101
|
Li J, Zou C, Xu J, Ji X, Niu X, Yang J, Huang X, Zhang KQ. Molecular mechanisms of nematode-nematophagous microbe interactions: basis for biological control of plant-parasitic nematodes. ANNUAL REVIEW OF PHYTOPATHOLOGY 2015; 53:67-95. [PMID: 25938277 DOI: 10.1146/annurev-phyto-080614-120336] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Plant-parasitic nematodes cause significant damage to a broad range of vegetables and agricultural crops throughout the world. As the natural enemies of nematodes, nematophagous microorganisms offer a promising approach to control the nematode pests. Some of these microorganisms produce traps to capture and kill the worms from the outside. Others act as internal parasites to produce toxins and virulence factors to kill the nematodes from within. Understanding the molecular basis of microbe-nematode interactions provides crucial insights for developing effective biological control agents against plant-parasitic nematodes. Here, we review recent advances in our understanding of the interactions between nematodes and nematophagous microorganisms, with a focus on the molecular mechanisms by which nematophagous microorganisms infect nematodes and on the nematode defense against pathogenic attacks. We conclude by discussing several key areas for future research and development, including potential approaches to apply our recent understandings to develop effective biocontrol strategies.
Collapse
Affiliation(s)
- Juan Li
- Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, 650091, China;
| | | | | | | | | | | | | | | |
Collapse
|
103
|
Wang X, Li GH, Zou CG, Ji XL, Liu T, Zhao PJ, Liang LM, Xu JP, An ZQ, Zheng X, Qin YK, Tian MQ, Xu YY, Ma YC, Yu ZF, Huang XW, Liu SQ, Niu XM, Yang JK, Huang Y, Zhang KQ. Bacteria can mobilize nematode-trapping fungi to kill nematodes. Nat Commun 2014; 5:5776. [PMID: 25514608 PMCID: PMC4275587 DOI: 10.1038/ncomms6776] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 11/06/2014] [Indexed: 12/20/2022] Open
Abstract
In their natural habitat, bacteria are consumed by bacterivorous nematodes; however, they are not simply passive preys. Here we report a defensive mechanism used by certain bacteria to mobilize nematode-trapping fungi to kill nematodes. These bacteria release urea, which triggers a lifestyle switch in the fungus Arthrobotrys oligospora from saprophytic to nematode-predatory form; this predacious form is characterized by formation of specialized cellular structures or 'traps'. The bacteria significantly promote the elimination of nematodes by A. oligospora. Disruption of genes involved in urea transport and metabolism in A. oligospora abolishes the urea-induced trap formation. Furthermore, the urea metabolite ammonia functions as a signal molecule in the fungus to initiate the lifestyle switch to form trap structures. Our findings highlight the importance of multiple predator-prey interactions in prey defense mechanisms.
Collapse
Affiliation(s)
- Xin Wang
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan 650091, China
| | - Guo-Hong Li
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan 650091, China
| | - Cheng-Gang Zou
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan 650091, China
| | - Xing-Lai Ji
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan 650091, China
| | - Tong Liu
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan 650091, China
| | - Pei-Ji Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Lian-Ming Liang
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan 650091, China
| | - Jian-Ping Xu
- 1] Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan 650091, China [2] Department of Biology, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| | - Zhi-Qiang An
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Texas 77030, USA
| | - Xi Zheng
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan 650091, China
| | - Yue-Ke Qin
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan 650091, China
| | - Meng-Qing Tian
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan 650091, China
| | - You-Yao Xu
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan 650091, China
| | - Yi-Cheng Ma
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan 650091, China
| | - Ze-Fen Yu
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan 650091, China
| | - Xiao-Wei Huang
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan 650091, China
| | - Shu-Qun Liu
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan 650091, China
| | - Xue-Mei Niu
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan 650091, China
| | - Jin-Kui Yang
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan 650091, China
| | - Ying Huang
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan 650091, China
| | - Ke-Qin Zhang
- Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan 650091, China
| |
Collapse
|
104
|
Hodgkin J, Clark LC, Gravato-Nobre MJ. Worm-stars and half-worms: Novel dangers and novel defense. WORM 2014; 3:e27939. [PMID: 25254146 PMCID: PMC4165538 DOI: 10.4161/worm.27939] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 01/21/2014] [Indexed: 11/19/2022]
Abstract
In a recent paper, we reported the isolation and surprising effects of two new bacterial pathogens for Caenorhabditis and related nematodes. These two pathogens belong to the genus Leucobacter and were discovered co-infecting a wild isolate of Caenorhabditis that had been collected in Cape Verde. The interactions of these bacteria with C. elegans revealed both unusual mechanisms of pathogenic attack, and an unexpected defense mechanism on the part of the worm. One pathogen, known as Verde1, is able to trap swimming nematodes by sticking their tails together, resulting in the formation of “worm-star” aggregates, within which worms are killed and degraded. Trapped larval worms, but not adults, can sometimes escape by undergoing whole-body autotomy into half-worms. The other pathogen, Verde2, kills worms by a different mechanism associated with rectal infection. Many C. elegans mutants with alterations in surface glycosylation are resistant to Verde2 infection, but hypersensitive to Verde1, being rapidly killed without worm-star formation. Conversely, surface infection of wild-type worms with Verde1 is mildly protective against Verde2. Thus, there are trade-offs in susceptibility to the two bacteria. The Leucobacter pathogens reveal novel nematode biology and provide powerful tools for exploring nematode surface properties and bacterial susceptibility.
Collapse
Affiliation(s)
| | - Laura C Clark
- Department of Biochemistry; University of Oxford; Oxford, UK
| | | |
Collapse
|
106
|
Malate synthase gene AoMls in the nematode-trapping fungus Arthrobotrys oligospora contributes to conidiation, trap formation, and pathogenicity. Appl Microbiol Biotechnol 2013; 98:2555-63. [PMID: 24323290 DOI: 10.1007/s00253-013-5432-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/16/2013] [Accepted: 11/20/2013] [Indexed: 10/25/2022]
Abstract
Malate synthase (Mls), a key enzyme in the glyoxylate cycle, is required for virulence in microbial pathogens. In this study, we identified the AoMls gene from the nematode-trapping fungus Arthobotrys oligospora. The gene contains 4 introns and encodes a polypeptide of 540 amino acids. To characterize the function of AoMls in A. oligospora, we disrupted it by homologous recombination, and the ΔAoMls mutants were confirmed by PCR and Southern blot analyses. The growth rate and colony morphology of the ΔAoMls mutants showed no obvious difference from the wild-type strains on potato dextrose agar (PDA) plate. However, the disruption of gene AoMls led to a significant reduction in conidiation, failure to utilize fatty acids and sodium acetate for growth, and its conidia were unable to germinate on minimal medium supplemented with sodium oleate. In addition, the trap formation was retarded in the ΔAoMls mutants, which only produced immature traps containing one or two rings. Moreover, the nematicidal activity of the ΔAoMls mutants was significantly decreased. Our results suggest that the gene AoMls plays an important role in conidiation, trap formation and pathogenicity of A. oligospora.
Collapse
|
107
|
Hodgkin J, Félix MA, Clark LC, Stroud D, Gravato-Nobre MJ. Two Leucobacter strains exert complementary virulence on Caenorhabditis including death by worm-star formation. Curr Biol 2013; 23:2157-61. [PMID: 24206844 PMCID: PMC3898767 DOI: 10.1016/j.cub.2013.08.060] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 08/09/2013] [Accepted: 08/30/2013] [Indexed: 01/26/2023]
Abstract
The nematode Caenorhabditis elegans has been much studied as a host for microbial infection. Some pathogens can infect its intestine, while others attack via its external surface. Cultures of Caenorhabditis isolated from natural environments have yielded new nematode pathogens, such as microsporidia and viruses. We report here a novel mechanism for bacterial attack on worms, discovered during investigation of a diseased and coinfected natural isolate of Caenorhabditis from Cape Verde. Two related coryneform pathogens (genus Leucobacter) were obtained from this isolate, which had complementary effects on C. elegans and related nematodes. One pathogen, Verde1, was able to cause swimming worms to stick together irreversibly by their tails, leading to the rapid formation of aggregated "worm-stars." Adult worms trapped in these aggregates were immobilized and subsequently died, with concomitant growth of bacteria. Trapped larval worms were sometimes able to escape from worm-stars by undergoing autotomy, separating their bodies into two parts. The other pathogen, Verde2, killed worms after rectal invasion, in a more virulent version of a previously studied infection. Resistance to killing by Verde2, by means of alterations in host surface glycosylation, resulted in hypersensitivity to Verde1, revealing a trade-off in bacterial susceptibility. Conversely, a sublethal surface infection of worms with Verde1 conferred partial protection against Verde2. The formation of worm-stars by Verde1 occurred only when worms were swimming in liquid but provides a striking example of asymmetric warfare as well as a bacterial equivalent to the trapping strategies used by nematophagous fungi.
Collapse
Affiliation(s)
- Jonathan Hodgkin
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| | | | | | | | | |
Collapse
|
108
|
Gomez-Diaz C, Benton R. The joy of sex pheromones. EMBO Rep 2013; 14:874-83. [PMID: 24030282 DOI: 10.1038/embor.2013.140] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 08/19/2013] [Indexed: 01/13/2023] Open
Abstract
Sex pheromones provide an important means of communication to unite individuals for successful reproduction. Although sex pheromones are highly diverse across animals, these signals fulfil common fundamental roles in enabling identification of a mating partner of the opposite sex, the appropriate species and of optimal fecundity. In this review, we synthesize both classic and recent investigations on sex pheromones in a range of species, spanning nematode worms, insects and mammals. These studies reveal comparable strategies in how these chemical signals are produced, detected and processed in the brain to regulate sexual behaviours. Elucidation of sex pheromone communication mechanisms both defines outstanding models to understand the molecular and neuronal basis of chemosensory behaviours, and reveals how similar evolutionary selection pressures yield convergent solutions in distinct animal nervous systems.
Collapse
Affiliation(s)
- Carolina Gomez-Diaz
- Center for Integrative Genomics, Faculty of Biology & Medicine, Bâtiment Le Génopode, University of Lausanne, CH-1015 Lausanne, Switzerland
| | | |
Collapse
|