101
|
Grieve AG, Rabouille C. Golgi bypass: skirting around the heart of classical secretion. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a005298. [PMID: 21441587 DOI: 10.1101/cshperspect.a005298] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Classical secretion consists of the delivery of transmembrane and soluble proteins to the plasma membrane and the extracellular medium, respectively, and is mediated by the organelles of the secretory pathway, the Endoplasmic Reticulum (ER), the ER exit sites, and the Golgi, as described by the Nobel Prize winner George Palade (Palade 1975). At the center of this transport route, the Golgi stack has a major role in modifying, processing, sorting, and dispatching newly synthesized proteins to their final destinations. More recently, however, it has become clear that an increasing number of transmembrane proteins reach the plasma membrane unconventionally, either by exiting the ER in non-COPII vesicles or by bypassing the Golgi. Here, we discuss the evidence for Golgi bypass and the possible physiological benefits of it. Intriguingly, at least during Drosophila development, Golgi bypass seems to be mediated by a Golgi protein, dGRASP, which is found ectopically localized to the plasma membrane.
Collapse
Affiliation(s)
- Adam G Grieve
- Cell Microscopy Centre, Department of Cell Biology, University Medical Center Utrecht, The Netherlands
| | | |
Collapse
|
102
|
Abstract
The mammalian GRASPs (Golgi reassembly stacking proteins) GRASP65 and GRASP55 were first discovered more than a decade ago as factors involved in the stacking of Golgi cisternae. Since then, orthologues have been identified in many different organisms and GRASPs have been assigned new roles that may seem disconnected. In vitro, GRASPs have been shown to have the biochemical properties of Golgi stacking factors, but the jury is still out as to whether they act as such in vivo. In mammalian cells, GRASP65 and GRASP55 are required for formation of the Golgi ribbon, a structure which is fragmented in mitosis owing to the phosphorylation of a number of serine and threonine residues situated in its C-terminus. Golgi ribbon unlinking is in turn shown to be part of a mitotic checkpoint. GRASP65 also seems to be the key target of signalling events leading to re-orientation of the Golgi during cell migration and its breakdown during apoptosis. Interestingly, the Golgi ribbon is not a feature of lower eukaryotes, yet a GRASP homologue is present in the genome of Encephalitozoon cuniculi, suggesting they have other roles. GRASPs have no identified function in bulk anterograde protein transport along the secretory pathway, but some cargo-specific trafficking roles for GRASPs have been discovered. Furthermore, GRASP orthologues have recently been shown to mediate the unconventional secretion of the cytoplasmic proteins AcbA/Acb1, in both Dictyostelium discoideum and yeast, and the Golgi bypass of a number of transmembrane proteins during Drosophila development. In the present paper, we review the multiple roles of GRASPs.
Collapse
|
103
|
Lowe M. Structural organization of the Golgi apparatus. Curr Opin Cell Biol 2011; 23:85-93. [PMID: 21071196 DOI: 10.1016/j.ceb.2010.10.004] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 10/07/2010] [Accepted: 10/17/2010] [Indexed: 11/21/2022]
Abstract
The Golgi apparatus is a universal feature of eukaryotes, carrying out the key functions of processing, sorting and trafficking of newly synthesized membrane and secretory proteins. The Golgi apparatus has a clearly defined structure, comprising stacks of flattened cisternal membranes that in vertebrates are connected to form a ribbon. How this structure is maintained and how it relates to the functions of the Golgi apparatus has long been an area of interest. In this review I describe recent progress in the identification and characterization of the molecular machinery that together help generate the characteristic organization of this organelle.
Collapse
Affiliation(s)
- Martin Lowe
- Faculty of Life Sciences, University of Manchester, The Michael Smith Building, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
104
|
Vlachos S, Harden N. Genetic evidence for antagonism between Pak protein kinase and Rho1 small GTPase signaling in regulation of the actin cytoskeleton during Drosophila oogenesis. Genetics 2011; 187:501-12. [PMID: 21098722 PMCID: PMC3030492 DOI: 10.1534/genetics.110.120998] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 11/18/2010] [Indexed: 12/15/2022] Open
Abstract
During Drosophila oogenesis, basally localized F-actin bundles in the follicle cells covering the egg chamber drive its elongation along the anterior-posterior axis. The basal F-actin of the follicle cell is an attractive system for the genetic analysis of the regulation of the actin cytoskeleton, and results obtained in this system are likely to be broadly applicable in understanding tissue remodeling. Mutations in a number of genes, including that encoding the p21-activated kinase Pak, have been shown to disrupt organization of the basal F-actin and in turn affect egg chamber elongation. pak mutant egg chambers have disorganized F-actin distribution and remain spherical due to a failure to elongate. In a genetic screen to identify modifiers of the pak rounded egg chamber phenotype several second chromosome deficiencies were identified as suppressors. One suppressing deficiency removes the rho1 locus, and we determined using several rho1 alleles that removal of a single copy of rho1 can suppress the pak phenotype. Reduction of any component of the Rho1-activated actomyosin contractility pathway suppresses pak oogenesis defects, suggesting that Pak counteracts Rho1 signaling. There is ectopic myosin light chain phosphorylation in pak mutant follicle cell clones in elongating egg chambers, probably due at least in part to mislocalization of RhoGEF2, an activator of the Rho1 pathway. In early egg chambers, pak mutant follicle cells have reduced levels of myosin phosphorylation and we conclude that Pak both promotes and restricts myosin light chain phosphorylation in a temporally distinct manner during oogenesis.
Collapse
Affiliation(s)
| | - Nicholas Harden
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| |
Collapse
|
105
|
Sengupta D, Linstedt AD. Mitotic inhibition of GRASP65 organelle tethering involves Polo-like kinase 1 (PLK1) phosphorylation proximate to an internal PDZ ligand. J Biol Chem 2010; 285:39994-40003. [PMID: 20937827 PMCID: PMC3000981 DOI: 10.1074/jbc.m110.189449] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Indexed: 11/06/2022] Open
Abstract
GRASP65 links cis-Golgi cisternae via a homotypic, N-terminal PDZ interaction, and its mitotic phosphorylation disrupts this activity. Neither the identity of the PDZ ligand involved in the GRASP65 self-interaction nor the mechanism by which phosphorylation inhibits its interaction is known. Phospho-mimetic mutation of known cyclin-dependent kinase 1/cyclin B sites, all of which are in the C-terminal "regulatory domain" of the molecule, failed to block organelle tethering. However, we identified a site phosphorylated by Polo-like kinase 1 (PLK1) in the GRASP65 N-terminal domain for which mutation to aspartic acid blocked tethering and alanine substitution prevented mitotic Golgi unlinking. Further, using interaction assays, we discovered an internal PDZ ligand adjacent to the PLK phosphorylation site that was required for tethering. These results reveal the mechanism of phosphoinhibition as direct inhibition by PLK1 of the PDZ ligand underlying the GRASP65 self-interaction.
Collapse
Affiliation(s)
- Debrup Sengupta
- From the Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Adam D. Linstedt
- From the Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
106
|
Seedorf M. Role of endoplasmic reticulum domains in determining secretion routes. F1000 BIOLOGY REPORTS 2010; 2:77. [PMID: 21173840 PMCID: PMC2981193 DOI: 10.3410/b2-77] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Distinct domains of the endoplasmic reticulum (ER) can function as entry points into different protein-sorting routes. In addition to using the classical ER-Golgi pathway, one of these unconventional routes utilizes different combinations of machinery of the classical secretory pathway and components of the autophagosomal system.
Collapse
Affiliation(s)
- Matthias Seedorf
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance Im Neuenheimer Feld 282, 69120 Heidelberg Germany
| |
Collapse
|
107
|
Levi SK, Bhattacharyya D, Strack RL, Austin JR, Glick BS. The yeast GRASP Grh1 colocalizes with COPII and is dispensable for organizing the secretory pathway. Traffic 2010; 11:1168-79. [PMID: 20573068 PMCID: PMC2919637 DOI: 10.1111/j.1600-0854.2010.01089.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In mammalian cells, the 'Golgi reassembly and stacking protein' (GRASP) family has been implicated in Golgi stacking, but the broader functions of GRASP proteins are still unclear. The yeast Saccharomyces cerevisiae contains a single non-essential GRASP homolog called Grh1. However, Golgi cisternae in S. cerevisiae are not organized into stacks, so a possible structural role for Grh1 has been difficult to test. Here, we examined the localization and function of Grh1 in S. cerevisiae and in the related yeast Pichia pastoris, which has stacked Golgi cisternae. In agreement with earlier studies indicating that Grh1 interacts with coat protein II (COPII) vesicle coat proteins, we find that Grh1 colocalizes with COPII at transitional endoplasmic reticulum (tER) sites in both yeasts. Deletion of P. pastoris Grh1 had no obvious effect on the structure of tER-Golgi units. To test the role of S. cerevisiae Grh1, we exploited the observation that inhibiting ER export in S. cerevisiae generates enlarged tER sites that are often associated with the cis Golgi. This tER-Golgi association was preserved in the absence of Grh1. The combined data suggest that Grh1 acts early in the secretory pathway, but is dispensable for the organization of secretory compartments.
Collapse
Affiliation(s)
- Stephanie K. Levi
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL 60637
| | - Dibyendu Bhattacharyya
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL 60637
| | - Rita L. Strack
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL 60637
| | - Jotham R. Austin
- Biological Sciences Division, Office of Shared Research Facilities, The University of Chicago, Chicago, IL 60637
| | - Benjamin S. Glick
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL 60637
| |
Collapse
|
108
|
Nickel W. Pathways of unconventional protein secretion. Curr Opin Biotechnol 2010; 21:621-6. [PMID: 20637599 DOI: 10.1016/j.copbio.2010.06.004] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 06/07/2010] [Accepted: 06/15/2010] [Indexed: 01/01/2023]
Abstract
The vast majority of extracellular proteins are secreted by the classical endoplasmic reticulum (ER)/Golgi-dependent pathway, however, numerous exceptions have been identified. Unconventional secretory proteins lack signal peptides and their export from cells is not affected by brefeldin A, an inhibitor of protein transport along the classical secretory pathway. Two general types of unconventional secretion exist. First, export mediated by direct translocation across plasma membranes of cytoplasmic proteins such as fibroblast growth factor 2. Second, export involving intracellular transport intermediates as shown for acyl-CoA binding protein. Here, molecular mechanisms and factors involved in unconventional secretion are discussed with a focus on fibroblast growth factor 2 translocation across plasma membranes and the role of autophagosomes in unconventional secretion of acyl-CoA binding protein.
Collapse
Affiliation(s)
- Walter Nickel
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany.
| |
Collapse
|
109
|
Norum M, Tång E, Chavoshi T, Schwarz H, Linke D, Uv A, Moussian B. Trafficking through COPII stabilises cell polarity and drives secretion during Drosophila epidermal differentiation. PLoS One 2010; 5:e10802. [PMID: 20520821 PMCID: PMC2875407 DOI: 10.1371/journal.pone.0010802] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 05/01/2010] [Indexed: 11/23/2022] Open
Abstract
Background The differentiation of an extracellular matrix (ECM) at the apical side of epithelial cells implies massive polarised secretion and membrane trafficking. An epithelial cell is hence engaged in coordinating secretion and cell polarity for a correct and efficient ECM formation. Principal Findings We are studying the molecular mechanisms that Drosophila tracheal and epidermal cells deploy to form their specific apical ECM during differentiation. In this work we demonstrate that the two genetically identified factors haunted and ghost are essential for polarity maintenance, membrane topology as well as for secretion of the tracheal luminal matrix and the cuticle. We show that they code for the Drosophila COPII vesicle-coating components Sec23 and Sec24, respectively, that organise vesicle transport from the ER to the Golgi apparatus. Conclusion Taken together, epithelial differentiation during Drosophila embryogenesis is a concerted action of ECM formation, plasma membrane remodelling and maintenance of cell polarity that all three rely mainly, if not absolutely, on the canonical secretory pathway from the ER over the Golgi apparatus to the plasma membrane. Our results indicate that COPII vesicles constitute a central hub for these processes.
Collapse
Affiliation(s)
- Michaela Norum
- Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Erika Tång
- Institute of Biomedicine, Göteborg University, Göteborg, Sweden
| | - Tina Chavoshi
- Institute of Biomedicine, Göteborg University, Göteborg, Sweden
| | - Heinz Schwarz
- Max-Planck Institute for Developmental Biology, Tübingen, Germany
| | - Dirk Linke
- Max-Planck Institute for Developmental Biology, Tübingen, Germany
| | - Anne Uv
- Institute of Biomedicine, Göteborg University, Göteborg, Sweden
| | - Bernard Moussian
- Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- * E-mail:
| |
Collapse
|
110
|
Negreiros E, Fontenele M, Câmara AR, Araujo H. alphaPS1betaPS integrin receptors regulate the differential distribution of Sog fragments in polarized epithelia. Genesis 2010; 48:31-43. [PMID: 20017203 DOI: 10.1002/dvg.20579] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Bone morphogenetic proteins (BMPs) have important functions during epithelial development. In Drosophila, extracellular Short gastrulation (Sog) limits the action of the BMP family member Decapentaplegic (Dpp). We have shown that Integrin receptors regulate Sog activity and distribution during pupal wing development to direct placement of wing veins. Here, we show that Integrins perform a similar function in the follicular epithelium, impacting Dpp function during oogenesis and embryonic development. As reported for the wing, this effect is specific to mew, which codes for alphaPS1 integrin. Sog is subject to cleavage by metalloproteases, generating fragments with different properties. We also show that Integrins regulate the distribution of C- and N-terminal Sog fragments in both epithelia, suggesting they may regulate the quality of BMP outputs. Our data indicate that alphaPS1betaPS integrin receptors regulate the amount and type of Sog fragments available for diffusion in the extracellular space during oogenesis and pupal wing development.
Collapse
Affiliation(s)
- Erika Negreiros
- Institute for Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil 21941-902
| | | | | | | |
Collapse
|
111
|
Association of coagulation factor XIII-A with Golgi proteins within monocyte-macrophages: implications for subcellular trafficking and secretion. Blood 2010; 115:2674-81. [DOI: 10.1182/blood-2009-08-231316] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
AbstractFactor XIII-A (FXIII-A) is present in the cytosol of platelets, megakaryocytes, monocytes, osteoblasts, and macrophages and may be released from cells by a nonclassical pathway. We observed that plasma FXIII-A levels were unchanged in thrombocytopenic mice (Bcl-xPlt20/Plt20 and Mpl−/−), which implicates nonclassical secretion from nucleated cells as the source of plasma FXIII-A. We, therefore, examined the intracellular targeting of FXIII-A in the THP-1 (monocyte/macrophage) cell line and in human monocyte–derived macrophages. Metabolic labeling of THP-1 cells did not show release of 35S-FXIII-A either under basal conditions or when interleukin 1-β was released in response to cell stress. However, immunofluorescence of THP-1 cells and primary macrophages showed that FXIII-A associated with podosomes and other structures adjacent to the plasma membrane, which also contain trans-Golgi network protein-46 and Golgi matrix protein-130 (GM130) but not the endoplasmic reticulum luminal protein, protein disulphide isomerase. Further, FXIII-A was present in GM130-positive intracellular vesicles that could mediate its transport, and in other contexts GM130 and its binding partner GRASP have been implicated in the delivery of nonclassically secreted proteins to the plasma membrane. Hence, this mechanism may precede FXIII-A release into the extracellular matrix from macrophages and its release into plasma from the cell type of origin.
Collapse
|
112
|
Bachert C, Linstedt AD. Dual anchoring of the GRASP membrane tether promotes trans pairing. J Biol Chem 2010; 285:16294-301. [PMID: 20228057 DOI: 10.1074/jbc.m110.116129] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GRASP proteins share an N-terminal GRASP domain and mediate homotypic tethering of Golgi cisternae to form extended Golgi ribbons. The golgin GM130 is thought to bind the C-terminal side of the GRASP domain to recruit GRASP65 onto the Golgi whereas stable membrane association appears to also depend on anchoring of the N terminus by myristoylation. Here, we examine the nature of the GM130/GRASP65 interaction and test whether the dual membrane contacts of the GRASP domain have a role in tethering beyond membrane recruitment. GM130 was found to contain a C-terminal PDZ ligand that binds the putative groove of the second PDZ-like domain in GRASP65. To test tethering activity independent of targeting, we took advantage of a tethering assay carried out on the mitochondrial membrane in which the GRASP membrane attachment points were individually or simultaneously substituted with mitochondrially targeted transmembrane sequences. N-terminally anchored constructs tethered only if the C terminus was also anchored; and likewise, C-terminally anchored constructs tethered only if the N terminus was anchored. One explanation for the role of this dual anchoring is that it orients the GRASP domain to prevent cis interactions within the same membrane thereby favoring trans interactions between adjacent membranes. Indeed, singly anchored GRASP constructs, although nonfunctional in tethering, interacted with one another and also bound and inhibited dually anchored constructs. This work thus elucidates the GM130/GRASP65 interaction and supports a novel orientation-based model of membrane tether regulation in which dual membrane contact orients the tethering interaction interface to favor trans over cis interactions.
Collapse
Affiliation(s)
- Collin Bachert
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | |
Collapse
|
113
|
Duran JM, Anjard C, Stefan C, Loomis WF, Malhotra V. Unconventional secretion of Acb1 is mediated by autophagosomes. ACTA ACUST UNITED AC 2010; 188:527-36. [PMID: 20156967 PMCID: PMC2828925 DOI: 10.1083/jcb.200911154] [Citation(s) in RCA: 351] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Starving Dictyostelium discoideum cells secrete AcbA, an acyl coenzyme A-binding protein (ACBP) that lacks a conventional signal sequence for entering the endoplasmic reticulum (ER). Secretion of AcbA in D. discoideum requires the Golgi-associated protein GRASP. In this study, we report that starvation-induced secretion of Acb1, the Saccharomyces cerevisiae ACBP orthologue, also requires GRASP (Grh1). This highlights the conserved function of GRASP in unconventional secretion. Although genes required for ER to Golgi or Golgi to cell surface transport are not required for Acb1 secretion in yeast, this process involves autophagy genes and the plasma membrane t-SNARE, Sso1. Inhibiting transport to vacuoles does not affect Acb1 secretion. In sum, our experiments reveal a unique secretory pathway where autophagosomes containing Acb1 evade fusion with the vacuole to prevent cargo degradation. We propose that these autophagosome intermediates fuse with recycling endosomes instead to form multivesicular body carriers that then fuse with the plasma membrane to release cargo.
Collapse
Affiliation(s)
- Juan M Duran
- Center for Genomic Regulation, Barcelona 08003, Spain
| | | | | | | | | |
Collapse
|
114
|
Abstract
In this issue, Duran et al. (2010. J. Cell Biol. doi: 10.1083/jcb.200911154) and Manjithaya et al. (2010. J. Cell Biol. doi: 10.1083/jcb.200911149) use yeast genetics to reveal a role for autophagosome intermediates in the unconventional secretion of an acyl coenzyme A (CoA)–binding protein that lacks an endoplasmic reticulum signal sequence. Medium-chain acyl CoAs are also required and may be important for substrate routing to this pathway.
Collapse
Affiliation(s)
- Suzanne R Pfeffer
- Department of Biochemistry, School of Medicine, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
115
|
Manjithaya R, Anjard C, Loomis WF, Subramani S. Unconventional secretion of Pichia pastoris Acb1 is dependent on GRASP protein, peroxisomal functions, and autophagosome formation. ACTA ACUST UNITED AC 2010; 188:537-46. [PMID: 20156962 PMCID: PMC2828923 DOI: 10.1083/jcb.200911149] [Citation(s) in RCA: 279] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Evidence is presented for an unconventional protein secretion pathway that is conserved from yeast to Dictyostelium discoideum in which Acb1 may be sequestered into autophagosomal vesicles, which then fuse (either directly or indirectly) with the plasma membrane (see also the companion paper from Duran et al. in this issue). In contrast to the enormous advances made regarding mechanisms of conventional protein secretion, mechanistic insights into the unconventional secretion of proteins are lacking. Acyl coenzyme A (CoA)–binding protein (ACBP; AcbA in Dictyostelium discoideum), an unconventionally secreted protein, is dependent on Golgi reassembly and stacking protein (GRASP) for its secretion. We discovered, surprisingly, that the secretion, processing, and function of an AcbA-derived peptide, SDF-2, are conserved between the yeast Pichia pastoris and D. discoideum. We show that in yeast, the secretion of SDF-2–like activity is GRASP dependent, triggered by nitrogen starvation, and requires autophagy proteins as well as medium-chain fatty acyl CoA generated by peroxisomes. Additionally, a phospholipase D implicated in soluble N-ethyl-maleimide sensitive fusion protein attachment protein receptor–mediated vesicle fusion at the plasma membrane is necessary, but neither peroxisome turnover nor fusion between autophagosomes and the vacuole is essential. Moreover, yeast Acb1 and several proteins required for its secretion are necessary for sporulation in P. pastoris. Our findings implicate currently unknown, evolutionarily conserved pathways in unconventional secretion.
Collapse
Affiliation(s)
- Ravi Manjithaya
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
116
|
Corrales RM, Sereno D, Mathieu-Daudé F. Deciphering theLeishmaniaexoproteome: what we know and what we can learn. ACTA ACUST UNITED AC 2010; 58:27-38. [DOI: 10.1111/j.1574-695x.2009.00608.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
117
|
Xiang Y, Wang Y. GRASP55 and GRASP65 play complementary and essential roles in Golgi cisternal stacking. ACTA ACUST UNITED AC 2010; 188:237-51. [PMID: 20083603 PMCID: PMC2812519 DOI: 10.1083/jcb.200907132] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two peripheral GRASP membrane proteins work together to keep the Golgi from falling apart. In vitro studies have suggested that Golgi stack formation involves two homologous peripheral Golgi proteins, GRASP65 and GRASP55, which localize to the cis and medial-trans cisternae, respectively. However, no mechanism has been provided on how these two GRASP proteins work together to stack Golgi cisternae. Here, we show that depletion of either GRASP55 or GRASP65 by siRNA reduces the number of cisternae per Golgi stack, whereas simultaneous knockdown of both GRASP proteins leads to disassembly of the entire stack. GRASP55 stacks Golgi membranes by forming oligomers through its N-terminal GRASP domain. This process is regulated by phosphorylation within the C-terminal serine/proline-rich domain. Expression of nonphosphorylatable GRASP55 mutants enhances Golgi stacking in interphase cells and inhibits Golgi disassembly during mitosis. These results demonstrate that GRASP55 and GRASP65 stack mammalian Golgi cisternae via a common mechanism.
Collapse
Affiliation(s)
- Yi Xiang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
118
|
Delon I, Brown NH. The integrin adhesion complex changes its composition and function during morphogenesis of an epithelium. J Cell Sci 2009; 122:4363-74. [PMID: 19903692 PMCID: PMC2779134 DOI: 10.1242/jcs.055996] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cell adhesion to the extracellular matrix (ECM) is mediated by the integrin family of transmembrane receptors. Integrins link ECM ligands to the cytoskeleton, providing strong attachment to enable cell-shape change and tissue integrity. This connection is made possible by an intracellular complex of proteins, which links to actin filaments and controls signalling cascades that regulate cytoskeletal rearrangements. We have identified stress-fibre-associated focal adhesions that change their composition during tissue morphogenesis. Early expression of alphaPS1betaPS integrin decreases the levels of the actin-nucleating factors Enabled, Diaphanous and profilin, as well as downregulating the amount of F-actin incorporated into the stress fibres. As follicle cells mature in their developmental pathway and become squamous, the integrin in the focal adhesions changes from alphaPS1betaPS to alphaPS2betaPS. During the switch, stress fibres increase their length and change orientation, first changing by 90 degrees and then reorienting back. The normal rapid reorientation requires new expression of alphaPS2betaPS, which also permits recruitment of the adaptor protein tensin. Unexpectedly, it is the extracellular portion of the alphaPS2 subunit that provides the specificity for intracellular recruitment of tensin. Molecular variation of the integrin complex is thus a key component of developmentally programmed morphogenesis.
Collapse
Affiliation(s)
- Isabelle Delon
- Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | | |
Collapse
|
119
|
Saraste J, Dale HA, Bazzocco S, Marie M. Emerging new roles of the pre-Golgi intermediate compartment in biosynthetic-secretory trafficking. FEBS Lett 2009; 583:3804-10. [PMID: 19887068 DOI: 10.1016/j.febslet.2009.10.084] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 10/21/2009] [Accepted: 10/30/2009] [Indexed: 12/30/2022]
Abstract
The intermediate compartment (IC) between the endoplasmic reticulum (ER) and the Golgi apparatus appears to constitute an autonomous organelle composed of spatially and functionally distinct, but interconnected, vacuolar and tubular subdomains. In mammalian cells the IC network is stably anchored at the cell center, communicating directly with the endocytic pathway via a pericentrosomal membrane system (PCMS). This finding suggests that the secretory pathway divides at the level of the IC, which functions as a sorting station both in Golgi-dependent and -independent trafficking. The tubular subdomain of the IC is capable of expansion in accordance with its proposed biosynthetic functions such as cholesterol synthesis.
Collapse
Affiliation(s)
- Jaakko Saraste
- Department of Biomedicine and Molecular Imaging Center, University of Bergen, Jonas Lies Vei 91, N-5009 Bergen, Norway.
| | | | | | | |
Collapse
|
120
|
del Castillo FJ, Cohen-Salmon M, Charollais A, Caille D, Lampe PD, Chavrier P, Meda P, Petit C. Consortin, a trans-Golgi network cargo receptor for the plasma membrane targeting and recycling of connexins. Hum Mol Genet 2009; 19:262-75. [PMID: 19864490 DOI: 10.1093/hmg/ddp490] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Targeting of numerous transmembrane proteins to the cell surface is thought to depend on their recognition by cargo receptors that interact with the adaptor machinery for anterograde traffic at the distal end of the Golgi complex. We report here on consortin, a novel integral membrane protein that is predicted to be intrinsically disordered, i.e. that contains large segments whose native state is unstructured. We identified consortin as a binding partner of connexins, the building blocks of gap junctions. Consortin is located at the trans-Golgi network (TGN), in tubulovesicular transport organelles, and at the plasma membrane. It directly interacts with the TGN clathrin adaptors GGA1 and GGA2, and disruption of this interaction by expression of a consortin mutant lacking the acidic cluster-dileucine (DXXLL) GGA interaction motif causes an intracellular accumulation of several connexins. RNA interference-mediated silencing of consortin expression in HeLa cells blocks the cell surface targeting of these connexins, which accumulate intracellularly, whereas partial depletion and redistribution of the consortin pool slows down the intracellular degradation of gap junction plaques. Altogether, our results show that, by studying connexin trafficking, we have identified the first TGN cargo receptor for the targeting of transmembrane proteins to the plasma membrane. The identification of consortin provides in addition a potential target for therapies aimed at diseases in which connexin traffic is altered, including cardiac ischemia, peripheral neuropathies, cataracts and hearing impairment. Sequence accession numbers. GenBank: Human CNST cDNA, NM_152609; mouse Cnst cDNA, NM_146105.
Collapse
|
121
|
D'Angelo G, Prencipe L, Iodice L, Beznoussenko G, Savarese M, Marra P, Di Tullio G, Martire G, De Matteis MA, Bonatti S. GRASP65 and GRASP55 sequentially promote the transport of C-terminal valine-bearing cargos to and through the Golgi complex. J Biol Chem 2009; 284:34849-60. [PMID: 19840934 DOI: 10.1074/jbc.m109.068403] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Golgi matrix proteins GRASP65 and GRASP55 have recognized roles in maintaining the architecture of the Golgi complex, in mitotic progression and in unconventional protein secretion whereas, surprisingly, they have been shown to be dispensable for the transport of commonly used reporter cargo proteins along the secretory pathway. However, it is becoming increasingly clear that many trafficking machineries operate in a cargo-specific manner, thus we have investigated whether GRASPs may control the trafficking of selected classes of cargo. We have taken into consideration the C-terminal valine-bearing receptors CD8alpha and Frizzled4 that we show bind directly to the PSD95-DlgA-zo-1 (PDZ) domains of GRASP65 and GRASP55. We demonstrate that both GRASPs are needed sequentially for the efficient transport to and through the Golgi complex of these receptors, thus highlighting a novel role for the GRASPs in membrane trafficking. Our results open new perspectives for our understanding of the regulation of surface expression of a class of membrane proteins, and suggests the causal mechanisms of a dominant form of autosomal human familial exudative vitreoretinopathy that arises from the Frizzled4 mutation involving its C-terminal valine.
Collapse
Affiliation(s)
- Giovanni D'Angelo
- Department of Biochemistry and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Kondylis V, Rabouille C. The Golgi apparatus: lessons from Drosophila. FEBS Lett 2009; 583:3827-38. [PMID: 19800333 DOI: 10.1016/j.febslet.2009.09.048] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 09/10/2009] [Accepted: 09/26/2009] [Indexed: 11/19/2022]
Abstract
Historically, Drosophila has been a model organism for studying molecular and developmental biology leading to many important discoveries in this field. More recently, the fruit fly has started to be used to address cell biology issues including studies of the secretory pathway, and more specifically on the functional integrity of the Golgi apparatus. A number of advances have been made that are reviewed below. Furthermore, with the development of RNAi technology, Drosophila tissue culture cells have been used to perform genome-wide screens addressing similar issues. Last, the Golgi function has been involved in specific developmental processes, thus shedding new light on the functions of a number of Golgi proteins.
Collapse
Affiliation(s)
- Vangelis Kondylis
- Cell Microscopy Centre, Department of Cell Biology, UMC Utrecht, AZU H02.313, Heidelberglaan 100, Utrecht, The Netherlands.
| | | |
Collapse
|
123
|
Tveit H, Akslen LKA, Fagereng GL, Tranulis MA, Prydz K. A secretory Golgi bypass route to the apical surface domain of epithelial MDCK cells. Traffic 2009; 10:1685-95. [PMID: 19765262 DOI: 10.1111/j.1600-0854.2009.00984.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proteins leave the endoplasmic reticulum (ER) for the plasma membrane via the classical secretory pathway, but routes bypassing the Golgi apparatus have also been observed. Apical and basolateral protein secretion in epithelial Madin-Darby canine kidney (MDCK) cells display differential sensitivity to Brefeldin A (BFA), where low concentrations retard apical transport, while basolateral transport still proceeds through intact Golgi cisternae. We now describe that BFA-mediated retardation of glycoprotein and proteoglycan transport through the Golgi apparatus induces surface transport of molecules lacking Golgi modifications, possessing those acquired in the ER. Low concentrations of BFA induces apical Golgi bypass, while higher concentrations were required to induce basolateral Golgi bypass. Addition of the KDEL ER-retrieval sequence to model protein cores allowed observation of apical Golgi bypass in untreated MDCK cells. Basolateral Golgi bypass was only observed after the addition of BFA or upon cholesterol depletion. Thus, in MDCK cells, an apical Golgi bypass route can transport cargo from pre-Golgi organelles in untreated cells, while the basolateral bypass route is inducible.
Collapse
Affiliation(s)
- Heidi Tveit
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway
| | | | | | | | | |
Collapse
|
124
|
Kondylis V, Pizette S, Rabouille C. The early secretory pathway in development: A tale of proteins and mRNAs. Semin Cell Dev Biol 2009; 20:817-27. [DOI: 10.1016/j.semcdb.2009.03.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 03/16/2009] [Accepted: 03/17/2009] [Indexed: 12/24/2022]
|
125
|
Ramirez IBR, Lowe M. Golgins and GRASPs: holding the Golgi together. Semin Cell Dev Biol 2009; 20:770-9. [PMID: 19508854 DOI: 10.1016/j.semcdb.2009.03.011] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 03/16/2009] [Accepted: 03/17/2009] [Indexed: 12/28/2022]
Abstract
The GRASP and golgin families of proteins have emerged as key components of the Golgi apparatus, with major roles in both the structural organisation of this organelle and the trafficking that occurs there. Both types of protein participate in membrane tethering events that occur upstream of membrane fusion as well as contributing to the structural scaffold that defines Golgi architecture, referred to as the Golgi matrix. The importance of these proteins is highlighted by their targeting in mitosis, apoptosis, and pathogenic infections that cause dramatic structural and functional reorganisation of the Golgi apparatus. In this review we will discuss our current understanding of GRASP and golgin function, highlighting some of the common themes that have emerged as well as describing previously unsuspected roles for these proteins in various cellular processes.
Collapse
|
126
|
Abstract
During neuron development, the biosynthetic needs of the axon initially outweigh those of dendrites. However, although a localized role for the early secretory pathway in dendrite development has been observed, such a role in axon growth remains undefined. We therefore studied the localization of Sar1, a small GTPase that controls ER export, during early stages of neuronal development that are characterized by selective and robust axon growth. At these early stages, Sar1 was selectively targeted to the axon where it gradually concentrated within varicosities in which additional proteins that function in the early secretory pathway were detected. Sar1 targeting to the axon followed axon specification and was dependent on localized actin instability. Changes in Sar1 expression levels at these early development stages modulated axon growth. Specifically, reduced expression of Sar1, which was initially only detectable in the axon, correlated with reduced axon growth, where as overexpression of Sar1 supported the growth of longer axons. In support of the former finding, expression of dominant negative Sar1 inhibited axon growth. Thus, as observed in lower organisms, mammalian cells use temporal and spatial regulation of endoplasmic reticulum exit site (ERES) to address developmental biosynthetic demands. Furthermore, axons, such as dendrites, rely on ERES targeting and assembly for growth.
Collapse
Affiliation(s)
- Meir Aridor
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, 3500 Terrace St, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
127
|
Schotman H, Karhinen L, Rabouille C. Integrins mediate their unconventional, mechanical-stress-induced secretion via RhoA and PINCH in Drosophila. J Cell Sci 2009; 122:2662-72. [PMID: 19584096 DOI: 10.1242/jcs.039347] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During the epithelium remodelling such as the flattening of the Drosophila follicular epithelium, the alpha-integrin subunits are unconventionally secreted through a dGRASP-dependent route that is built de novo. The biogenetic process starts with the upregulation of a small subset of targeted mRNAs, including dgrasp. Here, we show that dgrasp mRNA upregulation is triggered by the tension of the underlying oocyte and by applied external forces at the basal side of the follicular epithelium. We show that integrins are also involved in dgrasp mRNA upregulation and the epithelium remodelling. Tension leads to the recruitment of RhoA to the plasma membrane, where it participates in its remodelling. The LIM protein PINCH can cycle to the nucleus and is involved in dgrasp mRNA upregulation. We propose that integrins are involved in triggering the biogenesis of their own unconventional secretion route that they use to strengthen adhesion and ensure epithelial integrity at the next stages of development, perhaps by acting as mechanosensors of the underlying tension through RhoA and PINCH.
Collapse
Affiliation(s)
- Hans Schotman
- The Cell Microscopy Centre, Department of Cell Biology and Institute of Biomembrane, University Medical Centre Utrecht, AZU Rm G02.525, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | | | | |
Collapse
|
128
|
Sengupta D, Truschel S, Bachert C, Linstedt AD. Organelle tethering by a homotypic PDZ interaction underlies formation of the Golgi membrane network. ACTA ACUST UNITED AC 2009; 186:41-55. [PMID: 19581411 PMCID: PMC2712994 DOI: 10.1083/jcb.200902110] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Formation of the ribbon-like membrane network of the Golgi apparatus depends on GM130 and GRASP65, but the mechanism is unknown. We developed an in vivo organelle tethering assaying in which GRASP65 was targeted to the mitochondrial outer membrane either directly or via binding to GM130. Mitochondria bearing GRASP65 became tethered to one another, and this depended on a GRASP65 PDZ domain that was also required for GRASP65 self-interaction. Point mutation within the predicted binding groove of the GRASP65 PDZ domain blocked both tethering and, in a gene replacement assay, Golgi ribbon formation. Tethering also required proximate membrane anchoring of the PDZ domain, suggesting a mechanism that orientates the PDZ binding groove to favor interactions in trans. Thus, a homotypic PDZ interaction mediates organelle tethering in living cells.
Collapse
Affiliation(s)
- Debrup Sengupta
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|
129
|
Global implications of mRNA localization pathways in cellular organization. Curr Opin Cell Biol 2009; 21:409-15. [PMID: 19249199 DOI: 10.1016/j.ceb.2009.01.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 01/27/2009] [Accepted: 01/29/2009] [Indexed: 12/21/2022]
Abstract
Genome expression profiling has led to the important realization that RNA molecules are more numerous and diverse than previously expected. One aspect of RNA biology that is just beginning to be fully appreciated is the extent to which mRNAs are transported to specific subcellular destinations before being translated, an exquisite mechanism for targeting proteins where they are required in the cell. While several excellent reviews have discussed the subject of mRNA localization, it is only in recent years that high-throughput technologies have been applied to address issues such as the extent and diversity of RNA localization events and mechanisms. This review focuses on these recent functional genomic approaches, their implications, and the new tools and methods that will be needed to further elucidate mRNA localization pathways.
Collapse
|
130
|
Nickel W, Rabouille C. Mechanisms of regulated unconventional protein secretion. Nat Rev Mol Cell Biol 2008; 10:148-55. [PMID: 19122676 DOI: 10.1038/nrm2617] [Citation(s) in RCA: 538] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Most eukaryotic proteins are secreted through the conventional endoplasmic reticulum (ER)-Golgi secretory pathway. However, cytoplasmic, nuclear and signal-peptide-containing proteins have been shown to reach the cell surface by non-conventional transport pathways. The mechanisms and molecular components of unconventional protein secretion are beginning to emerge, including a role for caspase 1 and for the peripheral Golgi protein GRASP, which could function as a plasma membrane tether for membrane compartments during specific stages of development.
Collapse
Affiliation(s)
- Walter Nickel
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany.
| | | |
Collapse
|
131
|
Dinkins MB, Fratto VM, LeMosy EK. Integrin alpha chains exhibit distinct temporal and spatial localization patterns in epithelial cells of the Drosophila ovary. Dev Dyn 2008; 237:3927-39. [PMID: 19035354 PMCID: PMC2688772 DOI: 10.1002/dvdy.21802] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Integrins are heterodimeric transmembrane receptors that modulate cell adhesion, migration, and signaling. Multiple integrin chains contribute to development and morphogenesis of a given tissue. Here, we analyze the expression of Drosophila integrin alpha chains in the ovarian follicular epithelium, a model for tissue morphogenesis and cell migration. We find expression throughout development of the beta chain, betaPS. Alpha chains, however, exhibit both spatial and temporal expression differences. alphaPS1 and alphaPS2 integrins are detected during early and mid-oogenesis on apical, lateral, and basal membranes with the betaPS chain, whereas alphaPS3-family integrins (alphaPS3, alphaPS4, alphaPS5) are expressed in anterior cells late in oogenesis. Surprisingly, we find that alphaPS3-family integrins are dispensable for dorsal appendage morphogenesis but play a role in the final length of the egg, suggesting redundant functions of integrins in a simple tissue. We also demonstrate roles for alphaPS3betaPS integrin in border cell migration and in stretch cells.
Collapse
Affiliation(s)
- Michael B. Dinkins
- Department of Cellular Biology and Anatomy, Medical College of Georgia, 1120 15 St., CB1101, Augusta, GA 30912
| | - Victoria M. Fratto
- Department of Cellular Biology and Anatomy, Medical College of Georgia, 1120 15 St., CB1101, Augusta, GA 30912
| | - Ellen K. LeMosy
- Department of Cellular Biology and Anatomy, Medical College of Georgia, 1120 15 St., CB1101, Augusta, GA 30912
| |
Collapse
|
132
|
Dimitrov A, Paupe V, Gueudry C, Sibarita JB, Raposo G, Vielemeyer O, Gilbert T, Csaba Z, Attie-Bitach T, Cormier-Daire V, Gressens P, Rustin P, Perez F, El Ghouzzi V. The gene responsible for Dyggve-Melchior-Clausen syndrome encodes a novel peripheral membrane protein dynamically associated with the Golgi apparatus. Hum Mol Genet 2008; 18:440-53. [PMID: 18996921 DOI: 10.1093/hmg/ddn371] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Dyggve-Melchior-Clausen dysplasia (DMC) is a rare inherited dwarfism with severe mental retardation due to mutations in the DYM gene which encodes Dymeclin, a 669-amino acid protein of yet unknown function. Despite a high conservation across species and several predicted transmembrane domains, Dymeclin could not be ascribed to any family of proteins. Here we show, using in situ hybridization, that DYM is widely expressed in human embryos, especially in the cortex, the hippocampus and the cerebellum. Both the endogenous and the recombinant protein fused to green fluorescent protein co-localized with Golgi apparatus markers. Electron microscopy revealed that Dymeclin associates with the Golgi apparatus and with transitional vesicles of the reticulum-Golgi interface. Moreover, permeabilization assays revealed that Dymeclin is not a transmembrane but a peripheral protein of the Golgi apparatus as it can be completely released from the Golgi after permeabilization of the plasma membrane. Time lapse confocal microscopy experiments on living cells further showed that the protein shuttles between the cytosol and the Golgi apparatus in a highly dynamic manner and recognizes specifically a subset of mature Golgi membranes. Finally, we found that DYM mutations associated with DMC result in mis-localization and subsequent degradation of Dymeclin. These data indicate that DMC results from a loss-of-function of Dymeclin, a novel peripheral membrane protein which shuttles rapidly between the cytosol and mature Golgi membranes and point out a role of Dymeclin in cellular trafficking.
Collapse
|
133
|
Abstract
Recent work indicates that mitogen-activated protein kinase kinase (MEK)1 signaling at the G2/M cell cycle transition unlinks the contiguous mammalian Golgi apparatus and that this regulates cell cycle progression. Here, we sought to determine the role in this pathway of Golgi reassembly protein (GRASP)55, a Golgi-localized target of MEK/extracellular signal-regulated kinase (ERK) phosphorylation at mitosis. In support of the hypothesis that GRASP55 is inhibited in late G2 phase, causing unlinking of the Golgi ribbon, we found that HeLa cells depleted of GRASP55 show a fragmented Golgi similar to control cells arrested in G2 phase. In the absence of GRASP55, Golgi stack length is shortened but Golgi stacking, compartmentalization, and transport seem normal. Absence of GRASP55 was also sufficient to suppress the requirement for MEK1 in the G2/M transition, a requirement that we previously found depends on an intact Golgi ribbon. Furthermore, mimicking mitotic phosphorylation of GRASP55 by using aspartic acid substitutions is sufficient to unlink the Golgi apparatus in a gene replacement assay. Our results implicate MEK1/ERK regulation of GRASP55-mediated Golgi linking as a control point in cell cycle progression.
Collapse
Affiliation(s)
- Timothy N Feinstein
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
134
|
Ketteler R, Sun Z, Kovacs KF, He WW, Seed B. A pathway sensor for genome-wide screens of intracellular proteolytic cleavage. Genome Biol 2008; 9:R64. [PMID: 18387192 PMCID: PMC2643935 DOI: 10.1186/gb-2008-9-4-r64] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 03/19/2008] [Accepted: 04/03/2008] [Indexed: 02/05/2023] Open
Abstract
A new system based on non-conventional secretion of the luciferase from Gaussia princeps (GLUC) can be used to detect intracellular proteolysis in vivo. Protein cleavage is a central event in many regulated biological processes. We describe a system for detecting intracellular proteolysis based on non-conventional secretion of Gaussia luciferase (GLUC). GLUC exits the cell without benefit of a secretory leader peptide, but can be anchored in the cell by fusion to β-actin. By including protease cleavage sites between GLUC and β-actin, proteolytic cleavage can be detected. Using this assay, we have identified regulators of autophagy, apoptosis and β-actin cleavage.
Collapse
Affiliation(s)
- Robin Ketteler
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Cambridge Street, Boston, MA 02114, USA
| | | | | | | | | |
Collapse
|
135
|
Duran JM, Kinseth M, Bossard C, Rose DW, Polishchuk R, Wu CC, Yates J, Zimmerman T, Malhotra V. The role of GRASP55 in Golgi fragmentation and entry of cells into mitosis. Mol Biol Cell 2008; 19:2579-87. [PMID: 18385516 DOI: 10.1091/mbc.e07-10-0998] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
GRASP55 is a Golgi-associated protein, but its function at the Golgi remains unclear. Addition of full-length GRASP55, GRASP55-specific peptides, or an anti-GRASP55 antibody inhibited Golgi fragmentation by mitotic extracts in vitro, and entry of cells into mitosis. Phospho-peptide mapping of full-length GRASP55 revealed that threonine 225 and 249 were mitotically phosphorylated. Wild-type peptides containing T225 and T249 inhibited Golgi fragmentation and entry of cells into mitosis. Mutant peptides containing T225E and T249E, in contrast, did not affect Golgi fragmentation and entry into mitosis. These findings reveal a role of GRASP55 in events leading to Golgi fragmentation and the subsequent entry of cell into mitosis. Surprisingly, however, under our experimental conditions, >85% knockdown of GRASP55 did not affect the overall organization of Golgi organization in terms of cisternal stacking and lateral connections between stacks. Based on our findings we suggest that phosphorylation of GRASP55 at T225/T249 releases a bound component, which is phosphorylated and necessary for Golgi fragmentation. Thus, GRASP55 has no role in the organization of Golgi membranes per se, but it controls their fragmentation by regulating the release of a partner, which requires a G2-specific phosphorylation at T225/T249.
Collapse
Affiliation(s)
- Juan Manuel Duran
- Cell and Development Program, Centro de Regulacion Genomica, 08003 Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
136
|
An unconventional route. Nat Rev Mol Cell Biol 2008. [DOI: 10.1038/nrm2367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
137
|
LeBrasseur N. Plasma membrane in Golgi costume. J Biophys Biochem Cytol 2008. [PMCID: PMC2265390 DOI: 10.1083/jcb.1805rr1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|