101
|
Multivesicular body formation requires OSBP-related proteins and cholesterol. PLoS Genet 2010; 6. [PMID: 20700434 PMCID: PMC2916882 DOI: 10.1371/journal.pgen.1001055] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 07/08/2010] [Indexed: 12/13/2022] Open
Abstract
In eukaryotes, different subcellular organelles have distinct cholesterol concentrations, which is thought to be critical for biological functions. Oxysterol-binding protein-related proteins (ORPs) have been assumed to mediate nonvesicular cholesterol trafficking in cells; however, their in vivo functions and therefore the biological significance of cholesterol in each organelle are not fully understood. Here, by generating deletion mutants of ORPs in Caenorhabditis elegans, we show that ORPs are required for the formation and function of multivesicular bodies (MVBs). In an RNAi enhancer screen using obr quadruple mutants (obr-1; -2; -3; -4), we found that MVB-related genes show strong genetic interactions with the obr genes. In obr quadruple mutants, late endosomes/lysosomes are enlarged and membrane protein degradation is retarded, although endocytosed soluble proteins are normally delivered to lysosomes and degraded. We also found that the cholesterol content of late endosomes/lysosomes is reduced in the mutants. In wild-type worms, cholesterol restriction induces the formation of enlarged late endosomes/lysosomes, as observed in obr quadruple mutants, and increases embryonic lethality upon knockdown of MVB-related genes. Finally, we show that knockdown of ORP1L, a mammalian ORP family member, induces the formation of enlarged MVBs in HeLa cells. Our in vivo findings suggest that the proper cholesterol level of late endosomes/lysosomes generated by ORPs is required for normal MVB formation and MVB-mediated membrane protein degradation.
Collapse
|
102
|
Spanier B, Rubio-Aliaga I, Hu H, Daniel H. Altered signalling from germline to intestine pushes daf-2;pept-1 Caenorhabditis elegans into extreme longevity. Aging Cell 2010; 9:636-46. [PMID: 20550516 DOI: 10.1111/j.1474-9726.2010.00591.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The insulin-like signalling pathway is a central regulator of development, metabolism, stress resistance and lifespan in eukaryotes. Caenorhabditis elegans daf-2(e1370) animals with a loss-of-function mutation in the insulin-like receptor live twice as long as wild-type animals, and the additional knockout of the intestinal di- and tripeptide transporter pept-1 further increases lifespan by 60%. In assessing the underlying molecular mechanisms for this phenomenon, microarray-based transcriptome data sets of daf-2(e1370) and daf-2(e1370);pept-1(lg601) animals were compared with a focus on genes that showed significantly higher changes in expression levels in daf-2;pept-1 than in daf-2. We identified 187 genes with at least fourfold decreased transcript levels and 170 with more than a fourfold increase. A large fraction of the down-regulated genes encode proteins involved in germline proliferation and reproduction. The DAF-9/DAF-12 signalling cascade was identified as a prime pathway that mediates the longevity of daf-2;pept-1 with a strict dependance on DAF-16. Loss of DAF-9/DAF-12 or KRI-1 reduces the lifespan of daf-2;pept-1 to that of the daf-2 mutant. Amongst the DAF-16 target genes, numerous enzymes involved in the defence of reactive oxygen species were with increased expression level in daf-2;pept-1. On a functional level, it was demonstrated that amongst those, a high de novo synthesis rate of glutathione is most important for the longevity phenotype of this strain. Taken together, a close interdependence of endocrine hormone signalling from germline to intestine was identified as an essential element in the control of the extreme longevity of C. elegans lacking a proper function of the insulin receptor and lacking the intestinal peptide transporter.
Collapse
Affiliation(s)
- Britta Spanier
- ZIEL Research Center of Nutrition and Food Sciences, Technische Universität München, Freising, Germany.
| | | | | | | |
Collapse
|
103
|
Alam H, Williams TW, Dumas KJ, Guo C, Yoshina S, Mitani S, Hu PJ. EAK-7 controls development and life span by regulating nuclear DAF-16/FoxO activity. Cell Metab 2010; 12:30-41. [PMID: 20620993 PMCID: PMC2907918 DOI: 10.1016/j.cmet.2010.05.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 02/26/2010] [Accepted: 05/04/2010] [Indexed: 10/19/2022]
Abstract
FoxO transcription factors control development and longevity in diverse species. Although FoxO regulation via changes in its subcellular localization is well established, little is known about how FoxO activity is regulated in the nucleus. Here, we show that the conserved C. elegans protein EAK-7 acts in parallel to the serine/threonine kinase AKT-1 to inhibit the FoxO transcription factor DAF-16. Loss of EAK-7 activity promotes diapause and longevity in a DAF-16/FoxO-dependent manner. Whereas akt-1 mutation activates DAF-16/FoxO by promoting its translocation from the cytoplasm to the nucleus, eak-7 mutation increases nuclear DAF-16/FoxO activity without influencing DAF-16/FoxO subcellular localization. Thus, EAK-7 and AKT-1 inhibit DAF-16/FoxO activity via distinct mechanisms. Our results implicate EAK-7 as a FoxO regulator and highlight the biological impact of a regulatory pathway that governs the activity of nuclear FoxO without altering its subcellular location.
Collapse
Affiliation(s)
- Hena Alam
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | |
Collapse
|
104
|
Dumas KJ, Guo C, Wang X, Burkhart KB, Adams EJ, Alam H, Hu PJ. Functional divergence of dafachronic acid pathways in the control of C. elegans development and lifespan. Dev Biol 2010; 340:605-12. [PMID: 20178781 DOI: 10.1016/j.ydbio.2010.02.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2010] [Revised: 01/26/2010] [Accepted: 02/12/2010] [Indexed: 01/30/2023]
Abstract
Steroid hormone and insulin/insulin-like growth factor signaling (IIS) pathways control development and lifespan in the nematode Caenorhabditis elegans by regulating the activity of the nuclear receptor DAF-12 and the FoxO transcription factor DAF-16, respectively. The DAF-12 ligands Delta(4)- and Delta(7)-dafachronic acid (DA) promote bypass of the dauer diapause and proper gonadal migration during larval development; in adults, DAs influence lifespan. Whether Delta(4)- and Delta(7)-DA have unique biological functions is not known. We identified the 3-beta-hydroxysteroid dehydrogenase (3betaHSD) family member HSD-1, which participates in Delta(4)-DA biosynthesis, as an inhibitor of DAF-16/FoxO activity. Whereas IIS promotes the cytoplasmic sequestration of DAF-16/FoxO, HSD-1 inhibits nuclear DAF-16/FoxO activity without affecting DAF-16/FoxO subcellular localization. Thus, HSD-1 and IIS inhibit DAF-16/FoxO activity via distinct and complementary mechanisms. In adults, HSD-1 was required for full lifespan extension in IIS mutants, indicating that HSD-1 interactions with IIS are context-dependent. In contrast to the Delta(7)-DA biosynthetic enzyme DAF-36, HSD-1 is dispensable for proper gonadal migration and lifespan extension induced by germline ablation. These findings provide insights into the molecular interface between DA and IIS pathways and suggest that Delta(4)- and Delta(7)-DA pathways have unique as well as overlapping biological functions in the control of development and lifespan.
Collapse
Affiliation(s)
- Kathleen J Dumas
- Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | |
Collapse
|
105
|
Grillari J, Grillari-Voglauer R. Novel modulators of senescence, aging, and longevity: Small non-coding RNAs enter the stage. Exp Gerontol 2010; 45:302-11. [PMID: 20080172 DOI: 10.1016/j.exger.2010.01.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2009] [Revised: 12/08/2009] [Accepted: 01/08/2010] [Indexed: 02/06/2023]
Abstract
During the last decade evidence has accumulated that the aging process is driven by limited allocation of energy to somatic maintenance resulting in accumulation of stochastic damage. This damage, affecting molecules, cells, and tissues, is counteracted by genetically programmed repair, the efficiency of which thus importantly determines the life and 'health span' of organisms. Therefore, understanding the regulation of gene expression during cellular and organismal aging as well as upon exposure to various damaging events is important to understand the biology of aging and to positively influence the health span. The recent identification of small non-coding RNAs (ncRNAs), has added an additional layer of complexity to the regulation of gene expression with the classes of endogenous small inhibitory RNAs (siRNAs), PIWI-interacting RNAs (piRNAs), QDE1-interacting RNAs (qiRNAs) and microRNAs (miRNAs). Some of these ncRNAs have not yet been identified in mammalian cells and are dependent on RNA-dependent RNA polymerases. The first mammalian enzyme with such activity has only now emerged and surprisingly consists of the catalytic subunit of telomerase (hTERT) together with RMPR, an alternative RNA component. The so far most studied small non-coding RNAs, miRNAs, however, are now increasingly found to operate in the complex network of cellular aging. Recent findings show that (i) miRNAs are regulated during cellular senescence in vitro, (ii) they contribute to tissue regeneration by regulation of stem cell function, and (iii) at least one miRNA modulates the life span of the model organism C. elegans. Additionally, (iv) they act as inhibitors of proteins mediating the insulin/IGF1 and target of rapamycin (TOR) signalling, both of which are conserved modulators of organism life span. Here we will give an overview on the current status of these topics. Since little is so far known on the functions of small ncRNAs in the context of aging and longevity, the entry of the RNA world into the field of biogerontology certainly holds additional surprises and promises. Even more so, as miRNAs are implicated in many age-associated pathologies, and as RNAi and miRNA based therapeutics are on their way to clinics.
Collapse
Affiliation(s)
- Johannes Grillari
- Department of Biotechnology, University of Natural Resources and Applied Life Sciences Vienna, Austria.
| | | |
Collapse
|
106
|
Martin R, Entchev EV, Kurzchalia TV, Knölker HJ. Steroid hormones controlling the life cycle of the nematode Caenorhabditis elegans: stereoselective synthesis and biology. Org Biomol Chem 2010; 8:739-50. [DOI: 10.1039/b918488k] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
107
|
Vitamin D, nervous system and aging. Psychoneuroendocrinology 2009; 34 Suppl 1:S278-86. [PMID: 19660871 DOI: 10.1016/j.psyneuen.2009.07.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 07/04/2009] [Accepted: 07/06/2009] [Indexed: 01/08/2023]
Abstract
This is a mini-review of vitamin D(3), its active metabolites and their functioning in the central nervous system (CNS), especially in relation to nervous system pathologies and aging. The vitamin D(3) endocrine system consists of 3 active calcipherol hormones: calcidiol (25OHD(3)), 1alpha-calcitriol (1alpha,25(OH)2D(3)) and 24-calcitriol (24,25(OH)2D(3)). The impact of the calcipherol hormone system on aging, health and disease is discussed. Low serum calcidiol concentrations are associated with an increased risk of several chronic diseases including osteoporosis, cancer, diabetes, autoimmune disorders, hypertension, atherosclerosis and muscle weakness all of which can be considered aging-related diseases. The relationship of many of these diseases and aging-related changes in physiology show a U-shaped response curve to serum calcidiol concentrations. Clinical data suggest that vitamin D(3) insufficiency is associated with an increased risk of several CNS diseases, including multiple sclerosis, Alzheimer's and Parkinson's disease, seasonal affective disorder and schizophrenia. In line with this, recent animal and human studies suggest that vitamin D insufficiency is associated with abnormal development and functioning of the CNS. Overall, imbalances in the calcipherol system appear to cause abnormal function, including premature aging, of the CNS.
Collapse
|
108
|
Wang Y, Ezemaduka AN, Tang Y, Chang Z. Understanding the mechanism of the dormant dauer formation of C. elegans: from genetics to biochemistry. IUBMB Life 2009; 61:607-12. [PMID: 19472183 DOI: 10.1002/iub.211] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dauer is a dormancy state that may occur at the end of developmental stage L1 or L2 of Caenorhabditis elegans when the environmental conditions are unfavorable (e.g., lack of food, high temperature, or overcrowding) for further growth. Dauer is a nonaging duration that does not affect the postdauer adult lifespan. Major molecular events would include the sensing of the environmental cues, the transduction of the signals into the cells, and the subsequent integration of the signals that result in the corresponding alteration of the metabolism and morphology of the organism. Genetics approach has been effectively used in identifying many of the so-called daf genes involved in dauer formation using C. elegans as the model. Nevertheless, biochemical studies at the protein and metabolic level has been lacking behind in understanding this important life phenomenon. This review focuses on the biochemical understanding so far achieved on dauer formation and dormancy in general, as well as important issues that need to be addressed in the future.
Collapse
Affiliation(s)
- Yunbiao Wang
- National Laboratory of Protein Engineering and Plant Genetic Engineering, School of Life Sciences, Center for Protein Science, Peking University, Beijing, China
| | | | | | | |
Collapse
|
109
|
Martin R, Entchev EV, Däbritz F, Kurzchalia TV, Knölker HJ. Synthesis and Hormonal Activity of the (25S)-Cholesten-26-oic Acids - Potent Ligands for the DAF-12 Receptor inCaenorhabditis elegans. European J Org Chem 2009. [DOI: 10.1002/ejoc.200900443] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
110
|
Panowski SH, Dillin A. Signals of youth: endocrine regulation of aging in Caenorhabditis elegans. Trends Endocrinol Metab 2009; 20:259-64. [PMID: 19646896 DOI: 10.1016/j.tem.2009.03.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 03/23/2009] [Accepted: 03/25/2009] [Indexed: 01/16/2023]
Abstract
Aging research has advanced greatly in the nematode Caenorhabditis elegans over the past 20 years, and we are now beginning to piece together distinct pathways that impinge on the aging process. The knowledge base that has been obtained through genetic analysis strongly suggests that endocrine signalling has a key role in most, if not all, of the pathways that alter the aging process of multicellular organisms such as the worm. In this review, we provide an overview of two well-studied aging pathways in C. elegans, the insulin/IGF-1 and germline signalling pathways, in which endocrine signalling is clearly important. We also incorporate recent data to create a model of how endocrine signalling in these pathways might occur.
Collapse
Affiliation(s)
- Siler H Panowski
- Howard Hughes Medical Institute, Glenn Center for Aging Research, Salk Institute for Biological Studies, Molecular and Cell Biology Laboratory, La Jolla, CA 92037, USA
| | | |
Collapse
|
111
|
Hannich JT, Entchev EV, Mende F, Boytchev H, Martin R, Zagoriy V, Theumer G, Riezman I, Riezman H, Knölker HJ, Kurzchalia TV. Methylation of the sterol nucleus by STRM-1 regulates dauer larva formation in Caenorhabditis elegans. Dev Cell 2009; 16:833-43. [PMID: 19531354 DOI: 10.1016/j.devcel.2009.04.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2008] [Revised: 02/24/2009] [Accepted: 04/24/2009] [Indexed: 10/20/2022]
Abstract
In response to pheromone(s), Caenorhabditis elegans interrupts its reproductive life cycle and enters diapause as a stress-resistant dauer larva. This decision is governed by a complex system of neuronal and hormonal regulation. All the signals converge onto the nuclear hormone receptor DAF-12. A sterol-derived hormone, dafachronic acid (DA), supports reproductive development by binding to DAF-12 and inhibiting its dauer-promoting activity. Here, we identify a methyltransferase, STRM-1, that modulates DA levels and thus dauer formation. By modifying the substrates that are used for the synthesis of DA, STRM-1 can reduce the amount of hormone produced. Loss of STRM-1 function leads to elevated levels of DA and inefficient dauer formation. Sterol methylation was not previously recognized as a mechanism for regulating hormone activity. Moreover, the C-4 sterol nucleus methylation catalyzed by STRM-1 is unique to nematodes and thus could be a target for therapeutic strategies against parasitic nematode infections.
Collapse
Affiliation(s)
- J Thomas Hannich
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Wang Z, Zhou XE, Motola DL, Gao X, Suino-Powell K, Conneely A, Ogata C, Sharma KK, Auchus RJ, Lok JB, Hawdon JM, Kliewer SA, Xu HE, Mangelsdorf DJ. Identification of the nuclear receptor DAF-12 as a therapeutic target in parasitic nematodes. Proc Natl Acad Sci U S A 2009; 106:9138-43. [PMID: 19497877 PMCID: PMC2695123 DOI: 10.1073/pnas.0904064106] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Indexed: 11/18/2022] Open
Abstract
Nematode parasitism is a worldwide health problem resulting in malnutrition and morbidity in over 1 billion people. The molecular mechanisms governing infection are poorly understood. Here, we report that an evolutionarily conserved nuclear hormone receptor signaling pathway governs development of the stage 3 infective larvae (iL3) in several nematode parasites, including Strongyloides stercoralis, Ancylostoma spp., and Necator americanus. As in the free-living Caenorhabditis elegans, steroid hormone-like dafachronic acids induced recovery of the dauer-like iL3 in parasitic nematodes by activating orthologs of the nuclear receptor DAF-12. Moreover, administration of dafachronic acid markedly reduced the pathogenic iL3 population in S. stercoralis, indicating the potential use of DAF-12 ligands to treat disseminated strongyloidiasis. To understand the pharmacology of targeting DAF-12, we solved the 3-dimensional structure of the S. stercoralis DAF-12 ligand-binding domain cocrystallized with dafachronic acids. These results reveal the molecular basis for DAF-12 ligand binding and identify nuclear receptors as unique therapeutic targets in parasitic nematodes.
Collapse
Affiliation(s)
- Zhu Wang
- Department of Pharmacology and Howard Hughes Medical Institute, and
| | - X. Edward Zhou
- Laboratory of Structural Sciences, Van Andel Research Institute, 333 Bostwick Avenue Northeast, Grand Rapids, MI 49503
| | - Daniel L. Motola
- Department of Pharmacology and Howard Hughes Medical Institute, and
| | - Xin Gao
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University Medical Center, Ross Hall 705, 2300 I Street NW, Washington, DC 20037
| | - Kelly Suino-Powell
- Laboratory of Structural Sciences, Van Andel Research Institute, 333 Bostwick Avenue Northeast, Grand Rapids, MI 49503
| | - Aoife Conneely
- Laboratory of Structural Sciences, Van Andel Research Institute, 333 Bostwick Avenue Northeast, Grand Rapids, MI 49503
| | - Craig Ogata
- General Medicine and Cancer Institutes Collaborative Access Team, Building 436, D003, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439
| | - Kamalesh K. Sharma
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390; and
| | - Richard J. Auchus
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390; and
| | - James B. Lok
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104
| | - John M. Hawdon
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University Medical Center, Ross Hall 705, 2300 I Street NW, Washington, DC 20037
| | - Steven A. Kliewer
- Department of Pharmacology and Howard Hughes Medical Institute, and
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390
| | - H. Eric Xu
- Laboratory of Structural Sciences, Van Andel Research Institute, 333 Bostwick Avenue Northeast, Grand Rapids, MI 49503
| | | |
Collapse
|
113
|
|
114
|
Huang X, Warren JT, Gilbert LI. New players in the regulation of ecdysone biosynthesis. J Genet Genomics 2009; 35:1-10. [PMID: 18222403 DOI: 10.1016/s1673-8527(08)60001-6] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 11/24/2007] [Accepted: 11/24/2007] [Indexed: 02/04/2023]
Abstract
Insect ecdysone steroid hormone regulates major developmental transitions, such as molting and metamorphosis. The production of ecdysone correlates well with the timing of these transitions. Finding out how the ecdysone biosynthesis is regulated is crucial to fully understand these sophisticated developmental switches. Here we summarized recent findings in the regulation of ecdysone biosynthesis from the aspects of cell signaling, key biosynthetic enzymes and substrate cholesterol trafficking.
Collapse
Affiliation(s)
- Xun Huang
- Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | | | | |
Collapse
|
115
|
Hiruma K, Riddiford LM. The molecular mechanisms of cuticular melanization: the ecdysone cascade leading to dopa decarboxylase expression in Manduca sexta. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2009; 39:245-253. [PMID: 19552890 DOI: 10.1016/j.ibmb.2009.01.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 12/19/2008] [Accepted: 01/13/2009] [Indexed: 05/28/2023]
Abstract
Many insect developmental color changes are known to be regulated by both ecdysone and juvenile hormone. Yet the molecular mechanisms underlying this regulation have not been well understood. This review highlights the hormonal mechanisms involved in the regulation of two key enzymes [dopa decarboxylase (DDC) and phenoloxidase] necessary for insect cuticular melanization, and the molecular action of 20-hydroxyecdysone on various transcription factors leading to DDC expression at the end of a larval molt in Manduca sexta. In addition, the ecdysone cascade found in M. sexta is compared with that of other organisms.
Collapse
Affiliation(s)
- Kiyoshi Hiruma
- Faculty of Agriculture and Life Sciences, Hirosaki University, Hirosaki, Japan.
| | | |
Collapse
|
116
|
Kleemann GA, Murphy CT. The endocrine regulation of aging in Caenorhabditis elegans. Mol Cell Endocrinol 2009; 299:51-7. [PMID: 19059305 DOI: 10.1016/j.mce.2008.10.048] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 10/13/2008] [Accepted: 10/30/2008] [Indexed: 01/29/2023]
Abstract
In recent years, there has been significant growth in our understanding of the regulation of longevity. The most notable change is the identification and detailed description of a number of molecular pathways modulating the rate of aging. A good portion of this new data has come from studies using the genetic model organism Caenorhabditis elegans. In this review, we provide an overview of physiological systems that are involved in the modulation of aging in C. elegans, then discuss the known endocrine signaling systems that are likely to couple these systems together. Finally, we present a working model describing how aging may be regulated as a coordinated system, communicating through endocrine signals.
Collapse
Affiliation(s)
- G A Kleemann
- Lewis-Sigler Institute for Integrative Genomics and Dept. of Molecular Biology, Princeton University, 148 Carl Icahn Lab, Washington Road, Princeton, NJ 08544, United States
| | | |
Collapse
|
117
|
Martin R, Schmidt AW, Theumer G, Krause T, Entchev EV, Kurzchalia TV, Knölker HJ. Synthesis and biological activity of the (25R)-cholesten-26-oic acids--ligands for the hormonal receptor DAF-12 in Caenorhabditis elegans. Org Biomol Chem 2009; 7:909-20. [PMID: 19225674 DOI: 10.1039/b817358c] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe the stereoselective transformation of diosgenin (4a) to (25R)-Delta(4)-dafachronic acid (1a),(25R)-Delta(7)-dafachronic acid (2a), and (25R)-cholestenoic acid (3a), which represent potential ligands forthe hormonal receptor DAF-12 in Caenorhabditis elegans. Key-steps of our synthetic approach are amodified Clemmensen reduction of diosgenin (4a) and a double bond shift from the 5,6- to the 7,8-position. In the 25R-series, the Delta(7)-dafachronic acid 2a exhibits the highest hormonal activity.
Collapse
Affiliation(s)
- René Martin
- Department Chemie, Technische Universität Dresden, Bergstrasse 66, 01069 Dresden, Germany
| | | | | | | | | | | | | |
Collapse
|
118
|
Abstract
To sense its population density and to trigger entry into the stress-resistant dauer larval stage, Caenorhabditis elegans uses the dauer pheromone, which consists of ascaroside derivatives with short, fatty acid-like side chains. Although the dauer pheromone has been studied for 25 years, its biosynthesis is completely uncharacterized. The daf-22 mutant is the only known mutant defective in dauer pheromone production. Here, we show that daf-22 encodes a homolog of human sterol carrier protein SCPx, which catalyzes the final step in peroxisomal fatty acid beta-oxidation. We also show that dhs-28, which encodes a homolog of the human d-bifunctional protein that acts just upstream of SCPx, is also required for pheromone production. Long-term daf-22 and dhs-28 cultures develop dauer-inducing activity by accumulating less active, long-chain fatty acid ascaroside derivatives. Thus, daf-22 and dhs-28 are required for the biosynthesis of the short-chain fatty acid-derived side chains of the dauer pheromone and link dauer pheromone production to metabolic state.
Collapse
|
119
|
Epperly MW, Dixon T, Wang H, Schlesselman J, Franicola D, Greenberger JS. Modulation of radiation-induced life shortening by systemic intravenous MnSOD-plasmid liposome gene therapy. Radiat Res 2009; 170:437-43. [PMID: 19024650 DOI: 10.1667/rr1286.1] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
To determine whether systemic administration of MnSOD-PL protected mice from the acute hematopoietic syndrome and delayed death after total-body irradiation (TBI), C57BL/ 6J mice were injected intravenously with 100 microl liposomes containing 100 microg of human MnSOD-transgene plasmid 24 h prior to irradiation with 9.5 Gy or 1.0 Gy. The dose of 9.5 Gy was lethal to 42% of irradiated control female mice and 74% of irradiated control male mice at 30 days, with bone marrow hypocellularity consistent with the hematopoietic syndrome. A statistically significant increase in survival was observed in MnSOD-PL-treated female mice out to 400 days and in male mice out to 340 days. The incidence of tumors was similar between surviving groups. Between 350 and 600 days, the outcome was similar for both MnSOD-PL-treated and control irradiated groups, consistent with aging, with no difference in gross or microscopic pathological evidence of tumors. Male and female mice receiving 1.0 Gy TBI showed radiation-induced life shortening after 120 days that was decreased by MnSOD-PL administration and that was not associated with an increase in rate of tumor-associated death. Therefore, systemic MnSOD-PL radioprotective gene therapy is not associated with a detectably higher incidence of late carcinogenesis.
Collapse
Affiliation(s)
- Michael W Epperly
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | |
Collapse
|
120
|
Martin R, Saini R, Bauer I, Gruner M, Kataeva O, Zagoriy V, Entchev EV, Kurzchalia TV, Knölker HJ. 4α-Bromo-5α-cholestan-3β-ol and nor-5α-cholestan-3β-ol derivatives—stereoselective synthesis and hormonal activity in Caenorhabditis elegans. Org Biomol Chem 2009; 7:2303-9. [DOI: 10.1039/b904001c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
121
|
ELT-2 is the predominant transcription factor controlling differentiation and function of the C. elegans intestine, from embryo to adult. Dev Biol 2008; 327:551-65. [PMID: 19111532 DOI: 10.1016/j.ydbio.2008.11.034] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Accepted: 11/17/2008] [Indexed: 12/14/2022]
Abstract
Starting with SAGE-libraries prepared from C. elegans FAC-sorted embryonic intestine cells (8E-16E cell stage), from total embryos and from purified oocytes, and taking advantage of the NextDB in situ hybridization data base, we define sets of genes highly expressed from the zygotic genome, and expressed either exclusively or preferentially in the embryonic intestine or in the intestine of newly hatched larvae; we had previously defined a similarly expressed set of genes from the adult intestine. We show that an extended TGATAA-like sequence is essentially the only candidate for a cis-acting regulatory motif common to intestine genes expressed at all stages. This sequence is a strong ELT-2 binding site and matches the sequence of GATA-like sites found to be important for the expression of every intestinal gene so far analyzed experimentally. We show that the majority of these three sets of highly expressed intestinal-specific/intestinal-enriched genes respond strongly to ectopic expression of ELT-2 within the embryo. By flow-sorting elt-2(null) larvae from elt-2(+) larvae and then preparing Solexa/Illumina-SAGE libraries, we show that the majority of these genes also respond strongly to loss-of-function of ELT-2. To test the consequences of loss of other transcription factors identified in the embryonic intestine, we develop a strain of worms that is RNAi-sensitive only in the intestine; however, we are unable (with one possible exception) to identify any other transcription factor whose intestinal loss-of-function causes a phenotype of comparable severity to the phenotype caused by loss of ELT-2. Overall, our results support a model in which ELT-2 is the predominant transcription factor in the post-specification C. elegans intestine and participates directly in the transcriptional regulation of the majority (>80%) of intestinal genes. We present evidence that ELT-2 plays a central role in most aspects of C. elegans intestinal physiology: establishing the structure of the enterocyte, regulating enzymes and transporters involved in digestion and nutrition, responding to environmental toxins and pathogenic infections, and regulating the downstream intestinal components of the daf-2/daf-16 pathway influencing aging and longevity.
Collapse
|
122
|
Kleemann G, Jia L, Emmons SW. Regulation of Caenorhabditis elegans male mate searching behavior by the nuclear receptor DAF-12. Genetics 2008; 180:2111-22. [PMID: 18854588 PMCID: PMC2600945 DOI: 10.1534/genetics.108.093773] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Accepted: 10/11/2008] [Indexed: 12/19/2022] Open
Abstract
Coordination of animal behavior with reproductive status is often achieved through elaboration of hormones by the gonad. In the nematode Caenorhabditis elegans, adult males explore their environment to locate mates. Mate searching is regulated by presence of mates, nutritional status, and a signal from the gonad. Here we show that the gonadal signal acts via the nuclear receptor DAF-12, a protein known to regulate several C. elegans life-history traits. DAF-12 has both activational and organizational functions to stimulate exploratory behavior and acts downstream of the gonadal signal, outside of the gonad. DAF-12 acts upstream of sensory input from mating partners and physiological signals indicating nutritional status. Mate searching was rescued in germ-line ablated animals, but not if both germ line and somatic gonad were ablated, by a precursor of the DAF-12 ligand, dafachronic acid (DA). The results are interpreted to suggest that the germ line produces a DA precursor that is converted to DA outside of the germ line, possibly in the somatic gonad. As it does in other pathways in which it functions, in regulation of male mate searching behavior DAF-12 acts at a choice point between alternatives favoring reproduction (mate searching) vs. survival (remaining on food).
Collapse
Affiliation(s)
- Gunnar Kleemann
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
123
|
Martin R, Däbritz F, Entchev EV, Kurzchalia TV, Knölker HJ. Stereoselective synthesis of the hormonally active (25S)-delta7-dafachronic acid, (25S)-Delta4-dafachronic acid, (25S)-dafachronic acid, and (25S)-cholestenoic acid. Org Biomol Chem 2008; 6:4293-5. [PMID: 19005586 DOI: 10.1039/b815064h] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a stereoselective synthesis of the (25S)-cholestenoic-26-acids which are highly efficient ligands for the hormonal receptor DAF-12 in Caenorhabditis elegans.
Collapse
Affiliation(s)
- René Martin
- Department Chemie, Technische Universität Dresden, Bergstrasse 66, 01069 Dresden, Germany
| | | | | | | | | |
Collapse
|
124
|
Lyssenko NN, Miteva Y, Gilroy S, Hanna-Rose W, Schlegel RA. An unexpectedly high degree of specialization and a widespread involvement in sterol metabolism among the C. elegans putative aminophospholipid translocases. BMC DEVELOPMENTAL BIOLOGY 2008; 8:96. [PMID: 18831765 PMCID: PMC2572054 DOI: 10.1186/1471-213x-8-96] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Accepted: 10/02/2008] [Indexed: 12/17/2022]
Abstract
Background P-type ATPases in subfamily IV are exclusively eukaryotic transmembrane proteins that have been proposed to directly translocate the aminophospholipids phosphatidylserine and phosphatidylethanolamine from the exofacial to the cytofacial monolayer of the plasma membrane. Eukaryotic genomes contain many genes encoding members of this subfamily. At present it is unclear why there are so many genes of this kind per organism or what individual roles these genes perform in organism development. Results We have systematically investigated expression and developmental function of the six, tat-1 through 6, subfamily IV P-type ATPase genes encoded in the Caenorhabditis elegans genome. tat-5 is the only ubiquitously-expressed essential gene in the group. tat-6 is a poorly-transcribed recent duplicate of tat-5. tat-2 through 4 exhibit tissue-specific developmentally-regulated expression patterns. Strong expression of both tat-2 and tat-4 occurs in the intestine and certain other cells of the alimentary system. The two are also expressed in the uterus, during spermatogenesis and in the fully-formed spermatheca. tat-2 alone is expressed in the pharyngeal gland cells, the excretory system and a few cells of the developing vulva. The expression pattern of tat-3 is almost completely different from those of tat-2 and tat-4. tat-3 expression is detectable in the steroidogenic tissues: the hypodermis and the XXX cells, as well as in most cells of the pharynx (except gland), various tissues of the reproductive system (except uterus and spermatheca) and seam cells. Deletion of tat-1 through 4 individually interferes little or not at all with the regular progression of organism growth and development under normal conditions. However, tat-2 through 4 become essential for reproductive growth during sterol starvation. Conclusion tat-5 likely encodes a housekeeping protein that performs the proposed aminophospholipid translocase function routinely. Although individually dispensable, tat-1 through 4 seem to be at most only partly redundant. Expression patterns and the sterol deprivation hypersensitivity deletion phenotype of tat-2 through 4 suggest that these genes carry out subtle metabolic functions, such as fine-tuning sterol metabolism in digestive or steroidogenic tissues. These findings uncover an unexpectedly high degree of specialization and a widespread involvement in sterol metabolism among the genes encoding the putative aminophospholipid translocases.
Collapse
Affiliation(s)
- Nicholas N Lyssenko
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | | | | | | | | |
Collapse
|
125
|
A potent dauer pheromone component in Caenorhabditis elegans that acts synergistically with other components. Proc Natl Acad Sci U S A 2008; 105:14288-92. [PMID: 18791072 DOI: 10.1073/pnas.0806676105] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the model organism Caenorhabditis elegans, the dauer pheromone is the primary cue for entry into the developmentally arrested, dauer larval stage. The dauer is specialized for survival under harsh environmental conditions and is considered "nonaging" because larvae that exit dauer have a normal life span. C. elegans constitutively secretes the dauer pheromone into its environment, enabling it to sense its population density. Several components of the dauer pheromone have been identified as derivatives of the dideoxy sugar ascarylose, but additional unidentified components of the dauer pheromone contribute to its activity. Here, we show that an ascaroside with a 3-hydroxypropionate side chain is a highly potent component of the dauer pheromone that acts synergistically with previously identified components. Furthermore, we show that the active dauer pheromone components that are produced by C. elegans vary depending on cultivation conditions. Identifying the active components of the dauer pheromone, the conditions under which they are produced, and their mechanisms of action will greatly extend our understanding of how chemosensory cues from the environment can influence such fundamental processes as development, metabolism, and aging in nematodes and in higher organisms.
Collapse
|
126
|
Abstract
Because life is often unpredictable, dynamic, and complex, all animals have evolved remarkable abilities to cope with changes in their external environment and internal physiology. This regulatory plasticity leads to shifts in behavior and metabolism, as well as to changes in development, growth, and reproduction, which is thought to improve the chances of survival and reproductive success. In favorable environments, the nematode Caenorhabditis elegans develops rapidly to reproductive maturity, but in adverse environments, animals arrest at the dauer diapause, a long-lived stress resistant stage. A molecular and genetic analysis of dauer formation has revealed key insights into how sensory and dietary cues are coupled to conserved endocrine pathways, including insulin/IGF, TGF-beta, serotonergic, and steroid hormone signal transduction, which govern the choice between reproduction and survival. These and other pathways reveal a molecular basis for metazoan plasticity in response to extrinsic and intrinsic signals.
Collapse
Affiliation(s)
- Nicole Fielenbach
- Huffington Center on Aging, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Adam Antebi
- Huffington Center on Aging, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
127
|
Giroux S, Bethke A, Fielenbach N, Antebi A, Corey EJ. Syntheses and biological evaluation of B-ring-modified analogues of dafachronic acid A. Org Lett 2008; 10:3643-5. [PMID: 18642835 DOI: 10.1021/ol801425v] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Synthesis and testing of dafachronic acid A ( 1) and its derivatives 2 and 3 have revealed that 1, and not a further oxidation product, is the natural ligand for the DAF-12 receptor of Caenorhabditis elegans.
Collapse
Affiliation(s)
- Simon Giroux
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA
| | | | | | | | | |
Collapse
|
128
|
Magner DB, Antebi A. Caenorhabditis elegans nuclear receptors: insights into life traits. Trends Endocrinol Metab 2008; 19:153-60. [PMID: 18406164 PMCID: PMC2744080 DOI: 10.1016/j.tem.2008.02.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Revised: 02/13/2008] [Accepted: 02/20/2008] [Indexed: 10/22/2022]
Abstract
Nuclear receptors are a class of hormone-gated transcription factors found in metazoans that regulate global changes in gene expression when bound to their cognate ligands. Despite species diversification, nuclear receptors function similarly across taxa, having fundamental roles in detecting intrinsic and environmental signals, and subsequently in coordinating transcriptional cascades that direct reproduction, development, metabolism and homeostasis. These endocrine receptors function in vivo in part as molecular switches and timers that regulate transcriptional cascades. Several Caenorhabditis elegans nuclear receptors integrate intrinsic and extrinsic signals to regulate the dauer diapause and longevity, molting, and heterochronic circuits of development, and are comparable to similar in vivo endocrine regulated processes in other animals.
Collapse
Affiliation(s)
| | - Adam Antebi
- Corresponding author: Antebi, A. (), Tel: 713-798-6661; Fax: 713-798-4161
| |
Collapse
|
129
|
Puglielli L. Aging of the brain, neurotrophin signaling, and Alzheimer's disease: is IGF1-R the common culprit? Neurobiol Aging 2008; 29:795-811. [PMID: 17313996 PMCID: PMC2387053 DOI: 10.1016/j.neurobiolaging.2007.01.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Revised: 09/21/2006] [Accepted: 01/13/2007] [Indexed: 12/26/2022]
Abstract
The last decade has revealed that the lifespan of an organism can be modulated by the signaling pathway that acts downstream of the insulin/insulin-like growth factor 1 receptors (IR/IGF1-R), indicating that there is a "program" that drives the process of aging. New results have now linked the same pathway to the neurogenic capacities of the aging brain, to neurotrophin signaling, and to the molecular pathogenesis of Alzheimer's disease. Therefore, a common signaling cascade now seems to link aging to age-associated pathologies of the brain, suggesting that pharmacologic approaches aimed at the modulation of this pathway can serve to delay the onset of age-associated disorders and improve the quality of life. Work from a wide range of fields performed with different approaches has already identified some of the signaling molecules that act downstream of IGF1-R, and has revealed that a delicate checkpoint exists to balance excessive growth/"immortality" and reduced growth/"senescence" of a cell. Future research will determine how far the connection goes and how much of it we can influence.
Collapse
Affiliation(s)
- Luigi Puglielli
- Department of Medicine, University of Wisconsin-Madison, and Geriatric Research Education Clinical Center, VA Medical Center, VAH-GRECC 11G, 2500 Overlook Terrace, Madison, WI 53705, USA.
| |
Collapse
|
130
|
Insulin-like signaling negatively regulates muscle arm extension through DAF-12 in Caenorhabditis elegans. Dev Biol 2008; 318:153-61. [PMID: 18436204 DOI: 10.1016/j.ydbio.2008.03.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 03/10/2008] [Accepted: 03/11/2008] [Indexed: 11/18/2022]
Abstract
The body wall muscles (BWMs) of nematodes are connected to motor axons by muscle membrane extensions called muscle arms. To better understand how muscle arm extension is regulated, we screened conserved receptor tyrosine kinases for muscle arm defects in Caenorhabditis elegans. We discovered that mutations in daf-2, which encodes the only insulin-like receptor tyrosine kinase, confer a supernumerary muscle arm (Sna) phenotype. The Sna phenotype of daf-2 mutants is suppressed by loss-of-function in the canonical downstream FOXO-family transcription factor DAF-16 in either the muscles or the intestine, demonstrating that insulin-like signaling can regulate muscle arm extension non-autonomously. Furthermore, supernumerary arm extension requires the B isoform of the down-stream DAF-12 nuclear hormone receptor, which lacks the DNA-binding domain, but retains the ligand-binding domain. daf-2 regulates many processes in C. elegans including entry into dauer, which is a diapause-like state that facilitates survival of harsh environmental conditions. We found that wild-type dauers are also Sna. Unlike other changes associated with dauer, however, the Sna phenotype of dauers persists in recovered adults. Finally, disruption of a TGF-beta pathway that regulates dauer formation in parallel to the insulin-like pathway also confers the Sna phenotype. We conclude that supernumerary muscle arms are a novel dauer-specific modification that may facilitate some aspect of dauer behavior.
Collapse
|
131
|
Rewitz KF, Gilbert LI. Daphnia Halloween genes that encode cytochrome P450s mediating the synthesis of the arthropod molting hormone: evolutionary implications. BMC Evol Biol 2008; 8:60. [PMID: 18298845 PMCID: PMC2276477 DOI: 10.1186/1471-2148-8-60] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Accepted: 02/25/2008] [Indexed: 12/04/2022] Open
Abstract
Background In crustaceans and insects, development and reproduction are controlled by the steroid hormone, 20-hydroxyecdysone (20E). Like other steroids, 20E, is synthesized from cholesterol through reactions involving cytochrome P450s (CYPs). In insects, the CYP enzymes mediating 20E biosynthesis have been identified, but evidence of their probable presence in crustaceans is indirect, relying solely on the ability of crustaceans to synthesize 20E. Results To investigate the presence of these genes in crustaceans, the genome of Daphnia pulex was examined for orthologs of these genes, the Halloween genes, encoding those biosynthetic CYP enzymes. Single homologs of spook-CYP307A1, phantom-CYP306A1, disembodied-CYP302A1, shadow-CYP315A1 and shade-CYP314A1 were identified in the Daphnia data base. Phylogenetic analysis indicates an orthologous relationship between the insect and Daphnia genes. Conserved intron/exon structures and microsynteny further support the conclusion that these steroidogenic CYPs have been conserved in insects and crustaceans through some 400 million years of evolution. Conclusion Although these arthropod steroidogenic CYPs are related to steroidogenic CYPs in Caenorhabditis elegans and vertebrates, the data suggest that the arthropod steroidogenic CYPs became functionally specialized in a common ancestor of arthropods and are unique to these animals.
Collapse
Affiliation(s)
- Kim F Rewitz
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280 USA.
| | | |
Collapse
|
132
|
Giroux S, Corey EJ. An Efficient, Stereocontrolled Synthesis of the 25-(R)-Diastereomer of Dafachronic Acid A from β-Ergosterol. Org Lett 2008; 10:801-2. [DOI: 10.1021/ol702936f] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Simon Giroux
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138
| | - E. J. Corey
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138
| |
Collapse
|
133
|
Zhang Y, Xu J, Puscau C, Kim Y, Wang X, Alam H, Hu PJ. Caenorhabditis elegans EAK-3 inhibits dauer arrest via nonautonomous regulation of nuclear DAF-16/FoxO activity. Dev Biol 2008; 315:290-302. [PMID: 18241854 DOI: 10.1016/j.ydbio.2007.12.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Accepted: 12/11/2007] [Indexed: 11/30/2022]
Abstract
Insulin regulates development, metabolism, and lifespan via a conserved PI3K/Akt pathway that promotes cytoplasmic sequestration of FoxO transcription factors. The regulation of nuclear FoxO is poorly understood. In the nematode Caenorhabditis elegans, insulin-like signaling functions in larvae to inhibit dauer arrest and acts during adulthood to regulate lifespan. In a screen for genes that modulate C. elegans insulin-like signaling, we identified eak-3, which encodes a novel protein that is specifically expressed in the two endocrine XXX cells. The dauer arrest phenotype of eak-3 mutants is fully suppressed by mutations in daf-16/FoxO, which encodes the major target of C. elegans insulin-like signaling, and daf-12, which encodes a nuclear receptor regulated by steroid hormones known as dafachronic acids. eak-3 mutation does not affect DAF-16/FoxO subcellular localization but enhances expression of the direct DAF-16/FoxO target sod-3 in a daf-16/FoxO- and daf-12-dependent manner. eak-3 mutants have normal lifespans, suggesting that EAK-3 decouples insulin-like regulation of development and longevity. We propose that EAK-3 activity in the XXX cells promotes the synthesis and/or secretion of a hormone that acts in parallel to AKT-1 to inhibit the expression of DAF-16/FoxO target genes. Similar hormonal pathways may regulate FoxO target gene expression in mammals.
Collapse
Affiliation(s)
- Yanmei Zhang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | |
Collapse
|
134
|
Abstract
A dissection of longevity in Caenorhabditis elegans reveals that animal life span is influenced by genes, environment, and stochastic factors. From molecules to physiology, a remarkable degree of evolutionary conservation is seen.
Collapse
Affiliation(s)
- Adam Antebi
- Huffington Center on Aging, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA.
| |
Collapse
|
135
|
Abstract
Over the past 15 years it has become clear that mutations in genes that regulate endocrine signalling pathways can prolong lifespan. Lifespan can be increased by altered endocrine signalling in a group of cells or a single tissue, which indicates that crosstalk between tissues functions to coordinate ageing of the organism. These endocrine pathways might serve as targets for the manipulation of the ageing process and prevention of age-related diseases.
Collapse
Affiliation(s)
- Steven J Russell
- Joslin Diabetes Center and Harvard Medical School, 1 Joslin Place, Boston, Massachusetts 02215, USA.
| | | |
Collapse
|
136
|
Hoogewijs D, Geuens E, Dewilde S, Vierstraete A, Moens L, Vinogradov S, Vanfleteren JR. Wide diversity in structure and expression profiles among members of the Caenorhabditis elegans globin protein family. BMC Genomics 2007; 8:356. [PMID: 17916248 PMCID: PMC2228317 DOI: 10.1186/1471-2164-8-356] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Accepted: 10/04/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The emergence of high throughput genome sequencing facilities and powerful high performance bioinformatic tools has highlighted hitherto unexpected wide occurrence of globins in the three kingdoms of life. In silico analysis of the genome of C. elegans identified 33 putative globin genes. It remains a mystery why this tiny animal might need so many globins. As an inroad to understanding this complexity we initiated a structural and functional analysis of the globin family in C. elegans. RESULTS All 33 C. elegans putative globin genes are transcribed. The translated sequences have the essential signatures of single domain bona fide globins, or they contain a distinct globin domain that is part of a larger protein. All globin domains can be aligned so as to fit the globin fold, but internal interhelical and N- and C-terminal extensions and a variety of amino acid substitutions generate much structural diversity among the globins of C. elegans. Likewise, the encoding genes lack a conserved pattern of intron insertion positioning. We analyze the expression profiles of the globins during the progression of the life cycle, and we find that distinct subsets of globins are induced, or repressed, in wild-type dauers and in daf-2(e1370)/insulin-receptor mutant adults, although these animals share several physiological features including resistance to elevated temperature, oxidative stress and hypoxic death. Several globin genes are upregulated following oxygen deprivation and we find that HIF-1 and DAF-2 each are required for this response. Our data indicate that the DAF-2 regulated transcription factor DAF-16/FOXO positively modulates hif-1 transcription under anoxia but opposes expression of the HIF-1 responsive globin genes itself. In contrast, the canonical globin of C. elegans, ZK637.13, is not responsive to anoxia. Reduced DAF-2 signaling leads to enhanced transcription of this globin and DAF-16 is required for this effect. CONCLUSION We found that all 33 putative globins are expressed, albeit at low or very low levels, perhaps indicating cell-specific expression. They show wide diversity in gene structure and amino acid sequence, suggesting a long evolutionary history. Ten globins are responsive to oxygen deprivation in an interacting HIF-1 and DAF-16 dependent manner. Globin ZK637.13 is not responsive to oxygen deprivation and regulated by the Ins/IGF pathway only suggesting that this globin may contribute to the life maintenance program.
Collapse
Affiliation(s)
- David Hoogewijs
- Department of Biology and Center for Molecular Phylogeny and Evolution, Ghent University, B-9000 Ghent, Belgium.
| | | | | | | | | | | | | |
Collapse
|
137
|
Strube C, von Samson-Himmelstjerna G, Schnieder T. Genetic regulation of arrested development in nematodes: are age-1 and daf-gene orthologs present in Dictyocaulus viviparus? Parasitol Res 2007; 101:1111-5. [PMID: 17558520 DOI: 10.1007/s00436-007-0594-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Accepted: 05/15/2007] [Indexed: 10/23/2022]
Abstract
In opposite to the free-living soil nematode Caenorhabditis elegans, the genetic regulation of hypobiosis or inhibited or arrested development in parasitic nematodes is completely unknown. In C. elegans, the daf-genes or the age-1 gene are of major importance in signaling pathways regulating arrested development. To investigate if orthologs of these genes are present in the bovine lungworm Dictyocaulus viviparus, a PCR analysis with gene-specific primer combinations was performed. No orthologs of the age-1 or daf-genes could be identified in D. viviparus. The possible differences in the role of the daf-genes concerning arrested development in parasitic and free-living nematodes will be discussed.
Collapse
Affiliation(s)
- Christina Strube
- Institute for Parasitology, University of Veterinary Medicine Hannover, Buenteweg, 17, 30559 Hannover, Germany.
| | | | | |
Collapse
|
138
|
Houthoofd K, Vanfleteren JR. Public and private mechanisms of life extension in Caenorhabditis elegans. Mol Genet Genomics 2007; 277:601-17. [PMID: 17364197 DOI: 10.1007/s00438-007-0225-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Accepted: 02/20/2007] [Indexed: 12/18/2022]
Abstract
Model organisms have been widely used to study the ageing phenomenon in order to learn about human ageing. Although the phylogenetic diversity between vertebrates and some of the most commonly used model systems could hardly be greater, several mechanisms of life extension are public (common characteristic in divergent species) and likely share a common ancestry. Dietary restriction, reduced IGF-signaling and, seemingly, reduced ROS-induced damage are the best known mechanisms for extending longevity in a variety of organisms. In this review, we summarize the knowledge of ageing in the nematode Caenorhabditis elegans and compare the mechanisms of life extension with knowledge from other model organisms.
Collapse
Affiliation(s)
- Koen Houthoofd
- Department of Biology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | | |
Collapse
|
139
|
Gerisch B, Rottiers V, Li D, Motola DL, Cummins CL, Lehrach H, Mangelsdorf DJ, Antebi A. A bile acid-like steroid modulates Caenorhabditis elegans lifespan through nuclear receptor signaling. Proc Natl Acad Sci U S A 2007; 104:5014-9. [PMID: 17360327 PMCID: PMC1821127 DOI: 10.1073/pnas.0700847104] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Broad aspects of Caenorhabditis elegans life history, including larval developmental timing, arrest at the dauer diapause, and longevity, are regulated by the nuclear receptor DAF-12. Endogenous DAF-12 ligands are 3-keto bile acid-like steroids, called dafachronic acids, which rescue larval defects of hormone-deficient mutants, such as daf-9/cytochrome P450 and daf-36/Rieske oxygenase, and activate DAF-12. Here we examined the effect of dafachronic acid on pathways controlling lifespan. Dafachronic acid supplementation shortened the lifespan of long-lived daf-9 mutants and abolished their stress resistance, indicating that the ligand is "proaging" in response to signals from the dauer pathways. However, the ligand extended the lifespan of germ-line ablated daf-9 and daf-36 mutants, showing that it is "antiaging" in the germ-line longevity pathway. Thus, dafachronic acid regulates C. elegans lifespan according to signaling state. These studies provide key evidence that bile acid-like steroids modulate aging in animals.
Collapse
Affiliation(s)
- Birgit Gerisch
- *Max-Planck-Institut fuer Molekulare Genetik, Ihnestrasse 73, 14195 Berlin, Germany
| | - Veerle Rottiers
- Department of Molecular and Cellular Biology, Huffington Center on Aging, Baylor College of Medicine, Room M320, One Baylor Plaza, Houston, TX 77030; and
| | - Dongling Li
- Department of Molecular and Cellular Biology, Huffington Center on Aging, Baylor College of Medicine, Room M320, One Baylor Plaza, Houston, TX 77030; and
| | - Daniel L. Motola
- Department of Pharmacology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Room ND9.124A, 6001 Forest Park, Dallas, TX 75390
| | - Carolyn L. Cummins
- Department of Pharmacology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Room ND9.124A, 6001 Forest Park, Dallas, TX 75390
| | - Hans Lehrach
- *Max-Planck-Institut fuer Molekulare Genetik, Ihnestrasse 73, 14195 Berlin, Germany
| | - David J. Mangelsdorf
- Department of Pharmacology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Room ND9.124A, 6001 Forest Park, Dallas, TX 75390
| | - Adam Antebi
- Department of Molecular and Cellular Biology, Huffington Center on Aging, Baylor College of Medicine, Room M320, One Baylor Plaza, Houston, TX 77030; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
140
|
Fielenbach N, Guardavaccaro D, Neubert K, Chan T, Li D, Feng Q, Hutter H, Pagano M, Antebi A. DRE-1: An Evolutionarily Conserved F Box Protein that Regulates C. elegans Developmental Age. Dev Cell 2007; 12:443-55. [PMID: 17336909 DOI: 10.1016/j.devcel.2007.01.018] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2006] [Revised: 01/20/2007] [Accepted: 01/26/2007] [Indexed: 11/26/2022]
Abstract
During metazoan development, cells acquire both positional and temporal identities. The Caenorhabditis elegans heterochronic loci are global regulators of larval temporal fates. Most encode conserved transcriptional and translational factors, which affect stage-appropriate programs in various tissues. Here, we describe dre-1, a heterochronic gene, whose mutant phenotypes include precocious terminal differentiation of epidermal stem cells and altered temporal patterning of gonadal outgrowth. Genetic interactions with other heterochronic loci place dre-1 in the larval-to-adult switch. dre-1 encodes a highly conserved F box protein, suggesting a role in an SCF ubiquitin ligase complex. Accordingly, RNAi knockdown of the C. elegans SKP1-like homolog SKR-1, the cullin CUL-1, and ring finger RBX homologs yielded similar heterochronic phenotypes. DRE-1 and SKR-1 form a complex, as do the human orthologs, hFBXO11 and SKP1, revealing a phyletically ancient interaction. The identification of core components involved in SCF-mediated modification and/or proteolysis suggests an important level of regulation in the heterochronic hierarchy.
Collapse
Affiliation(s)
- Nicole Fielenbach
- Baylor College of Medicine, Huffington Center on Aging, Department of Molecular and Cellular Biology, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Höss S, Weltje L. Endocrine disruption in nematodes: effects and mechanisms. ECOTOXICOLOGY (LONDON, ENGLAND) 2007; 16:15-28. [PMID: 17219088 DOI: 10.1007/s10646-006-0108-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
This paper reviews the current knowledge on endocrine disruption in nematodes. These organisms have received little attention in the field of ecotoxicology, in spite of their important role in aquatic ecosystems. Research on endocrine regulation and disruption in nematodes, especially the more recent studies, concentrate mainly on one species, Caenorhabditis elegans. Although an endocrine system is not known in nematodes, there is evidence that many processes are regulated via hormonal pathways. As vertebrate hormones, such as steroids, may have endocrine functions in nematodes as well, endocrine disrupting chemicals (EDCs) defined for vertebrates may also be able to influence nematodes. The studies that are reviewed here, and own data showed that potential EDCs can affect nematodes on all organizational levels, from molecules to communities. It is concluded that nematodes, notably its prominent species C. elegans, are a promising organism group for the development of biomonitoring tools, provided that more mechanistic evidence is gathered on hormonal processes within these animals.
Collapse
|
142
|
Abstract
Steroid molecules are present in all invertebrates, and some of them have established hormonal roles: this is the case for ecdysteroids in arthropods and, to a lesser extent, for vertebrate-type steroids in molluscs. Steroids are not only hormones, they may also fulfill many other functions in chemical communication, chemical defense or even digestive physiology. The increasing occurrence of endocrine disruption problems caused by environmental pollutants, which interfere in particular with reproductive physiology of vertebrates but also of invertebrates has made necessary to better understand the endocrine physiology of the latter and the role of steroids in these processes. So many attempts are being made to better understand the endocrine roles of steroids in arthropods and molluscs, and to establish whether they also fulfill similar functions in other invertebrate phyla. At the moment, both the precise identification of these steroids, the determination of their origin (endogenous versus exogenous) and of their mechanism of action are under active investigation. This research takes profit of the development of genome sequencing programs on many invertebrate species, which allow the identification of receptors and/or biosynthetic enzymes, when related to their vertebrate counterparts, but the story is not so simple, as will be exemplified by estrogen receptors of molluscs.
Collapse
Affiliation(s)
- René Lafont
- Biochimie Structurale et Fonctionnelle des Protéines, CNRS FRE 2852, Université Pierre et Marie Curie, Case Courrier no. 29, 75252 Paris Cedex 05, France.
| | | |
Collapse
|
143
|
Broué F, Liere P, Kenyon C, Baulieu EE. A steroid hormone that extends the lifespan of Caenorhabditis elegans. Aging Cell 2007; 6:87-94. [PMID: 17266678 DOI: 10.1111/j.1474-9726.2006.00268.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Removing the germline of Caenorhabditis elegans extends lifespan. This lifespan extension requires the nuclear receptor DAF-12 and the cytochrome P450 DAF-9, suggesting that a lipophilic hormone is involved. Here we show that C. elegans contains several hormonal steroids that are also present in humans, including pregnenolone (3beta-hydroxy-pregn-5-en-20-one; PREG) and other pregnane and androstane derivatives. We find that PREG can extend the lifespan of C. elegans. Moreover, PREG levels rise when the germline is removed in a daf-9-dependent fashion. PREG extends the lifespan of germline-defective daf-9 mutants dramatically, but has no effect on daf-12 mutants. Thus, germline removal may extend lifespan, at least in part, by stimulating the synthesis of PREG.
Collapse
Affiliation(s)
- Florence Broué
- INSERM UMR788, 80 rue du Général Leclerc, 94276, Le Kremlin-Bicêtre, Cedex, France
| | | | | | | |
Collapse
|
144
|
Murakami S. Caenorhabditis elegans as a model system to study aging of learning and memory. Mol Neurobiol 2007; 35:85-94. [PMID: 17519507 DOI: 10.1007/bf02700625] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 11/30/1999] [Accepted: 08/30/2006] [Indexed: 10/22/2022]
Abstract
The nematode Caenorhabditis elegans is an excellent model organism to study biological processes relevant to a wide variety of human and rodent disease systems. Previous studies have suggested that mutants of the insulin/insulin-like growth factor-1 pathway show life extension and increased stress resistance in various species, including C. elegans, the fruit fly, and the mouse. It has recently been shown that the life-extending mutants, including the age-1 phosphatidylinositol- 3 OH kinase mutants and the daf-2 insulin-like receptor mutants, display improvement in a type of associative learning behavior called thermotaxis learning behavior. The age-1 mutant shows a dramatic threefold extension of the health-span that ensures thermotaxis learning behavior, suggesting strong neuroprotective actions during aging. The age-1 and daf-2 mutants show resistance to multiple forms of stress and upregulates the genes involved in reactive oxygen species scavenging, heat shock, and P450 drug-detoxification. The life-extending mutants may confer resistance to various stress and diseases in neurons. Therefore, C. elegans provides an emerging system for the prevention of age-related deficits in the nervous system and in learning behaviors. This article discusses the aging of learning and memory and the neuroprotection effects of life-extending mutants on learning behaviors.
Collapse
Affiliation(s)
- Shin Murakami
- Gheens Center on Aging, Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
145
|
Gomez TA, Banfield KL, Trogler DM, Clarke SG. The L-isoaspartyl-O-methyltransferase in Caenorhabditis elegans larval longevity and autophagy. Dev Biol 2006; 303:493-500. [PMID: 17187774 PMCID: PMC1868680 DOI: 10.1016/j.ydbio.2006.11.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Revised: 11/03/2006] [Accepted: 11/16/2006] [Indexed: 10/23/2022]
Abstract
The protein L-isoaspartyl-O-methyltransferase, coded by the pcm-1 gene in Caenorhabditis elegans, participates in the repair of age-damaged proteins. We tested the ability of pcm-1-deficient nematodes to survive starvation stress as developmentally-arrested L1 larvae. We found that pcm-1 mutant L1 larvae do not survive as well as wild-type L1 larvae when incubated in M9 medium without nutrients. We then tested whether the starved L1 larvae could continue development when allowed access to food in a recovery assay. A loss of recovery ability with age was observed for all larvae, with little or no difference between the pcm-1 mutant and wild-type N2 larvae. Interestingly, when L1 larvae were starved in cholesterol-containing S medium or M9 medium supplemented with cholesterol, the survival rates of both mutant and wild-type animals nearly doubles, with pcm-1 larvae again faring more poorly than N2 larvae. Furthermore, L1 larvae cultured in these cholesterol-containing media show an increase in Sudan Black staining over animals cultured in M9 medium. The longevity defects of pcm-1 mutants previously seen in dauer larvae and here in L1 larvae suggest a defect in the ability of pcm-1 mutants to recycle and reuse old cellular components in pathways such as autophagy. Using an autophagosomal marker, we found evidence suggesting that the pcm-1 mutation may inhibit autophagy during dauer formation, suggesting that the absence of protein repair may also interfere with protein degradation pathways.
Collapse
Affiliation(s)
- Tara A Gomez
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California-Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095, USA.
| | | | | | | |
Collapse
|
146
|
Bellino FL. Advances in endocrinology of aging research, 2005-2006. Exp Gerontol 2006; 41:1228-33. [PMID: 17110071 PMCID: PMC1804294 DOI: 10.1016/j.exger.2006.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Revised: 09/08/2006] [Accepted: 09/11/2006] [Indexed: 12/30/2022]
Abstract
The purpose of this brief review is to highlight some of the more important advances in endocrinology of aging research over the past year. Four advances were chosen and briefly described. First, exploration of the early steps in the generation of the internal steroidal hormonal signal involved in lifespan extension via the insulin/IGF-like signaling pathway in the nematode by two research groups revealed that the product of cholestanoic acid derivatives metabolized by a cytochrome P-450-like protein activates a protein with homology to the mammalian nuclear receptor superfamily, a process strikingly similar to the steroid hormone signaling pathway documented in mammalian systems. Second is the discovery that sirtuins, proteins that regulate lifespan in model organisms, enhance pancreatic insulin secretion in mice following a glucose challenge, suggesting the potential to regulate mammalian lifespan through regulation of the insulin signaling pathway. Third, the newly discovered hormone klotho, which also plays a role in regulating lifespan, in this case in mice, is reported to not only negatively affect insulin sensitivity but, perhaps more importantly, significantly affects calcium and phosphate metabolism as a required cofactor of Fgf-23 signaling. Finally the gonadotropin FSH is shown to directly affect bone density in mice separate from any direct effect of estrogen, suggesting that reproductive hormones other than estrogen can directly impact menopause-associated pathophysiology in non-reproductive tissues.
Collapse
Affiliation(s)
- Francis L Bellino
- Biology of Aging Program, National Institute on Aging Bethesda, MD 20891, USA.
| |
Collapse
|
147
|
Abstract
Each animal species displays a specific life span, rate of aging and pattern of development of age-dependent diseases. The genetic bases of these related features are being studied experimentally in invertebrate and vertebrate model systems as well as in humans through medical records. Three types of mutants are being analyzed: (i) short-lived mutants that are prone to age-dependent diseases and might be models of accelerated aging; (ii) mutants that show overt molecular defects but that do not live shorter lives than controls, and can be used to test specific theories about the molecular causes of aging and age-dependent diseases; and (iii) long-lived mutants that might advance the understanding of the molecular physiology of slow-aging animals and aid the discovery of molecular targets that could be used to manipulate rates of aging to benefit human health. Here, I analyze some of what we know today and discuss what we should try to find out in the future to understand the aging phenomenon.
Collapse
Affiliation(s)
- Siegfried Hekimi
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield, Montréal, Québec H3A 1B1, Canada.
| |
Collapse
|
148
|
Ono H, Rewitz KF, Shinoda T, Itoyama K, Petryk A, Rybczynski R, Jarcho M, Warren JT, Marqués G, Shimell MJ, Gilbert LI, O'Connor MB. Spook and Spookier code for stage-specific components of the ecdysone biosynthetic pathway in Diptera. Dev Biol 2006; 298:555-70. [PMID: 16949568 DOI: 10.1016/j.ydbio.2006.07.023] [Citation(s) in RCA: 222] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Revised: 07/07/2006] [Accepted: 07/09/2006] [Indexed: 11/30/2022]
Abstract
Ecdysteroids regulate many key developmental events in arthropods including molting and metamorphosis. Recently, members of the Drosophila Halloween group of genes, that are required for embryonic viability and cuticle deposition, have been shown to code for several cytochrome P450 enzymes that catalyze the terminal hydroxylation steps in the conversion of cholesterol to the molting hormone 20-hydroxyecdysone. These P450s are conserved in other insects and each is thought to function throughout development as the sole mediator of a particular biosynthetic step since, where analyzed, each is expressed at all stages of development and shows no closely related homolog in their respective genomes. In contrast, we show here that several dipteran genomes encode two novel, highly related, microsomal P450 enzymes, Cyp307A1 and Cyp307A2, that likely participate as stage-specific components of the ecdysone biosynthetic machinery. This hypothesis comes from the observation that Cyp307A1 is encoded by the Halloween gene spook (spo), but unlike other Halloween class genes, Dmspo is not expressed during the larval stages. In contrast, Cyp307a2, dubbed spookier (spok), is expressed primarily during larval stages within the prothoracic gland cells of the ring gland. RNAi mediated reduction in the expression of this heterochromatin localized gene leads to arrest at the first instar stage which can be rescued by feeding the larva 20E, E or ketodiol but not 7dC. In addition, spok expression is eliminated in larvae carrying mutations in molting defective (mld), a gene encoding a nuclear zinc finger protein that is required for production of ecdysone during Drosophila larval development. Intriguingly, mld is not present in the Bombyx mori genome, and we have identified only one spook homolog in both Bombyx and Manduca that is expressed in both embryos and larva. These studies suggest an evolutionary split between Diptera and Lepidoptera in how the ecdysone biosynthetic pathway is regulated during development.
Collapse
Affiliation(s)
- Hajime Ono
- The Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Rottiers V, Antebi A. Control of Caenorhabditis elegans life history by nuclear receptor signal transduction. Exp Gerontol 2006; 41:904-9. [PMID: 16963217 DOI: 10.1016/j.exger.2006.06.062] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Revised: 06/19/2006] [Accepted: 06/30/2006] [Indexed: 10/24/2022]
Abstract
Caenorhabditis elegans diapause, reproductive development, and life span are influenced by the DAF-12 nuclear hormone receptor signaling pathway. Here, we describe how this nuclear receptor integrates environmental and physiologic cues and regulates developmental age, reproduction and aging.
Collapse
Affiliation(s)
- Veerle Rottiers
- Huffington Center on Aging, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
150
|
Motola DL, Cummins CL, Rottiers V, Sharma KK, Li T, Li Y, Suino-Powell K, Xu HE, Auchus RJ, Antebi A, Mangelsdorf DJ. Identification of ligands for DAF-12 that govern dauer formation and reproduction in C. elegans. Cell 2006; 124:1209-23. [PMID: 16529801 DOI: 10.1016/j.cell.2006.01.037] [Citation(s) in RCA: 374] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Revised: 01/24/2006] [Accepted: 01/31/2006] [Indexed: 11/22/2022]
Abstract
In response to environmental and dietary cues, the C. elegans orphan nuclear receptor, DAF-12, regulates dauer diapause, reproductive development, fat metabolism, and life span. Despite strong evidence for hormonal control, the identification of the DAF-12 ligand has remained elusive. In this work, we identified two distinct 3-keto-cholestenoic acid metabolites of DAF-9, a cytochrome P450 involved in hormone production, that function as ligands for DAF-12. At nanomolar concentrations, these steroidal ligands (called dafachronic acids) bind and transactivate DAF-12 and rescue the hormone deficiency of daf-9 mutants. Interestingly, DAF-9 has a biochemical activity similar to mammalian CYP27A1 catalyzing addition of a terminal acid to the side chain of sterol metabolites. Together, these results define the first steroid hormones in nematodes as ligands for an invertebrate orphan nuclear receptor and demonstrate that steroidal regulation of reproduction, from biology to molecular mechanism, is conserved from worms to humans.
Collapse
Affiliation(s)
- Daniel L Motola
- Howard Hughes Medical Institute and Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|