101
|
Abstract
Recent advances in quantitation of mRNA by hybridization to microarrayed gene sequences or by deep sequencing of cDNA (RNA-seq) have provided global views of the abundance of each transcript. Analyses of RNA samples taken at 2 or 4 h intervals throughout development of Dictyostelium discoideum have defined the developmental changes in transcriptional profiles. Comparisons of the transcriptome of wild-type cells to that of mutant strains lacking a gene critical to progression through the developmental stages have defined key steps in the progression. The transcriptional response to cAMP pulses depends on the expression of pulse-independent genes that have been identified by transcriptional profiling with microarrays. Similar techniques were used to discover that the DNA binding protein GBF functions in a feed-forward loop to regulate post-aggregation genes and that expression of a set of late genes during culmination is dependent on the DNA binding protein SrfA. RNA-seq is able to reliably measure individual mRNAs present as a single copy per cell as well as mRNAs present at a thousand fold higher abundance. Using this technique it was found that 65% of the genes in Dictyostelium change twofold or more during development. Many decrease during the first 8 h of development, while the rest increase at specific stages and this pattern is evolutionarily conserved as found by comparing the transcriptomes of D. discoideum and Dictyostelium purpureum. The transcriptional profile of each gene is readily available at dictyBase and more sophisticated analyses are available on DictyExpress.
Collapse
Affiliation(s)
- William F Loomis
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.
| | | |
Collapse
|
102
|
Parkinson K, Buttery NJ, Wolf JB, Thompson CRL. A simple mechanism for complex social behavior. PLoS Biol 2011; 9:e1001039. [PMID: 21468302 PMCID: PMC3066132 DOI: 10.1371/journal.pbio.1001039] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 02/18/2011] [Indexed: 11/19/2022] Open
Abstract
The evolution of cooperation is a paradox because natural selection should favor exploitative individuals that avoid paying their fair share of any costs. Such conflict between the self-interests of cooperating individuals often results in the evolution of complex, opponent-specific, social strategies and counterstrategies. However, the genetic and biological mechanisms underlying complex social strategies, and therefore the evolution of cooperative behavior, are largely unknown. To address this dearth of empirical data, we combine mathematical modeling, molecular genetic, and developmental approaches to test whether variation in the production of and response to social signals is sufficient to generate the complex partner-specific social success seen in the social amoeba Dictyostelium discoideum. Firstly, we find that the simple model of production of and response to social signals can generate the sort of apparent complex changes in social behavior seen in this system, without the need for partner recognition. Secondly, measurements of signal production and response in a mutant with a change in a single gene that leads to a shift in social behavior provide support for this model. Finally, these simple measurements of social signaling can also explain complex patterns of variation in social behavior generated by the natural genetic diversity found in isolates collected from the wild. Our studies therefore demonstrate a novel and elegantly simple underlying mechanistic basis for natural variation in complex social strategies in D. discoideum. More generally, they suggest that simple rules governing interactions between individuals can be sufficient to generate a diverse array of outcomes that appear complex and unpredictable when those rules are unknown. Despite the appearance of cooperation in nature, selection should often favor exploitative individuals who perform less of any cooperative behaviors while maintaining the benefits accrued from the cooperative behavior of others. This conflict of interest among cooperating individuals can lead to the evolution of complex social strategies that depend on the identity (e.g. genotype or strategy) of the individuals with whom you interact. The social amoeba Dictyostelium discoideum provides a compelling model for studying such “partner specific” conflict and cooperation. Upon starvation, free-living amoebae aggregate and form a fruiting body composed of dead stalk cells and hardy spores. Different genotypes will aggregate to produce chimeric fruiting bodies, resulting in potential social conflict over who will contribute to the reproductive sporehead and who will “sacrifice” themselves to produce the dead stalk. The outcomes of competitive interactions in chimera appear complex, with social success being strongly partner specific. Here we propose a simple mechanism to explain social strategies in D. discoideum, based on the production of and response to stalk-inducing factors, the social signals that determine whether cells become stalk or spore. Indeed, measurements of signal production and response can predict social behavior of different strains, thus demonstrating a novel and elegantly simple underlying mechanistic basis for natural variation in complex facultative social strategies. This suggests that simple social rules can be sufficient to generate a diverse array of behavioral outcomes that appear complex and unpredictable when those rules are unknown.
Collapse
Affiliation(s)
- Katie Parkinson
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Manchester, United Kingdom
| | - Neil J. Buttery
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Manchester, United Kingdom
| | - Jason B. Wolf
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
- * E-mail: (JBW); (CRLT)
| | - Christopher R. L. Thompson
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Manchester, United Kingdom
- * E-mail: (JBW); (CRLT)
| |
Collapse
|
103
|
Sucgang R, Kuo A, Tian X, Salerno W, Parikh A, Feasley CL, Dalin E, Tu H, Huang E, Barry K, Lindquist E, Shapiro H, Bruce D, Schmutz J, Salamov A, Fey P, Gaudet P, Anjard C, Babu MM, Basu S, Bushmanova Y, van der Wel H, Katoh-Kurasawa M, Dinh C, Coutinho PM, Saito T, Elias M, Schaap P, Kay RR, Henrissat B, Eichinger L, Rivero F, Putnam NH, West CM, Loomis WF, Chisholm RL, Shaulsky G, Strassmann JE, Queller DC, Kuspa A, Grigoriev IV. Comparative genomics of the social amoebae Dictyostelium discoideum and Dictyostelium purpureum. Genome Biol 2011; 12:R20. [PMID: 21356102 PMCID: PMC3188802 DOI: 10.1186/gb-2011-12-2-r20] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 12/09/2010] [Accepted: 02/28/2011] [Indexed: 12/28/2022] Open
Abstract
Background The social amoebae (Dictyostelia) are a diverse group of Amoebozoa that achieve multicellularity by aggregation and undergo morphogenesis into fruiting bodies with terminally differentiated spores and stalk cells. There are four groups of dictyostelids, with the most derived being a group that contains the model species Dictyostelium discoideum. Results We have produced a draft genome sequence of another group dictyostelid, Dictyostelium purpureum, and compare it to the D. discoideum genome. The assembly (8.41 × coverage) comprises 799 scaffolds totaling 33.0 Mb, comparable to the D. discoideum genome size. Sequence comparisons suggest that these two dictyostelids shared a common ancestor approximately 400 million years ago. In spite of this divergence, most orthologs reside in small clusters of conserved synteny. Comparative analyses revealed a core set of orthologous genes that illuminate dictyostelid physiology, as well as differences in gene family content. Interesting patterns of gene conservation and divergence are also evident, suggesting function differences; some protein families, such as the histidine kinases, have undergone little functional change, whereas others, such as the polyketide synthases, have undergone extensive diversification. The abundant amino acid homopolymers encoded in both genomes are generally not found in homologous positions within proteins, so they are unlikely to derive from ancestral DNA triplet repeats. Genes involved in the social stage evolved more rapidly than others, consistent with either relaxed selection or accelerated evolution due to social conflict. Conclusions The findings from this new genome sequence and comparative analysis shed light on the biology and evolution of the Dictyostelia.
Collapse
Affiliation(s)
- Richard Sucgang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Abstract
Agriculture has been a large part of the ecological success of humans. A handful of animals, notably the fungus-growing ants, termites and ambrosia beetles, have advanced agriculture that involves dispersal and seeding of food propagules, cultivation of the crop and sustainable harvesting. More primitive examples, which could be called husbandry because they involve fewer adaptations, include marine snails farming intertidal fungi and damselfish farming algae. Recent work has shown that microorganisms are surprisingly like animals in having sophisticated behaviours such as cooperation, communication and recognition, as well as many kinds of symbiosis. Here we show that the social amoeba Dictyostelium discoideum has a primitive farming symbiosis that includes dispersal and prudent harvesting of the crop. About one-third of wild-collected clones engage in husbandry of bacteria. Instead of consuming all bacteria in their patch, they stop feeding early and incorporate bacteria into their fruiting bodies. They then carry bacteria during spore dispersal and can seed a new food crop, which is a major advantage if edible bacteria are lacking at the new site. However, if they arrive at sites already containing appropriate bacteria, the costs of early feeding cessation are not compensated for, which may account for the dichotomous nature of this farming symbiosis. The striking convergent evolution between bacterial husbandry in social amoebas and fungus farming in social insects makes sense because multigenerational benefits of farming go to already established kin groups.
Collapse
|
105
|
The cooperative amoeba: Dictyostelium as a model for social evolution. Trends Genet 2011; 27:48-54. [DOI: 10.1016/j.tig.2010.11.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 11/17/2010] [Accepted: 11/17/2010] [Indexed: 11/20/2022]
|
106
|
Abstract
Ecological Genomics is an interdisciplinary field that seeks to understand the genetic and physiological basis of species interactions for evolutionary inferences. At the 7th annual Ecological Genomics Symposium, November 13-15, 2009, members of the Ecological Genomics program at Kansas State University invited 13 speakers and 56 poster presentations.
Collapse
Affiliation(s)
- Suzy C P Renn
- Department of Biology, Reed College, Portland, OR 97202, USA.
| | | |
Collapse
|
107
|
Nedelcu AM, Driscoll WW, Durand PM, Herron MD, Rashidi A. On the paradigm of altruistic suicide in the unicellular world. Evolution 2010; 65:3-20. [PMID: 20722725 DOI: 10.1111/j.1558-5646.2010.01103.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Altruistic suicide is best known in the context of programmed cell death (PCD) in multicellular individuals, which is understood as an adaptive process that contributes to the development and functionality of the organism. After the realization that PCD-like processes can also be induced in single-celled lineages, the paradigm of altruistic cell death has been extended to include these active cell death processes in unicellular organisms. Here, we critically evaluate the current conceptual framework and the experimental data used to support the notion of altruistic suicide in unicellular lineages, and propose new perspectives. We argue that importing the paradigm of altruistic cell death from multicellular organisms to explain active death in unicellular lineages has the potential to limit the types of questions we ask, thus biasing our understanding of the nature, origin, and maintenance of this trait. We also emphasize the need to distinguish between the benefits and the adaptive role of a trait. Lastly, we provide an alternative framework that allows for the possibility that active death in single-celled organisms is a maladaptive trait maintained as a byproduct of selection on pro-survival functions, but that could-under conditions in which kin/group selection can act-be co-opted into an altruistic trait.
Collapse
Affiliation(s)
- Aurora M Nedelcu
- University of New Brunswick, Department of Biology, Fredericton, NB, Canada.
| | | | | | | | | |
Collapse
|
108
|
Flowers JM, Li SI, Stathos A, Saxer G, Ostrowski EA, Queller DC, Strassmann JE, Purugganan MD. Variation, sex, and social cooperation: molecular population genetics of the social amoeba Dictyostelium discoideum. PLoS Genet 2010; 6:e1001013. [PMID: 20617172 PMCID: PMC2895654 DOI: 10.1371/journal.pgen.1001013] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 06/01/2010] [Indexed: 12/02/2022] Open
Abstract
Dictyostelium discoideum is a eukaryotic microbial model system for multicellular development, cell–cell signaling, and social behavior. Key models of social evolution require an understanding of genetic relationships between individuals across the genome or possibly at specific genes, but the nature of variation within D. discoideum is largely unknown. We re-sequenced 137 gene fragments in wild North American strains of D. discoideum and examined the levels and patterns of nucleotide variation in this social microbial species. We observe surprisingly low levels of nucleotide variation in D. discoideum across these strains, with a mean nucleotide diversity (π) of 0.08%, and no strong population stratification among North American strains. We also do not find any clear relationship between nucleotide divergence between strains and levels of social dominance and kin discrimination. Kin discrimination experiments, however, show that strains collected from the same location show greater ability to distinguish self from non-self than do strains from different geographic areas. This suggests that a greater ability to recognize self versus non-self may arise among strains that are more likely to encounter each other in nature, which would lead to preferential formation of fruiting bodies with clonemates and may prevent the evolution of cheating behaviors within D. discoideum populations. Finally, despite the fact that sex has rarely been observed in this species, we document a rapid decay of linkage disequilibrium between SNPs, the presence of recombinant genotypes among natural strains, and high estimates of the population recombination parameter ρ. The SNP data indicate that recombination is widespread within D. discoideum and that sex as a form of social interaction is likely to be an important aspect of the life cycle. Theories on the evolution of cooperation sometimes hinge on knowledge of genetic relatedness between individuals. Dictyostelium discoideum has been a model for the study of key biological phenomena, including the evolution and ecology of social cooperation, but the nature of genetic variation within this species is largely unknown. We determine the levels and patterns of molecular variation in this social species. We find a preference of genetically identical cells to cooperate with each other in forming fruiting bodies, a phenomenon known as kin discrimination. Kin discrimination, however, does not appear to be correlated with overall DNA divergence of the strains. Instead, familiarity appears to breed contempt, as strains from the same geographic location (which possibly encounter each other) show higher levels of kin discrimination than strains found further apart. We also show that sex, which is rarely observed in the laboratory, appears to be widespread in the wild—an interesting finding given that sex in D. discoideum is also associated with cooperation between numerous single cells to feed the developing cannibalistic zygote. The finding that sex may occur more frequently in the wild opens the possibility of conducting controlled laboratory matings and developing D. discoideum as a genetic model system.
Collapse
Affiliation(s)
- Jonathan M. Flowers
- Department of Biology and Center for Genomics and Systems Biology, New York University, New York, New York, United States of America
| | - Si I. Li
- Department of Biology and Center for Genomics and Systems Biology, New York University, New York, New York, United States of America
| | - Angela Stathos
- Department of Biology and Center for Genomics and Systems Biology, New York University, New York, New York, United States of America
| | - Gerda Saxer
- Department of Ecology and Evolutionary Biology, Rice University, Houston, Texas, United States of America
| | - Elizabeth A. Ostrowski
- Department of Ecology and Evolutionary Biology, Rice University, Houston, Texas, United States of America
| | - David C. Queller
- Department of Ecology and Evolutionary Biology, Rice University, Houston, Texas, United States of America
| | - Joan E. Strassmann
- Department of Ecology and Evolutionary Biology, Rice University, Houston, Texas, United States of America
| | - Michael D. Purugganan
- Department of Biology and Center for Genomics and Systems Biology, New York University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
109
|
Buttery NJ, Thompson CRL, Wolf JB. Complex genotype interactions influence social fitness during the developmental phase of the social amoeba Dictyostelium discoideum. J Evol Biol 2010; 23:1664-71. [PMID: 20546090 DOI: 10.1111/j.1420-9101.2010.02032.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
When individuals interact, phenotypic variation can be partitioned into direct genetic effects (DGEs) of the individuals' own genotypes, indirect genetic effects (IGEs) of their social partners' genotypes and epistatic interactions between the genotypes of interacting individuals ('genotype-by-genotype (GxG) epistasis'). These components can all play important roles in evolutionary processes, but few empirical studies have examined their importance. The social amoeba Dictyostelium discoideum provides an ideal system to measure these effects during social interactions and development. When starved, free-living amoebae aggregate and differentiate into a multicellular fruiting body with a dead stalk that holds aloft viable spores. By measuring interactions among a set of natural strains, we quantify DGEs, IGEs and GxG epistasis affecting spore formation. We find that DGEs explain most of the phenotypic variance (57.6%) whereas IGEs explain a smaller (13.3%) but highly significant component. Interestingly, GxG epistasis explains nearly a quarter of the variance (23.0%), highlighting the complex nature of genotype interactions. These results demonstrate the large impact that social interactions can have on development and suggest that social effects should play an important role in developmental evolution in this system.
Collapse
Affiliation(s)
- N J Buttery
- Faculty of Life Sciences, The University of Manchester, Manchester, UK
| | | | | |
Collapse
|
110
|
Abstract
Despite differences in genomic sequence, the developmental program of two distantly related Dictyostelium species is remarkably similar. Despite considerable differences in genomic sequence, the developmental program of gene expression between two similar Dictyostelium species is remarkably similar.
Collapse
Affiliation(s)
- Richard H Kessin
- Department of Pathology and Cell Biology, Columbia University, 630 W, 168th St, New York, New York 10032, USA.
| |
Collapse
|
111
|
Abstract
Deciphering the genetic and neurobiological underpinnings of social behavior is a difficult task. Simple model organisms such as C. elegans, Drosophila, and social insects display a wealth of social behaviors similar to those in more complex animals, including social dominance, group decision making, learning from experienced individuals, and foraging in groups. Although the study of social interactions is still in its infancy, the ability to assess the contributions of gene expression, neural circuitry, and the environment in response to social context in these simple model organisms is unsurpassed. Here, I take a comparative approach, discussing selected examples of social behavior across species and highlighting the common themes that emerge.
Collapse
|
112
|
Saxer G, Brock DA, Queller DC, Strassmann JE. Cheating does not explain selective differences at high and low relatedness in a social amoeba. BMC Evol Biol 2010; 10:76. [PMID: 20226060 PMCID: PMC2848656 DOI: 10.1186/1471-2148-10-76] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 03/12/2010] [Indexed: 11/10/2022] Open
Abstract
Background Altruism can be favored by high relatedness among interactants. We tested the effect of relatedness in experimental populations of the social amoeba Dictyostelium discoideum, where altruism occurs in a starvation-induced social stage when some amoebae die to form a stalk that lifts the fertile spores above the soil facilitating dispersal. The single cells that aggregate during the social stage can be genetically diverse, which can lead to conflict over spore and stalk allocation. We mixed eight genetically distinct wild isolates and maintained twelve replicated populations at a high and a low relatedness treatment. After one and ten social generations we assessed the strain composition of the populations. We expected that some strains would be out-competed in both treatments. In addition, we expected that low relatedness might allow the persistence of social cheaters as it provides opportunity to exploit other strains. Results We found that at high relatedness a single clone prevailed in all twelve populations. At low relatedness three clones predominated in all twelve populations. Interestingly, exploitation of some clones by others in the social stage did not explain the results. When we mixed each winner against the pool of five losers, the winner did not prevail in the spores because all contributed fairly to the stalk and spores. Furthermore, the dominant clone at high-relatedness was not cheated by the other two that persisted at low relatedness. A combination of high spore production and short unicellular stage most successfully explained the three successful clones at low relatedness, but not why one of them fared better at high relatedness. Differences in density did not account for the results, as the clones did not differ in vegetative growth rates nor did they change the growth rates over relevant densities. Conclusions These results suggest that social competition and something beyond solitary growth differences occurs during the vegetative stage when amoebae eat bacteria and divide by binary fission. The high degree of repeatability of our results indicates that these effects are strong and points to the importance of new approaches to studying interactions in D. discoideum.
Collapse
Affiliation(s)
- Gerda Saxer
- Department of Ecology and Evolutionary Biology MS 170, Rice University, 6100 Main Street, Houston, TX 77005, USA.
| | | | | | | |
Collapse
|
113
|
Khare A, Shaulsky G. Cheating by exploitation of developmental prestalk patterning in Dictyostelium discoideum. PLoS Genet 2010; 6:e1000854. [PMID: 20195510 PMCID: PMC2829058 DOI: 10.1371/journal.pgen.1000854] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 01/23/2010] [Indexed: 11/25/2022] Open
Abstract
The cooperative developmental system of the social amoeba Dictyostelium discoideum is susceptible to exploitation by cheaters—strains that make more than their fair share of spores in chimerae. Laboratory screens in Dictyostelium have shown that the genetic potential for facultative cheating is high, and field surveys have shown that cheaters are abundant in nature, but the cheating mechanisms are largely unknown. Here we describe cheater C (chtC), a strong facultative cheater mutant that cheats by affecting prestalk differentiation. The chtC gene is developmentally regulated and its mRNA becomes stalk-enriched at the end of development. chtC mutants are defective in maintaining the prestalk cell fate as some of their prestalk cells transdifferentiate into prespore cells, but that defect does not affect gross developmental morphology or sporulation efficiency. In chimerae between wild-type and chtC mutant cells, the wild-type cells preferentially give rise to prestalk cells, and the chtC mutants increase their representation in the spore mass. Mixing chtC mutants with other cell-type proportioning mutants revealed that the cheating is directly related to the prestalk-differentiation propensity of the victim. These findings illustrate that a cheater can victimize cooperative strains by exploiting an established developmental pathway. Cooperative systems are susceptible to exploitation by cheaters who enjoy the benefits of cooperation without paying the costs. Such conflict is seen in biological systems at every level from individual genes within a cell to individuals within societies. The social amoebae Dictyostelium discoideum have a unique cooperative system in which large numbers of individual cells aggregate to form fruiting bodies with reproductive spores, and dead stalk cells that may help the survival and dispersal of the spores. Fruiting bodies can contain several genotypes, and hence can be exploited by cheater cells that preferentially form spores without contributing fairly to the stalk. We have studied a mutant, cheater C (chtC), which is defective in forming certain stalk cells, but is still able to form fruiting bodies on its own. However, when wild-type cells are mixed with chtC cells, the wild-type cells compensate for the stalk-forming defect of chtC and form more of the stalk cells. In that way, chtC cells cheat by taking advantage of developmental processes that normally regulate cell-type proportions. This study shows that existing mechanisms of developmental regulation can be exploited by cheater mutants, and the social amoebae offer a good system to study such mechanisms.
Collapse
Affiliation(s)
- Anupama Khare
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Gad Shaulsky
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
114
|
|