101
|
Hoelters L, O'Grady JF, Webster SG, Wilcockson DC. Characterization, localization and temporal expression of crustacean hyperglycemic hormone (CHH) in the behaviorally rhythmic peracarid crustaceans, Eurydice pulchra (Leach) and Talitrus saltator (Montagu). Gen Comp Endocrinol 2016; 237:43-52. [PMID: 27468954 DOI: 10.1016/j.ygcen.2016.07.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 07/19/2016] [Accepted: 07/24/2016] [Indexed: 11/15/2022]
Abstract
Crustacean hyperglycemic hormone (CHH) has been extensively studied in decapod crustaceans where it is known to exert pleiotropic effects, including regulation of blood glucose levels. Hyperglycemia in decapods seems to be temporally gated to coincide with periods of activity, under circadian clock control. Here, we used gene cloning, in situ hybridization and immunohistochemistry to describe the characterization and localization of CHH in two peracarid crustaceans, Eurydice pulchra and Talitrus saltator. We also exploited the robust behavioral rhythmicity of these species to test the hypothesis that CHH mRNA expression would resonate with their circatidal (12.4h) and circadian (24h) behavioral phenotypes. We show that both species express a single CHH transcript in the cerebral ganglia, encoding peptides featuring all expected, conserved characteristics of other CHHs. E. pulchra preproCHH is an amidated 73 amino acid peptide N-terminally flanked by a short, 18 amino acid precursor related peptide (CPRP) whilst the T. saltator prohormone is also amidated but 72 amino acids in length and has a 56 residue CPRP. The localization of both was mapped by immunohistochemistry to the protocerebrum with axon tracts leading to the sinus gland and into the tritocerebrum, with striking similarities to terrestrial isopod species. We substantiated the cellular position of CHH immunoreactive cells by in situ hybridization. Although both species showed robust activity rhythms, neither exhibited rhythmic transcriptional activity indicating that CHH transcription is not likely to be under clock control. These data make a contribution to the inventory of CHHs that is currently lacking for non-decapod species.
Collapse
Affiliation(s)
- Laura Hoelters
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Penglais, Aberystwyth, Ceredigion SY23 3DA, UK.
| | - Joseph Francis O'Grady
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Penglais, Aberystwyth, Ceredigion SY23 3DA, UK.
| | - Simon George Webster
- School of Biological Sciences, Bangor University, Brambell Building, Deiniol Road, Bangor, Gwynedd LL57 2UW, UK.
| | - David Charles Wilcockson
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Penglais, Aberystwyth, Ceredigion SY23 3DA, UK; School of Biological Sciences, Bangor University, Brambell Building, Deiniol Road, Bangor, Gwynedd LL57 2UW, UK.
| |
Collapse
|
102
|
López-Olmeda JF. Nonphotic entrainment in fish. Comp Biochem Physiol A Mol Integr Physiol 2016; 203:133-143. [PMID: 27642096 DOI: 10.1016/j.cbpa.2016.09.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 09/09/2016] [Accepted: 09/13/2016] [Indexed: 12/27/2022]
Abstract
Organisms that live on the Earth are subjected to environmental variables that display cyclic variations, such as light, temperature and tides. Since these cyclic changes in the environment are constant and predictable, they have affected biological evolution through selecting the occurrence of biological rhythms in the physiology of all living organisms, from prokaryotes to mammals. Biological clocks confer organisms an adaptive advantage as they can synchronize their behavioral and physiological processes to occur at a given moment of time when effectiveness and success would be greater and/or the cost and risk for organisms would be lower. Among environmental synchronizers, light has been mostly widely studied to date. However, other environmental signals play an important role in biological rhythms, especially in aquatic animals like fish. This review focuses on current knowledge about the role of nonphotic synchronizers (temperature, food and tidal cycles) on biological rhythms in fish, and on the entrainment of the fish circadian system to these synchronizers.
Collapse
Affiliation(s)
- Jose F López-Olmeda
- Department of Animal Physiology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain.
| |
Collapse
|
103
|
Rund SSC, Yoo B, Alam C, Green T, Stephens MT, Zeng E, George GF, Sheppard AD, Duffield GE, Milenković T, Pfrender ME. Genome-wide profiling of 24 hr diel rhythmicity in the water flea, Daphnia pulex: network analysis reveals rhythmic gene expression and enhances functional gene annotation. BMC Genomics 2016; 17:653. [PMID: 27538446 PMCID: PMC4991082 DOI: 10.1186/s12864-016-2998-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 08/05/2016] [Indexed: 11/16/2022] Open
Abstract
Background Marine and freshwater zooplankton exhibit daily rhythmic patterns of behavior and physiology which may be regulated directly by the light:dark (LD) cycle and/or a molecular circadian clock. One of the best-studied zooplankton taxa, the freshwater crustacean Daphnia, has a 24 h diel vertical migration (DVM) behavior whereby the organism travels up and down through the water column daily. DVM plays a critical role in resource tracking and the behavioral avoidance of predators and damaging ultraviolet radiation. However, there is little information at the transcriptional level linking the expression patterns of genes to the rhythmic physiology/behavior of Daphnia. Results Here we analyzed genome-wide temporal transcriptional patterns from Daphnia pulex collected over a 44 h time period under a 12:12 LD cycle (diel) conditions using a cosine-fitting algorithm. We used a comprehensive network modeling and analysis approach to identify novel co-regulated rhythmic genes that have similar network topological properties and functional annotations as rhythmic genes identified by the cosine-fitting analyses. Furthermore, we used the network approach to predict with high accuracy novel gene-function associations, thus enhancing current functional annotations available for genes in this ecologically relevant model species. Our results reveal that genes in many functional groupings exhibit 24 h rhythms in their expression patterns under diel conditions. We highlight the rhythmic expression of immunity, oxidative detoxification, and sensory process genes. We discuss differences in the chronobiology of D. pulex from other well-characterized terrestrial arthropods. Conclusions This research adds to a growing body of literature suggesting the genetic mechanisms governing rhythmicity in crustaceans may be divergent from other arthropod lineages including insects. Lastly, these results highlight the power of using a network analysis approach to identify differential gene expression and provide novel functional annotation. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2998-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Samuel S C Rund
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA.,Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.,Centre for Immunity, Infection and Evolution, Institute of Evolution, University of Edinburgh, Edinburgh, EH9 3FL, UK.,Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Boyoung Yoo
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA.,Present Address: Department of Computer Science, Stanford University, Stanford, CA, 94305, USA
| | - Camille Alam
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Taryn Green
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Melissa T Stephens
- Notre Dame Genomics and Bioinformatics Core Facility, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Erliang Zeng
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA.,Notre Dame Genomics and Bioinformatics Core Facility, University of Notre Dame, Notre Dame, IN, 46556, USA.,Present Address: Department of Biology, University of South Dakota, Vermillion, SD, 57069, USA.,Present Address: Department of Computer Science, University of South Dakota, Vermillion, SD, 57069, USA
| | - Gary F George
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA.,Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Aaron D Sheppard
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA.,Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Giles E Duffield
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA.,Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Tijana Milenković
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA.,Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA.,Interdisciplinary Center for Network Science and Applications (iCeNSA), University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Michael E Pfrender
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46556, USA. .,Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA. .,Notre Dame Environmental Change Initiative, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
104
|
Mat AM, Perrigault M, Massabuau JC, Tran D. Role and expression of cry1 in the adductor muscle of the oyster Crassostrea gigas during daily and tidal valve activity rhythms. Chronobiol Int 2016; 33:949-63. [PMID: 27246263 DOI: 10.1080/07420528.2016.1181645] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cryptochromes are flavin- and pterin-containing photoreceptors of the cryptochrome/photolyase family. They play critical roles in organisms, among are which light-dependent and light-independent roles in biological rhythms. The present work aimed at describing a cryptochrome gene in the oyster Crassostrea gigas by (i) a characterization and phylogenetic analysis and (ii) by studying its expression in the relationship to rhythmic valve behavior in different entrainment regimes. Cryptochrome expression was focused on the adductor muscle of the oyster, the effector of the valve behavior. The results suggest involvement of Cgcry1 in oyster rhythmicity as a sensor of environmental zeitgebers, associated with circadian rhythms and potentially to tidal activity. The characterized gene belongs to type 1 cryptochrome/insect-type cry. Additionally, Cgcry1 presented a daily oscillation under L:D entrainment, which disappeared in constant darkness. Transcript expression of Cgcry1 also oscillated at tidal frequency under tidal entrainment and in constant darkness. Finally, exposure of tidally entrained oysters to saxitoxin (STX)-producing alga Alexandrium minutum induced a dose effect response in oysters by first altering Cgcry1 expression and then the behavior of oysters with increasing concentrations of toxins. This study initiates the characterization of the molecular clock in the oyster C. gigas and its interactions with environmental zeitgebers.
Collapse
Affiliation(s)
- Audrey M Mat
- a University of Bordeaux, EPOC, UMR 5805 , Arcachon , France
| | | | - Jean-Charles Massabuau
- a University of Bordeaux, EPOC, UMR 5805 , Arcachon , France.,b CNRS, EPOC, UMR 5805 , Arcachon , France
| | - Damien Tran
- a University of Bordeaux, EPOC, UMR 5805 , Arcachon , France.,b CNRS, EPOC, UMR 5805 , Arcachon , France
| |
Collapse
|
105
|
Bernatowicz PP, Kotwica-Rolinska J, Joachimiak E, Sikora A, Polanska MA, Pijanowska J, Bębas P. Temporal Expression of the Clock Genes in the Water FleaDaphnia pulex(Crustacea: Cladocera). ACTA ACUST UNITED AC 2016; 325:233-54. [DOI: 10.1002/jez.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 04/14/2016] [Accepted: 04/18/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Piotr P. Bernatowicz
- Department of Paleobiology and Evolution, Institute of Zoology, Faculty of Biology; University of Warsaw; Biological and Chemical Research Centre; Warsaw Poland
| | - Joanna Kotwica-Rolinska
- Department of Animal Physiology, Institute of Zoology, Faculty of Biology; University of Warsaw; Warsaw Poland
| | - Ewa Joachimiak
- Department of Cell Biology; Nencki Institute of Experimental Biology PAS; Warsaw Poland
| | - Anna Sikora
- Department of Hydrobiology, Institute of Zoology, Faculty of Biology; University of Warsaw; Biological and Chemical Research Centre; Warsaw Poland
| | - Marta A. Polanska
- Department of Animal Physiology, Institute of Zoology, Faculty of Biology; University of Warsaw; Warsaw Poland
| | - Joanna Pijanowska
- Department of Hydrobiology, Institute of Zoology, Faculty of Biology; University of Warsaw; Biological and Chemical Research Centre; Warsaw Poland
| | - Piotr Bębas
- Department of Animal Physiology, Institute of Zoology, Faculty of Biology; University of Warsaw; Warsaw Poland
| |
Collapse
|
106
|
Chabot CC, Ramberg-Pihl NC, Watson WH. Circalunidian clocks control tidal rhythms of locomotion in the American horseshoe crab, Limulus polyphemus. MARINE AND FRESHWATER BEHAVIOUR AND PHYSIOLOGY 2016; 49:75-91. [PMID: 27559270 PMCID: PMC4993286 DOI: 10.1080/10236244.2015.1127679] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
While many intertidal animals exhibit circatidal rhythms, the nature of the underlying endogenous clocks that control these rhythms has been controversial. In this study American horseshoe crabs, Limulus polyphemus, were used to test the circalunidian hypothesis by exposing them to four different tidal regimes. Overall, the results obtained support the circalunidian hypothesis: each of the twice-daily rhythms of activity appears to be controlled by a separate clock, each with an endogenous period of approximately 24.8h. First, spontaneous "skipping" of one of the daily bouts was observed under several different conditions. Second, the presence of two bouts of activity/day, with different periods, was observed. Lastly, we were able to separately synchronize bouts of activity to two artificial tidal regimes with different periods. These results, taken together, argue in favor of two separate circalunidian clocks in Limulus, each of which controls one of the two bouts of their daily tidal activity rhythms.
Collapse
Affiliation(s)
- Christopher C. Chabot
- Department of Biological Sciences, MSC#64, Plymouth State University, Plymouth, NH 03264, NH
| | - Nicole C. Ramberg-Pihl
- Department of Biological Sciences, MSC#64, Plymouth State University, Plymouth, NH 03264, NH
| | - Winsor H. Watson
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| |
Collapse
|
107
|
Abstract
In contrast to the well mapped molecular orchestration of circadian timekeeping in terrestrial organisms, the mechanisms that direct tidal and lunar rhythms in marine species are entirely unknown. Using a combination of biochemical and molecular approaches we have identified a series of metabolic markers of the tidal clock of the intertidal isopod Eurydice pulchra. Specifically, we show that the overoxidation of peroxiredoxin (PRX), a conserved marker of circadian timekeeping in terrestrial eukaryotes [1], follows a circatidal (approximately 12.4 hours) pattern in E. pulchra, in register with the tidal pattern of swimming. In parallel, we show that mitochondrially encoded genes are expressed with a circatidal rhythm. Together, these findings demonstrate that PRX overoxidation rhythms are not intrinsically circadian; rather they appear to resonate with the dominant metabolic cycle of an organism, regardless of its frequency. Moreover, they provide the first molecular leads for dissecting the tidal clockwork.
Collapse
|
108
|
Qin X, Mori T, Zhang Y, Johnson CH. PER2 Differentially Regulates Clock Phosphorylation versus Transcription by Reciprocal Switching of CK1ε Activity. J Biol Rhythms 2016; 30:206-16. [PMID: 25994100 DOI: 10.1177/0748730415582127] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Casein kinase 1ε (CK1ε) performs key phosphorylation reactions in the circadian clock mechanism that determine period. We show that the central clock protein PERIOD2 (PER2) not only acts as a transcriptional repressor but also inhibits the autoinactivation of CK1ε, thereby promoting CK1ε activity. Moreover, PER2 reciprocally regulates CK1ε's ability to phosphorylate other substrates. On output pathway substrates (e.g., P53), PER2 inhibits the activity of CK1ε. However, in the case of central clock proteins (e.g., CRYPTOCHROME2), PER2 stimulates the CK1ε-mediated phosphorylation of CRY2. CK1ε activity is temperature compensated on the core clock substrate CRY2 but not on output substrates, for example, the physiological output protein substrate P53 and its nonphysiological correlate, bovine serum albumin (BSA). These results indicate heretofore unrecognized pivotal roles of PER2; it not only regulates the central transcription/translation feedback loop but also differentially controls kinase activity CK1ε in its phosphorylation of central clock (e.g., CRY2) versus output (e.g., P53) substrates.
Collapse
Affiliation(s)
- Ximing Qin
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee
| | - Tetsuya Mori
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee
| | - Yunfei Zhang
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee
| | | |
Collapse
|
109
|
Identification, Characterization, and Diel Pattern of Expression of Canonical Clock Genes in Nephrops norvegicus (Crustacea: Decapoda) Eyestalk. PLoS One 2015; 10:e0141893. [PMID: 26524198 PMCID: PMC4629887 DOI: 10.1371/journal.pone.0141893] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 10/14/2015] [Indexed: 12/17/2022] Open
Abstract
The Norway lobster, Nephrops norvegicus, is a burrowing decapod with a rhythmic burrow emergence (24 h) governed by the circadian system. It is an important resource for European fisheries and its behavior deeply affects its availability. The current knowledge of Nephrops circadian biology is phenomenological as it is currently the case for almost all crustaceans. In attempt to elucidate the putative molecular mechanisms underlying circadian gene regulation in Nephrops, we used a transcriptomics approach on cDNA extracted from the eyestalk, a structure playing a crucial role in controlling behavior of decapods. We studied 14 male lobsters under 12–12 light-darkness blue light cycle. We used the Hiseq 2000 Illumina platform to sequence two eyestalk libraries (under light and darkness conditions) obtaining about 90 millions 100-bp paired-end reads. Trinity was used for the de novo reconstruction of transcriptomes; the size at which half of all assembled bases reside in contigs (N50) was equal to 1796 (light) and 2055 (darkness). We found a list of candidate clock genes and focused our attention on canonical ones: timeless, period, clock and bmal1. The cloning of assembled fragments validated Trinity outputs. The putative Nephrops clock genes showed high levels of identity (blastx on NCBI) with known crustacean clock gene homologs such as Eurydice pulchra (period: 47%, timeless: 59%, bmal1: 79%) and Macrobrachium rosenbergii (clock: 100%). We also found a vertebrate-like cryptochrome 2. RT-qPCR showed that only timeless had a robust diel pattern of expression. Our data are in accordance with the current knowledge of the crustacean circadian clock, reinforcing the idea that the molecular clockwork of this group shows some differences with the established model in Drosophila melanogaster.
Collapse
|
110
|
Barlow PW. Leaf movements and their relationship with the lunisolar gravitational force. ANNALS OF BOTANY 2015. [PMID: 26205177 PMCID: PMC4512198 DOI: 10.1093/aob/mcv096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
BACKGROUND Observation of the diurnal ascent and descent of leaves of beans and other species, as well as experimental interventions into these movements, such as exposures to light at different times during the movement cycle, led to the concept of an endogenous 'clock' as a regulator of these oscillations. The physiological basis of leaf movement can be traced to processes that modulate cell volume in target tissues of the pulvinus and petiole. However, these elements of the leaf-movement process do not completely account for the rhythms that are generated following germination in constant light or dark conditions, or when plants are transferred to similar free-running conditions. SCOPE To develop a new perspective on the regulation of leaf-movement rhythms, many of the published time courses of leaf movements that provided evidence for the concept of the endogenous clock were analysed in conjunction with the contemporaneous time courses of the lunisolar tidal acceleration at the relevant experimental locations. This was made possible by application of the Etide program, which estimates, with high temporal resolution, local gravitational changes as a consequence of the diurnal variations of the lunisolar gravitational force due to the orbits and relative positions of Earth, Moon and Sun. In all cases, it was evident that a synchronism exists between the times of the turning points of both the lunisolar tide and of the leaftide when the direction of leaf movement changes. This finding of synchrony leads to the hypothesis that the lunisolar tide is a regulator of the leaftide, and that the rhythm of leaf movement is not necessarily of endogenous origin but is an expression of an exogenous lunisolar 'clock' impressed upon the leaf-movement apparatus. CONCLUSIONS Correlation between leaftide and Etide time courses holds for leaf movement rhythms in natural conditions of the greenhouse, in conditions of constant light or dark, under microgravity conditions of the International Space Station, and also holds for rhythms that are atypical, such as pendulum and relaxation rhythms whose periods are longer or shorter than usual. Even the apparently spontaneous short-period, small-amplitude rhythms recorded from leaves under unusual growth conditions are consistent with the hypothesis of a lunisolar zeitgeber. Two hypotheses that could account for the synchronism between leaftide and Etide, and which are based on either quantum considerations or on classical Newtonian physics, are presented and discussed.
Collapse
Affiliation(s)
- Peter W Barlow
- School of Biological Sciences, University of Bristol, Bristol Life Sciences Building, 24 Tyndalls Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
111
|
Mao Y, Schnytzer Y, Busija L, Churilov L, Davis S, Yan B. “MOONSTROKE”: Lunar patterns of stroke occurrence combined with circadian and seasonal rhythmicity—A hospital based study. Chronobiol Int 2015; 32:881-8. [DOI: 10.3109/07420528.2015.1049614] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
112
|
Lockwood BL, Connor KM, Gracey AY. The environmentally tuned transcriptomes of Mytilus mussels. J Exp Biol 2015; 218:1822-33. [DOI: 10.1242/jeb.118190] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
ABSTRACT
Transcriptomics is a powerful tool for elucidating the molecular mechanisms that underlie the ability of organisms to survive and thrive in dynamic and changing environments. Here, we review the major contributions in this field, and we focus on studies of mussels in the genus Mytilus, which are well-established models for the study of ecological physiology in fluctuating environments. Our review is organized into four main sections. First, we illustrate how the abiotic forces of the intertidal environment drive the rhythmic coupling of gene expression to diel and tidal cycles in Mytilus californianus. Second, we discuss the challenges and pitfalls of conducting transcriptomic studies in field-acclimatized animals. Third, we examine the link between transcriptomic responses to environmental stress and biogeographic distributions in blue mussels, Mytilus trossulus and Mytilus galloprovincialis. Fourth, we present a comparison of transcriptomic datasets and identify 175 genes that share common responses to heat stress across Mytilus species. Taken together, these studies demonstrate that transcriptomics can provide an informative snapshot of the physiological state of an organism within an environmental context. In a comparative framework, transcriptomics can reveal how natural selection has shaped patterns of transcriptional regulation that may ultimately influence biogeography.
Collapse
Affiliation(s)
- Brent L. Lockwood
- Department of Biology, University of Vermont, 120 Marsh Life Science, 109 Carrigan Drive, Burlington, VT 05405, USA
| | - Kwasi M. Connor
- Marine Environmental Biology, University of Southern California, 3616 Trousdale Pkwy, Los Angeles, CA 90089, USA
| | - Andrew Y. Gracey
- Marine Environmental Biology, University of Southern California, 3616 Trousdale Pkwy, Los Angeles, CA 90089, USA
| |
Collapse
|
113
|
Zakhvataev VE. Tidal variations of radon activity as a possible factor synchronizing biological processes. Biophysics (Nagoya-shi) 2015. [DOI: 10.1134/s0006350915010273] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
114
|
Metabolic Cycles in Yeast Share Features Conserved among Circadian Rhythms. Curr Biol 2015; 25:1056-62. [PMID: 25866393 PMCID: PMC4406945 DOI: 10.1016/j.cub.2015.02.035] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/17/2014] [Accepted: 02/09/2015] [Indexed: 01/22/2023]
Abstract
Cell-autonomous circadian rhythms allow organisms to temporally orchestrate their internal state to anticipate and/or resonate with the external environment [1, 2]. Although ∼24-hr periodicity is observed across aerobic eukaryotes, the central mechanism has been hard to dissect because few simple models exist, and known clock proteins are not conserved across phylogenetic kingdoms [1, 3, 4]. In contrast, contributions to circadian rhythmicity made by a handful of post-translational mechanisms, such as phosphorylation of clock proteins by casein kinase 1 (CK1) and glycogen synthase kinase 3 (GSK3), appear conserved among phyla [3, 5]. These kinases have many other essential cellular functions and are better conserved in their contribution to timekeeping than any of the clock proteins they phosphorylate [6]. Rhythmic oscillations in cellular redox state are another universal feature of circadian timekeeping, e.g., over-oxidation cycles of abundant peroxiredoxin proteins [7–9]. Here, we use comparative chronobiology to distinguish fundamental clock mechanisms from species and/or tissue-specific adaptations and thereby identify features shared between circadian rhythms in mammalian cells and non-circadian temperature-compensated respiratory oscillations in budding yeast [10]. We find that both types of oscillations are coupled with the cell division cycle, exhibit period determination by CK1 and GSK3, and have peroxiredoxin over-oxidation cycles. We also explore how peroxiredoxins contribute to YROs. Our data point to common mechanisms underlying both YROs and circadian rhythms and suggest two interpretations: either certain biochemical systems are simply permissive for cellular oscillations (with frequencies from hours to days) or this commonality arose via divergence from an ancestral cellular clock. Yeast respiratory oscillations (YROs) share features with circadian rhythms Changes that alter the period of circadian rhythms have the same effect on YROs Oxidation cycles of peroxiredoxins are a characteristic of both oscillations Mechanistic similarities between these cycles may reflect a common origin
Collapse
|
115
|
Numata H, Miyazaki Y, Ikeno T. Common features in diverse insect clocks. ZOOLOGICAL LETTERS 2015; 1:10. [PMID: 26605055 PMCID: PMC4604113 DOI: 10.1186/s40851-014-0003-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 10/23/2014] [Indexed: 06/05/2023]
Abstract
This review describes common features among diverse biological clocks in insects, including circadian, circatidal, circalunar/circasemilunar, and circannual clocks. These clocks control various behaviors, physiological functions, and developmental events, enabling adaptation to periodic environmental changes. Circadian clocks also function in time-compensation for celestial navigation and in the measurement of day or night length for photoperiodism. Phase response curves for such clocks reported thus far exhibit close similarities; specifically, the circannual clock in Anthrenus verbasci shows striking similarity to circadian clocks in its phase response. It is suggested that diverse biological clocks share physiological properties in their phase responses irrespective of period length. Molecular and physiological mechanisms are best understood for the optic-lobe and mid-brain circadian clocks, although there is no direct evidence that these clocks are involved in rhythmic phenomena other than circadian rhythms in daily events. Circadian clocks have also been localized in peripheral tissues, and research on their role in various rhythmic phenomena has been started. Although clock genes have been identified as controllers of circadian rhythms in daily events, some of these genes have also been shown to be involved in photoperiodism and possibly in time-compensated celestial navigation. In contrast, there is no experimental evidence indicating that any known clock gene is involved in biological clocks other than circadian clocks.
Collapse
Affiliation(s)
- Hideharu Numata
- />Graduate School of Science, Kyoto University, Kyoto, 606-8502 Japan
| | - Yosuke Miyazaki
- />Graduate School of Education, Ashiya University, Ashiya, 659-8511 Japan
| | - Tomoko Ikeno
- />Department of Psychology, Michigan State University, East Lansing, MI 48824 USA
| |
Collapse
|
116
|
Goto SG, Takekata H. Circatidal rhythm and the veiled clockwork. CURRENT OPINION IN INSECT SCIENCE 2015; 7:92-97. [PMID: 32846692 DOI: 10.1016/j.cois.2014.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/03/2014] [Accepted: 12/06/2014] [Indexed: 06/11/2023]
Abstract
Many intertidal organisms exhibit endogenous rhythms corresponding to the tidal cycle, i.e., circatidal rhythm. However, circatidal rhythm has been poorly investigated in insects. Several hypotheses have been proposed for the clock generating circatidal rhythm. Nevertheless, the physiological mechanisms of the clocks remain unknown, with one of the long-standing questions being whether the circatidal rhythm is generated by circadian clocks, their variations, or clocks distinct from the circadian clock. In the mangrove cricket Apteronemobius asahinai, the circatidal clock operating locomotor activity rhythm differs from the circadian clock at both the molecular and neural level. Dissections of the clock generating the circatidal rhythm are expected in the near future.
Collapse
Affiliation(s)
- Shin G Goto
- Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan.
| | - Hiroki Takekata
- Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan.
| |
Collapse
|
117
|
Identification of the molecular components of a Tigriopus californicus (Crustacea, Copepoda) circadian clock. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2014; 12:16-44. [PMID: 25310881 DOI: 10.1016/j.cbd.2014.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/15/2014] [Accepted: 09/15/2014] [Indexed: 01/24/2023]
Abstract
Copepods of the genus Tigriopus have been proposed as marine models for investigations of environmental perturbation. One rapidly increasing anthropogenic stressor for intertidal organisms is light pollution. Given the sensitivity of circadian rhythms to exogenous light, the genes/proteins of a Tigriopus circadian pacemaker represent a potential system for investigating the influences of artificial light sources on circadian behavior in an intertidal species. Here, the molecular components of a putative Tigriopus californicus circadian clock were identified using publicly accessible transcriptome data; the recently deduced circadian proteins of the copepod Calanus finmarchicus were used as a reference. Transcripts encoding homologs of all commonly recognized ancestral arthropod core clock proteins were identified (i.e. CLOCK, CRYPTOCHROME 2, CYCLE, PERIOD and TIMELESS), as were ones encoding proteins likely to modulate the core clock (i.e. CASEIN KINASE II, CLOCKWORK ORANGE, DOUBLETIME, PROTEIN PHOSPHATASE 1, PROTEIN PHOSPHATASE 2A, SHAGGY, SUPERNUMERARY LIMBS and VRILLE) or to act as inputs to it (i.e. CRYPTOCHROME 1). PAR DOMAIN PROTEIN 1 was the only circadian-associated protein not identified in Tigriopus; it appears absent in Calanus too. These data represent just the third full set of molecular components for a crustacean circadian pacemaker (Daphnia pulex and C. finmarchicus previously), and only the second obtained from transcribed sequences (C. finmarchicus previously). Given Tigriopus' proposed status as a model for investigating the influences of anthropogenic stressors in the marine environment, these data provide the first suite of gene/protein targets for understanding how light pollution may influence circadian physiology and behavior in an intertidal organism.
Collapse
|
118
|
Kennaway DJ, Varcoe TJ, Voultsios A, Salkeld MD, Rattanatray L, Boden MJ. Acute inhibition of casein kinase 1δ/ε rapidly delays peripheral clock gene rhythms. Mol Cell Biochem 2014; 398:195-206. [PMID: 25245819 DOI: 10.1007/s11010-014-2219-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 09/12/2014] [Indexed: 12/23/2022]
Abstract
Circadian rhythms are generated through a transcription-translation feedback loop involving clock genes and the casein kinases CSNK1D and CSNK1E. In this study, we investigated the effects of the casein kinase inhibitor PF-670462 (50 mg/kg) on rhythmic expression of clock genes in the liver, pancreas and suprachiasmatic nucleus (SCN) as well as plasma corticosterone, melatonin and running behaviour in rats and compared them to the responses to a 4 h extension of the light phase. PF-670462 acutely phase delayed the rhythmic transcription of Bmal1, Per1, Per2 and Nr1d1 in both liver and pancreas by 4.5 ± 1.3 and 4.5 ± 1.2 h, respectively, 1 day after administration. In the SCN, the rhythm of Nr1d1 and Dbp mRNA expression was delayed by 4.2 and 4 h, respectively. Despite these changes, the time of peak plasma melatonin secretion was not delayed, although the plasma corticosterone rhythm and onset of wheel-running activity were delayed by 2.1 and 1.1 h, respectively. These changes are in contrast to the effects of the 4 h light extension, which resulted in delays in peak expression of the clock genes of less than 1 h and no change in the melatonin or corticosterone rhythms. The ability of the casein kinase inhibitor to bring about large phase shifts in the rhythms of major metabolic target tissues may lead to new drugs being developed to rapidly phase adjust circadian rhythms to alleviate the metabolic impact of shift work.
Collapse
Affiliation(s)
- D J Kennaway
- Robinson Research Institute, School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, SA, 5005, Australia,
| | | | | | | | | | | |
Collapse
|
119
|
Takekata H, Numata H, Shiga S, Goto SG. Silencing the circadian clock gene Clock using RNAi reveals dissociation of the circatidal clock from the circadian clock in the mangrove cricket. JOURNAL OF INSECT PHYSIOLOGY 2014; 68:16-22. [PMID: 24995838 DOI: 10.1016/j.jinsphys.2014.06.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 06/07/2014] [Accepted: 06/25/2014] [Indexed: 06/03/2023]
Abstract
Whether a clock that generates a circatidal rhythm shares the same elements as the circadian clock is not fully understood. The mangrove cricket, Apteronemobius asahinai, shows simultaneously two endogenous rhythms in its locomotor activity; the circatidal rhythm generates active and inactive phases, and the circadian rhythm modifies activity levels by suppressing the activity during subjective day. In the present study, we silenced Clock (Clk), a master gene of the circadian clock, in A. asahinai using RNAi to investigate the link between the circatidal and circadian clocks. The abundance of Clk mRNA in the crickets injected with double-stranded RNA of Clk (dsClk) was reduced to a half of that in control crickets. dsClk injection also reduced mRNA abundance of another circadian clock gene period (per) and weakened diel oscillation in per mRNA expression. Examination of the locomotor rhythms under constant conditions revealed that the circadian modification was disrupted after silencing Clk expression, but the circatidal rhythm remained unaffected. There were no significant changes in the free-running period of the circatidal rhythm between the controls and the crickets injected with dsClk. Our results reveal that Clk is essential for the circadian clock, but is not required for the circatidal clock. From these results we propose that the circatidal rhythm of A. asahinai is driven by a clock, the molecular components of which are distinct from that of the circadian clock.
Collapse
Affiliation(s)
- Hiroki Takekata
- Graduate School of Science, Osaka City University, Osaka, Japan.
| | | | - Sakiko Shiga
- Graduate School of Science, Osaka City University, Osaka, Japan.
| | - Shin G Goto
- Graduate School of Science, Osaka City University, Osaka, Japan.
| |
Collapse
|
120
|
Raible F, Falciatore A. It's about time: rhythms as a new dimension of molecular marine research. Mar Genomics 2014; 14:1-2. [PMID: 24952925 DOI: 10.1016/j.margen.2014.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Revised: 03/10/2014] [Accepted: 03/25/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Florian Raible
- Max F. Perutz Laboratories and Research Platform "Marine Rhythms of Life", University of Vienna, Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria.
| | - Angela Falciatore
- Sorbonne Universités, UPMC Univ Paris 06, Laboratory of Computational and Quantitative Biology UMR 7238CNRS-UPMC, F-75006 Paris, France.
| |
Collapse
|
121
|
Oliveri P, Fortunato AE, Petrone L, Ishikawa-Fujiwara T, Kobayashi Y, Todo T, Antonova O, Arboleda E, Zantke J, Tessmar-Raible K, Falciatore A. The Cryptochrome/Photolyase Family in aquatic organisms. Mar Genomics 2014; 14:23-37. [DOI: 10.1016/j.margen.2014.02.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/05/2014] [Accepted: 02/10/2014] [Indexed: 01/12/2023]
|
122
|
Abstract
Animals with habitats in the intertidal zone often display biological rhythms that coordinate with both the tidal and the daily environmental cycles. Two recent studies show that the molecular components of the biological clocks mediating tidal rhythms are likely different from the phylogenetically conserved components that mediate circadian (daily) rhythms.
Collapse
|
123
|
Zantke J, Ishikawa-Fujiwara T, Arboleda E, Lohs C, Schipany K, Hallay N, Straw A, Todo T, Tessmar-Raible K. Circadian and circalunar clock interactions in a marine annelid. Cell Rep 2013; 5:99-113. [PMID: 24075994 PMCID: PMC3913041 DOI: 10.1016/j.celrep.2013.08.031] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 07/03/2013] [Accepted: 08/28/2013] [Indexed: 12/11/2022] Open
Abstract
Life is controlled by multiple rhythms. Although the interaction of the daily (circadian) clock with environmental stimuli, such as light, is well documented, its relationship to endogenous clocks with other periods is little understood. We establish that the marine worm Platynereis dumerilii possesses endogenous circadian and circalunar (monthly) clocks and characterize their interactions. The RNAs of likely core circadian oscillator genes localize to a distinct nucleus of the worm's forebrain. The worm's forebrain also harbors a circalunar clock entrained by nocturnal light. This monthly clock regulates maturation and persists even when circadian clock oscillations are disrupted by the inhibition of casein kinase 1δ/ε. Both circadian and circalunar clocks converge on the regulation of transcript levels. Furthermore, the circalunar clock changes the period and power of circadian behavior, although the period length of the daily transcriptional oscillations remains unaltered. We conclude that a second endogenous noncircadian clock can influence circadian clock function.
Collapse
Affiliation(s)
- Juliane Zantke
- Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9/4, 1030 Vienna, Austria
- Research Platform “Marine Rhythms of Life,” University of Vienna, Dr. Bohr-Gasse 9/4, 1030 Vienna, Austria
| | - Tomoko Ishikawa-Fujiwara
- Department of Radiation Biology and Medical Genetics, Graduate School of Medicine, Osaka University, B4, 2-2 Yamadaoka, Suita 565-0871, Japan
| | - Enrique Arboleda
- Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9/4, 1030 Vienna, Austria
| | - Claudia Lohs
- Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9/4, 1030 Vienna, Austria
| | - Katharina Schipany
- Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9/4, 1030 Vienna, Austria
| | - Natalia Hallay
- Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9/4, 1030 Vienna, Austria
- Research Platform “Marine Rhythms of Life,” University of Vienna, Dr. Bohr-Gasse 9/4, 1030 Vienna, Austria
| | - Andrew D. Straw
- Research Institute of Molecular Pathology, University of Vienna, Dr. Bohr-Gasse 7, 1030 Vienna, Austria
| | - Takeshi Todo
- Department of Radiation Biology and Medical Genetics, Graduate School of Medicine, Osaka University, B4, 2-2 Yamadaoka, Suita 565-0871, Japan
| | - Kristin Tessmar-Raible
- Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9/4, 1030 Vienna, Austria
- Research Platform “Marine Rhythms of Life,” University of Vienna, Dr. Bohr-Gasse 9/4, 1030 Vienna, Austria
| |
Collapse
|
124
|
|