101
|
Emergence of consistent intra-individual locomotor patterns during zebrafish development. Sci Rep 2019; 9:13647. [PMID: 31541136 PMCID: PMC6754443 DOI: 10.1038/s41598-019-49614-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/27/2019] [Indexed: 11/16/2022] Open
Abstract
The analysis of larval zebrafish locomotor behavior has emerged as a powerful indicator of perturbations in the nervous system and is used in many fields of research, including neuroscience, toxicology and drug discovery. The behavior of larval zebrafish however, is highly variable, resulting in the use of large numbers of animals and the inability to detect small effects. In this study, we analyzed whether individual locomotor behavior is stable over development and whether behavioral parameters correlate with physiological and morphological features, with the aim of better understanding the variability and predictability of larval locomotor behavior. Our results reveal that locomotor activity of an individual larva remains consistent throughout a given day and is predictable throughout larval development, especially during dark phases, under which larvae demonstrate light-searching behaviors and increased activity. The larvae’s response to startle-stimuli was found to be unpredictable, with no correlation found between response strength and locomotor activity. Furthermore, locomotor activity was not associated with physiological or morphological features of a larva (resting heart rate, body length, size of the swim bladder). Overall, our findings highlight the areas of intra-individual consistency, which could be used to improve the sensitivity of assays using zebrafish locomotor activity as an endpoint.
Collapse
|
102
|
Abstract
Visual stimuli can evoke complex behavioral responses, but the underlying streams of neural activity in mammalian brains are difficult to follow because of their size. Here, I review the visual system of zebrafish larvae, highlighting where recent experimental evidence has localized the functional steps of visuomotor transformations to specific brain areas. The retina of a larva encodes behaviorally relevant visual information in neural activity distributed across feature-selective ganglion cells such that signals representing distinct stimulus properties arrive in different areas or layers of the brain. Motor centers in the hindbrain encode motor variables that are precisely tuned to behavioral needs within a given stimulus setting. Owing to rapid technological progress, larval zebrafish provide unique opportunities for obtaining a comprehensive understanding of the intermediate processing steps occurring between visual and motor centers, revealing how visuomotor transformations are implemented in a vertebrate brain.
Collapse
Affiliation(s)
- Johann H. Bollmann
- Developmental Biology, Institute of Biology I, Faculty of Biology, and Bernstein Center Freiburg, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
103
|
Haghani S, Karia M, Cheng RK, Mathuru AS. An Automated Assay System to Study Novel Tank Induced Anxiety. Front Behav Neurosci 2019; 13:180. [PMID: 31481885 PMCID: PMC6709859 DOI: 10.3389/fnbeh.2019.00180] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 07/18/2019] [Indexed: 02/04/2023] Open
Abstract
New environments are known to be anxiogenic initially for many animals including the zebrafish. In the zebrafish, a novel tank diving (NTD) assay for solitary fish has been used extensively to model anxiety and the effect of anxiolytics. However, studies can differ in the conditions used to perform this assay. Here, we report the development of an efficient, automated toolset and optimal conditions for effective use of this assay. Applying these tools, we found that two important variables in previous studies, the direction of illumination of the novel tank and the age of the subject fish, both influence endpoints commonly measured to assess anxiety. When tanks are illuminated from underneath, several parameters such as the time spent at the bottom of the tank, or the transitions to the top half of the tank become poor measures of acclimation to the novel environment. Older fish acclimate faster to the same settings. The size of the novel tank and the intensity of the illuminating light can also influence acclimation. Among the parameters measured, reduction in the frequency of erratic swimming (darting) is the most reliable indicator of anxiolysis. Open source pipeline for automated data acquisition and systematic analysis generated here and available to other researchers will improve accessibility and uniformity in measurements. They can also be directly applied to study other fish. As this assay is commonly used to model anxiety phenotype of neuropsychiatric ailments in zebrafish, we expect our tools will further aid comparative and meta-analyses.
Collapse
Affiliation(s)
- Sara Haghani
- Yale-NUS College, Science Division, Singapore, Singapore
| | | | - Ruey-Kuang Cheng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Ajay S Mathuru
- Yale-NUS College, Science Division, Singapore, Singapore.,Institute of Molecular and Cell Biology (IMCB), Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
104
|
Nishiyama H, Nagata A, Matsuo Y, Matsuo R. Light avoidance by a non-ocular photosensing system in the terrestrial slug Limax valentianus. ACTA ACUST UNITED AC 2019; 222:jeb.208595. [PMID: 31266779 DOI: 10.1242/jeb.208595] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 06/26/2019] [Indexed: 11/20/2022]
Abstract
Although the eye is the best-studied photoreceptive organ in animals, the presence of non-ocular photosensing systems has been reported in numerous animal species. However, most of the roles that non-ocular photosensory systems play remain elusive. We found that the terrestrial slug Limax valentianus avoids light and escapes into dark areas even if it is blinded by the removal of the bilateral superior tentacle. The escape behaviour was more evident for short-wavelength light. Illumination to the head with blue but not red light elicited avoidance behaviour in the blinded slugs. Illumination to the tail was ineffective. The light-avoidance behaviour of the blinded slugs was not affected by the removal of the penis, which lies on the brain in the head, suggesting that the penis is dispensable for sensing light in the blinded slug. mRNA of Opn5A, xenopsin, retinochrome and, to a lesser extent, rhodopsin was expressed in the brain according to RT-PCR. Light-evoked neural responses were recorded from the left cerebro-pleural connective of the isolated suboesophageal ganglia of the brain, revealing that the brain is sensitive to short wavelengths of light (400-480 nm). This result is largely consistent with the wavelength dependency of the light-avoidance behaviour of the blinded slugs that we observed in the present study. Our results strongly support that the terrestrial slug L. valentianus detects and avoids light by using its brain as a light-sensing organ in the absence of eyes.
Collapse
Affiliation(s)
- Haruka Nishiyama
- Department of Environmental Sciences, International College of Arts and Sciences, Fukuoka Women's University, Fukuoka, 813-8529, Japan
| | - Akane Nagata
- Department of Environmental Sciences, International College of Arts and Sciences, Fukuoka Women's University, Fukuoka, 813-8529, Japan
| | - Yuko Matsuo
- Department of Environmental Sciences, International College of Arts and Sciences, Fukuoka Women's University, Fukuoka, 813-8529, Japan
| | - Ryota Matsuo
- Department of Environmental Sciences, International College of Arts and Sciences, Fukuoka Women's University, Fukuoka, 813-8529, Japan
| |
Collapse
|
105
|
Harvey BM, Baxter M, Granato M. Optic nerve regeneration in larval zebrafish exhibits spontaneous capacity for retinotopic but not tectum specific axon targeting. PLoS One 2019; 14:e0218667. [PMID: 31220164 PMCID: PMC6586344 DOI: 10.1371/journal.pone.0218667] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 06/06/2019] [Indexed: 01/28/2023] Open
Abstract
In contrast to mammals, retinal ganglion cells (RGC) axons of the optic nerve even in mature zebrafish exhibit a remarkable capacity for spontaneous regeneration. One constraint of using adult zebrafish is the limited ability to visualize the regeneration process in live animals. To dynamically visualize and trace the degree of target specific optic nerve regeneration, we took advantage of the optical transparency still preserved in post developmental larval zebrafish. We developed a rapid and robust assay to physically transect the larval optic nerve and find that by 96 hours post injury RGC axons have robustly regrown onto the optic tectum. We observe functional regeneration by 8 days post injury, and demonstrate that similar to adult zebrafish, optic nerve transection in larval zebrafish does not prominently induce cell death or proliferation of RGC neurons. Furthermore, we find that partial optic nerve transection results in axonal growth predominantly to the original, contralateral tectum, while complete transection results in innervation of both the correct contralateral and ‘incorrect’ ipsilateral tectum. Axonal tracing reveals that although regenerating axons innervate the ‘incorrect’ ipsilateral tectum, they successfully target their topographically appropriate synaptic areas. Combined, our results validate post developmental larval zebrafish as a powerful model for optic nerve regeneration, and reveal intricate mechanistic differences between axonal growth, midline guidance and synaptic targeting during zebrafish optic nerve regeneration.
Collapse
Affiliation(s)
- Beth M. Harvey
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Melissa Baxter
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Michael Granato
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- * E-mail:
| |
Collapse
|
106
|
Shainer I, Michel M, Marquart GD, Bhandiwad AA, Zmora N, Ben-Moshe Livne Z, Zohar Y, Hazak A, Mazon Y, Förster D, Hollander-Cohen L, Cone RD, Burgess HA, Gothilf Y. Agouti-Related Protein 2 Is a New Player in the Teleost Stress Response System. Curr Biol 2019; 29:2009-2019.e7. [PMID: 31178320 PMCID: PMC8287899 DOI: 10.1016/j.cub.2019.05.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/28/2019] [Accepted: 05/08/2019] [Indexed: 12/14/2022]
Abstract
Agouti-related protein (AgRP) is a hypothalamic regulator of food consumption in mammals. However, AgRP has also been detected in circulation, but a possible endocrine role has not been examined. Zebrafish possess two agrp genes: hypothalamically expressed agrp1, considered functionally equivalent to the single mammalian agrp, and agrp2, which is expressed in pre-optic neurons and uncharacterized pineal gland cells and whose function is not well understood. By ablation of AgRP1-expressing neurons and knockout of the agrp1 gene, we show that AgRP1 stimulates food consumption in the zebrafish larvae. Single-cell sequencing of pineal agrp2-expressing cells revealed molecular resemblance to retinal-pigment epithelium cells, and anatomic analysis shows that these cells secrete peptides, possibly into the cerebrospinal fluid. Additionally, based on AgRP2 peptide localization and gene knockout analysis, we demonstrate that pre-optic AgRP2 is a neuroendocrine regulator of the stress axis that reduces cortisol secretion. We therefore suggest that the ancestral role of AgRP was functionally partitioned in zebrafish by the two AgRPs, with AgRP1 centrally regulating food consumption and AgRP2 acting as a neuroendocrine factor regulating the stress axis.
Collapse
Affiliation(s)
- Inbal Shainer
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, 6997801 Tel Aviv, Israel.
| | - Maximilian Michel
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Institute of Zoology, University of Cologne, 50674 Cologne, Germany
| | - Gregory D Marquart
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA; Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD 20742, USA
| | - Ashwin A Bhandiwad
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Nilli Zmora
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD 21202, USA
| | - Zohar Ben-Moshe Livne
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, 6997801 Tel Aviv, Israel
| | - Yonathan Zohar
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD 21202, USA
| | - Adi Hazak
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, 6997801 Tel Aviv, Israel
| | - Yael Mazon
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, 6997801 Tel Aviv, Israel
| | - Dominique Förster
- Department Genes - Circuits - Behavior, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Lian Hollander-Cohen
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, 76100 Rehovot, Israel
| | - Roger D Cone
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Harold A Burgess
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Yoav Gothilf
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, 6997801 Tel Aviv, Israel; Sagol School of Neuroscience, Tel-Aviv University, 6997801 Tel Aviv, Israel.
| |
Collapse
|
107
|
Souders CL, Xavier P, Perez-Rodriguez V, Ector N, Zhang JL, Martyniuk CJ. Sub-lethal effects of the triazole fungicide propiconazole on zebrafish (Danio rerio) development, oxidative respiration, and larval locomotor activity. Neurotoxicol Teratol 2019; 74:106809. [PMID: 31129159 DOI: 10.1016/j.ntt.2019.106809] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/12/2019] [Accepted: 05/14/2019] [Indexed: 01/22/2023]
Abstract
Propiconazole is a triazole fungicide used in agriculture. Via run-off, it can enter the aquatic environment, and can adversely affect organisms. However, data are scarce on how propiconazole may affect early developmental life stages of fish. The objectives of this study were to evaluate the potential sub-lethal effects of propiconazole during zebrafish development. Wildtype zebrafish (ABTu strain) embryos and larvae were exposed to propiconazole (0.1-100 μM) for up to 150 hours post fertilization (hpf) depending upon the endpoint measured. Propiconazole decreased survival and induced hypopigmentation in fish at 100 μM compared to the water and solvent controls. Pericardial edema was also noted in embryos and larvae (beginning at 2-3 dpf) exposed to 100 μM propiconazole. To visualize the effects of propiconazole on the circulatory system in more detail, we exposed transgenic zebrafish (globin-LCR:eGFP) to the fungicide. Hematopoietic changes were observed within 48 h of exposure to 100 μM, and localization of blood cells in the cardic region became diffuse, indicating pooling of blood in the pericardial region. We measured oxidative respiration in embryos as sufficient ATP is needed for development. Exposure to 100 μM propiconazole (~6-30 hpf) reduced basal respiration (~50%), oligomycin-induced ATP linked respiration (~70%), proton leak (~30%), and non-mitochondrial respiration (~50%), indicating compromised mitochondrial bioenergetics. A Visual Motor Response (VMR) test was used to measure dark photokinesis behavior in larval fish exposed to propiconazole for a 6-day period. Larval fish exposed to the highest concentration in the assay (10 μM) showed evidence of hypoactivity. This study demonstrates that propiconazole can induce hypopigmentation in zebrafish, disrupt mitochondrial bioenergetics, and can alter locomotor activity. However, these sub-lethal responses were observed at concentrations above what is typically detected in the environment.
Collapse
Affiliation(s)
- Christopher L Souders
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Priscilla Xavier
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Veronica Perez-Rodriguez
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Naomi Ector
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Ji-Liang Zhang
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; Henan Open Laboratory of Key Subjects of Environmental and Animal Products Safety, College of Animal Science and Technology, Henan University of Science and Technology, Henan, China
| | - Christopher J Martyniuk
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
108
|
Randlett O, Haesemeyer M, Forkin G, Shoenhard H, Schier AF, Engert F, Granato M. Distributed Plasticity Drives Visual Habituation Learning in Larval Zebrafish. Curr Biol 2019; 29:1337-1345.e4. [PMID: 30955936 PMCID: PMC6545104 DOI: 10.1016/j.cub.2019.02.039] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/18/2019] [Accepted: 02/15/2019] [Indexed: 12/15/2022]
Abstract
Habituation is a simple form of learning where animals learn to reduce their responses to repeated innocuous stimuli [1]. Habituation is thought to occur via at least two temporally and molecularly distinct mechanisms, which lead to short-term memories that last for seconds to minutes and long-term memories that last for hours or longer [1, 2]. Here, we focus on long-term habituation, which, due to the extended time course, necessitates stable alterations to circuit properties [2-4]. In its simplest form, long-term habituation could result from a plasticity event at a single point in a circuit, and many studies have focused on identifying the site and underlying mechanism of plasticity [5-10]. However, it is possible that these individual sites are only one of many points in the circuit where plasticity is occurring. Indeed, studies of short-term habituation in C. elegans indicate that in this paradigm, multiple genetically separable mechanisms operate to adapt specific aspects of behavior [11-13]. Here, we use a visual assay in which larval zebrafish habituate their response to sudden reductions in illumination (dark flashes) [14, 15]. Through behavioral analyses, we find that multiple components of the dark-flash response habituate independently of one another using different molecular mechanisms. This is consistent with a modular model in which habituation originates from multiple independent processes, each adapting specific components of behavior. This may allow animals to more specifically or flexibly habituate based on stimulus context or internal states.
Collapse
Affiliation(s)
- Owen Randlett
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Martin Haesemeyer
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Greg Forkin
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Hannah Shoenhard
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Alexander F Schier
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Florian Engert
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
| | - Michael Granato
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
109
|
Circadian Clocks in Fish-What Have We Learned so far? BIOLOGY 2019; 8:biology8010017. [PMID: 30893815 PMCID: PMC6466151 DOI: 10.3390/biology8010017] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/07/2019] [Accepted: 03/09/2019] [Indexed: 12/24/2022]
Abstract
Zebrafish represent the one alternative vertebrate, genetic model system to mice that can be easily manipulated in a laboratory setting. With the teleost Medaka (Oryzias latipes), which now has a significant following, and over 30,000 other fish species worldwide, there is great potential to study the biology of environmental adaptation using teleosts. Zebrafish are primarily used for research on developmental biology, for obvious reasons. However, fish in general have also contributed to our understanding of circadian clock biology in the broadest sense. In this review, we will discuss selected areas where this contribution seems most unique. This will include a discussion of the issue of central versus peripheral clocks, in which zebrafish played an early role; the global nature of light sensitivity; and the critical role played by light in regulating cell biology. In addition, we also discuss the importance of the clock in controlling the timing of fundamental aspects of cell biology, such as the temporal control of the cell cycle. Many of these findings are applicable to the majority of vertebrate species. However, some reflect the unique manner in which “fish” can solve biological problems, in an evolutionary context. Genome duplication events simply mean that many fish species have more gene copies to “throw at a problem”, and evolution seems to have taken advantage of this “gene abundance”. How this relates to their poor cousins, the mammals, remains to be seen.
Collapse
|
110
|
Perez-Rodriguez V, Souders CL, Tischuk C, Martyniuk CJ. Tebuconazole reduces basal oxidative respiration and promotes anxiolytic responses and hypoactivity in early-staged zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2019; 217:87-97. [PMID: 30500453 DOI: 10.1016/j.cbpc.2018.11.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 11/25/2018] [Indexed: 12/23/2022]
Abstract
Triazole fungicides are increasingly used in North America to combat mold and fungi, in order to protect vegetables, citrus, ornamental plants and field crops. To determine the biological impacts of tebuconazole in non-target aquatic organisms, early life stage zebrafish were exposed to 0.1-100 μM tebuconazole for 120 h (5 dpf). There was a significant increase in mortality over time and at 100 μM, only 50% of the animals survived 96 h compared to >95% for all other experimental groups. There was evidence for increased hatching time with 10 μM tebuconazole compared to the control group (~7 h longer at 50% total hatch) or a lack of hatch observed with 100 μM. Oxidative respiration and behavior were evaluated to assess whether the fungicide impaired energy-associated processes. Oxygen consumption rates in embryos (exposed from ~6 hpf) were determined with exposure to 2.5, 25, 50, 100 μM tebuconazole for 24 h using the XFe24 Extracellular Flux Analyzer. Embryos treated with 100 μM showed a ~60% reduction in basal respiration, indicating impaired oxygen consumption and/or changes in resource allocation (e.g. anti-oxidant production, metabolite synthesis). Environmentally-relevant concentrations of tebuconazole did not affect oxidative phosphorylation. As behavior is a sensitive endpoint for toxicity, we measured the dark photokinesis response and conducted a light-dark preference test in 6 dpf larvae following a sub-chronic exposure to 0.1, 1 and 10 μM tebuconazole beginning with 6 hpf embryos. It was observed in two independent experiments for dark photokinesis that 10 μM tebuconazole reduced total distance moved (i.e. hypoactivity) in the dark period by ~25-35%. In the light-dark preference test, there was an increase for mean time in dark zone (~100% increase in the average time/visits per second) and frequency in dark zone (increase of ~35% in average number of visits) with tebuconazole, suggestive of anxiolytic behavior at environmentally-relevant doses. This study demonstrates that exposure to tebuconazole can affect survival, hatch time, oxidative phosphorylation, and behavioral activity of early-staged zebrafish. While survival, hatch time, and mitochondrial bioenergetics were not different than control fish at environmentally-relevant levels of tebuconazole, behavioral responses were detected at concentrations reported in some aquatic environments.
Collapse
Affiliation(s)
- Veronica Perez-Rodriguez
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Christopher L Souders
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Claire Tischuk
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Christopher J Martyniuk
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
111
|
Xie R, Zhang M, Venkatraman P, Zhang X, Zhang G, Carmer R, Kantola SA, Pang CP, Ma P, Zhang M, Zhong W, Leung YF. Normalization of large-scale behavioural data collected from zebrafish. PLoS One 2019; 14:e0212234. [PMID: 30768618 PMCID: PMC6377122 DOI: 10.1371/journal.pone.0212234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/29/2019] [Indexed: 11/19/2022] Open
Abstract
Many contemporary neuroscience experiments utilize high-throughput approaches to simultaneously collect behavioural data from many animals. The resulting data are often complex in structure and are subjected to systematic biases, which require new approaches for analysis and normalization. This study addressed the normalization need by establishing an approach based on linear-regression modeling. The model was established using a dataset of visual motor response (VMR) obtained from several strains of wild-type (WT) zebrafish collected at multiple stages of development. The VMR is a locomotor response triggered by drastic light change, and is commonly measured repeatedly from multiple larvae arrayed in 96-well plates. This assay is subjected to several systematic variations. For example, the light emitted by the machine varies slightly from well to well. In addition to the light-intensity variation, biological replication also created batch-batch variation. These systematic variations may result in differences in the VMR and must be normalized. Our normalization approach explicitly modeled the effect of these systematic variations on VMR. It also normalized the activity profiles of different conditions to a common baseline. Our approach is versatile, as it can incorporate different normalization needs as separate factors. The versatility was demonstrated by an integrated normalization of three factors: light-intensity variation, batch-batch variation and baseline. After normalization, new biological insights were revealed from the data. For example, we found larvae of TL strain at 6 days post-fertilization (dpf) responded to light onset much stronger than the 9-dpf larvae, whereas previous analysis without normalization shows that their responses were relatively comparable. By removing systematic variations, our model-based normalization can facilitate downstream statistical comparisons and aid detecting true biological differences in high-throughput studies of neurobehaviour.
Collapse
Affiliation(s)
- Rui Xie
- Department of Statistics, University of Georgia, Athens, Georgia, United States of America
| | - Mengrui Zhang
- Department of Statistics, University of Georgia, Athens, Georgia, United States of America
| | - Prahatha Venkatraman
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Xinlian Zhang
- Department of Statistics, University of Georgia, Athens, Georgia, United States of America
| | - Gaonan Zhang
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Robert Carmer
- Department of Statistics, Purdue University, West Lafayette, Indiana, United States of America
| | - Skylar A. Kantola
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, China
| | - Ping Ma
- Department of Statistics, University of Georgia, Athens, Georgia, United States of America
| | - Mingzhi Zhang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, China
- * E-mail: (MZ); (WZ); (YFL)
| | - Wenxuan Zhong
- Department of Statistics, University of Georgia, Athens, Georgia, United States of America
- * E-mail: (MZ); (WZ); (YFL)
| | - Yuk Fai Leung
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine Lafayette, West Lafayette, Indiana, United States of America
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, United States of America
- Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail: (MZ); (WZ); (YFL)
| |
Collapse
|
112
|
Gunawan F, Gentile A, Fukuda R, Tsedeke AT, Jiménez-Amilburu V, Ramadass R, Iida A, Sehara-Fujisawa A, Stainier DYR. Focal adhesions are essential to drive zebrafish heart valve morphogenesis. J Cell Biol 2019; 218:1039-1054. [PMID: 30635353 PMCID: PMC6400548 DOI: 10.1083/jcb.201807175] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/07/2018] [Accepted: 12/13/2018] [Indexed: 12/17/2022] Open
Abstract
Gunawan et al. analyze at single-cell resolution collective endocardial cell migration into the extracellular matrix and the cellular rearrangements forming leaflets during zebrafish heart valve formation. They show that focal adhesion activity driven by Integrin α5β1 and Talin1 are essential to drive cardiac valve morphogenesis in zebrafish. Elucidating the morphogenetic events that shape vertebrate heart valves, complex structures that prevent retrograde blood flow, is critical to understanding valvular development and aberrations. Here, we used the zebrafish atrioventricular (AV) valve to investigate these events in real time and at single-cell resolution. We report the initial events of collective migration of AV endocardial cells (ECs) into the extracellular matrix (ECM), and their subsequent rearrangements to form the leaflets. We functionally characterize integrin-based focal adhesions (FAs), critical mediators of cell–ECM interactions, during valve morphogenesis. Using transgenes to block FA signaling specifically in AV ECs as well as loss-of-function approaches, we show that FA signaling mediated by Integrin α5β1 and Talin1 promotes AV EC migration and overall shaping of the valve leaflets. Altogether, our investigation reveals the critical processes driving cardiac valve morphogenesis in vivo and establishes the zebrafish AV valve as a vertebrate model to study FA-regulated tissue morphogenesis.
Collapse
Affiliation(s)
- Felix Gunawan
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Alessandra Gentile
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ryuichi Fukuda
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ayele Taddese Tsedeke
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Vanesa Jiménez-Amilburu
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Radhan Ramadass
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Atsuo Iida
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | | | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
113
|
Pérez JH, Tolla E, Dunn IC, Meddle SL, Stevenson TJ. A Comparative Perspective on Extra-retinal Photoreception. Trends Endocrinol Metab 2019; 30:39-53. [PMID: 30522810 DOI: 10.1016/j.tem.2018.10.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 12/20/2022]
Abstract
Ubiquitous in non-mammalian vertebrates, extra-retinal photoreceptors (ERPs) have been linked to an array of physiological, metabolic, behavioral, and morphological changes. However, the mechanisms and functional roles of ERPs remain one of the enduring questions of modern biology. In this review article, we use a comparative framework to identify conserved roles and distributions of ERPs, highlighting knowledge gaps. We conclude that ERP research can be divided into two largely unconnected categories: (i) identification and localization of photoreceptors and (ii) linkage of non-retinal light reception to behavioral and physiological processes, particularly endocrine systems. However, the emergence of novel gene editing and silencing techniques is enabling the unification of ERP research by allowing the bridging of this divide.
Collapse
Affiliation(s)
- Jonathan H Pérez
- Institute for Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 3FX, Scotland; The Roslin Institute, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, Scotland.
| | - Elisabetta Tolla
- Institute for Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 3FX, Scotland
| | - Ian C Dunn
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, Scotland
| | - Simone L Meddle
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, Scotland
| | - Tyler J Stevenson
- Institute for Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 3FX, Scotland
| |
Collapse
|
114
|
Eilertsen M, Valen R, Drivenes Ø, Ebbesson LOE, Helvik JV. Transient photoreception in the hindbrain is permissive to the life history transition of hatching in Atlantic halibut. Dev Biol 2018; 444:129-138. [PMID: 30342886 DOI: 10.1016/j.ydbio.2018.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 10/13/2018] [Accepted: 10/15/2018] [Indexed: 12/22/2022]
Abstract
In nonmammalian vertebrates, photoreception takes place in the deep brain already early in development, but knowledge is lacking about the functions of these nonvisual photoreceptive systems. Prior to hatching, Atlantic halibut has a transient bilateral cluster of photoreceptive cells in the hindbrain. The cluster is imbedded in a neuronal network projecting to the narrow belt of hatching glands in the yolk sac. In halibut, hatching is inhibited in light and activated by transfer to darkness and c-fos analysis during hatching shows that the hindbrain cluster and hatching glands have neural activation. Unexpectedly, the hindbrain cluster expresses dual photopigments, vertebrate ancient opsin and melanopsin. Evolutionarily, these opsins are believed to belong to different classes of photopigments found in rhabdomeric and ciliary photoreceptors. The concept that an organism develops transient light sensitivity to target critical aspects of life history transitions as hatching provides a fascinating landscape to investigate the timing of other biological events.
Collapse
Affiliation(s)
- Mariann Eilertsen
- Department of Biological Sciences, University of Bergen, N- 5020 Bergen, Norway.
| | - Ragnhild Valen
- Department of Molecular Biology, University of Bergen, N- 5020 Bergen, Norway
| | - Øyvind Drivenes
- Department of Molecular Biology, University of Bergen, N- 5020 Bergen, Norway
| | - Lars O E Ebbesson
- Department of Biological Sciences, University of Bergen, N- 5020 Bergen, Norway; Uni Research AS, Thormøhlensgt. 55, N-5008 Bergen, Norway
| | - Jon Vidar Helvik
- Department of Biological Sciences, University of Bergen, N- 5020 Bergen, Norway
| |
Collapse
|
115
|
Hartmann S, Vogt R, Kunze J, Rauschert A, Kuhnert KD, Wanzenböck J, Lamatsch DK, Witte K. Zebrafish larvae show negative phototaxis to near-infrared light. PLoS One 2018; 13:e0207264. [PMID: 30485324 PMCID: PMC6261574 DOI: 10.1371/journal.pone.0207264] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 10/29/2018] [Indexed: 11/22/2022] Open
Abstract
Zebrafish larvae (Danio rerio) are among the most used model species to test biological effects of different substances in biomedical research, neuroscience and ecotoxicology. Most tests are based on changes in swimming activity of zebrafish larvae by using commercially available high-throughput screening systems. These systems record and analyse behaviour patterns using visible (VIS) and near-infrared (NIR) light sources, to simulate day (VIS) and night (NIR) phases, which allow continuous recording of the behaviour using a NIR sensitive camera. So far, however, the sensitivity of zebrafish larvae to NIR has never been tested experimentally, although being a critical piece of information for interpreting their behaviour under experimental conditions. Here, we investigated the swimming activity of 96 hpf (hours post fertilization) and 120 hpf zebrafish larvae under light sources of NIR at 860 nm and at 960 nm wavelength and under VIS light. A thermal source was simultaneously presented opposite to one of the light sources as control. We found that zebrafish larvae of both larval stages showed a clear negative phototactic response towards 860 nm NIR light and to VIS light, but not to 960 nm NIR light. Our results demonstrated that zebrafish larvae are able to perceive NIR at 860 nm, which is almost identical to the most commonly used light source in commercial screening systems (NIR at 850 nm) to create a dark environment. These tests, however, are not performed in the dark from the zebrafish´s point of view. We recommend testing sensitivity of the used test organism before assuming no interaction with the applied light source of commonly used biosensor test systems. Previous studies on biological effects of substances to zebrafish larvae should be interpreted with caution.
Collapse
Affiliation(s)
- Sarah Hartmann
- Research Group of Ecology and Behavioural Biology, Institute of Biology, Department of Chemistry-Biology, University of Siegen, Siegen, Germany
| | - Roland Vogt
- Research Department for Limnology, Mondsee, University of Innsbruck, Mondsee, Austria
| | - Jan Kunze
- Institute of Real-time Learning Systems, Department of Electrical Engineering and Computer Science, University of Siegen, Siegen, Germany
| | - Anna Rauschert
- Research Group of Ecology and Behavioural Biology, Institute of Biology, Department of Chemistry-Biology, University of Siegen, Siegen, Germany
| | - Klaus-Dieter Kuhnert
- Institute of Real-time Learning Systems, Department of Electrical Engineering and Computer Science, University of Siegen, Siegen, Germany
| | - Josef Wanzenböck
- Research Department for Limnology, Mondsee, University of Innsbruck, Mondsee, Austria
| | - Dunja K. Lamatsch
- Research Department for Limnology, Mondsee, University of Innsbruck, Mondsee, Austria
| | - Klaudia Witte
- Research Group of Ecology and Behavioural Biology, Institute of Biology, Department of Chemistry-Biology, University of Siegen, Siegen, Germany
| |
Collapse
|
116
|
Dalesio NM, Barreto Ortiz SF, Pluznick JL, Berkowitz DE. Olfactory, Taste, and Photo Sensory Receptors in Non-sensory Organs: It Just Makes Sense. Front Physiol 2018; 9:1673. [PMID: 30542293 PMCID: PMC6278613 DOI: 10.3389/fphys.2018.01673] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/07/2018] [Indexed: 01/28/2023] Open
Abstract
Sensory receptors that detect and respond to light, taste, and smell primarily belong to the G-protein-coupled receptor (GPCR) superfamily. In addition to their established roles in the nose, tongue, and eyes, these sensory GPCRs have been found in many ‘non-sensory' organs where they respond to different physicochemical stimuli, initiating signaling cascades in these extrasensory systems. For example, taste receptors in the airway, and photoreceptors in vascular smooth muscle cells, both cause smooth muscle relaxation when activated. In addition, olfactory receptors are present within the vascular system, where they play roles in angiogenesis as well as in modulating vascular tone. By better understanding the physiological and pathophysiological roles of sensory receptors in non-sensory organs, novel therapeutic agents can be developed targeting these receptors, ultimately leading to treatments for pathological conditions and potential cures for various disease states.
Collapse
Affiliation(s)
- Nicholas M Dalesio
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States.,Department of Otolaryngology/Head & Neck Surgery, Johns Hopkins University, Baltimore, MD, United States
| | - Sebastian F Barreto Ortiz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Jennifer L Pluznick
- Department of Physiology, Johns Hopkins University, Baltimore, MD, United States
| | - Dan E Berkowitz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
117
|
Wang XH, Zheng SS, Huang T, Su LM, Zhao YH, Souders CL, Martyniuk CJ. Fluazinam impairs oxidative phosphorylation and induces hyper/hypo-activity in a dose specific manner in zebrafish larvae. CHEMOSPHERE 2018; 210:633-644. [PMID: 30031347 DOI: 10.1016/j.chemosphere.2018.07.056] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 06/08/2023]
Abstract
Fluazinam is a pyridinamine fungicide that induces oxidative stress and mitochondrial damage in cells, and it has been reported to be neurotoxic. To characterize the biological effects of fluazinam, we assessed mitochondrial bioenergetics, dopamine system expression, and behavior of early life staged zebrafish (0.01 μM-0.5 μM). Fluazinam at environmentally-relevant levels did not induce sub-lethal effects in larvae, but at the LC50 (0.5 μM), fluazinam decreased basal and ATP-linked respiration significantly in embryos. As mitochondria are directly related to redox homeostasis and apoptosis, the expression of genes related to oxidative stress and apoptosis were measured. Superoxide dismutase 2 (sod2), heat stock protein 70 (hsp70), bcl2-associated X protein (bax), and caspase 9 (casp9) mRNA levels were up-regulated by 0.5 μM fluazinam. Taken together, there was evidence for mitochondrial dysfunction and oxidative damage at the highest concentration of fluazinam (0.5 μM) tested. As there are reports for fluazinam-induced neurotoxicity in dopamine synthesizing cells, transcriptional targets in the dopamine system were assessed in the zebrafish. Tyrosine hydroxylase 1 (th1) and dopamine receptor 2a (drd2a) mRNA levels were decreased by 0.5 μM fluazinam, suggesting that this fungicide may affect the dopaminergic system. To further assess the potential for fluazinam-mediated neuromodulation, the dark photokinesis response was assessed in larvae following exposure. Larvae exposed to 0.1 μM fluazinam showed hyperactivity, while larvae exposed to 0.2 and 0.3 μM showed hypo-activity. This study demonstrates that fluazinam disrupts mitochondrial bioenergetics in zebrafish, inducing an oxidative stress response, and aberrant behaviors in larvae that are dose dependent.
Collapse
Affiliation(s)
- Xiao H Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, PR China; Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL, 32611, USA
| | - Shan S Zheng
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, PR China
| | - Tao Huang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, PR China
| | - Li M Su
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, PR China
| | - Yuan H Zhao
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, PR China.
| | - Christopher L Souders
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL, 32611, USA
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
118
|
Messchaert M, Dona M, Broekman S, Peters TA, Corral-Serrano JC, Slijkerman RWN, van Wijk E, Collin RWJ. Eyes shut homolog is important for the maintenance of photoreceptor morphology and visual function in zebrafish. PLoS One 2018; 13:e0200789. [PMID: 30052645 PMCID: PMC6063403 DOI: 10.1371/journal.pone.0200789] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/03/2018] [Indexed: 12/27/2022] Open
Abstract
Mutations in eyes shut homolog (EYS), a gene predominantly expressed in the photoreceptor cells of the retina, are among the most frequent causes of autosomal recessive (ar) retinitis pigmentosa (RP), a progressive retinal disorder. Due to the absence of EYS in several rodent species and its retina-specific expression, still little is known about the exact function of EYS and the pathogenic mechanism underlying EYS-associated RP. We characterized eys in zebrafish, by RT-PCR analysis on zebrafish eye-derived RNA, which led to the identification of a 8,715 nucleotide coding sequence that is divided over 46 exons. The transcript is predicted to encode a 2,905-aa protein that contains 39 EGF-like domains and five laminin A G-like domains, which overall shows 33% identity with human EYS. To study the function of EYS, we generated a stable eysrmc101/rmc101 mutant zebrafish model using CRISPR/Cas9 technology. The introduced lesion is predicted to result in premature termination of protein synthesis and lead to loss of Eys function. Immunohistochemistry on retinal sections revealed that Eys localizes at the region of the connecting cilium and that both rhodopsin and cone transducin are mislocalized in the absence of Eys. Electroretinogram recordings showed diminished b-wave amplitudes in eysrmc101/rmc101 zebrafish (5 dpf) compared to age- and strain-matched wild-type larvae. In addition, decreased locomotor activity in response to light stimuli was observed in eys mutant larvae. Altogether, our study shows that absence of Eys leads to a disorganized retinal architecture and causes visual dysfunction in zebrafish.
Collapse
Affiliation(s)
- Muriël Messchaert
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Margo Dona
- Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sanne Broekman
- Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Theo A. Peters
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Julio C. Corral-Serrano
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ralph W. N. Slijkerman
- Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Erwin van Wijk
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rob W. J. Collin
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
119
|
C2orf71a/pcare1 is important for photoreceptor outer segment morphogenesis and visual function in zebrafish. Sci Rep 2018; 8:9675. [PMID: 29946172 PMCID: PMC6018674 DOI: 10.1038/s41598-018-27928-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/17/2018] [Indexed: 02/03/2023] Open
Abstract
Mutations in C2orf71 are causative for autosomal recessive retinitis pigmentosa and occasionally cone-rod dystrophy. We have recently discovered that the protein encoded by this gene is important for modulation of the ciliary membrane through the recruitment of an actin assembly module, and have therefore renamed the gene to PCARE (photoreceptor cilium actin regulator). Here, we report on the identification of two copies of the c2orf71/pcare gene in zebrafish, pcare1 and pcare2. To study the role of the gene most similar to human PCARE, pcare1, we have generated a stable pcare1 mutant zebrafish model (designated pcare1rmc100/rmc100) in which the coding sequence was disrupted using CRISPR/Cas9 technology. Retinas of both embryonic (5 dpf) and adult (6 mpf) pcare1rmc100/rmc100 zebrafish display a clear disorganization of photoreceptor outer segments, resembling the phenotype observed in Pcare−/− mice. Optokinetic response and visual motor response measurements indicated visual impairment in pcare1rmc100/rmc100 zebrafish larvae at 5 dpf. In addition, electroretinogram measurements showed decreased b-wave amplitudes in pcare1rmc100/rmc100 zebrafish as compared to age- and strain-matched wild-type larvae, indicating a defect in the transretinal current. Altogether, our data show that lack of pcare1 causes a retinal phenotype in zebrafish and indicate that the function of the PCARE gene is conserved across species.
Collapse
|
120
|
Yang YHC, Kawakami K, Stainier DY. A new mode of pancreatic islet innervation revealed by live imaging in zebrafish. eLife 2018; 7:34519. [PMID: 29916364 PMCID: PMC6039180 DOI: 10.7554/elife.34519] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 06/18/2018] [Indexed: 12/13/2022] Open
Abstract
Pancreatic islets are innervated by autonomic and sensory nerves that influence their function. Analyzing the innervation process should provide insight into the nerve-endocrine interactions and their roles in development and disease. Here, using in vivo time-lapse imaging and genetic analyses in zebrafish, we determined the events leading to islet innervation. Comparable neural density in the absence of vasculature indicates that it is dispensable for early pancreatic innervation. Neural crest cells are in close contact with endocrine cells early in development. We find these cells give rise to neurons that extend axons toward the islet as they surprisingly migrate away. Specific ablation of these neurons partly prevents other neurons from migrating away from the islet resulting in diminished innervation. Thus, our studies establish the zebrafish as a model to interrogate mechanisms of organ innervation, and reveal a novel mode of innervation whereby neurons establish connections with their targets before migrating away.
Collapse
Affiliation(s)
- Yu Hsuan Carol Yang
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Koichi Kawakami
- Division of Molecular and Developmental Biology, National Institute of Genetics, Mishima, Japan.,Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima, Japan
| | - Didier Yr Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
121
|
Jesuthasan S. The thalamo-habenula projection revisited. Semin Cell Dev Biol 2018; 78:116-119. [DOI: 10.1016/j.semcdb.2017.08.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/07/2017] [Accepted: 08/07/2017] [Indexed: 11/29/2022]
|
122
|
Haehnel-Taguchi M, Fernandes AM, Böhler M, Schmitt I, Tittel L, Driever W. Projections of the Diencephalospinal Dopaminergic System to Peripheral Sense Organs in Larval Zebrafish ( Danio rerio). Front Neuroanat 2018; 12:20. [PMID: 29615872 PMCID: PMC5868122 DOI: 10.3389/fnana.2018.00020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/05/2018] [Indexed: 01/04/2023] Open
Abstract
Dopaminergic neurons of the descending diencephalospinal system are located in the posterior tuberculum (PT) in zebrafish (Danio rerio), and correspond in mammals to the A11 group in hypothalamus and thalamus. In the larval zebrafish, they are likely the only source of central dopaminergic projections to the periphery. Here, we characterized posterior tubercular dopaminergic fibers projecting to peripheral sense organs, with a focus on the lateral line neuromasts. We labeled and identified catecholaminergic neurons and their projections by combining two immunofluorescence techniques, (i) using an antibody against Tyrosine hydroxylase, and (ii) using an antibody against GFP in transgenic zebrafish expressing in catecholaminergic neurons either membrane-anchored GFP to track fibers, or a Synaptophysin-GFP fusion to visualize putative synapses. We applied the CLARITY method to 6 days old whole zebrafish larvae to stain and analyze dopaminergic projections by confocal microscopy. We found that all lateral line neuromasts receive direct innervation by posterior tubercular dopaminergic neurons, and tracked these projections in detail. In addition, we found dopaminergic fibers projecting to the anterior and posterior lateral line ganglia, and extensive central dopaminergic arborizations around the terminal projection field of the lateral line afferent neurons in the hindbrain medial octavolateralis nucleus (MON). Therefore, dopaminergic innervation may affect lateral line sense information at different processing stages. Additional dopaminergic fibers innervate the trigeminal ganglion, and we observed fine catecholaminergic fibers in the skin with arborization patterns similar to free sensory nerve endings. We also detected potentially dopaminergic fibers innervating inner ear sensory epithelia. Therefore, the diencephalospinal A11-type dopaminergic system may broadly modulate peripheral senses. We also briefly report peripheral sympathetic catecholaminergic projections labeled in our experiments, and their innervation of the developing intestine, swim bladder and abdominal organs.
Collapse
Affiliation(s)
- Melanie Haehnel-Taguchi
- Developmental Biology, Faculty of Biology, Institute Biology I, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - António M Fernandes
- Developmental Biology, Faculty of Biology, Institute Biology I, Albert-Ludwigs-University Freiburg, Freiburg, Germany.,Department Genes-Circuits-Behavior, Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Margit Böhler
- Developmental Biology, Faculty of Biology, Institute Biology I, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Ina Schmitt
- Developmental Biology, Faculty of Biology, Institute Biology I, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Lena Tittel
- Developmental Biology, Faculty of Biology, Institute Biology I, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Wolfgang Driever
- Developmental Biology, Faculty of Biology, Institute Biology I, Albert-Ludwigs-University Freiburg, Freiburg, Germany.,BIOSS-Centre for Biological Signaling Studies, Freiburg, Germany
| |
Collapse
|
123
|
Shontz EC, Souders CL, Schmidt JT, Martyniuk CJ. Domperidone upregulates dopamine receptor expression and stimulates locomotor activity in larval zebrafish (Danio rerio
). GENES BRAIN AND BEHAVIOR 2018; 17:e12460. [DOI: 10.1111/gbb.12460] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/28/2017] [Accepted: 01/23/2018] [Indexed: 12/27/2022]
Affiliation(s)
- E. C. Shontz
- Department of Physiological Sciences and Center for Environmental and Human Toxicology; University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida; Gainesville Florida
| | - C. L. Souders
- Department of Physiological Sciences and Center for Environmental and Human Toxicology; University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida; Gainesville Florida
| | - J. T. Schmidt
- Department of Physiological Sciences and Center for Environmental and Human Toxicology; University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida; Gainesville Florida
| | - C. J. Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology; University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida; Gainesville Florida
| |
Collapse
|
124
|
Brüning A, Hölker F, Franke S, Kleiner W, Kloas W. Influence of light intensity and spectral composition of artificial light at night on melatonin rhythm and mRNA expression of gonadotropins in roach Rutilus rutilus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:1-12. [PMID: 28721487 DOI: 10.1007/s10695-017-0408-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 07/06/2017] [Indexed: 05/10/2023]
Abstract
In this study we investigated the influence of artificial light at night (ALAN) of different intensities (0, 1, 10, 100 lx) and different colours (blue, green, red) on the daily melatonin rhythm and mRNA expression of gonadotropins in roach Rutilus rutilus, a ubiquitous cyprinid, which occur in standing and moderately flowing freshwater habitats of central Europe. Melatonin concentrations were significantly lowered under nocturnal white light already at 1 lx. Low intensity blue, green and red ALAN lowered the melatonin levels significantly in comparison to a dark control. We conclude that ALAN can disturb melatonin rhythms in roach at very low intensities and at different wavelengths and thus light pollution in urban waters has the potential to impact biological rhythms in fish. However, mRNA expression of gonadotropins was not affected by ALAN during the period of the experiments. Thus, suspected implications of ALAN on reproduction of roach could not be substantiated.
Collapse
Affiliation(s)
- Anika Brüning
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany.
- Free University of Berlin, Institute of Biology, Schwendenerstr. 1, 14195, Berlin, Germany.
| | - Franz Hölker
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany
| | - Steffen Franke
- Leibniz Institute for Plasma Science and Technology, Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Wibke Kleiner
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany
| | - Werner Kloas
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany
| |
Collapse
|
125
|
Heap LA, Vanwalleghem GC, Thompson AW, Favre-Bulle I, Rubinsztein-Dunlop H, Scott EK. Hypothalamic Projections to the Optic Tectum in Larval Zebrafish. Front Neuroanat 2018; 11:135. [PMID: 29403362 PMCID: PMC5777135 DOI: 10.3389/fnana.2017.00135] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/20/2017] [Indexed: 11/13/2022] Open
Abstract
The optic tectum of larval zebrafish is an important model for understanding visual processing in vertebrates. The tectum has been traditionally viewed as dominantly visual, with a majority of studies focusing on the processes by which tectal circuits receive and process retinally-derived visual information. Recently, a handful of studies have shown a much more complex role for the optic tectum in larval zebrafish, and anatomical and functional data from these studies suggest that this role extends beyond the visual system, and beyond the processing of exclusively retinal inputs. Consistent with this evolving view of the tectum, we have used a Gal4 enhancer trap line to identify direct projections from rostral hypothalamus (RH) to the tectal neuropil of larval zebrafish. These projections ramify within the deepest laminae of the tectal neuropil, the stratum album centrale (SAC)/stratum griseum periventriculare (SPV), and also innervate strata distinct from those innervated by retinal projections. Using optogenetic stimulation of the hypothalamic projection neurons paired with calcium imaging in the tectum, we find rebound firing in tectal neurons consistent with hypothalamic inhibitory input. Our results suggest that tectal processing in larval zebrafish is modulated by hypothalamic inhibitory inputs to the deep tectal neuropil.
Collapse
Affiliation(s)
- Lucy A. Heap
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD, Australia
| | | | - Andrew W. Thompson
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Itia Favre-Bulle
- School of Maths and Physics, The University of Queensland, St. Lucia, QLD, Australia
| | | | - Ethan K. Scott
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD, Australia
- The Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, Australia
| |
Collapse
|
126
|
Transient cardiomyocyte fusion regulates cardiac development in zebrafish. Nat Commun 2017; 8:1525. [PMID: 29142194 PMCID: PMC5688123 DOI: 10.1038/s41467-017-01555-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 09/27/2017] [Indexed: 12/31/2022] Open
Abstract
Cells can sacrifice their individuality by fusing, but the prevalence and significance of this process are poorly understood. To approach these questions, here we generate transgenic reporter lines in zebrafish to label and specifically ablate fused cells. In addition to skeletal muscle cells, the reporters label cardiomyocytes starting at an early developmental stage. Genetic mosaics generated by cell transplantation show cardiomyocytes expressing both donor- and host-derived transgenes, confirming the occurrence of fusion in larval hearts. These fusion events are transient and do not generate multinucleated cardiomyocytes. Functionally, cardiomyocyte fusion correlates with their mitotic activity during development as well as during regeneration in adult animals. By analyzing the cell fusion-compromised jam3b mutants, we propose a role for membrane fusion in cardiomyocyte proliferation and cardiac function. Together, our findings uncover the previously unrecognized process of transient cardiomyocyte fusion and identify its potential role in cardiac development and function. Cell fusion regulates several physiological events, for example, fusion of myoblasts in skeletal muscle formation, but it is unclear if this process occurs in the heart. Here, the authors use transgenic reporters in zebrafish to show transient cardiomyocyte fusion, modulating cardiac development and function.
Collapse
|
127
|
Mohamed GA, Cheng RK, Ho J, Krishnan S, Mohammad F, Claridge-Chang A, Jesuthasan S. Optical inhibition of larval zebrafish behaviour with anion channelrhodopsins. BMC Biol 2017; 15:103. [PMID: 29100505 PMCID: PMC5670698 DOI: 10.1186/s12915-017-0430-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/25/2017] [Indexed: 12/02/2022] Open
Abstract
Background Optical silencing of activity provides a way to test the necessity of neurons in behaviour. Two light-gated anion channels, GtACR1 and GtACR2, have recently been shown to potently inhibit activity in cultured mammalian neurons and in Drosophila. Here, we test the usefulness of these channels in larval zebrafish, using spontaneous coiling behaviour as the assay. Results When the GtACRs were expressed in spinal neurons of embryonic zebrafish and actuated with blue or green light, spontaneous movement was inhibited. In GtACR1-expressing fish, only 3 μW/mm2 of light was sufficient to have an effect; GtACR2, which is poorly trafficked, required slightly stronger illumination. No inhibition was seen in non-expressing siblings. After light offset, the movement of GtACR-expressing fish increased, which suggested that termination of light-induced neural inhibition may lead to activation. Consistent with this, two-photon imaging of spinal neurons showed that blue light inhibited spontaneous activity in spinal neurons of GtACR1-expressing fish, and that the level of intracellular calcium increased following light offset. Conclusions These results show that GtACR1 and GtACR2 can be used to optically inhibit neurons in larval zebrafish with high efficiency. The activity elicited at light offset needs to be taken into consideration in experimental design, although this property can provide insight into the effects of transiently stimulating a circuit. Electronic supplementary material The online version of this article (doi:10.1186/s12915-017-0430-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gadisti Aisha Mohamed
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Ruey-Kuang Cheng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Joses Ho
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Seetha Krishnan
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | | | - Adam Claridge-Chang
- Institute of Molecular and Cell Biology, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore
| | - Suresh Jesuthasan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore. .,Institute of Molecular and Cell Biology, Singapore, Singapore. .,Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
128
|
Cheng RK, Krishnan S, Lin Q, Kibat C, Jesuthasan S. Characterization of a thalamic nucleus mediating habenula responses to changes in ambient illumination. BMC Biol 2017; 15:104. [PMID: 29100543 PMCID: PMC5670518 DOI: 10.1186/s12915-017-0431-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/25/2017] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Neural activity in the vertebrate habenula is affected by ambient illumination. The nucleus that links photoreceptor activity with the habenula is not well characterized. Here, we describe the location, inputs and potential function of this nucleus in larval zebrafish. RESULTS High-speed calcium imaging shows that light ON and OFF both evoke a rapid response in the dorsal left neuropil of the habenula, indicating preferential targeting of this neuropil by afferents conveying information about ambient illumination. Injection of a lipophilic dye into this neuropil led to bilateral labeling of a nucleus in the anterior thalamus that responds to light ON and OFF, and that receives innervation from the retina and pineal organ. Lesioning the neuropil of this thalamic nucleus reduced the habenula response to light ON and OFF. Optogenetic stimulation of the thalamus with channelrhodopsin-2 caused depolarization in the habenula, while manipulation with anion channelrhodopsins inhibited habenula response to light and disrupted climbing and diving evoked by illumination change. CONCLUSIONS A nucleus in the anterior thalamus of larval zebrafish innervates the dorsal left habenula. This nucleus receives input from the retina and pineal, responds to increase and decrease in ambient illumination, enables habenula responses to change in irradiance, and may function in light-evoked vertical migration.
Collapse
Affiliation(s)
- Ruey-Kuang Cheng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
| | - Seetha Krishnan
- NUS Graduate School for Integrative Sciences and Engineering, 28 Medical Drive, National University of Singapore, Singapore, 117456, Singapore
| | - Qian Lin
- NUS Graduate School for Integrative Sciences and Engineering, 28 Medical Drive, National University of Singapore, Singapore, 117456, Singapore
| | - Caroline Kibat
- Neural Circuitry and Behavior Laboratory, Institute of Molecular and Cell Biology, Singapore, 138673, Singapore
| | - Suresh Jesuthasan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore.
- Neural Circuitry and Behavior Laboratory, Institute of Molecular and Cell Biology, Singapore, 138673, Singapore.
- Neuroscience and Behavioral Disorders Program, Duke-NUS Graduate Medical School, 8 College Road, Singapore, 169857, Singapore.
- Department of Physiology, National University of Singapore, Singapore, 117597, Singapore.
| |
Collapse
|
129
|
Prats E, Gómez-Canela C, Ben-Lulu S, Ziv T, Padrós F, Tornero D, Garcia-Reyero N, Tauler R, Admon A, Raldúa D. Modelling acrylamide acute neurotoxicity in zebrafish larvae. Sci Rep 2017; 7:13952. [PMID: 29066856 PMCID: PMC5655329 DOI: 10.1038/s41598-017-14460-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/10/2017] [Indexed: 12/13/2022] Open
Abstract
Acrylamide (ACR), a type-2 alkene, may lead to a synaptopathy characterized by ataxia, skeletal muscles weakness and numbness of the extremities in exposed human and laboratory animals. Currently, only the mildly affected patients undergo complete recovery, and identification of new molecules with therapeutic bioactivity against ACR acute neurotoxicity is urgently needed. Here, we have generated a zebrafish model for ACR neurotoxicity by exposing 5 days post-fertilization zebrafish larvae to 1 mM ACR for 3 days. Our results show that zebrafish mimics most of the pathophysiological processes described in humans and mammalian models. Motor function was altered, and specific effects were found on the presynaptic nerve terminals at the neuromuscular junction level, but not on the axonal tracts or myelin sheath integrity. Transcriptional markers of proteins involved in synaptic vesicle cycle were selectively altered, and the proteomic analysis showed that ACR-adducts were formed on cysteine residues of some synaptic proteins. Finally, analysis of neurotransmitters profile showed a significant effect on cholinergic and dopaminergic systems. These data support the suitability of the developed zebrafish model for screening of molecules with therapeutic value against this toxic neuropathy.
Collapse
Affiliation(s)
- Eva Prats
- CID-CSIC, Jordi Girona 18, 08034, Barcelona, Spain
| | | | - Shani Ben-Lulu
- The Smoler Proteomics Center and the Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Tamar Ziv
- The Smoler Proteomics Center and the Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Francesc Padrós
- Fish Diseases Diagnostic Service, Facultat de Veterinària. Universitat Autònoma de Barcelona, 08190, Bellaterra (Cerdanyola del Vallès), Spain
| | | | - Natàlia Garcia-Reyero
- Environmental Laboratory-US Army Engineer Research and Development Center, Vicksburg, MS, USA
| | - Romà Tauler
- IDAEA-CSIC, Jordi Girona 18, 08034, Barcelona, Spain
| | - Arie Admon
- The Smoler Proteomics Center and the Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | | |
Collapse
|
130
|
Shimmura T, Nakayama T, Shinomiya A, Fukamachi S, Yasugi M, Watanabe E, Shimo T, Senga T, Nishimura T, Tanaka M, Kamei Y, Naruse K, Yoshimura T. Dynamic plasticity in phototransduction regulates seasonal changes in color perception. Nat Commun 2017; 8:412. [PMID: 28871081 PMCID: PMC5583187 DOI: 10.1038/s41467-017-00432-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/28/2017] [Indexed: 12/05/2022] Open
Abstract
To cope with seasonal changes in the environment, organisms adapt their physiology and behavior. Although color perception varies among seasons, the underlying molecular basis and its physiological significance remain unclear. Here we show that dynamic plasticity in phototransduction regulates seasonal changes in color perception in medaka fish. Medaka are active and exhibit clear phototaxis in conditions simulating summer, but remain at the bottom of the tank and fail to exhibit phototaxis in conditions simulating winter. Mate preference tests using virtual fish created with computer graphics demonstrate that medaka are more attracted to orange-red-colored model fish in summer than in winter. Transcriptome analysis of the eye reveals dynamic seasonal changes in the expression of genes encoding photopigments and their downstream pathways. Behavioral analysis of photopigment-null fish shows significant differences from wild type, suggesting that plasticity in color perception is crucial for the emergence of seasonally regulated behaviors. Animal coloration and behavior can change seasonally, but it is unclear if visual sensitivity to color shifts as well. Here, Shimmura et al. show that medaka undergo seasonal behavioral change accompanied by altered expression of opsin genes, resulting in reduced visual sensitivity to mates during winter-like conditions.
Collapse
Affiliation(s)
- Tsuyoshi Shimmura
- Division of Seasonal Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8585, Japan.,Department of Basic Biology, The Graduate University for Advanced Studies (SOKENDAI), Hayama, 240-0193, Japan.,Laboratory of Animal Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan.,Department of Biological Production, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Tomoya Nakayama
- Division of Seasonal Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8585, Japan.,Laboratory of Animal Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Ai Shinomiya
- Division of Seasonal Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8585, Japan.,Department of Basic Biology, The Graduate University for Advanced Studies (SOKENDAI), Hayama, 240-0193, Japan
| | - Shoji Fukamachi
- Department of Chemical and Biological Sciences, Japan Women's University, Bunkyo-ku, Tokyo, 112-8681, Japan
| | - Masaki Yasugi
- Laboratory of Neurophysiology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8585, Japan
| | - Eiji Watanabe
- Department of Basic Biology, The Graduate University for Advanced Studies (SOKENDAI), Hayama, 240-0193, Japan.,Laboratory of Neurophysiology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8585, Japan
| | - Takayuki Shimo
- Division of Seasonal Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8585, Japan.,Laboratory of Animal Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Takumi Senga
- Division of Seasonal Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8585, Japan.,Laboratory of Animal Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Toshiya Nishimura
- Laboratory of Molecular Genetics for Reproduction, National Institute for Basic Biology, Okazaki, Aichi, 444-8787, Japan.,Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Minoru Tanaka
- Department of Basic Biology, The Graduate University for Advanced Studies (SOKENDAI), Hayama, 240-0193, Japan.,Laboratory of Molecular Genetics for Reproduction, National Institute for Basic Biology, Okazaki, Aichi, 444-8787, Japan.,Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Yasuhiro Kamei
- Department of Basic Biology, The Graduate University for Advanced Studies (SOKENDAI), Hayama, 240-0193, Japan.,Spectrography and Bioimaging Facility, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8585, Japan
| | - Kiyoshi Naruse
- Department of Basic Biology, The Graduate University for Advanced Studies (SOKENDAI), Hayama, 240-0193, Japan.,Laboratory of Bioresources, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8585, Japan
| | - Takashi Yoshimura
- Division of Seasonal Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8585, Japan. .,Laboratory of Animal Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan. .,Avian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan. .,Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, 464-8601, Aichi, Japan.
| |
Collapse
|
131
|
Barreiro-Iglesias A, Fernández-López B, Sobrido-Cameán D, Anadón R. Organization of alpha-transducin immunoreactive system in the brain and retina of larval and young adult Sea Lamprey (Petromyzon marinus), and their relationship with other neural systems. J Comp Neurol 2017; 525:3683-3704. [DOI: 10.1002/cne.24296] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 07/17/2017] [Accepted: 07/19/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Antón Barreiro-Iglesias
- Department of Functional Biology, Faculty of Biology; University of Santiago de Compostela; Santiago de Compostela Spain
| | - Blanca Fernández-López
- Department of Functional Biology, Faculty of Biology; University of Santiago de Compostela; Santiago de Compostela Spain
| | - Daniel Sobrido-Cameán
- Department of Functional Biology, Faculty of Biology; University of Santiago de Compostela; Santiago de Compostela Spain
| | - Ramón Anadón
- Department of Functional Biology, Faculty of Biology; University of Santiago de Compostela; Santiago de Compostela Spain
| |
Collapse
|
132
|
Affiliation(s)
- Michael B. Orger
- Champalimaud Research, Champalimaud Foundation, 1400-038 Lisbon, Portugal;,
| | | |
Collapse
|
133
|
Abstract
Changes in illumination can rapidly influence behavior that is normally controlled by the circadian clock. This effect is termed masking. In mice, masking requires melanopsin-expressing retinal ganglion cells that detect blue light and project to the thalamus. It is not known whether masking is wavelength-dependent in other vertebrates, nor is it known whether the thalamus is also involved or how it influences masking. Here, we address these questions in zebrafish. We find that diel vertical migration, a circadian behavior in larval zebrafish, is effectively triggered by blue, but not by red light. Two-photon calcium imaging reveals that a thalamic nucleus and a downstream structure, the habenula, have a sustained response to blue but not to red light. Lesioning the habenula reduces light-evoked climbing. These data suggest that the thalamo-habenula pathway is involved in the ability of blue light to influence a circadian behavior.
Collapse
Affiliation(s)
- Qian Lin
- NUS Graduate School for Integrative Sciences and Engineering, 28 Medical Drive, National University of Singapore, Singapore, 117456, Singapore.,The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Suresh Jesuthasan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore. .,Neural Circuitry and Behavior Laboratory, Institute of Molecular and Cell Biology, Singapore, 138673, Singapore. .,Neuroscience and Behavioral Disorders Program, Duke-NUS Graduate Medical School, 8 College Road, Singapore, 169857, Singapore. .,Department of Physiology, National University of Singapore, Singapore, 117597, Singapore.
| |
Collapse
|
134
|
Boulanger-Weill J, Candat V, Jouary A, Romano SA, Pérez-Schuster V, Sumbre G. Functional Interactions between Newborn and Mature Neurons Leading to Integration into Established Neuronal Circuits. Curr Biol 2017; 27:1707-1720.e5. [PMID: 28578928 PMCID: PMC5483231 DOI: 10.1016/j.cub.2017.05.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/03/2017] [Accepted: 05/09/2017] [Indexed: 02/02/2023]
Abstract
From development up to adulthood, the vertebrate brain is continuously supplied with newborn neurons that integrate into established mature circuits. However, how this process is coordinated during development remains unclear. Using two-photon imaging, GCaMP5 transgenic zebrafish larvae, and sparse electroporation in the larva's optic tectum, we monitored spontaneous and induced activity of large neuronal populations containing newborn and functionally mature neurons. We observed that the maturation of newborn neurons is a 4-day process. Initially, newborn neurons showed undeveloped dendritic arbors, no neurotransmitter identity, and were unresponsive to visual stimulation, although they displayed spontaneous calcium transients. Later on, newborn-labeled neurons began to respond to visual stimuli but in a very variable manner. At the end of the maturation period, newborn-labeled neurons exhibited visual tuning curves (spatial receptive fields and direction selectivity) and spontaneous correlated activity with neighboring functionally mature neurons. At this developmental stage, newborn-labeled neurons presented complex dendritic arbors and neurotransmitter identity (excitatory or inhibitory). Removal of retinal inputs significantly perturbed the integration of newborn neurons into the functionally mature tectal network. Our results provide a comprehensive description of the maturation of newborn neurons during development and shed light on potential mechanisms underlying their integration into a functionally mature neuronal circuit.
Collapse
Affiliation(s)
- Jonathan Boulanger-Weill
- IBENS, Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, 75005 Paris, France
| | - Virginie Candat
- IBENS, Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, 75005 Paris, France
| | - Adrien Jouary
- IBENS, Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, 75005 Paris, France
| | - Sebastián A Romano
- IBENS, Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, 75005 Paris, France; Instituto de Investigación en Biomedicina de Buenos Aires - CONICET - Partner Institute of the Max Planck Society, 1428 Buenos Aires, Argentina
| | - Verónica Pérez-Schuster
- IBENS, Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, 75005 Paris, France; Laboratorio de Neurobiología de la Memoria, Departamento Fisiología, Biología Molecular y Celular, FCEyN, UBA and IFIBYNE-CONICET, Ciudad Universitaria, 1428 Buenos Aires, Argentina; Departamento de Física, FCEyN, UBA and IFIBA-CONICET, Pabellón 1, Ciudad Universitaria, 1428 Buenos Aires, Argentina
| | - Germán Sumbre
- IBENS, Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, 75005 Paris, France.
| |
Collapse
|
135
|
Abstract
Rhodopsin is the classical light sensor. Although rhodopsin has long been known to be important for image formation in the eye, the requirements for opsins in non-image formation and in extraocular light sensation were revealed much later. Most recent is the demonstration that an opsin in the fruit fly, Drosophila melanogaster, is expressed in pacemaker neurons in the brain and functions in light entrainment of circadian rhythms. However, the biggest surprise is that opsins have light-independent roles, countering more than a century of dogma that they function exclusively as light sensors. Through studies in Drosophila, light-independent roles of opsins have emerged in temperature sensation and hearing. Although these findings have been uncovered in the fruit fly, there are hints that opsins have light-independent roles in a wide array of animals, including mammals. Thus, despite the decades of focus on opsins as light detectors, they represent an important new class of polymodal sensory receptor.
Collapse
Affiliation(s)
- Nicole Y Leung
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106;
| | - Craig Montell
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106;
| |
Collapse
|
136
|
Liu Y, Ma P, Cassidy PA, Carmer R, Zhang G, Venkatraman P, Brown SA, Pang CP, Zhong W, Zhang M, Leung YF. Statistical Analysis of Zebrafish Locomotor Behaviour by Generalized Linear Mixed Models. Sci Rep 2017; 7:2937. [PMID: 28592855 PMCID: PMC5462837 DOI: 10.1038/s41598-017-02822-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 04/19/2017] [Indexed: 12/13/2022] Open
Abstract
Upon a drastic change in environmental illumination, zebrafish larvae display a rapid locomotor response. This response can be simultaneously tracked from larvae arranged in multi-well plates. The resulting data have provided new insights into neuro-behaviour. The features of these data, however, present a challenge to traditional statistical tests. For example, many larvae display little or no movement. Thus, the larval responses have many zero values and are imbalanced. These responses are also measured repeatedly from the same well, which results in correlated observations. These analytical issues were addressed in this study by the generalized linear mixed model (GLMM). This approach deals with binary responses and characterizes the correlation of observations in the same group. It was used to analyze a previously reported dataset. Before applying the GLMM, the activity values were transformed to binary responses (movement vs. no movement) to reduce data imbalance. Moreover, the GLMM estimated the variations among the effects of different well locations, which would eliminate the location effects when two biological groups or conditions were compared. By addressing the data-imbalance and location-correlation issues, the GLMM effectively quantified true biological effects on zebrafish locomotor response.
Collapse
Affiliation(s)
- Yiwen Liu
- Department of Statistics, University of Georgia, 101 Cedar St, Athens, GA, 30602, USA
| | - Ping Ma
- Department of Statistics, University of Georgia, 101 Cedar St, Athens, GA, 30602, USA
| | - Paige A Cassidy
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN, 47907, USA
| | - Robert Carmer
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN, 47907, USA.,Department of Statistics, 250 N University Street, Purdue University, West Lafayette, IN, 47907, USA
| | - Gaonan Zhang
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN, 47907, USA
| | - Prahatha Venkatraman
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN, 47907, USA
| | - Skye A Brown
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN, 47907, USA
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Wenxuan Zhong
- Department of Statistics, University of Georgia, 101 Cedar St, Athens, GA, 30602, USA.
| | - Mingzhi Zhang
- Joint Shantou International Eye Center, Shantou University & the Chinese University of Hong Kong, Shantou, China.
| | - Yuk Fai Leung
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN, 47907, USA. .,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine Lafayette, 625 Harrison Street, West Lafayette, IN, 47907, USA. .,Purdue Institute for Integrative neuroscience, 610 Purdue Mall, Purdue University, West Lafayette, IN, 47907, USA. .,Purdue Institute for Drug Discovery, 610 Purdue Mall, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
137
|
Utilizing Zebrafish Visual Behaviors in Drug Screening for Retinal Degeneration. Int J Mol Sci 2017; 18:ijms18061185. [PMID: 28574477 PMCID: PMC5486008 DOI: 10.3390/ijms18061185] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 05/14/2017] [Accepted: 05/16/2017] [Indexed: 12/15/2022] Open
Abstract
Zebrafish are a popular vertebrate model in drug discovery. They produce a large number of small and rapidly-developing embryos. These embryos display rich visual-behaviors that can be used to screen drugs for treating retinal degeneration (RD). RD comprises blinding diseases such as Retinitis Pigmentosa, which affects 1 in 4000 people. This disease has no definitive cure, emphasizing an urgency to identify new drugs. In this review, we will discuss advantages, challenges, and research developments in using zebrafish behaviors to screen drugs in vivo. We will specifically discuss a visual-motor response that can potentially expedite discovery of new RD drugs.
Collapse
|
138
|
Further characterisation of differences between TL and AB zebrafish (Danio rerio): Gene expression, physiology and behaviour at day 5 of the larval stage. PLoS One 2017; 12:e0175420. [PMID: 28419104 PMCID: PMC5395159 DOI: 10.1371/journal.pone.0175420] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/24/2017] [Indexed: 11/19/2022] Open
Abstract
Zebrafish (Danio rerio) have become popular as model organism in research. Many strains are readily available, which not only differ morphologically, but also genetically, physiologically and behaviourally. Here, we focus on the AB and Tupfel long-fin (TL) strain for which we have previously shown that adults differ in baseline hypothalamus-pituitary-interrenal (HPI)-axis activity (AB higher than TL) affecting inhibitory avoidance behaviour (absent in AB). To assess whether strain differences are already present in early life stages, we compared baseline HPI-axis related gene expression as well as cortisol levels, (neuro)development related as well as (innate) immune system related gene expression, and light-dark as well as startle behaviour in larvae 5 days post fertilisation. The data show that AB and TL larvae differ in baseline HPI-axis activity (AB higher than TL), expression of (neuro)development and immune system related genes (AB higher than TL), habituation to acoustic/vibrational stimuli (AB habituate faster than TL) and light-dark induced changes in motor behaviour (AB stronger than TL). Our data show that already in larval stages differences exist between zebrafish of the AB and TL strain confirming and extending data of earlier studies. To what extent the mutation in connexin 41.8, leading to spots rather than stripes in TL, but also (possibly) affecting eye, heart and brain function, is involved in the expression of (some of) these differences needs to be studied. These results emphasise that differences between strains need to be taken into account to enhance reproducibility both within, and between, laboratories.
Collapse
|
139
|
Levitas-Djerbi T, Appelbaum L. Modeling sleep and neuropsychiatric disorders in zebrafish. Curr Opin Neurobiol 2017; 44:89-93. [PMID: 28414966 DOI: 10.1016/j.conb.2017.02.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/28/2017] [Indexed: 01/03/2023]
Abstract
What are the molecular and cellular mechanisms that link neurological disorders and sleep disturbances? The transparent zebrafish model could bridge this gap in knowledge due to its unique genetic and imaging toolbox, and amenability to high-throughput screening. Sleep is well-characterized in zebrafish and key regulators of the sleep/wake cycle are conserved, including melatonin and hypocretin/orexin (Hcrt), whereas novel sleep regulating proteins are continually being identified, such as Kcnh4a, Neuromedin U, and QRFP. Sleep deficiencies have been observed in various zebrafish models for genetic neuropsychiatric disorders, ranging from psychomotor retardation and autism to anxiety disorders. Understanding the link between neuropsychiatric disorders and sleep phenotypes in zebrafish may ultimately provide a platform for identifying therapeutic targets for clinical trials in humans.
Collapse
Affiliation(s)
- Talia Levitas-Djerbi
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Lior Appelbaum
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
140
|
Burton CE, Zhou Y, Bai Q, Burton EA. Spectral properties of the zebrafish visual motor response. Neurosci Lett 2017; 646:62-67. [PMID: 28267562 DOI: 10.1016/j.neulet.2017.03.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 11/19/2022]
Abstract
Larval zebrafish react to changes in ambient illumination with a series of stereotyped motor responses, called the visual motor response (VMR). The VMR has been used widely in zebrafish models to analyze how genetic or environmental manipulations alter neurological function. Prior studies elicited the VMR using white light. In order to elucidate the underlying afferent pathways and to identify light wavelengths that elicit the VMR without also activating optogenetic reagents, we employed calibrated narrow-waveband light sources to analyze the spectral properties of the response. Narrow light wavebands with peaks between 399nm and 632nm triggered the characteristic phases of the VMR, but there were quantitative differences between responses to different light wavelengths at the same irradiant flux density. The O-bend component of the VMR was elicited readily at dark onset following illumination in 399nm or 458nm light, but was less prominent at the transition from 632nm light to dark. Conversely, stable motor activity in light was observed at 458nm, 514nm, and 632nm, but not at 399nm. The differential effect of discrete light wavebands on components of the VMR suggests they are driven by distinct photoreceptor populations. Furthermore, these data enable the selection of light wavebands to drive the VMR in a separate channel to the activation of optogenetic reagents and photosensitizers.
Collapse
Affiliation(s)
| | - Yangzhong Zhou
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA; Tsinghua University Medical School, Beijing, China
| | - Qing Bai
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Edward A Burton
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
141
|
Proteolysis regulates cardiomyocyte maturation and tissue integration. Nat Commun 2017; 8:14495. [PMID: 28211472 PMCID: PMC5321751 DOI: 10.1038/ncomms14495] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 01/04/2017] [Indexed: 12/20/2022] Open
Abstract
Tissue integrity is critical for organ formation and function. During heart development, cardiomyocytes differentiate and integrate to form a coherent tissue that contracts synchronously. However, the molecular mechanisms regulating cardiac tissue integrity are poorly understood. Here we show that proteolysis, via the E3 ubiquitin ligase ASB2, regulates cardiomyocyte maturation and tissue integrity. Cardiomyocytes in asb2b zebrafish mutants fail to terminally differentiate, resulting in reduced cardiac contractility and output. Mosaic analyses reveal a cell-autonomous requirement for Asb2b in cardiomyocytes for their integration as asb2b mutant cardiomyocytes are unable to meld into wild-type myocardial tissue. In vitro and in vivo data indicate that ASB2 negatively regulates TCF3, a bHLH transcription factor. TCF3 must be degraded for cardiomyocyte maturation, as TCF3 gain-of-function causes a number of phenotypes associated with cardiomyocyte dedifferentiation. Overall, our results show that proteolysis has an important role in cardiomyocyte maturation and the formation of a coherent myocardial tissue. Proper heart development and synchronous cardiomyocyte contraction rely on tissue integrity. Here the authors show that the ubiquitin-proteasome system and the E3 ubiquitin ligase ASB2 in particular are crucial for cardiomyocyte maturation and tissue integrity through the degradation of the TCF3 transcription factor.
Collapse
|
142
|
Left Habenula Mediates Light-Preference Behavior in Zebrafish via an Asymmetrical Visual Pathway. Neuron 2017; 93:914-928.e4. [PMID: 28190643 DOI: 10.1016/j.neuron.2017.01.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 11/23/2016] [Accepted: 01/13/2017] [Indexed: 12/21/2022]
Abstract
Habenula (Hb) plays critical roles in emotion-related behaviors through integrating inputs mainly from the limbic system and basal ganglia. However, Hb also receives inputs from multiple sensory modalities. The function and underlying neural circuit of Hb sensory inputs remain unknown. Using larval zebrafish, we found that left dorsal Hb (dHb, a homolog of mammalian medial Hb) mediates light-preference behavior by receiving visual inputs from a specific subset of retinal ganglion cells (RGCs) through eminentia thalami (EmT). Loss- and gain-of-function manipulations showed that left, but not right, dHb activities, which encode environmental illuminance, are necessary and sufficient for light-preference behavior. At circuit level, left dHb neurons receive excitatory monosynaptic inputs from bilateral EmT, and EmT neurons are contacted mainly by sustained ON-type RGCs at the arborization field 4 of retinorecipient brain areas. Our findings discover a previously unidentified asymmetrical visual pathway to left Hb and its function in mediating light-preference behavior. VIDEO ABSTRACT.
Collapse
|
143
|
Horstick EJ, Bayleyen Y, Sinclair JL, Burgess HA. Search strategy is regulated by somatostatin signaling and deep brain photoreceptors in zebrafish. BMC Biol 2017; 15:4. [PMID: 28122559 PMCID: PMC5267475 DOI: 10.1186/s12915-016-0346-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 12/22/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Animals use sensory cues to efficiently locate resources, but when sensory information is insufficient, they may rely on internally coded search strategies. Despite the importance of search behavior, there is limited understanding of the underlying neural mechanisms in vertebrates. RESULTS Here, we report that loss of illumination initiates sophisticated light-search behavior in larval zebrafish. Using three-dimensional tracking, we show that at the onset of darkness larvae swim in a helical trajectory that is spatially restricted in the horizontal plane, before gradually transitioning to an outward movement profile. Local and outward swim patterns display characteristic features of area-restricted and roaming search strategies, differentially enhancing phototaxis to nearby and remote sources of light. Retinal signaling is only required to initiate area-restricted search, implying that photoreceptors within the brain drive the transition to the roaming search state. Supporting this, orthopediaA mutant larvae manifest impaired transition to roaming search, a phenotype which is recapitulated by loss of the non-visual opsin opn4a and somatostatin signaling. CONCLUSION These findings define distinct neuronal pathways for area-restricted and roaming search behaviors and clarify how internal drives promote goal-directed activity.
Collapse
Affiliation(s)
- Eric J Horstick
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA.
| | - Yared Bayleyen
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Jennifer L Sinclair
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Harold A Burgess
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA.
| |
Collapse
|
144
|
Wircer E, Blechman J, Borodovsky N, Tsoory M, Nunes AR, Oliveira RF, Levkowitz G. Homeodomain protein Otp affects developmental neuropeptide switching in oxytocin neurons associated with a long-term effect on social behavior. eLife 2017; 6:22170. [PMID: 28094761 PMCID: PMC5293488 DOI: 10.7554/elife.22170] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/16/2017] [Indexed: 12/25/2022] Open
Abstract
Proper response to stress and social stimuli depends on orchestrated development of hypothalamic neuronal circuits. Here we address the effects of the developmental transcription factor orthopedia (Otp) on hypothalamic development and function. We show that developmental mutations in the zebrafish paralogous gene otpa but not otpb affect both stress response and social preference. These behavioral phenotypes were associated with developmental alterations in oxytocinergic (OXT) neurons. Thus, otpa and otpb differentially regulate neuropeptide switching in a newly identified subset of OXT neurons that co-express the corticotropin-releasing hormone (CRH). Single-cell analysis revealed that these neurons project mostly to the hindbrain and spinal cord. Ablation of this neuronal subset specifically reduced adult social preference without affecting stress behavior, thereby uncoupling the contribution of a specific OXT cluster to social behavior from the general otpa-/- deficits. Our findings reveal a new role for Otp in controlling developmental neuropeptide balance in a discrete OXT circuit whose disrupted development affects social behavior.
Collapse
Affiliation(s)
- Einav Wircer
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Janna Blechman
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Nataliya Borodovsky
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Michael Tsoory
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Ana Rita Nunes
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.,Integrative Behavioural Biology Lab, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Rui F Oliveira
- Integrative Behavioural Biology Lab, Instituto Gulbenkian de Ciência, Oeiras, Portugal.,ISPA- Instituto Universitário, Lisboa, Portugal
| | - Gil Levkowitz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
145
|
The Descending Diencephalic Dopamine System Is Tuned to Sensory Stimuli. Curr Biol 2017; 27:318-333. [PMID: 28089511 DOI: 10.1016/j.cub.2016.11.059] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 10/31/2016] [Accepted: 11/30/2016] [Indexed: 12/22/2022]
Abstract
The vertebrate diencephalic A11 system provides the sole dopaminergic innervation of hindbrain and spinal cord and has been implicated in modulation of locomotion and sensory processes. However, the exact contributions of sensory stimuli and motor behavior to A11 dopaminergic activity remain unclear. We recorded cellular calcium activity in four anatomically distinct posterior tubercular A11-type dopaminergic subgroups and two adjacent hypothalamic dopaminergic groups in GCaMP7a-transgenic, semi-restrained zebrafish larvae. Our analyses reveal the contributions of different sensory modalities and motor states to dopaminergic activity. Each posterior tubercular and hypothalamic subgroup showed distinct activity patterns, while activity was synchronous within individual subgroups. Caudal and dorsomedial hypothalamic dopaminergic neurons are activated following vigorous tail movements and stay active for about 10 s, revealing predominantly post-motor activity. In contrast, posterior tubercular dopaminergic neurons are predominantly sensory driven, with subgroups differentially responding to different tactile or visual sensory modalities. In the anterior subgroups, neuronal response magnitudes are tuned to tactile stimulus intensities, revealing features similar to sensory systems. We identify the lateral line system as source for this tactile tuning. In contrast, the posterior subgroup is responsive to distinct moving visual stimuli. Specifically, translational forward stimuli, which may indicate insufficient rheotaxis and drift, induce dopaminergic activity, but backward or rotational stimuli not. The activation of posterior tubercular dopaminergic neurons by sensory stimuli, and their projections onto peripheral mechanosensory systems, suggests a participation of A11-type neurons in the feedback regulation of sensory systems. Together with the adjacent hypothalamic neurons, they may serve to set basic behavioral states.
Collapse
|
146
|
Mahalwar P, Singh AP, Fadeev A, Nüsslein-Volhard C, Irion U. Heterotypic interactions regulate cell shape and density during color pattern formation in zebrafish. Biol Open 2016; 5:1680-1690. [PMID: 27742608 PMCID: PMC5155543 DOI: 10.1242/bio.022251] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The conspicuous striped coloration of zebrafish is produced by cell-cell interactions among three different types of chromatophores: black melanophores, orange/yellow xanthophores and silvery/blue iridophores. During color pattern formation xanthophores undergo dramatic cell shape transitions and acquire different densities, leading to compact and orange xanthophores at high density in the light stripes, and stellate, faintly pigmented xanthophores at low density in the dark stripes. Here, we investigate the mechanistic basis of these cell behaviors in vivo, and show that local, heterotypic interactions with dense iridophores regulate xanthophore cell shape transition and density. Genetic analysis reveals a cell-autonomous requirement of gap junctions composed of Cx41.8 and Cx39.4 in xanthophores for their iridophore-dependent cell shape transition and increase in density in light-stripe regions. Initial melanophore-xanthophore interactions are independent of these gap junctions; however, subsequently they are also required to induce the acquisition of stellate shapes in xanthophores of the dark stripes. In summary, we conclude that, whereas homotypic interactions regulate xanthophore coverage in the skin, their cell shape transitions and density is regulated by gap junction-mediated, heterotypic interactions with iridophores and melanophores. Summary: The conspicuous pigmentation pattern of zebrafish is produced by three kinds of interacting pigment cells. Here we address the cellular consequences of these interactions in wild-type fish and mutants with altered pigment patterns.
Collapse
Affiliation(s)
- Prateek Mahalwar
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, Tübingen 72076, Germany
| | - Ajeet Pratap Singh
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, Tübingen 72076, Germany
| | - Andrey Fadeev
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, Tübingen 72076, Germany
| | | | - Uwe Irion
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, Tübingen 72076, Germany
| |
Collapse
|
147
|
Ben-Moshe Livne Z, Alon S, Vallone D, Bayleyen Y, Tovin A, Shainer I, Nisembaum LG, Aviram I, Smadja-Storz S, Fuentes M, Falcón J, Eisenberg E, Klein DC, Burgess HA, Foulkes NS, Gothilf Y. Genetically Blocking the Zebrafish Pineal Clock Affects Circadian Behavior. PLoS Genet 2016; 12:e1006445. [PMID: 27870848 PMCID: PMC5147766 DOI: 10.1371/journal.pgen.1006445] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 10/24/2016] [Indexed: 01/10/2023] Open
Abstract
The master circadian clock in fish has been considered to reside in the pineal gland. This dogma is challenged, however, by the finding that most zebrafish tissues contain molecular clocks that are directly reset by light. To further examine the role of the pineal gland oscillator in the zebrafish circadian system, we generated a transgenic line in which the molecular clock is selectively blocked in the melatonin-producing cells of the pineal gland by a dominant-negative strategy. As a result, clock-controlled rhythms of melatonin production in the adult pineal gland were disrupted. Moreover, transcriptome analysis revealed that the circadian expression pattern of the majority of clock-controlled genes in the adult pineal gland is abolished. Importantly, circadian rhythms of behavior in zebrafish larvae were affected: rhythms of place preference under constant darkness were eliminated, and rhythms of locomotor activity under constant dark and constant dim light conditions were markedly attenuated. On the other hand, global peripheral molecular oscillators, as measured in whole larvae, were unaffected in this model. In conclusion, characterization of this novel transgenic model provides evidence that the molecular clock in the melatonin-producing cells of the pineal gland plays a key role, possibly as part of a multiple pacemaker system, in modulating circadian rhythms of behavior.
Collapse
Affiliation(s)
- Zohar Ben-Moshe Livne
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Shahar Alon
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Daniela Vallone
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Yared Bayleyen
- Unit on Behavioral Neurogenetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Adi Tovin
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Inbal Shainer
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Laura G. Nisembaum
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins, Observatoire Océanologique, Banyuls/Mer, France
| | - Idit Aviram
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Sima Smadja-Storz
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Michael Fuentes
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins, Observatoire Océanologique, Banyuls/Mer, France
| | - Jack Falcón
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins, Observatoire Océanologique, Banyuls/Mer, France
| | - Eli Eisenberg
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv, Israel
| | - David C. Klein
- Section on Neuroendocrinology and Office of the Scientific Directory, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Harold A. Burgess
- Unit on Behavioral Neurogenetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nicholas S. Foulkes
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Yoav Gothilf
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
148
|
Hang CY, Moriya S, Ogawa S, Parhar IS. Deep Brain Photoreceptor (val-opsin) Gene Knockout Using CRISPR/Cas Affects Chorion Formation and Embryonic Hatching in the Zebrafish. PLoS One 2016; 11:e0165535. [PMID: 27792783 PMCID: PMC5085036 DOI: 10.1371/journal.pone.0165535] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/13/2016] [Indexed: 12/12/2022] Open
Abstract
Non-rod non-cone photopigments in the eyes and the brain can directly mediate non-visual functions of light in non-mammals. This was supported by our recent findings on vertebrate ancient long (VAL)-opsin photopigments encoded by the val-opsinA (valopa) and val-opsinB (valopb) genes in zebrafish. However, the physiological functions of valop isoforms remain unknown. Here, we generated valop-mutant zebrafish using CRISPR/Cas genome editing, and examined the phenotypes of loss-of-function mutants. F0 mosaic mutations and germline transmission were confirmed via targeted insertions and/or deletions in the valopa or valopb gene in F1 mutants. Based on in silico analysis, frameshift mutations converted VAL-opsin proteins to non-functional truncated forms with pre-mature stop codons. Most F1 eggs or embryos from F0 female valopa/b mutants showed either no or only partial chorion elevation, and the eggs or embryos died within 26 hour-post-fertilization. However, most F1 embryos from F0 male valopa mutant developed but hatched late compared to wild-type embryos, which hatched at 4 day-post-fertilization. Late-hatched F1 offspring included wild-type and mutants, indicating the parental effects of valop knockout. This study shows valop gene knockout affects chorion formation and embryonic hatching in the zebrafish.
Collapse
Affiliation(s)
- Chong Yee Hang
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Shogo Moriya
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Satoshi Ogawa
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Ishwar S. Parhar
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
- * E-mail:
| |
Collapse
|
149
|
Bishop BH, Spence-Chorman N, Gahtan E. Three-dimensional motion tracking reveals a diving component to visual and auditory escape swims in zebrafish larvae. ACTA ACUST UNITED AC 2016; 219:3981-3987. [PMID: 27802145 DOI: 10.1242/jeb.147124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/13/2016] [Indexed: 02/03/2023]
Abstract
Escape behaviors have been studied in zebrafish by neuroscientists seeking cellular-level descriptions of neural circuits but few studies have examined vertical swimming during escapes. We analyzed three-dimensional swimming paths of zebrafish larvae during visually-evoked and auditory-evoked escapes while the fish were in a cubical tank with equal vertical and lateral range. Visually evoked escapes, elicited by sudden dimming of ambient light, consistently elicited downward spiral swimming (dives) with faster vertical than lateral movement. Auditory taps also elicited rapid escape swimming with equivalent total distance traveled but with significantly less vertical and more lateral movement. Visually evoked dives usually ended with the zebrafish hitting the bottom of the 10 cm3 tank. Therefore, visually evoked dives were also analyzed in a tubular tank with 50 cm of vertical range, and in most cases larvae reached the bottom of that tank during a 120 s dimming stimulus. Light-evoked spiral diving in zebrafish may be an innate defense reflex against specific predation threats. Since visual and auditory escapes are initially similar but dives persist only during visual escapes, our findings lay the groundwork for studying a type of decision-making within zebrafish sensorimotor circuits.
Collapse
Affiliation(s)
- Benjamin H Bishop
- Department of Psychology, Humboldt State University, 1 Harpst Street, Arcata, CA 95521, USA
| | - Nathan Spence-Chorman
- Department of Psychology, Humboldt State University, 1 Harpst Street, Arcata, CA 95521, USA
| | - Ethan Gahtan
- Department of Psychology, Humboldt State University, 1 Harpst Street, Arcata, CA 95521, USA
| |
Collapse
|
150
|
Kelley JL, Davies WIL. The Biological Mechanisms and Behavioral Functions of Opsin-Based Light Detection by the Skin. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00106] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|