101
|
Wooten M, Ranjan R, Chen X. Asymmetric Histone Inheritance in Asymmetrically Dividing Stem Cells. Trends Genet 2020; 36:30-43. [PMID: 31753528 PMCID: PMC6925335 DOI: 10.1016/j.tig.2019.10.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/21/2019] [Accepted: 10/15/2019] [Indexed: 12/26/2022]
Abstract
Epigenetic mechanisms play essential roles in determining distinct cell fates during the development of multicellular organisms. Histone proteins represent crucial epigenetic components that help specify cell identities. Previous work has demonstrated that during the asymmetric cell division of Drosophila male germline stem cells (GSCs), histones H3 and H4 are asymmetrically inherited, such that pre-existing (old) histones are segregated towards the self-renewing GSC whereas newly synthesized (new) histones are enriched towards the differentiating daughter cell. In order to further understand the molecular mechanisms underlying this striking phenomenon, two key questions must be answered: when and how old and new histones are differentially incorporated by sister chromatids, and how epigenetically distinct sister chromatids are specifically recognized and segregated. Here, we discuss recent advances in our understanding of the molecular mechanisms and cellular bases underlying these fundamental and important biological processes responsible for generating two distinct cells through one cell division.
Collapse
Affiliation(s)
- Matthew Wooten
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Rajesh Ranjan
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Xin Chen
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
102
|
Fishman L, McIntosh M. Standard Deviations: The Biological Bases of Transmission Ratio Distortion. Annu Rev Genet 2019; 53:347-372. [DOI: 10.1146/annurev-genet-112618-043905] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The rule of Mendelian inheritance is remarkably robust, but deviations from the equal transmission of alternative alleles at a locus [a.k.a. transmission ratio distortion (TRD)] are also commonly observed in genetic mapping populations. Such TRD reveals locus-specific selection acting at some point between the diploid heterozygous parents and progeny genotyping and therefore can provide novel insight into otherwise-hidden genetic and evolutionary processes. Most of the classic selfish genetic elements were discovered through their biasing of transmission, but many unselfish evolutionary and developmental processes can also generate TRD. In this review, we describe methodologies for detecting TRD in mapping populations, detail the arenas and genetic interactions that shape TRD during plant and animal reproduction, and summarize patterns of TRD from across the genetic mapping literature. Finally, we point to new experimental approaches that can accelerate both detection of TRD and characterization of the underlying genetic mechanisms.
Collapse
Affiliation(s)
- Lila Fishman
- Division of Biological Sciences, University of Montana, Missoula, Montana 59812, USA
| | - Mariah McIntosh
- Division of Biological Sciences, University of Montana, Missoula, Montana 59812, USA
| |
Collapse
|
103
|
Abstract
Selfish centromeres exploit asymmetric female meiosis to drive non-Mendelian segregation in their favor. Using inherent differences in drive propensity between mouse chromosomes, a new study reveals how proteins that modify chromatin states and microtubule stability enable this selfish behavior.
Collapse
Affiliation(s)
- Courtney M Schroeder
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|
104
|
Ling YH, Lin Z, Yuen KWY. Genetic and epigenetic effects on centromere establishment. Chromosoma 2019; 129:1-24. [PMID: 31781852 DOI: 10.1007/s00412-019-00727-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/24/2019] [Accepted: 10/10/2019] [Indexed: 01/19/2023]
Abstract
Endogenous chromosomes contain centromeres to direct equal chromosomal segregation in mitosis and meiosis. The location and function of existing centromeres is usually maintained through cell cycles and generations. Recent studies have investigated how the centromere-specific histone H3 variant CENP-A is assembled and replenished after DNA replication to epigenetically propagate the centromere identity. However, existing centromeres occasionally become inactivated, with or without change in underlying DNA sequences, or lost after chromosomal rearrangements, resulting in acentric chromosomes. New centromeres, known as neocentromeres, may form on ectopic, non-centromeric chromosomal regions to rescue acentric chromosomes from being lost, or form dicentric chromosomes if the original centromere is still active. In addition, de novo centromeres can form after chromatinization of purified DNA that is exogenously introduced into cells. Here, we review the phenomena of naturally occurring and experimentally induced new centromeres and summarize the genetic (DNA sequence) and epigenetic features of these new centromeres. We compare the characteristics of new and native centromeres to understand whether there are different requirements for centromere establishment and propagation. Based on our understanding of the mechanisms of new centromere formation, we discuss the perspectives of developing more stably segregating human artificial chromosomes to facilitate gene delivery in therapeutics and research.
Collapse
Affiliation(s)
- Yick Hin Ling
- School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong
| | - Zhongyang Lin
- School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong
| | - Karen Wing Yee Yuen
- School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong.
| |
Collapse
|
105
|
Lera RF, Norman RX, Dumont M, Dennee A, Martin‐Koob J, Fachinetti D, Burkard ME. Plk1 protects kinetochore-centromere architecture against microtubule pulling forces. EMBO Rep 2019; 20:e48711. [PMID: 31468671 PMCID: PMC6776907 DOI: 10.15252/embr.201948711] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/03/2019] [Accepted: 08/09/2019] [Indexed: 12/26/2022] Open
Abstract
During mitosis, sister chromatids attach to microtubules which generate ~ 700 pN pulling force focused on the centromere. We report that chromatin-localized signals generated by Polo-like kinase 1 (Plk1) maintain the integrity of the kinetochore and centromere against this force. Without sufficient Plk1 activity, chromosomes become misaligned after normal condensation and congression. These chromosomes are silent to the mitotic checkpoint, and many lag and mis-segregate in anaphase. Their centromeres and kinetochores lack CENP-A, CENP-C, CENP-T, Hec1, Nuf2, and Knl1; however, CENP-B is retained. CENP-A loss occurs coincident with secondary misalignment and anaphase onset. This disruption occurs asymmetrically prior to anaphase and requires tension generated by microtubules. Mechanistically, centromeres highly recruit PICH DNA helicase and PICH depletion restores kinetochore disruption in pre-anaphase cells. Furthermore, anaphase defects are significantly reduced by tethering Plk1 to chromatin, including H2B, and INCENP, but not to CENP-A. Taken as a whole, this demonstrates that Plk1 signals are crucial for stabilizing centromeric architecture against tension.
Collapse
Affiliation(s)
- Robert F Lera
- Division of Hematology/OncologyDepartment of MedicineSchool of Medicine and Public HealthUniversity of WisconsinMadisonWIUSA
- UW Carbone Cancer CenterUniversity of WisconsinMadisonWIUSA
| | - Roshan X Norman
- Division of Hematology/OncologyDepartment of MedicineSchool of Medicine and Public HealthUniversity of WisconsinMadisonWIUSA
- UW Carbone Cancer CenterUniversity of WisconsinMadisonWIUSA
| | - Marie Dumont
- Institut CurieCNRS, UMR 144PSL Research UniversityParisFrance
| | - Alexandra Dennee
- Division of Hematology/OncologyDepartment of MedicineSchool of Medicine and Public HealthUniversity of WisconsinMadisonWIUSA
- UW Carbone Cancer CenterUniversity of WisconsinMadisonWIUSA
| | - Joanne Martin‐Koob
- Division of Hematology/OncologyDepartment of MedicineSchool of Medicine and Public HealthUniversity of WisconsinMadisonWIUSA
- UW Carbone Cancer CenterUniversity of WisconsinMadisonWIUSA
| | | | - Mark E Burkard
- Division of Hematology/OncologyDepartment of MedicineSchool of Medicine and Public HealthUniversity of WisconsinMadisonWIUSA
- UW Carbone Cancer CenterUniversity of WisconsinMadisonWIUSA
| |
Collapse
|
106
|
Asymmetric Centromeres Differentially Coordinate with Mitotic Machinery to Ensure Biased Sister Chromatid Segregation in Germline Stem Cells. Cell Stem Cell 2019; 25:666-681.e5. [PMID: 31564548 DOI: 10.1016/j.stem.2019.08.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/25/2019] [Accepted: 08/19/2019] [Indexed: 12/29/2022]
Abstract
Many stem cells utilize asymmetric cell division (ACD) to produce a self-renewed stem cell and a differentiating daughter cell. How non-genic information could be inherited differentially to establish distinct cell fates is not well understood. Here, we report a series of spatiotemporally regulated asymmetric components, which ensure biased sister chromatid attachment and segregation during ACD of Drosophila male germline stem cells (GSCs). First, sister centromeres are differentially enriched with proteins involved in centromere specification and kinetochore function. Second, temporally asymmetric microtubule activities and polarized nuclear envelope breakdown allow for the preferential recognition and attachment of microtubules to asymmetric sister kinetochores and sister centromeres. Abolishment of either the asymmetric sister centromeres or the asymmetric microtubule activities results in randomized sister chromatid segregation. Together, these results provide the cellular basis for partitioning epigenetically distinct sister chromatids during stem cell ACDs, which opens new directions to study these mechanisms in other biological contexts.
Collapse
|
107
|
Akera T, Trimm E, Lampson MA. Molecular Strategies of Meiotic Cheating by Selfish Centromeres. Cell 2019; 178:1132-1144.e10. [PMID: 31402175 DOI: 10.1016/j.cell.2019.07.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 01/11/2019] [Accepted: 06/25/2019] [Indexed: 10/26/2022]
Abstract
Asymmetric division in female meiosis creates selective pressure favoring selfish centromeres that bias their transmission to the egg. This centromere drive can explain the paradoxical rapid evolution of both centromere DNA and centromere-binding proteins despite conserved centromere function. Here, we define a molecular pathway linking expanded centromeres to histone phosphorylation and recruitment of microtubule destabilizing factors, leading to detachment of selfish centromeres from spindle microtubules that would direct them to the polar body. Exploiting centromere divergence between species, we show that selfish centromeres in two hybrid mouse models use the same molecular pathway but modulate it differently to enrich destabilizing factors. Our results indicate that increasing microtubule destabilizing activity is a general strategy for drive in both models, but centromeres have evolved distinct mechanisms to increase that activity. Furthermore, we show that drive depends on slowing meiotic progression, suggesting that selfish centromeres can be suppressed by regulating meiotic timing.
Collapse
Affiliation(s)
- Takashi Akera
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Emily Trimm
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael A Lampson
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
108
|
Langley SA, Miga KH, Karpen GH, Langley CH. Haplotypes spanning centromeric regions reveal persistence of large blocks of archaic DNA. eLife 2019; 8:e42989. [PMID: 31237235 PMCID: PMC6592686 DOI: 10.7554/elife.42989] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 05/20/2019] [Indexed: 12/22/2022] Open
Abstract
Despite critical roles in chromosome segregation and disease, the repetitive structure and vast size of centromeres and their surrounding heterochromatic regions impede studies of genomic variation. Here we report the identification of large-scale haplotypes (cenhaps) in humans that span the centromere-proximal regions of all metacentric chromosomes, including the arrays of highly repeated α-satellites on which centromeres form. Cenhaps reveal deep diversity, including entire introgressed Neanderthal centromeres and equally ancient lineages among Africans. These centromere-spanning haplotypes contain variants, including large differences in α-satellite DNA content, which may influence the fidelity and bias of chromosome transmission. The discovery of cenhaps creates new opportunities to investigate their contribution to phenotypic variation, especially in meiosis and mitosis, as well as to more incisively model the unexpectedly rich evolution of these challenging genomic regions.
Collapse
Affiliation(s)
- Sasha A Langley
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
- Biological Systems and Engineering DivisionLawrence Berkeley National LaboratoryBerkeleyUnited States
| | - Karen H Miga
- UC Santa Cruz Genomics InstituteUniversity of California, Santa CruzSanta CruzUnited States
| | - Gary H Karpen
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
- Biological Systems and Engineering DivisionLawrence Berkeley National LaboratoryBerkeleyUnited States
| | - Charles H Langley
- Department of Evolution and EcologyUniversity of California, DavisDavisUnited States
| |
Collapse
|
109
|
Abstract
In sexual reproduction, opportunities are limited and the stakes are high. This inevitably leads to conflict. One pervasive conflict occurs within genomes between alternative alleles at heterozygous loci. Each gamete and thus each offspring will inherit only one of the two alleles from a heterozygous parent. Most alleles 'play fair' and have a 50% chance of being included in any given gamete. However, alleles can gain an enormous advantage if they act selfishly to force their own transmission into more than half, sometimes even all, of the functional gametes. These selfish alleles are known as 'meiotic drivers', and their cheating often incurs a high cost on the fertility of eukaryotes ranging from plants to mammals. Here, we review how several types of meiotic drivers directly and indirectly contribute to infertility, and argue that a complete picture of the genetics of infertility will require focusing on both the standard alleles - those that play fair - as well as selfish alleles involved in genetic conflict.
Collapse
Affiliation(s)
- Sarah E Zanders
- Stowers Institute for Medical Research, Kansas City, MO, USA; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA.
| | - Robert L Unckless
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
110
|
Centromere Repeats: Hidden Gems of the Genome. Genes (Basel) 2019; 10:genes10030223. [PMID: 30884847 PMCID: PMC6471113 DOI: 10.3390/genes10030223] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/07/2019] [Accepted: 03/11/2019] [Indexed: 01/08/2023] Open
Abstract
Satellite DNAs are now regarded as powerful and active contributors to genomic and chromosomal evolution. Paired with mobile transposable elements, these repetitive sequences provide a dynamic mechanism through which novel karyotypic modifications and chromosomal rearrangements may occur. In this review, we discuss the regulatory activity of satellite DNA and their neighboring transposable elements in a chromosomal context with a particular emphasis on the integral role of both in centromere function. In addition, we discuss the varied mechanisms by which centromeric repeats have endured evolutionary processes, producing a novel, species-specific centromeric landscape despite sharing a ubiquitously conserved function. Finally, we highlight the role these repetitive elements play in the establishment and functionality of de novo centromeres and chromosomal breakpoints that underpin karyotypic variation. By emphasizing these unique activities of satellite DNAs and transposable elements, we hope to disparage the conventional exemplification of repetitive DNA in the historically-associated context of ‘junk’.
Collapse
|
111
|
Abstract
Animal and plant centromeres are embedded in repetitive "satellite" DNA, but are thought to be epigenetically specified. To define genetic characteristics of centromeres, we surveyed satellite DNA from diverse eukaryotes and identified variation in <10-bp dyad symmetries predicted to adopt non-B-form conformations. Organisms lacking centromeric dyad symmetries had binding sites for sequence-specific DNA-binding proteins with DNA-bending activity. For example, human and mouse centromeres are depleted for dyad symmetries, but are enriched for non-B-form DNA and are associated with binding sites for the conserved DNA-binding protein CENP-B, which is required for artificial centromere function but is paradoxically nonessential. We also detected dyad symmetries and predicted non-B-form DNA structures at neocentromeres, which form at ectopic loci. We propose that centromeres form at non-B-form DNA because of dyad symmetries or are strengthened by sequence-specific DNA binding proteins. This may resolve the CENP-B paradox and provide a general basis for centromere specification.
Collapse
Affiliation(s)
- Sivakanthan Kasinathan
- Medical Scientist Training Program, University of Washington School of Medicine, Seattle, WA.,Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA.,Howard Hughes Medical Institute, Seattle, WA
| |
Collapse
|
112
|
Lane S, Kauppi L. Meiotic spindle assembly checkpoint and aneuploidy in males versus females. Cell Mol Life Sci 2019; 76:1135-1150. [PMID: 30564841 PMCID: PMC6513798 DOI: 10.1007/s00018-018-2986-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/12/2018] [Accepted: 12/03/2018] [Indexed: 12/13/2022]
Abstract
The production of gametes (sperm and eggs in mammals) involves two sequential cell divisions, meiosis I and meiosis II. In meiosis I, homologous chromosomes segregate to different daughter cells, and meiosis II resembles mitotic divisions in that sister chromatids separate. While in principle the process is identical in males and females, the time frame and susceptibility to chromosomal defects, including achiasmy and cohesion weakening, and the response to mis-segregating chromosomes are not. In this review, we compare and contrast meiotic spindle assembly checkpoint function and aneuploidy in the two sexes.
Collapse
Affiliation(s)
- Simon Lane
- Department of Chemistry and the Institute for Life Sciences, University of Southampton, Building 85, Highfield Campus, Southampton, SO171BJ, UK
| | - Liisa Kauppi
- Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, 00014, Helsinki, Finland.
| |
Collapse
|
113
|
Kalinowska K, Chamas S, Unkel K, Demidov D, Lermontova I, Dresselhaus T, Kumlehn J, Dunemann F, Houben A. State-of-the-art and novel developments of in vivo haploid technologies. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:593-605. [PMID: 30569366 PMCID: PMC6439148 DOI: 10.1007/s00122-018-3261-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/05/2018] [Indexed: 05/02/2023]
Abstract
The ability to generate (doubled) haploid plants significantly accelerates the crop breeding process. Haploids have been induced mainly through the generation of plants from cultivated gametophic (haploid) cells and tissues, i.e., in vitro haploid technologies, or through the selective loss of a parental chromosome set upon inter- or intraspecific hybridization. Here, we focus our review on the mechanisms responsible for the in vivo formation of haploids in the context of inter- and intraspecific hybridization. The application of a modified CENH3 for uniparental genome elimination, the IG1 system used for paternal as well as the BBM-like and the patatin-like phospholipase essential for maternal haploidy induction are discussed in detail.
Collapse
Affiliation(s)
- Kamila Kalinowska
- Biochemie-Zentrum Regensburg, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Sindy Chamas
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstraße 3, 06466, Stadt Seeland, Germany
| | - Katharina Unkel
- Institute for Breeding Research on Horticultural Crops, Federal Research Centre for Cultivated Plants, Julius Kühn-Institute (JKI), Erwin-Baur-Str. 27, 06484, Quedlinburg, Germany
| | - Dmitri Demidov
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstraße 3, 06466, Stadt Seeland, Germany
| | - Inna Lermontova
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstraße 3, 06466, Stadt Seeland, Germany
| | - Thomas Dresselhaus
- Biochemie-Zentrum Regensburg, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Jochen Kumlehn
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstraße 3, 06466, Stadt Seeland, Germany
| | - Frank Dunemann
- Institute for Breeding Research on Horticultural Crops, Federal Research Centre for Cultivated Plants, Julius Kühn-Institute (JKI), Erwin-Baur-Str. 27, 06484, Quedlinburg, Germany
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstraße 3, 06466, Stadt Seeland, Germany.
| |
Collapse
|
114
|
de la Filia AG, Fenn-Moltu G, Ross L. No evidence for an intragenomic arms race under paternal genome elimination in Planococcus mealybugs. J Evol Biol 2019; 32:491-504. [PMID: 30776169 DOI: 10.1111/jeb.13431] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 01/11/2019] [Accepted: 02/12/2019] [Indexed: 12/12/2022]
Abstract
Genomic conflicts arising during reproduction might play an important role in shaping the striking diversity of reproductive strategies across life. Among these is paternal genome elimination (PGE), a form of haplodiploidy which has independently evolved several times in arthropods. PGE males are diploid but transmit maternally inherited chromosomes only, whereas paternal homologues are excluded from sperm. Mothers thereby effectively monopolize the parentage of sons, at the cost of the father's reproductive success. This creates striking conflict between the sexes that could result in a co-evolutionary arms race between paternal and maternal genomes over gene transmission, yet empirical evidence that such an arms race indeed takes place under PGE is scarce. This study addresses this by testing whether PGE is complete when paternal genotypes are exposed to divergent maternal backgrounds in intraspecific and hybrid crosses of the citrus mealybug, Planococcus citri, and the closely related Planococcus ficus. We determined whether males can transmit genetic information through their sons by tracking inheritance of two traits in a three-generation pedigree: microsatellite markers and sex-specific pheromone preferences. Our results suggest leakages of single paternal chromosomes through males occurring at a low frequency, but we find no evidence for transmission of paternal pheromone preferences from fathers to sons. The absence of differences between hybrid and intraspecific crosses in leakage rate of paternal alleles suggests that a co-evolutionary arms race cannot be demonstrated on this evolutionary timescale, but we conclude that there is scope for intragenomic conflict between parental genomes in mealybugs. Finally, we discuss how these paternal escapes can occur and what these findings may reveal about the evolutionary dynamics of this bizarre genetic system.
Collapse
Affiliation(s)
- Andrés G de la Filia
- School of Biological Sciences, Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Gyda Fenn-Moltu
- Department of Ecology and Evolution, University of Lausanne, Switzerland
| | - Laura Ross
- School of Biological Sciences, Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
115
|
Blackmon H, Justison J, Mayrose I, Goldberg EE. Meiotic drive shapes rates of karyotype evolution in mammals. Evolution 2019; 73:511-523. [PMID: 30690715 PMCID: PMC6590138 DOI: 10.1111/evo.13682] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 01/07/2019] [Indexed: 02/06/2023]
Abstract
Chromosome number is perhaps the most basic characteristic of a genome, yet generalizations that can explain the evolution of this trait across large clades have remained elusive. Using karyotype data from over 1000 mammals, we developed and applied a phylogenetic model of chromosome evolution that links chromosome number changes with karyotype morphology. Using our model, we infer that rates of chromosome number evolution are significantly lower in species with karyotypes that consist of either all bibrachial or all monobrachial chromosomes than in species with a mix of both types of morphologies. We suggest that species with homogeneous karyotypes may represent cases where meiotic drive acts to stabilize the karyotype, favoring the chromosome morphologies already present in the genome. In contrast, rapid bouts of chromosome number evolution in taxa with mixed karyotypes may indicate that a switch in the polarity of female meiotic drive favors changes in chromosome number. We do not find any evidence that karyotype morphology affects rates of speciation or extinction. Furthermore, we document that switches in meiotic drive polarity are likely common and have occurred in most major clades of mammals, and that rapid remodeling of karyotypes may be more common than once thought.
Collapse
Affiliation(s)
- Heath Blackmon
- Department of Biology, Texas A&M University, College Station, Texas 77843
| | - Joshua Justison
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, Minnesota 55108
| | - Itay Mayrose
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 69978, Israel
| | - Emma E Goldberg
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, Minnesota 55108
| |
Collapse
|
116
|
Ross KG, Shoemaker D. Unexpected patterns of segregation distortion at a selfish supergene in the fire ant Solenopsis invicta. BMC Genet 2018; 19:101. [PMID: 30404617 PMCID: PMC6223060 DOI: 10.1186/s12863-018-0685-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 10/12/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The Sb supergene in the fire ant Solenopsis invicta determines the form of colony social organization, with colonies whose inhabitants bear the element containing multiple reproductive queens and colonies lacking it containing only a single queen. Several features of this supergene - including suppressed recombination, presence of deleterious mutations, association with a large centromere, and "green-beard" behavior - suggest that it may be a selfish genetic element that engages in transmission ratio distortion (TRD), defined as significant departures in progeny allele frequencies from Mendelian inheritance ratios. We tested this possibility by surveying segregation ratios in embryo progenies of 101 queens of the "polygyne" social form (3512 embryos) using three supergene-linked markers and twelve markers outside the supergene. RESULTS Significant departures from Mendelian ratios were observed at the supergene loci in 3-5 times more progenies than expected in the absence of TRD and than found, on average, among non-supergene loci. Also, supergene loci displayed the greatest mean deviations from Mendelian ratios among all study loci, although these typically were modest. A surprising feature of the observed inter-progeny variation in TRD was that significant deviations involved not only excesses of supergene alleles but also similarly frequent excesses of the alternate alleles on the homologous chromosome. As expected given the common occurrence of such "drive reversal" in this system, alleles associated with the supergene gain no consistent transmission advantage over their alternate alleles at the population level. Finally, we observed low levels of recombination and incomplete gametic disequilibrium across the supergene, including between adjacent markers within a single inversion. CONCLUSIONS Our data confirm the prediction that the Sb supergene is a selfish genetic element capable of biasing its own transmission during reproduction, yet counterselection for suppressor loci evidently has produced an evolutionary stalemate in TRD between the variant homologous haplotypes on the "social chromosome". Evidence implicates prezygotic segregation distortion as responsible for the TRD we document, with "true" meiotic drive the most likely mechanism. Low levels of recombination and incomplete gametic disequilibrium across the supergene suggest that selection does not preserve a single uniform supergene haplotype responsible for inducing polygyny.
Collapse
Affiliation(s)
- Kenneth G. Ross
- Department of Entomology, University of Georgia, Athens, GA USA
| | - DeWayne Shoemaker
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN USA
| |
Collapse
|
117
|
Barra V, Fachinetti D. The dark side of centromeres: types, causes and consequences of structural abnormalities implicating centromeric DNA. Nat Commun 2018; 9:4340. [PMID: 30337534 PMCID: PMC6194107 DOI: 10.1038/s41467-018-06545-y] [Citation(s) in RCA: 199] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 09/06/2018] [Indexed: 12/18/2022] Open
Abstract
Centromeres are the chromosomal domains required to ensure faithful transmission of the genome during cell division. They have a central role in preventing aneuploidy, by orchestrating the assembly of several components required for chromosome separation. However, centromeres also adopt a complex structure that makes them susceptible to being sites of chromosome rearrangements. Therefore, preservation of centromere integrity is a difficult, but important task for the cell. In this review, we discuss how centromeres could potentially be a source of genome instability and how centromere aberrations and rearrangements are linked with human diseases such as cancer.
Collapse
Affiliation(s)
- V Barra
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm, F-75005, Paris, France
| | - D Fachinetti
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm, F-75005, Paris, France.
| |
Collapse
|
118
|
Pontremoli C, Forni D, Cagliani R, Pozzoli U, Clerici M, Sironi M. Evolutionary rates of mammalian telomere-stability genes correlate with karyotype features and female germline expression. Nucleic Acids Res 2018; 46:7153-7168. [PMID: 29893967 PMCID: PMC6101625 DOI: 10.1093/nar/gky494] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/17/2018] [Accepted: 05/22/2018] [Indexed: 12/26/2022] Open
Abstract
Telomeres protect the ends of eukaryotic chromosomes and are essential for cell viability. In mammals, telomere dynamics vary with life history traits (e.g. body mass and longevity), suggesting differential selection depending on physiological characteristics. Telomeres, in analogy to centromeric regions, also represent candidate meiotic drivers and subtelomeric DNA evolves rapidly. We analyzed the evolutionary history of mammalian genes implicated in telomere homeostasis (TEL genes). We detected widespread positive selection and we tested two alternative hypotheses: (i) fast evolution is driven by changes in life history traits; (ii) a conflict with selfish DNA elements at the female meiosis represents the underlying selective pressure. By accounting for the phylogenetic relationships among mammalian species, we show that life history traits do not contribute to shape diversity of TEL genes. Conversely, the evolutionary rate of TEL genes correlates with expression levels during meiosis and episodes of positive selection across mammalian species are associated with karyotype features (number of chromosome arms). We thus propose a telomere drive hypothesis, whereby (sub)telomeres and telomere-binding proteins are engaged in an intra-genomic conflict similar to the one described for centromeres.
Collapse
Affiliation(s)
- Chiara Pontremoli
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842 Bosisio Parini, Italy
| | - Diego Forni
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842 Bosisio Parini, Italy
| | - Rachele Cagliani
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842 Bosisio Parini, Italy
| | - Uberto Pozzoli
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842 Bosisio Parini, Italy
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, 20090 Milan, Italy
- Don C. Gnocchi Foundation ONLUS, IRCCS, 20148 Milan, Italy
| | - Manuela Sironi
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842 Bosisio Parini, Italy
| |
Collapse
|
119
|
Puerma E, Orengo DJ, Cruz F, Gómez-Garrido J, Librado P, Salguero D, Papaceit M, Gut M, Segarra C, Alioto TS, Aguadé M. The High-Quality Genome Sequence of the Oceanic Island Endemic Species Drosophila guanche Reveals Signals of Adaptive Evolution in Genes Related to Flight and Genome Stability. Genome Biol Evol 2018; 10:1956-1969. [PMID: 29947749 PMCID: PMC6101566 DOI: 10.1093/gbe/evy135] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2018] [Indexed: 12/18/2022] Open
Abstract
Drosophila guanche is a member of the obscura group that originated in the Canary Islands archipelago upon its colonization by D. subobscura. It evolved into a new species in the laurisilva, a laurel forest present in wet regions that in the islands have only minor long-term weather fluctuations. Oceanic island endemic species such as D. guanche can become model species to investigate not only the relative role of drift and adaptation in speciation processes but also how population size affects nucleotide variation. Moreover, the previous identification of two satellite DNAs in D. guanche makes this species attractive for studying how centromeric DNA evolves. As a prerequisite for its establishment as a model species suitable to address all these questions, we generated a high-quality D. guanche genome sequence composed of 42 cytologically mapped scaffolds, which are assembled into six super-scaffolds (one per chromosome). The comparative analysis of the D. guanche proteome with that of twelve other Drosophila species identified 151 genes that were subject to adaptive evolution in the D. guanche lineage, with a subset of them being involved in flight and genome stability. For example, the Centromere Identifier (CID) protein, directly interacting with centromeric satellite DNA, shows signals of adaptation in this species. Both genomic analyses and FISH of the two satellites would support an ongoing replacement of centromeric satellite DNA in D. guanche.
Collapse
Affiliation(s)
- Eva Puerma
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, i Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Spain
| | - Dorcas J Orengo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, i Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Spain
| | - Fernando Cruz
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Jèssica Gómez-Garrido
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Pablo Librado
- Centre for GeoGenetics, Natural History Museum of Denmark, Copenhagen, Denmark.,Laboratoire d'Anthropobiologie Moléculaire et d'Imagerie de Synthèse, CNRS UMR 5288, Université de Toulouse, Université Paul Sabatier, France
| | - David Salguero
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, i Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Spain
| | - Montserrat Papaceit
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, i Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Spain
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Carmen Segarra
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, i Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Spain
| | - Tyler S Alioto
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Montserrat Aguadé
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, i Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Spain
| |
Collapse
|
120
|
Spindle tubulin and MTOC asymmetries may explain meiotic drive in oocytes. Nat Commun 2018; 9:2952. [PMID: 30054463 PMCID: PMC6063951 DOI: 10.1038/s41467-018-05338-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 06/30/2018] [Indexed: 12/31/2022] Open
Abstract
In the first meiotic division (MI) of oocytes, the cortically positioned spindle causes bivalent segregation in which only the centre-facing homologue pairs are retained. 'Selfish' chromosomes are known to exist, which bias their spindle orientation and hence retention in the egg, a process known as 'meiotic drive'. Here we report on this phenomenon in oocytes from F1 hybrid mice, where parental strain differences in centromere size allows distinction of the two homologue pairs of a bivalent. Bivalents with centromere and kinetochore asymmetry show meiotic drive by rotating during prometaphase, in a process dependent on aurora kinase activity. Cortically positioned homologue pairs appear to be under greater stretch than their centre-facing partners. Additionally the cortex spindle-half contain a greater density of tubulin and microtubule organising centres. A model is presented in which meiotic drive is explained by the impact of microtubule force asymmetry on chromosomes with different sized centromeres and kinetochores.
Collapse
|
121
|
Charlesworth D. Evolution of recombination rates between sex chromosomes. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0456. [PMID: 29109220 DOI: 10.1098/rstb.2016.0456] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2017] [Indexed: 11/12/2022] Open
Abstract
In species with genetic sex-determination, the chromosomes carrying the sex-determining genes have often evolved non-recombining regions and subsequently evolved the full set of characteristics denoted by the term 'sex chromosomes'. These include size differences, creating chromosomal heteromorphism, and loss of gene functions from one member of the chromosome pair. Such characteristics and changes have been widely reviewed, and underlie molecular genetic approaches that can detect sex chromosome regions. This review deals mainly with the evolution of new non-recombining regions, focusing on how certain evolutionary situations select for suppressed recombination (rather than the proximate mechanisms causing suppressed recombination between sex chromosomes). Particularly important is the likely involvement of sexually antagonistic polymorphisms in genome regions closely linked to sex-determining loci. These may be responsible for the evolutionary strata of sex chromosomes that have repeatedly formed by recombination suppression evolving across large genome regions. More studies of recently evolved non-recombining sex-determining regions should help to test this hypothesis empirically, and may provide evidence about whether other situations can sometimes lead to sex-linked regions evolving. Similarities with other non-recombining genome regions are discussed briefly, to illustrate common features of the different cases, though no general properties apply to all of them.This article is part of the themed issue 'Evolutionary causes and consequences of recombination rate variation in sexual organisms'.
Collapse
Affiliation(s)
- Deborah Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, Ashworth Laboratory, University of Edinburgh, King's Buildings, Edinburgh EH9 3FL, UK
| |
Collapse
|
122
|
Stapley J, Feulner PGD, Johnston SE, Santure AW, Smadja CM. Variation in recombination frequency and distribution across eukaryotes: patterns and processes. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0455. [PMID: 29109219 PMCID: PMC5698618 DOI: 10.1098/rstb.2016.0455] [Citation(s) in RCA: 250] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2017] [Indexed: 01/04/2023] Open
Abstract
Recombination, the exchange of DNA between maternal and paternal chromosomes during meiosis, is an essential feature of sexual reproduction in nearly all multicellular organisms. While the role of recombination in the evolution of sex has received theoretical and empirical attention, less is known about how recombination rate itself evolves and what influence this has on evolutionary processes within sexually reproducing organisms. Here, we explore the patterns of, and processes governing recombination in eukaryotes. We summarize patterns of variation, integrating current knowledge with an analysis of linkage map data in 353 organisms. We then discuss proximate and ultimate processes governing recombination rate variation and consider how these influence evolutionary processes. Genome-wide recombination rates (cM/Mb) can vary more than tenfold across eukaryotes, and there is large variation in the distribution of recombination events across closely related taxa, populations and individuals. We discuss how variation in rate and distribution relates to genome architecture, genetic and epigenetic mechanisms, sex, environmental perturbations and variable selective pressures. There has been great progress in determining the molecular mechanisms governing recombination, and with the continued development of new modelling and empirical approaches, there is now also great opportunity to further our understanding of how and why recombination rate varies.This article is part of the themed issue 'Evolutionary causes and consequences of recombination rate variation in sexual organisms'.
Collapse
Affiliation(s)
- Jessica Stapley
- Centre for Adaptation to a Changing Environment, IBZ, ETH Zürich, 8092 Zürich, Switzerland
| | - Philine G D Feulner
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum, Switzerland.,Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| | - Susan E Johnston
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JY, UK
| | - Anna W Santure
- School of Biological Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Carole M Smadja
- Institut des Sciences de l'Evolution UMR 5554, CNRS, IRD, EPHE, Université de Montpellier, 3095 Montpellier cedex 05, France
| |
Collapse
|
123
|
O'Neill MJ, O'Neill RJ. Sex chromosome repeats tip the balance towards speciation. Mol Ecol 2018; 27:3783-3798. [PMID: 29624756 DOI: 10.1111/mec.14577] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/08/2018] [Accepted: 03/26/2018] [Indexed: 12/11/2022]
Abstract
Because sex chromosomes, by definition, carry genes that determine sex, mutations that alter their structural and functional stability can have immediate consequences for the individual by reducing fertility, but also for a species by altering the sex ratio. Moreover, the sex-specific segregation patterns of heteromorphic sex chromosomes make them havens for selfish genetic elements that not only create suboptimal sex ratios but can also foster sexual antagonism. Compensatory mutations to mitigate antagonism or return sex ratios to a Fisherian optimum can create hybrid incompatibility and establish reproductive barriers leading to species divergence. The destabilizing influence of these selfish elements is often manifest within populations as copy number variants (CNVs) in satellite repeats and transposable elements (TE) or as CNVs involving sex-determining genes, or genes essential to fertility and sex chromosome dosage compensation. This review catalogs several examples of well-studied sex chromosome CNVs in Drosophilids and mammals that underlie instances of meiotic drive, hybrid incompatibility and disruptions to sex differentiation and sex chromosome dosage compensation. While it is difficult to pinpoint a direct cause/effect relationship between these sex chromosome CNVs and speciation, it is easy to see how their effects in creating imbalances between the sexes, and the compensatory mutations to restore balance, can lead to lineage splitting and species formation.
Collapse
Affiliation(s)
- Michael J O'Neill
- Institute for Systems Genomics and Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut
| | - Rachel J O'Neill
- Institute for Systems Genomics and Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
124
|
A Kinesin-14 Motor Activates Neocentromeres to Promote Meiotic Drive in Maize. Cell 2018; 173:839-850.e18. [DOI: 10.1016/j.cell.2018.03.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 11/13/2017] [Accepted: 03/02/2018] [Indexed: 01/08/2023]
|
125
|
Martínez-Vargas J, Muñoz-Muñoz F, López-Fuster MJ, Cubo J, Ventura J. Multimethod Approach to the Early Postnatal Growth of the Mandible in Mice from a Zone of Robertsonian Polymorphism. Anat Rec (Hoboken) 2018; 301:1360-1381. [PMID: 29669189 DOI: 10.1002/ar.23835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 11/30/2017] [Accepted: 12/27/2017] [Indexed: 11/11/2022]
Abstract
The western European house mouse (Mus musculus domesticus) shows high karyotypic diversity owing to Robertsonian translocations. Morphometric studies conducted with adult mice suggest that karyotype evolution due to these chromosomal reorganizations entails variation in the form and the patterns of morphological covariation of the mandible. However, information is much scarcer regarding the effect of these rearrangements on the growth pattern of the mouse mandible over early postnatal ontogeny. Here we compare mandible growth from the second to the eighth week of postnatal life between two ontogenetic series of mice from wild populations, with the standard karyotype and with Robertsonian translocations respectively, reared under the same conditions. A multi-method approach is used, including bone histology analyses of mandible surfaces and cross-sections, as well as geometric morphometric analyses of mandible form. The mandibles of both standard and Robertsonian mice display growth acceleration around weaning, anteroposterior direction of bone maturation, a predominance of bone deposition fields over ontogeny, and relatively greater expansion of the posterior mandible region correlated with the ontogenetic increase in mandible size. Nevertheless, differences exist between the two mouse groups regarding the timing of histological maturation of the mandible, the localization of certain bone remodeling fields, the temporospatial patterns of morphological variation, and the organization into two main modules. The dissimilarities in the process of mandible growth between the two groups of mice become more evident around sexual maturity, and could arise from alterations that Robertsonian translocations may exert on genes involved in the bone remodeling mechanism. Anat Rec, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jessica Martínez-Vargas
- Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Cerdanyola del Vallès), Spain
| | - Francesc Muñoz-Muñoz
- Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Cerdanyola del Vallès), Spain
| | - María José López-Fuster
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, and Institut de Recerca de la Biodiversitat (IRBio), Facultat de Biologia, Universitat de Barcelona, E-08028 Barcelona, Spain
| | - Jorge Cubo
- Sorbonne Université, CNRS-INSU, Institut des Sciences de la Terre Paris, ISTeP UMR 7193, F-75005 Paris, France
| | - Jacint Ventura
- Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Cerdanyola del Vallès), Spain
| |
Collapse
|
126
|
Laloraya S. Asymmetric Tyrosination of Spindle Microtubules Facilitates Selfish Inheritance. Trends Cell Biol 2018; 28:417-419. [PMID: 29650359 DOI: 10.1016/j.tcb.2018.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 03/27/2018] [Indexed: 01/25/2023]
Abstract
Meiotic drive is an enigmatic process that results from biased segregation of selfish genetic elements that enhance their own transmission and drive evolution. During asymmetric female meiotic divisions, selfish elements segregate preferentially towards the egg rather than polar bodies. Recent findings demonstrate that asymmetric spindle tyrosination helps selfish elements to cheat.
Collapse
Affiliation(s)
- Shikha Laloraya
- Department of Biochemistry, Indian Institute of Science, C. V. Raman Avenue, Bangalore, Karnataka, 560012, India.
| |
Collapse
|
127
|
Wei KHC, Lower SE, Caldas IV, Sless TJS, Barbash DA, Clark AG. Variable Rates of Simple Satellite Gains across the Drosophila Phylogeny. Mol Biol Evol 2018; 35:925-941. [PMID: 29361128 PMCID: PMC5888958 DOI: 10.1093/molbev/msy005] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Simple satellites are tandemly repeating short DNA motifs that can span megabases in eukaryotic genomes. Because they can cause genomic instability through nonallelic homologous exchange, they are primarily found in the repressive heterochromatin near centromeres and telomeres where recombination is minimal, and on the Y chromosome, where they accumulate as the chromosome degenerates. Interestingly, the types and abundances of simple satellites often vary dramatically between closely related species, suggesting that they turn over rapidly. However, limited sampling has prevented detailed understanding of their evolutionary dynamics. Here, we characterize simple satellites from whole-genome sequences generated from males and females of nine Drosophila species, spanning 40 Ma of evolution. We show that PCR-free library preparation and postsequencing GC-correction better capture satellite quantities than conventional methods. We find that over half of the 207 simple satellites identified are species-specific, consistent with previous descriptions of their rapid evolution. Based on a maximum parsimony framework, we determined that most interspecific differences are due to lineage-specific gains. Simple satellites gained within a species are typically a single mutation away from abundant existing satellites, suggesting that they likely emerge from existing satellites, especially in the genomes of satellite-rich species. Interestingly, unlike most of the other lineages which experience various degrees of gains, the lineage leading up to the satellite-poor D. pseudoobscura and D. persimilis appears to be recalcitrant to gains, providing a counterpoint to the notion that simple satellites are universally rapidly evolving.
Collapse
Affiliation(s)
- Kevin H -C Wei
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY
- Department of Integrative Biology, University of California, Berkeley, CA
| | - Sarah E Lower
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY
| | - Ian V Caldas
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY
| | - Trevor J S Sless
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY
| | - Daniel A Barbash
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY
| |
Collapse
|
128
|
Presting GG. Centromeric retrotransposons and centromere function. Curr Opin Genet Dev 2018; 49:79-84. [DOI: 10.1016/j.gde.2018.03.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/05/2018] [Accepted: 03/08/2018] [Indexed: 12/17/2022]
|
129
|
Akera T, Chmátal L, Trimm E, Yang K, Aonbangkhen C, Chenoweth DM, Janke C, Schultz RM, Lampson MA. Spindle asymmetry drives non-Mendelian chromosome segregation. Science 2018; 358:668-672. [PMID: 29097549 DOI: 10.1126/science.aan0092] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 08/10/2017] [Accepted: 09/20/2017] [Indexed: 12/20/2022]
Abstract
Genetic elements compete for transmission through meiosis, when haploid gametes are created from a diploid parent. Selfish elements can enhance their transmission through a process known as meiotic drive. In female meiosis, selfish elements drive by preferentially attaching to the egg side of the spindle. This implies some asymmetry between the two sides of the spindle, but the molecular mechanisms underlying spindle asymmetry are unknown. Here we found that CDC42 signaling from the cell cortex regulated microtubule tyrosination to induce spindle asymmetry and that non-Mendelian segregation depended on this asymmetry. Cortical CDC42 depends on polarization directed by chromosomes, which are positioned near the cortex to allow the asymmetric cell division. Thus, selfish meiotic drivers exploit the asymmetry inherent in female meiosis to bias their transmission.
Collapse
Affiliation(s)
- Takashi Akera
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lukáš Chmátal
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Emily Trimm
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Karren Yang
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chanat Aonbangkhen
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David M Chenoweth
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Carsten Janke
- Institut Curie, Paris Sciences & Lettres (PSL) Research University, CNRS UMR3348, Centre Universitaire, Bâtiment 110, F-91405 Orsay, France.,Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, Centre Universitaire, Bâtiment 110, F-91405 Orsay, France
| | - Richard M Schultz
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael A Lampson
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
130
|
Bravo Núñez MA, Nuckolls NL, Zanders SE. Genetic Villains: Killer Meiotic Drivers. Trends Genet 2018; 34:424-433. [PMID: 29499907 DOI: 10.1016/j.tig.2018.02.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 01/22/2023]
Abstract
Unbiased allele transmission into progeny is a fundamental genetic concept canonized as Mendel's Law of Segregation. Not all alleles, however, abide by the law. Killer meiotic drivers are ultra-selfish DNA sequences that are transmitted into more than half (sometimes all) of the meiotic products generated by a heterozygote. As their name implies, these loci gain a transmission advantage in heterozygotes by destroying otherwise viable meiotic products that do not inherit the driver. We review and classify killer meiotic drive genes across a wide spectrum of eukaryotes. We discuss how analyses of these ultra-selfish genes can lead to greater insight into the mechanisms of gametogenesis and the causes of infertility.
Collapse
Affiliation(s)
- María Angélica Bravo Núñez
- Stowers Institute for Medical Research, Kansas City, MO, USA; These authors contributed equally to this work
| | - Nicole L Nuckolls
- Stowers Institute for Medical Research, Kansas City, MO, USA; These authors contributed equally to this work
| | - Sarah E Zanders
- Stowers Institute for Medical Research, Kansas City, MO, USA; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
131
|
Kursel LE, Malik HS. The cellular mechanisms and consequences of centromere drive. Curr Opin Cell Biol 2018; 52:58-65. [PMID: 29454259 DOI: 10.1016/j.ceb.2018.01.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/17/2018] [Accepted: 01/29/2018] [Indexed: 12/27/2022]
Abstract
During female meiosis, only one of four meiotic products is retained in the egg. It was previously proposed that chromosomes might compete for inclusion in the egg via their centromere 'strength'. Recent findings have revealed the primary requirements for such 'centromere drive'. First, CDC42 signaling from the oocyte cortex renders the meiotic I spindle asymmetric. Second, 'stronger' centromeres preferentially detach from microtubules in cortical proximity, making them more likely to orient away from the cortex, and be included in the egg. Third, centromeric satellite DNA expansions result in greater recruitment of centromeric proteins. Despite these mechanistic insights, it is still unclear if centromere drive elicits rapid evolution of centromeric proteins, thereby driving cellular incompatibilities and wreaking havoc on centromere stability.
Collapse
Affiliation(s)
- Lisa E Kursel
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, USA; Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, USA; Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, USA. mailto:
| |
Collapse
|
132
|
Lampson MA, Black BE. Cellular and Molecular Mechanisms of Centromere Drive. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2018; 82:249-257. [PMID: 29440567 PMCID: PMC6041145 DOI: 10.1101/sqb.2017.82.034298] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The asymmetric outcome of female meiosis I, whereby an entire set of chromosomes are discarded into a polar body, presents an opportunity for selfish genetic elements to cheat the process and disproportionately segregate to the egg. Centromeres, the chromosomal loci that connect to spindle microtubules, could potentially act as selfish elements and "drive" in meiosis. We review the current understanding of the genetic and epigenetic contributions to centromere identity and describe recent progress in a powerful model system to study centromere drive in mice. The progress includes mechanistic findings regarding two main requirements for a centromere to exploit the asymmetric outcome of female meiosis. The first is an asymmetry between centromeres of homologous chromosomes, and we found this is accomplished through massive changes in the abundance of the repetitive DNA underlying centromeric chromatin. The second requirement is an asymmetry in the meiotic spindle, which is achieved through signaling from the oocyte cortex that leads to asymmetry in a posttranslational modification of tubulin, tyrosination. Together, these two asymmetries culminate in the biased segregation of expanded centromeres to the egg, and we describe a mechanistic framework to understand this process.
Collapse
Affiliation(s)
- Michael A Lampson
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Ben E Black
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6059
| |
Collapse
|
133
|
Do Gametes Woo? Evidence for Their Nonrandom Union at Fertilization. Genetics 2018; 207:369-387. [PMID: 28978771 DOI: 10.1534/genetics.117.300109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/10/2017] [Indexed: 12/18/2022] Open
Abstract
A fundamental tenet of inheritance in sexually reproducing organisms such as humans and laboratory mice is that gametes combine randomly at fertilization, thereby ensuring a balanced and statistically predictable representation of inherited variants in each generation. This principle is encapsulated in Mendel's First Law. But exceptions are known. With transmission ratio distortion, particular alleles are preferentially transmitted to offspring. Preferential transmission usually occurs in one sex but not both, and is not known to require interactions between gametes at fertilization. A reanalysis of our published work in mice and of data in other published reports revealed instances where any of 12 mutant genes biases fertilization, with either too many or too few heterozygotes and homozygotes, depending on the mutant gene and on dietary conditions. Although such deviations are usually attributed to embryonic lethality of the underrepresented genotypes, the evidence is more consistent with genetically-determined preferences for specific combinations of egg and sperm at fertilization that result in genotype bias without embryo loss. This unexpected discovery of genetically-biased fertilization could yield insights about the molecular and cellular interactions between sperm and egg at fertilization, with implications for our understanding of inheritance, reproduction, population genetics, and medical genetics.
Collapse
|
134
|
Symmetry from Asymmetry or Asymmetry from Symmetry? COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2018; 82:305-318. [PMID: 29348326 DOI: 10.1101/sqb.2017.82.034272] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The processes of DNA replication and mitosis allow the genetic information of a cell to be copied and transferred reliably to its daughter cells. However, if DNA replication and cell division were always performed in a symmetric manner, the result would be a cluster of tumor cells instead of a multicellular organism. Therefore, gaining a complete understanding of any complex living organism depends on learning how cells become different while faithfully maintaining the same genetic material. It is well recognized that the distinct epigenetic information contained in each cell type defines its unique gene expression program. Nevertheless, how epigenetic information contained in the parental cell is either maintained or changed in the daughter cells remains largely unknown. During the asymmetric cell division (ACD) of Drosophila male germline stem cells, our previous work revealed that preexisting histones are selectively retained in the renewed stem cell daughter, whereas newly synthesized histones are enriched in the differentiating daughter cell. We also found that randomized inheritance of preexisting histones versus newly synthesized histones results in both stem cell loss and progenitor germ cell tumor phenotypes, suggesting that programmed histone inheritance is a key epigenetic player for cells to either remember or reset cell fates. Here, we will discuss these findings in the context of current knowledge on DNA replication, polarized mitotic machinery, and ACD for both animal development and tissue homeostasis. We will also speculate on some potential mechanisms underlying asymmetric histone inheritance, which may be used in other biological events to achieve the asymmetric cell fates.
Collapse
|
135
|
Abstract
Autosomal drivers violate Mendel’s law of segregation in that they are overrepresented in gametes of heterozygous parents. For drivers to be polymorphic within populations rather than fixing, their transmission advantage must be offset by deleterious effects on other fitness components. In this paper, we develop an analytical model for the evolution of autosomal drivers that is motivated by the neocentromere drive system found in maize. In particular, we model both the transmission advantage and deleterious fitness effects on seed viability, pollen viability, seed to adult survival mediated by maternal genotype, and seed to adult survival mediated by offspring genotype. We derive general, biologically intuitive conditions for the four most likely evolutionary outcomes and discuss the expected evolution of autosomal drivers given these conditions. Finally, we determine the expected equilibrium allele frequencies predicted by the model given recent estimates of fitness components for all relevant genotypes and show that the predicted equilibrium is within the range observed in maize land races for levels of drive at the low end of what has been observed.
Collapse
|
136
|
Meiosis: The Origins of Bias. Curr Biol 2017; 27:R1309-R1311. [PMID: 29257963 DOI: 10.1016/j.cub.2017.10.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Biased, or non-Mendelian, segregation is frequently observed but not well understood. Two recent studies on a specific type of biased segregation in mammalian meiosis suggest that it arises from centromeric satellite expansion and asymmetric modification of microtubules in the oocyte spindle.
Collapse
|
137
|
Peichel CL. Chromosome Evolution: Molecular Mechanisms and Evolutionary Consequences. J Hered 2017; 108:1-2. [PMID: 27974485 DOI: 10.1093/jhered/esw079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Catherine L Peichel
- From the Divisions of Basic Sciences and Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109; and Institute of Ecology and Evolution, University of Bern, CH-3012 Bern, Switzerland.
| |
Collapse
|
138
|
Henikoff S, Thakur J, Kasinathan S, Talbert PB. Remarkable Evolutionary Plasticity of Centromeric Chromatin. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2017; 82:71-82. [PMID: 29196559 DOI: 10.1101/sqb.2017.82.033605] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Centromeres were familiar to cell biologists in the late 19th century, but for most eukaryotes the basis for centromere specification has remained enigmatic. Much attention has been focused on the cenH3 (CENP-A) histone variant, which forms the foundation of the centromere. To investigate the DNA sequence requirements for centromere specification, we applied a variety of epigenomic approaches, which have revealed surprising diversity in centromeric chromatin properties. Whereas each point centromere of budding yeast is occupied by a single precisely positioned tetrameric nucleosome with one cenH3 molecule, the "regional" centromeres of fission yeast contain unphased presumably octameric nucleosomes with two cenH3s. In Caenorhabditis elegans, kinetochores assemble all along the chromosome at sites of cenH3 nucleosomes that resemble budding yeast point centromeres, whereas holocentric insects lack cenH3 entirely. The "satellite" centromeres of most animals and plants consist of cenH3-containing particles that are precisely positioned over homogeneous tandem repeats, but in humans, different α-satellite subfamilies are occupied by CENP-A nucleosomes with very different conformations. We suggest that this extraordinary evolutionary diversity of centromeric chromatin architectures can be understood in terms of the simplicity of the task of equal chromosome segregation that is continually subverted by selfish DNA sequences.
Collapse
Affiliation(s)
- Steven Henikoff
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109.,Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | - Jitendra Thakur
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109.,Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | - Sivakanthan Kasinathan
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109.,Medical Scientist Training Program, University of Washington School of Medicine, Seattle, Washington 98195
| | - Paul B Talbert
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109.,Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| |
Collapse
|
139
|
Lenormand T, Engelstädter J, Johnston SE, Wijnker E, Haag CR. Evolutionary mysteries in meiosis. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2016.0001. [PMID: 27619705 DOI: 10.1098/rstb.2016.0001] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2016] [Indexed: 01/25/2023] Open
Abstract
Meiosis is a key event of sexual life cycles in eukaryotes. Its mechanistic details have been uncovered in several model organisms, and most of its essential features have received various and often contradictory evolutionary interpretations. In this perspective, we present an overview of these often 'weird' features. We discuss the origin of meiosis (origin of ploidy reduction and recombination, two-step meiosis), its secondary modifications (in polyploids or asexuals, inverted meiosis), its importance in punctuating life cycles (meiotic arrests, epigenetic resetting, meiotic asymmetry, meiotic fairness) and features associated with recombination (disjunction constraints, heterochiasmy, crossover interference and hotspots). We present the various evolutionary scenarios and selective pressures that have been proposed to account for these features, and we highlight that their evolutionary significance often remains largely mysterious. Resolving these mysteries will likely provide decisive steps towards understanding why sex and recombination are found in the majority of eukaryotes.This article is part of the themed issue 'Weird sex: the underappreciated diversity of sexual reproduction'.
Collapse
Affiliation(s)
- Thomas Lenormand
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE)-Unité Mixte de Recherche 5175, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier-Université Paul-Valéry Montpellier-Ecole Pratique des Hautes Etudes (EPHE), 1919 Route de Mende, 34293 Montpellier Cedex 5, France
| | - Jan Engelstädter
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Susan E Johnston
- Institute of Evolutionary Biology, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Erik Wijnker
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Christoph R Haag
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE)-Unité Mixte de Recherche 5175, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier-Université Paul-Valéry Montpellier-Ecole Pratique des Hautes Etudes (EPHE), 1919 Route de Mende, 34293 Montpellier Cedex 5, France
| |
Collapse
|
140
|
Hoffmann S, Dumont M, Barra V, Ly P, Nechemia-Arbely Y, McMahon MA, Hervé S, Cleveland DW, Fachinetti D. CENP-A Is Dispensable for Mitotic Centromere Function after Initial Centromere/Kinetochore Assembly. Cell Rep 2017; 17:2394-2404. [PMID: 27880912 DOI: 10.1016/j.celrep.2016.10.084] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 09/22/2016] [Accepted: 10/25/2016] [Indexed: 12/19/2022] Open
Abstract
Human centromeres are defined by chromatin containing the histone H3 variant CENP-A assembled onto repetitive alphoid DNA sequences. By inducing rapid, complete degradation of endogenous CENP-A, we now demonstrate that once the first steps of centromere assembly have been completed in G1/S, continued CENP-A binding is not required for maintaining kinetochore attachment to centromeres or for centromere function in the next mitosis. Degradation of CENP-A prior to kinetochore assembly is found to block deposition of CENP-C and CENP-N, but not CENP-T, thereby producing defective kinetochores and failure of chromosome segregation. Without the continuing presence of CENP-A, CENP-B binding to alphoid DNA sequences becomes essential to preserve anchoring of CENP-C and the kinetochore to each centromere. Thus, there is a reciprocal interdependency of CENP-A chromatin and the underlying repetitive centromere DNA sequences bound by CENP-B in the maintenance of human chromosome segregation.
Collapse
Affiliation(s)
- Sebastian Hoffmann
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm, F-75005, Paris, France
| | - Marie Dumont
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm, F-75005, Paris, France
| | - Viviana Barra
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm, F-75005, Paris, France
| | - Peter Ly
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Yael Nechemia-Arbely
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Moira A McMahon
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Solène Hervé
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm, F-75005, Paris, France
| | - Don W Cleveland
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA.
| | - Daniele Fachinetti
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm, F-75005, Paris, France.
| |
Collapse
|
141
|
Fitness Costs and Variation in Transmission Distortion Associated with the Abnormal Chromosome 10 Meiotic Drive System in Maize. Genetics 2017; 208:297-305. [PMID: 29122827 DOI: 10.1534/genetics.117.300060] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/02/2017] [Indexed: 01/03/2023] Open
Abstract
Meiotic drive describes a process whereby selfish genetic elements are transmitted at levels greater than Mendelian expectations. Maize abnormal chromosome 10 (Ab10) encodes a meiotic drive system that exhibits strong preferential segregation through female gametes. We performed transmission assays on nine Ab10 chromosomes from landraces and teosinte lines and found a transmission advantage of 62-79% in heterozygotes. Despite this transmission advantage, Ab10 is present at low frequencies in natural populations, suggesting that it carries large negative fitness consequences. We measured pollen transmission, the percentage of live pollen, seed production, and seed size to estimate several of the possible fitness effects of Ab10. We found no evidence that Ab10 affects pollen transmission, i.e., Ab10 and N10 pollen are transmitted equally from heterozygous fathers. However, at the diploid (sporophyte) level, both heterozygous and homozygous Ab10-I-MMR individuals show decreased pollen viability, decreased seed set, and decreased seed weight. The observed fitness costs can nearly but not entirely account for the observed frequencies of Ab10. Sequence analysis shows a surprising amount of molecular variation among Ab10 haplotypes, suggesting that there may be other phenotypic variables that contribute to the low but stable equilibrium frequencies.
Collapse
|
142
|
|
143
|
Felt KD, Lagerman MB, Ravida NA, Qian L, Powers SR, Paliulis LV. Segregation of the amphitelically attached univalent X chromosome in the spittlebug Philaenus spumarius. PROTOPLASMA 2017; 254:2263-2271. [PMID: 28478487 DOI: 10.1007/s00709-017-1117-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 04/25/2017] [Indexed: 06/07/2023]
Abstract
In meiosis I, homologous chromosomes combine to form bivalents, which align on the metaphase plate. Homologous chromosomes then separate in anaphase I. Univalent sex chromosomes, on the other hand, are unable to segregate in the same way as homologous chromosomes of bivalents due to their lack of a homologous pairing partner in meiosis I. Here, we studied univalent segregation in a Hemipteran insect: the spittlebug Philaenus spumarius. We determined the chromosome number and sex determination mechanism in our population of P. spumarius and showed that, in male meiosis I, there is a univalent X chromosome. We discovered that the univalent X chromosome in primary spermatocytes forms an amphitelic attachment to the spindle and aligns on the metaphase plate with the autosomes. Interestingly, the X chromosome remains at spindle midzone long after the autosomes have separated. In late anaphase I, the X chromosome initiates movement towards one spindle pole. This movement appears to be correlated with a loss of microtubule connections between the kinetochore of one chromatid and its associated spindle pole.
Collapse
Affiliation(s)
- Kristen D Felt
- Biology Department, Bucknell University, Lewisburg, PA, 17837, USA
| | | | - Nigel A Ravida
- Biology Department, Bucknell University, Lewisburg, PA, 17837, USA
| | - Lu Qian
- Biology Department, Bucknell University, Lewisburg, PA, 17837, USA
| | | | | |
Collapse
|
144
|
Kursel LE, Malik HS. Recurrent Gene Duplication Leads to Diverse Repertoires of Centromeric Histones in Drosophila Species. Mol Biol Evol 2017; 34:1445-1462. [PMID: 28333217 PMCID: PMC5435080 DOI: 10.1093/molbev/msx091] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Despite their essential role in the process of chromosome segregation in most eukaryotes, centromeric histones show remarkable evolutionary lability. Not only have they been lost in multiple insect lineages, but they have also undergone gene duplication in multiple plant lineages. Based on detailed study of a handful of model organisms including Drosophila melanogaster, centromeric histone duplication is considered to be rare in animals. Using a detailed phylogenomic study, we find that Cid, the centromeric histone gene, has undergone at least four independent gene duplications during Drosophila evolution. We find duplicate Cid genes in D. eugracilis (Cid2), in the montium species subgroup (Cid3, Cid4) and in the entire Drosophila subgenus (Cid5). We show that Cid3, Cid4, and Cid5 all localize to centromeres in their respective species. Some Cid duplicates are primarily expressed in the male germline. With rare exceptions, Cid duplicates have been strictly retained after birth, suggesting that they perform nonredundant centromeric functions, independent from the ancestral Cid. Indeed, each duplicate encodes a distinct N-terminal tail, which may provide the basis for distinct protein–protein interactions. Finally, we show some Cid duplicates evolve under positive selection whereas others do not. Taken together, our results support the hypothesis that Drosophila Cid duplicates have subfunctionalized. Thus, these gene duplications provide an unprecedented opportunity to dissect the multiple roles of centromeric histones.
Collapse
Affiliation(s)
- Lisa E Kursel
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA.,Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA.,Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA
| |
Collapse
|
145
|
Dion-Côté AM, Barbash DA. Beyond speciation genes: an overview of genome stability in evolution and speciation. Curr Opin Genet Dev 2017; 47:17-23. [PMID: 28830007 DOI: 10.1016/j.gde.2017.07.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/17/2017] [Accepted: 07/28/2017] [Indexed: 01/03/2023]
Abstract
Genome stability ensures individual fitness and reliable transmission of genetic information. Hybridization between diverging lineages can trigger genome instability, highlighting its potential role in post-zygotic reproductive isolation. We argue that genome instability is not merely one of several types of hybrid incompatibility, but rather that genome stability is one of the very first and most fundamental traits that can break down when two diverged genomes are combined. Future work will reveal how frequent and predictable genome instability is in hybrids, how it affects hybrid fitness, and whether it is a direct cause or consequence of speciation.
Collapse
Affiliation(s)
- Anne-Marie Dion-Côté
- Department of Molecular Biology and Genetics, Cornell University, 526 Campus Road, Ithaca, NY 14853, United States
| | - Daniel A Barbash
- Department of Molecular Biology and Genetics, Cornell University, 526 Campus Road, Ithaca, NY 14853, United States.
| |
Collapse
|
146
|
Abstract
Selfishness is pervasive and manifests at all scales of biology, from societies, to individuals, to genetic elements within a genome. The relentless struggle to seek evolutionary advantages drives perpetual cycles of adaptation and counter-adaptation, commonly referred to as Red Queen interactions. In this review, we explore insights gleaned from molecular and genetic studies of such genetic conflicts, both extrinsic (between genomes) and intrinsic (within genomes or cells). We argue that many different characteristics of selfish genetic elements can be distilled into two types of advantages: an over-replication advantage (e.g. mobile genetic elements in genomes) and a transmission distortion advantage (e.g. meiotic drivers in populations). These two general categories may help classify disparate types of selfish genetic elements.
Collapse
Affiliation(s)
- Richard N McLaughlin
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA .,Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| |
Collapse
|
147
|
Das A, Smoak EM, Linares-Saldana R, Lampson MA, Black BE. Centromere inheritance through the germline. Chromosoma 2017; 126:595-604. [PMID: 28791511 DOI: 10.1007/s00412-017-0640-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/20/2017] [Accepted: 07/24/2017] [Indexed: 11/30/2022]
Abstract
The centromere directs chromosome segregation and genetic inheritance but is not itself heritable in a canonical, DNA-based manner. In most species, centromeres are epigenetically defined by the presence of a histone H3 variant centromere protein A (CENP-A), independent of underlying DNA sequence. Therefore, centromere inheritance depends on maintaining the CENP-A nucleosome mark across generations. Experiments in cycling somatic cells have led to a model in which centromere identity is maintained by a cell cycle-coupled CENP-A chromatin assembly pathway. However, the processes of animal gametogenesis pose unique challenges to centromere inheritance because of the extended cell cycle arrest and the massive genome reorganization in the female and male germline, respectively. Here, we review our current understanding of germline centromere inheritance and highlight outstanding questions.
Collapse
Affiliation(s)
- Arunika Das
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Evan M Smoak
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Graduate Program in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ricardo Linares-Saldana
- Graduate Program in Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael A Lampson
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA. .,Graduate Program in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, 19104, USA. .,Graduate Program in Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Ben E Black
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, 19104, USA. .,Graduate Program in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, 19104, USA. .,Graduate Program in Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
148
|
Johnston SE, Huisman J, Ellis PA, Pemberton JM. A High-Density Linkage Map Reveals Sexual Dimorphism in Recombination Landscapes in Red Deer ( Cervus elaphus). G3 (BETHESDA, MD.) 2017; 7:2859-2870. [PMID: 28667018 PMCID: PMC5555489 DOI: 10.1534/g3.117.044198] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/27/2017] [Indexed: 11/29/2022]
Abstract
High-density linkage maps are an important tool to gain insight into the genetic architecture of traits of evolutionary and economic interest, and provide a resource to characterize variation in recombination landscapes. Here, we used information from the cattle genome and the 50 K Cervine Illumina BeadChip to inform and refine a high-density linkage map in a wild population of red deer (Cervus elaphus). We constructed a predicted linkage map of 38,038 SNPs and a skeleton map of 10,835 SNPs across 34 linkage groups. We identified several chromosomal rearrangements in the deer lineage relative to sheep and cattle, including six chromosome fissions, one fusion, and two large inversions. Otherwise, our findings showed strong concordance with map orders in the cattle genome. The sex-averaged linkage map length was 2739.7 cM and the genome-wide autosomal recombination rate was 1.04 cM/Mb. The female autosomal map length was 1.21 longer than that of males (2767.4 cM vs. 2280.8 cM, respectively). Sex differences in map length were driven by high female recombination rates in peri-centromeric regions, a pattern that is unusual relative to other mammal species. This effect was more pronounced in fission chromosomes that would have had to produce new centromeres. We propose two hypotheses to explain this effect: (1) that this mechanism may have evolved to counteract centromeric drive associated with meiotic asymmetry in oocyte production; and/or (2) that sequence and structural characteristics suppressing recombination in close proximity to the centromere may not have evolved at neo-centromeres. Our study provides insight into how recombination landscapes vary and evolve in mammals, and will provide a valuable resource for studies of evolution, genetic improvement, and population management in red deer and related species.
Collapse
Affiliation(s)
- Susan E Johnston
- Institute of Evolutionary Biology, University of Edinburgh, EH9 3FL, United Kingdom
| | - Jisca Huisman
- Institute of Evolutionary Biology, University of Edinburgh, EH9 3FL, United Kingdom
| | - Philip A Ellis
- Institute of Evolutionary Biology, University of Edinburgh, EH9 3FL, United Kingdom
| | | |
Collapse
|
149
|
Expanded Satellite Repeats Amplify a Discrete CENP-A Nucleosome Assembly Site on Chromosomes that Drive in Female Meiosis. Curr Biol 2017; 27:2365-2373.e8. [PMID: 28756949 DOI: 10.1016/j.cub.2017.06.069] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/23/2017] [Accepted: 06/27/2017] [Indexed: 11/20/2022]
Abstract
Female meiosis provides an opportunity for selfish genetic elements to violate Mendel's law of segregation by increasing the chance of segregating to the egg [1]. Centromeres and other repetitive sequences can drive in meiosis by cheating the segregation process [2], but the underlying mechanisms are unknown. Here, we show that centromeres with more satellite repeats house more nucleosomes that confer centromere identity, containing the histone H3 variant CENP-A, and bias their segregation to the egg relative to centromeres with fewer repeats. CENP-A nucleosomes predominantly occupy a single site within the repeating unit that becomes limiting for centromere assembly on smaller centromeres. We propose that amplified repetitive sequences act as selfish elements by promoting expansion of CENP-A chromatin and increased transmission through the female germline.
Collapse
|
150
|
Comai L, Maheshwari S, Marimuthu MPA. Plant centromeres. CURRENT OPINION IN PLANT BIOLOGY 2017; 36:158-167. [PMID: 28411416 DOI: 10.1016/j.pbi.2017.03.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/09/2017] [Accepted: 03/10/2017] [Indexed: 05/24/2023]
Abstract
Plant centromeres, which are determined epigenetically by centromeric histone 3 (CENH3) have revealed surprising structural diversity, ranging from the canonical monocentric seen in vertebrates, to polycentric, and holocentric. Normally stable, centromeres can change position over evolutionary times or upon genomic stress, such as when chromosomes are broken. At the DNA level, centromeres can be based on single copy DNA or more commonly on repeats. Rapid evolution of centromeric sequences and of CENH3 protein remains a mystery, as evidence of co-adaptation is lacking. Epigenetic differences between parents can trigger uniparental centromere failure and genome elimination, contributing to postzygotic hybridization barriers..
Collapse
Affiliation(s)
- Luca Comai
- Department of Plant Biology and Genome Center, University of California Davis, Davis, CA 95616, USA.
| | - Shamoni Maheshwari
- Department of Plant Biology and Genome Center, University of California Davis, Davis, CA 95616, USA
| | - Mohan P A Marimuthu
- Department of Plant Biology and Genome Center, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|