Smith GR. Indistinguishable landscapes of meiotic DNA breaks in rad50+ and rad50S strains of fission yeast revealed by a novel rad50+ recombination intermediate. PLoS Genet 2008; 4:e1000267. [PMID: 19023408 PMCID: PMC2580034 DOI: 10.1371/journal.pgen.1000267] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Accepted: 10/16/2008] [Indexed: 12/03/2022] Open
Abstract
The fission yeast Schizosaccharomyces pombe Rec12 protein, the homolog of Spo11 in other organisms, initiates meiotic recombination by creating DNA double-strand breaks (DSBs) and becoming covalently linked to the DNA ends of the break. This protein-DNA linkage has previously been detected only in mutants such as rad50S in which break repair is impeded and DSBs accumulate. In the budding yeast Saccharomyces cerevisiae, the DSB distribution in a rad50S mutant is markedly different from that in wild-type (RAD50) meiosis, and it was suggested that this might also be true for other organisms. Here, we show that we can detect Rec12-DNA linkages in Sc. pombe rad50(+) cells, which are proficient for DSB repair. In contrast to the results from Sa. cerevisiae, genome-wide microarray analysis of Rec12-DNA reveals indistinguishable meiotic DSB distributions in rad50(+) and rad50S strains of Sc. pombe. These results confirm our earlier findings describing the occurrence of widely spaced DSBs primarily in large intergenic regions of DNA and demonstrate the relevance and usefulness of fission yeast studies employing rad50S. We propose that the differential behavior of rad50S strains reflects a major difference in DSB regulation between the two species--specifically, the requirement for the Rad50-containing complex for DSB formation in budding yeast but not in fission yeast. Use of rad50S and related mutations may be a useful method for DSB analysis in other species.
Collapse
Affiliation(s)
- Randy W. Hyppa
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Gareth A. Cromie
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Gerald R. Smith
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| |
Collapse
|
128
|
Gonçalves Dos Santos Silva A, Sarkar R, Harizanova J, Guffei A, Mowat M, Garini Y, Mai S. Centromeres in cell division, evolution, nuclear organization and disease. J Cell Biochem 2008; 104:2040-58. [PMID: 18425771 DOI: 10.1002/jcb.21766] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
As the spindle fiber attachment region of the chromosome, the centromere has been investigated in a variety of contexts. Here, we will review current knowledge about this unique chromosomal region and its relevance for proper cell division, speciation, and disease. Understanding the three-dimensional organization of centromeres in normal and tumor cells is just beginning to emerge. Multidisciplinary research will allow for new insights into its normal and aberrant nuclear organization and may allow for new therapeutic interventions that target events linked to centromere function and cell division.
Collapse
|
129
|
Abstract
Meiotic recombination promotes genetic variation by mixing parental alleles. Two recent studies, one in this issue of Developmental Cell, have applied microarray-based methods that allow analysis of nearly all of the recombination events occurring in a single meiosis. These data provide insights into the molecular "decisions" that control the outcome of the recombination process.
Collapse
Affiliation(s)
- Ignasi Roig
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA; Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
130
|
Lim JGY, Stine RRW, Yanowitz JL. Domain-specific regulation of recombination in Caenorhabditis elegans in response to temperature, age and sex. Genetics 2008; 180:715-26. [PMID: 18780748 PMCID: PMC2567375 DOI: 10.1534/genetics.108.090142] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Accepted: 08/03/2008] [Indexed: 11/18/2022] Open
Abstract
It is generally considered that meiotic recombination rates increase with temperature, decrease with age, and differ between the sexes. We have reexamined the effects of these factors on meiotic recombination in the nematode Caenorhabditis elegans using physical markers that encompass >96% of chromosome III. The only difference in overall crossover frequency between oocytes and male sperm was observed at 16 degrees . In addition, crossover interference (CI) differs between the germ lines, with oocytes displaying higher CI than male sperm. Unexpectedly, our analyses reveal significant changes in crossover distribution in the hermaphrodite oocyte in response to temperature. This feature appears to be a general feature of C. elegans chromosomes as similar changes in response to temperature are seen for the X chromosome. We also find that the distribution of crossovers changes with age in both hermaphrodites and females. Our observations indicate that it is the oocytes from the youngest mothers-and not the oldest-that showed a different pattern of crossovers. Our data enhance the emerging hypothesis that recombination in C. elegans, as in humans, is regulated in large chromosomal domains.
Collapse
Affiliation(s)
- Jaclyn G Y Lim
- Department of Biology, Goucher College, Baltimore, Maryland 21204, USA
| | | | | |
Collapse
|
131
|
Ludin K, Mata J, Watt S, Lehmann E, Bähler J, Kohli J. Sites of strong Rec12/Spo11 binding in the fission yeast genome are associated with meiotic recombination and with centromeres. Chromosoma 2008; 117:431-44. [PMID: 18449558 PMCID: PMC3671157 DOI: 10.1007/s00412-008-0159-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 03/14/2008] [Accepted: 03/14/2008] [Indexed: 10/22/2022]
Abstract
Meiotic recombination arises from Rec12/Spo11-dependent formation of DNA double-strand breaks (DSBs) and their subsequent repair. We identified Rec12-binding peaks across the Schizosaccharomyces pombe genome using chromatin immunoprecipitation after reversible formaldehyde cross-linking combined with whole-genome DNA microarrays. Strong Rec12 binding coincided with previously identified DSBs at the recombination hotspots ura4A, mbs1, and mbs2 and correlated with DSB formation at a new site. In addition, Rec12 binding corresponded to eight novel conversion hotspots and correlated with crossover density in segments of chromosome I. Notably, Rec12 binding inversely correlated with guanine-cytosine (GC) content, contrary to findings in Saccharomyces cerevisiae. Although both replication origins and Rec12-binding sites preferred AT-rich gene-free regions, they seemed to exclude each other. We also uncovered a connection between binding sites of Rec12 and meiotic cohesin Rec8. Rec12-binding peaks lay often within 2.5 kb of a Rec8-binding peak. Rec12 binding showed preference for large intergenic regions and was found to bind preferentially near to genes expressed strongly in meiosis. Surprisingly, Rec12 binding was also detected in centromeric core regions, which raises the intriguing possibility that Rec12 plays additional roles in meiotic chromosome dynamics.
Collapse
Affiliation(s)
- Katja Ludin
- Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland.
| | | | | | | | | | | |
Collapse
|
132
|
Abstract
The association between recombination rate and nucleotide diversity provides compelling evidence for the action of natural selection across much of the Drosophila melanogaster genome. This conclusion is further supported by the lack of association between recombination rate and nucleotide divergence between species. However, studies of other species, including other Drosophila, have not always yielded the same results. Our recent study measured these parameters within the D. pseudoobscura species group using next-generation sequencing and high-throughput genotyping technologies. We documented fine-scale variation in crossover rate within D. pseudoobscura, and we observed that crossover variation was strongly associated with nucleotide diversity only when measured at a fine-scale. We also observed associations between crossover rate and sequence differences between D. pseudoobscura and its close relatives. These latter associations could have been driven in part by mutagenic effects associated with double-strand break repair, but we cannot exclude the possibility that it results primarily from shared ancestral polymorphisms. Overall, this work strongly underscores the importance of scale in testing for associations of recombination rate with other parameters, and it brings us one small step closer to understanding the role of natural selection and other evolutionary forces in shaping divergence among genomes.
Collapse
Affiliation(s)
- Mohamed A F Noor
- Biology Department, Duke University, Durham, North Carolina 27708, USA.
| |
Collapse
|
133
|
Chen SY, Tsubouchi T, Rockmill B, Sandler JS, Richards DR, Vader G, Hochwagen A, Roeder GS, Fung JC. Global analysis of the meiotic crossover landscape. Dev Cell 2008; 15:401-415. [PMID: 18691940 PMCID: PMC2628562 DOI: 10.1016/j.devcel.2008.07.006] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Revised: 06/05/2008] [Accepted: 07/18/2008] [Indexed: 12/21/2022]
Abstract
Tight control of the number and distribution of crossovers is of great importance for meiosis. Crossovers establish chiasmata, which are physical connections between homologous chromosomes that provide the tension necessary to align chromosomes on the meiotic spindle. Understanding the mechanisms underlying crossover control has been hampered by the difficulty in determining crossover distributions. Here, we present a microarray-based method to analyze multiple aspects of crossover control simultaneously and rapidly, at high resolution, genome-wide, and on a cell-by-cell basis. Using this approach, we show that loss of interference in zip2 and zip4/spo22 mutants is accompanied by a reduction in crossover homeostasis, thus connecting these two levels of crossover control. We also provide evidence to suggest that repression of crossing over at telomeres and centromeres arises from different mechanisms. Lastly, we uncover a surprising role for the synaptonemal complex component Zip1 in repressing crossing over at the centromere.
Collapse
Affiliation(s)
- Stacy Y Chen
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Tomomi Tsubouchi
- Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA
| | - Beth Rockmill
- Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA; Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Jay S Sandler
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | - Gerben Vader
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Andreas Hochwagen
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - G Shirleen Roeder
- Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA; Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Department of Genetics, Yale University, New Haven, CT 06520, USA
| | - Jennifer C Fung
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
134
|
Noor MAF. Mutagenesis from meiotic recombination is not a primary driver of sequence divergence between Saccharomyces species. Mol Biol Evol 2008; 25:2439-44. [PMID: 18723832 DOI: 10.1093/molbev/msn186] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Local rates of recombination positively correlate with DNA sequence diversity in many species. To test whether this relationship stems from mutagenicity of meiotic recombination, studies often look for a similar association between local rates of recombination and sequence "divergence" between species. Because recombination is mutagenic in yeast, I evaluate this assay by testing whether noncoding DNA sequence divergence between Saccharomyces species is related to measures of meiotic double-strand DNA breaks or crossover rates derived from Saccharomyces cerevisiae. Contrary to expectation, I find that sequence divergence is either uncorrelated or negatively correlated with rates of both double-strand break and crossover. Several caveats are mentioned, but these results suggest that mutagenesis from meiotic recombination is not the primary driver of sequence divergence between Saccharomyces species. This study demonstrates that the association between interspecies nucleotide divergence and local recombination rates is not always a reliable indicator of recombination's mutagenicity.
Collapse
Affiliation(s)
- Mohamed A F Noor
- Biology Department, Duke University, Durham, North Carolina, USA.
| |
Collapse
|
135
|
Wahls WP, Siegel ER, Davidson MK. Meiotic recombination hotspots of fission yeast are directed to loci that express non-coding RNA. PLoS One 2008; 3:e2887. [PMID: 18682829 PMCID: PMC2483352 DOI: 10.1371/journal.pone.0002887] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Accepted: 07/15/2008] [Indexed: 11/19/2022] Open
Abstract
Background Polyadenylated, mRNA-like transcripts with no coding potential are abundant in eukaryotes, but the functions of these long non-coding RNAs (ncRNAs) are enigmatic. In meiosis, Rec12 (Spo11) catalyzes the formation of dsDNA breaks (DSBs) that initiate homologous recombination. Most meiotic recombination is positioned at hotspots, but knowledge of the mechanisms is nebulous. In the fission yeast genome DSBs are located within 194 prominent peaks separated on average by 65-kbp intervals of DNA that are largely free of DSBs. Methodology/Principal Findings We compared the genome-wide distribution of DSB peaks to that of polyadenylated ncRNA molecules of the prl class. DSB peaks map to ncRNA loci that may be situated within ORFs, near the boundaries of ORFs and intergenic regions, or most often within intergenic regions. Unconditional statistical tests revealed that this colocalization is non-random and robust (P≤5.5×10−8). Furthermore, we tested and rejected the hypothesis that the ncRNA loci and DSB peaks localize preferentially, but independently, to a third entity on the chromosomes. Conclusions/Significance Meiotic DSB hotspots are directed to loci that express polyadenylated ncRNAs. This reveals an unexpected, possibly unitary mechanism for what directs meiotic recombination to hotspots. It also reveals a likely biological function for enigmatic ncRNAs. We propose specific mechanisms by which ncRNA molecules, or some aspect of RNA metabolism associated with ncRNA loci, help to position recombination protein complexes at DSB hotspots within chromosomes.
Collapse
Affiliation(s)
- Wayne P Wahls
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America.
| | | | | |
Collapse
|
136
|
Mancera E, Bourgon R, Brozzi A, Huber W, Steinmetz LM. High-resolution mapping of meiotic crossovers and non-crossovers in yeast. Nature 2008; 454:479-85. [PMID: 18615017 PMCID: PMC2780006 DOI: 10.1038/nature07135] [Citation(s) in RCA: 478] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Accepted: 05/30/2008] [Indexed: 11/08/2022]
Abstract
Meiotic recombination has a central role in the evolution of sexually reproducing organisms. The two recombination outcomes, crossover and non-crossover, increase genetic diversity, but have the potential to homogenize alleles by gene conversion. Whereas crossover rates vary considerably across the genome, non-crossovers and gene conversions have only been identified in a handful of loci. To examine recombination genome wide and at high spatial resolution, we generated maps of crossovers, crossover-associated gene conversion and non-crossover gene conversion using dense genetic marker data collected from all four products of fifty-six yeast (Saccharomyces cerevisiae) meioses. Our maps reveal differences in the distributions of crossovers and non-crossovers, showing more regions where either crossovers or non-crossovers are favoured than expected by chance. Furthermore, we detect evidence for interference between crossovers and non-crossovers, a phenomenon previously only known to occur between crossovers. Up to 1% of the genome of each meiotic product is subject to gene conversion in a single meiosis, with detectable bias towards GC nucleotides. To our knowledge the maps represent the first high-resolution, genome-wide characterization of the multiple outcomes of recombination in any organism. In addition, because non-crossover hotspots create holes of reduced linkage within haplotype blocks, our results stress the need to incorporate non-crossovers into genetic linkage analysis.
Collapse
Affiliation(s)
- Eugenio Mancera
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
137
|
Fine-scale mapping of recombination rate in Drosophila refines its correlation to diversity and divergence. Proc Natl Acad Sci U S A 2008; 105:10051-6. [PMID: 18621713 DOI: 10.1073/pnas.0801848105] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Regional rates of recombination often correlate with levels of nucleotide diversity, and either selective or neutral hypotheses can explain this relationship. Regional recombination rates also correlate with nucleotide differences between human and chimpanzee, consistent with models where recombination is mutagenic; however, a lack of correlation is observed in the Drosophila melanogaster group, consistent with models invoking natural selection. Here, we revisit the relationship among recombination, diversity, and interspecies difference by generating empirical estimates of these parameters in Drosophila pseudoobscura. To measure recombination rate, we genotyped 1,294 backcross hybrids at 50 markers across the largest assembled linkage group in this species. Genome-wide diversity was estimated by sequencing a second isolate of D. pseudoobscura at shallow coverage. Alignment to the sequenced genome of the closely related species, Drosophila persimilis, provided nucleotide site orthology. Our findings demonstrate that scale is critical in determining correlates to recombination rate: fine-scale cross-over rate estimates are far stronger predictors of both diversity and interspecies difference than broad-scale estimates. The correlation of fine-scale recombination rate to diversity and interspecies difference appears to be genome-wide, evidenced by examination of an X-linked region in greater detail. Because we observe a strong correlation of cross-over rate with interspecies difference, even after correcting for segregating ancestral variation, we suggest that both mutagenic and selective forces generate these correlations, the latter in regions of low crossing over. We propose that it is not cross-overs per se that are mutagenic, but rather repair of DNA double-strand break precursors via crossing over and gene conversion.
Collapse
|
138
|
Abstract
Meiotic reciprocal recombination (crossing over) was examined in the outermost 60-80 kb of almost all Saccharomyces cerevisiae chromosomes. These sequences included both repetitive gene-poor subtelomeric heterochromatin-like regions and their adjacent unique gene-rich euchromatin-like regions. Subtelomeric sequences underwent very little crossing over, exhibiting approximately two- to threefold fewer crossovers per kilobase of DNA than the genomic average. Surprisingly, the adjacent euchromatic regions underwent crossing over at twice the average genomic rate and contained at least nine new recombination "hot spots." These results prompted an analysis of existing genetic mapping data, which showed that meiotic reciprocal recombination rates were on average greater near chromosome ends exclusive of the subtelomeres. Thus, the distribution of crossovers in S. cerevisiae appears to resemble that found in several higher eukaryotes where the outermost chromosomal regions show increased crossing over.
Collapse
|
139
|
Meiotic Chromatin: The Substrate for Recombination Initiation. RECOMBINATION AND MEIOSIS 2008. [DOI: 10.1007/7050_2008_040] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
140
|
Abstract
Mapping recombination hot and cold spots in yeast has previously relied on mutants, which themselves distort the map. Now a new method promises to overcome that problem.
Collapse
|
141
|
Buhler C, Borde V, Lichten M. Mapping meiotic single-strand DNA reveals a new landscape of DNA double-strand breaks in Saccharomyces cerevisiae. PLoS Biol 2008; 5:e324. [PMID: 18076285 PMCID: PMC2121111 DOI: 10.1371/journal.pbio.0050324] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Accepted: 10/25/2007] [Indexed: 11/19/2022] Open
Abstract
DNA double-strand breaks (DSBs), which are formed by the Spo11 protein, initiate meiotic recombination. Previous DSB-mapping studies have used rad50S or sae2Δ mutants, which are defective in break processing, to accumulate Spo11-linked DSBs, and report large (≥ 50 kb) “DSB-hot” regions that are separated by “DSB-cold” domains of similar size. Substantial recombination occurs in some DSB-cold regions, suggesting that DSB patterns are not normal in rad50S or sae2Δ mutants. We therefore developed a novel method to map genome-wide, single-strand DNA (ssDNA)–associated DSBs that accumulate in processing-capable, repair-defective dmc1Δ and dmc1Δ rad51Δ mutants. DSBs were observed at known hot spots, but also in most previously identified “DSB-cold” regions, including near centromeres and telomeres. Although approximately 40% of the genome is DSB-cold in rad50S mutants, analysis of meiotic ssDNA from dmc1Δ shows that most of these regions have substantial DSB activity. Southern blot assays of DSBs in selected regions in dmc1Δ, rad50S, and wild-type cells confirm these findings. Thus, DSBs are distributed much more uniformly than was previously believed. Comparisons of DSB signals in dmc1, dmc1 rad51, and dmc1 spo11 mutant strains identify Dmc1 as a critical strand-exchange activity genome-wide, and confirm previous conclusions that Spo11-induced lesions initiate all meiotic recombination. During meiosis, the two copies of each chromosome present in the full (diploid) genome come together and then separate, forming haploid gametes (sperm and eggs, in animals). Recombination, which swaps DNA between chromosomes, is critical for chromosome pairing and separation, and also promotes genetic diversity in the next generation, providing the feedstock for evolution. DNA double-strand breaks (DSBs), which are formed by the conserved Spo11 nuclease, initiate meiotic recombination. DSB mapping is thus an alternative to standard genetic analysis for determining where meiotic recombination occurs. DSBs have been most extensively mapped in budding yeast mutants that fail to remove Spo11 from break ends, blocking further recombination steps. Paradoxically, those studies indicated that DSBs are absent from large regions where recombination was known to occur. We developed a new DSB mapping method that purifies and analyzes the single-strand DNA formed at breaks after Spo11 removal. This new map shows that DSBs (and by inference, recombination) actually occur frequently throughout almost all of the budding yeast genome, in a distribution that is consistent with recombination's roles in chromosome pairing and in generating genetic diversity. This new mapping method will be useful for studying meiotic recombination and DNA damage repair in other organisms. The authors developed a new method to detect DNA damage genome-wide, and they used it to show that meiotic recombination is more uniformly distributed in budding yeast than was previously believed.
Collapse
Affiliation(s)
- Cyril Buhler
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Valérie Borde
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Michael Lichten
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|