101
|
Epting D, Slanchev K, Boehlke C, Hoff S, Loges NT, Yasunaga T, Indorf L, Nestel S, Lienkamp SS, Omran H, Kuehn EW, Ronneberger O, Walz G, Kramer-Zucker A. The Rac1 regulator ELMO controls basal body migration and docking in multiciliated cells through interaction with Ezrin. Development 2015; 142:174-84. [PMID: 25516973 DOI: 10.1242/dev.112250] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cilia are microtubule-based organelles that are present on most cells and are required for normal tissue development and function. Defective cilia cause complex syndromes with multiple organ manifestations termed ciliopathies. A crucial step during ciliogenesis in multiciliated cells (MCCs) is the association of future basal bodies with the apical plasma membrane, followed by their correct spacing and planar orientation. Here, we report a novel role for ELMO-DOCK1, which is a bipartite guanine nucleotide exchange factor complex for the small GTPase Rac1, and for the membrane-cytoskeletal linker Ezrin, in regulating centriole/basal body migration, docking and spacing. Downregulation of each component results in ciliopathy-related phenotypes in zebrafish and disrupted ciliogenesis in Xenopus epidermal MCCs. Subcellular analysis revealed a striking impairment of basal body docking and spacing, which is likely to account for the observed phenotypes. These results are substantiated by showing a genetic interaction between elmo1 and ezrin b. Finally, we provide biochemical evidence that the ELMO-DOCK1-Rac1 complex influences Ezrin phosphorylation and thereby probably serves as an important molecular switch. Collectively, we demonstrate that the ELMO-Ezrin complex orchestrates ciliary basal body migration, docking and positioning in vivo.
Collapse
Affiliation(s)
- Daniel Epting
- Renal Division, University Hospital Freiburg, Freiburg 79106, Germany
| | - Krasimir Slanchev
- Renal Division, University Hospital Freiburg, Freiburg 79106, Germany
| | | | - Sylvia Hoff
- Renal Division, University Hospital Freiburg, Freiburg 79106, Germany
| | - Niki T Loges
- Department of General Pediatrics, University Children's Hospital Münster, Münster 48149, Germany
| | - Takayuki Yasunaga
- Renal Division, University Hospital Freiburg, Freiburg 79106, Germany
| | - Lara Indorf
- Renal Division, University Hospital Freiburg, Freiburg 79106, Germany
| | - Sigrun Nestel
- Department of Anatomy and Cell Biology, University of Freiburg, Freiburg 79104, Germany
| | - Soeren S Lienkamp
- Renal Division, University Hospital Freiburg, Freiburg 79106, Germany BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg 79108, Germany
| | - Heymut Omran
- Department of General Pediatrics, University Children's Hospital Münster, Münster 48149, Germany
| | - E Wolfgang Kuehn
- Renal Division, University Hospital Freiburg, Freiburg 79106, Germany BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg 79108, Germany
| | - Olaf Ronneberger
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg 79108, Germany Department of Computer Science, University of Freiburg, Freiburg 79110, Germany
| | - Gerd Walz
- Renal Division, University Hospital Freiburg, Freiburg 79106, Germany BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg 79108, Germany
| | | |
Collapse
|
102
|
Narita K, Takeda S. Cilia in the choroid plexus: their roles in hydrocephalus and beyond. Front Cell Neurosci 2015; 9:39. [PMID: 25729351 PMCID: PMC4325912 DOI: 10.3389/fncel.2015.00039] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 01/27/2015] [Indexed: 12/21/2022] Open
Abstract
Cilia are whip-like projections that are widely conserved in eukaryotes and function as a motile propeller and/or sensory platform to detect various extracellular stimuli. In vertebrates, cilia are ubiquitously found in most cells, showing structural and functional diversities depending on the cell type. In this review, we focus on the structure and function of cilia in choroid plexus epithelial cells (CPECs). CPECs form one or two dozen non-motile 9+0 cilia, which display transient acquisition of motility during development. Genetic malfunction of cilia can lead to failure of multiple organs including the brain. Especially, several groups have demonstrated that the defects in CPEC cilia cause the communicating form of hydrocephalus. In order to elucidate the molecular mechanisms underlying the hydrocephalus, we have previously demonstrated that the cilia possess an NPFF receptor for autocrine signaling to regulate transepithelial fluid transport. In this perspective, we also discuss the potential involvement of cilia in the other aspects of choroid plexus functions, such as the regulation of brain development and neuroinflammation.
Collapse
Affiliation(s)
- Keishi Narita
- Department of Anatomy and Cell Biology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi Chuo, Yamanashi, Japan
| | - Sen Takeda
- Department of Anatomy and Cell Biology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi Chuo, Yamanashi, Japan
| |
Collapse
|
103
|
Jungbluth H, Gautel M. Pathogenic mechanisms in centronuclear myopathies. Front Aging Neurosci 2014; 6:339. [PMID: 25566070 PMCID: PMC4271577 DOI: 10.3389/fnagi.2014.00339] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 12/02/2014] [Indexed: 12/30/2022] Open
Abstract
Centronuclear myopathies (CNMs) are a genetically heterogeneous group of inherited neuromuscular disorders characterized by clinical features of a congenital myopathy and abundant central nuclei as the most prominent histopathological feature. The most common forms of congenital myopathies with central nuclei have been attributed to X-linked recessive mutations in the MTM1 gene encoding myotubularin (“X-linked myotubular myopathy”), autosomal-dominant mutations in the DNM2 gene encoding dynamin-2 and the BIN1 gene encoding amphiphysin-2 (also named bridging integrator-1, BIN1, or SH3P9), and autosomal-recessive mutations in BIN1, the RYR1 gene encoding the skeletal muscle ryanodine receptor, and the TTN gene encoding titin. Models to study and rescue the affected cellular pathways are now available in yeast, C. elegans, drosophila, zebrafish, mouse, and dog. Defects in membrane trafficking have emerged as a key pathogenic mechanisms, with aberrant T-tubule formation, abnormalities of triadic assembly, and disturbance of the excitation–contraction machinery the main downstream effects studied to date. Abnormal autophagy has recently been recognized as another important collateral of defective membrane trafficking in different genetic forms of CNM, suggesting an intriguing link to primary disorders of defective autophagy with overlapping histopathological features. The following review will provide an overview of clinical, histopathological, and genetic aspects of the CNMs in the context of the key pathogenic mechanism, outline unresolved questions, and indicate promising future lines of enquiry.
Collapse
Affiliation(s)
- Heinz Jungbluth
- Neuromuscular Service, Department of Paediatric Neurology, Evelina Children's Hospital, St Thomas' Hospital , London , UK ; Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London , London , UK ; Randall Division of Cell and Molecular Biophysics and Cardiovascular Division, King's College London BHF Centre of Research Excellence , London , UK
| | - Mathias Gautel
- Randall Division of Cell and Molecular Biophysics and Cardiovascular Division, King's College London BHF Centre of Research Excellence , London , UK
| |
Collapse
|
104
|
Lee J, Kang S, Choi YS, Kim HK, Yeo CY, Lee Y, Roth J, Lee J. Identification of a cell cycle-dependent duplicating complex that assembles basal bodies de novo in Naegleria. Protist 2014; 166:1-13. [PMID: 25555149 DOI: 10.1016/j.protis.2014.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 10/27/2014] [Accepted: 11/21/2014] [Indexed: 12/30/2022]
Abstract
During the differentiation of the amoeba Naegleria pringsheimi into a flagellate, a transient complex containing γ-tubulin, pericentrin-like protein, and myosin II (GPM complex) is formed, and subsequently a pair of basal bodies is assembled from the complex. It is not understood, however, how a single GPM is formed nor how the capability to form this complex is acquired by individual cells. We hypothesized that the GPM is formed from a precursor complex and developed an antibody that recognizes Naegleria (Ng)-transacylase, a component of the precursor complex. Immunostaining of differentiating cells showed that Ng-transacylase is concentrated at a site in the amoeba and that γ-tubulin is transiently co-concentrated at the site, suggesting that the GPM is formed from a precursor, GPMp, which contains Ng-transacylase and is already present in the amoeba. Immunostaining of growing N. pringsheimi with Ng-transacylase antibody revealed the presence of one GPMp in interphase cells, but two GPMps in mitotic cells, suggesting that N. pringsheimi maintains one GPMp per cell by duplicating and segregating the complex according to its cell cycle. Our results demonstrate the existence of a cell cycle-dependent duplicating complex that provides a site for the de novo assembly of the next generation of basal bodies.
Collapse
Affiliation(s)
- JungHa Lee
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| | - Seungmin Kang
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| | - Yong Seok Choi
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| | - Hong-Kyung Kim
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| | - Chang-Yeol Yeo
- Department of Life Science and Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, Korea
| | - Yangsin Lee
- Department of Integrated OMICS for Biomedical Science, WCU Program, Yonsei University, Graduate School, Seoul 120-749, Korea
| | - Jürgen Roth
- Department of Integrated OMICS for Biomedical Science, WCU Program, Yonsei University, Graduate School, Seoul 120-749, Korea
| | - JooHun Lee
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea.
| |
Collapse
|
105
|
Choksi SP, Babu D, Lau D, Yu X, Roy S. Systematic discovery of novel ciliary genes through functional genomics in the zebrafish. Development 2014; 141:3410-9. [PMID: 25139857 PMCID: PMC4199137 DOI: 10.1242/dev.108209] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cilia are microtubule-based hair-like organelles that play many important roles in development and physiology, and are implicated in a rapidly expanding spectrum of human diseases, collectively termed ciliopathies. Primary ciliary dyskinesia (PCD), one of the most prevalent of ciliopathies, arises from abnormalities in the differentiation or motility of the motile cilia. Despite their biomedical importance, a methodical functional screen for ciliary genes has not been carried out in any vertebrate at the organismal level. We sought to systematically discover novel motile cilia genes by identifying the genes induced by Foxj1, a winged-helix transcription factor that has an evolutionarily conserved role as the master regulator of motile cilia biogenesis. Unexpectedly, we find that the majority of the Foxj1-induced genes have not been associated with cilia before. To characterize these novel putative ciliary genes, we subjected 50 randomly selected candidates to a systematic functional phenotypic screen in zebrafish embryos. Remarkably, we find that over 60% are required for ciliary differentiation or function, whereas 30% of the proteins encoded by these genes localize to motile cilia. We also show that these genes regulate the proper differentiation and beating of motile cilia. This collection of Foxj1-induced genes will be invaluable for furthering our understanding of ciliary biology, and in the identification of new mutations underlying ciliary disorders in humans.
Collapse
Affiliation(s)
- Semil P Choksi
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673
| | - Deepak Babu
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673 NUS Graduate School of Integrative Sciences and Engineering, Centre for Life Sciences, 28 Medical Drive, Singapore 117456
| | - Doreen Lau
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673
| | - Xianwen Yu
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673 NUS Graduate School of Integrative Sciences and Engineering, Centre for Life Sciences, 28 Medical Drive, Singapore 117456 Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543 Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119288
| |
Collapse
|
106
|
Centriole amplification by mother and daughter centrioles differs in multiciliated cells. Nature 2014; 516:104-7. [PMID: 25307055 DOI: 10.1038/nature13770] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 08/14/2014] [Indexed: 12/25/2022]
Abstract
The semi-conservative centrosome duplication in cycling cells gives rise to a centrosome composed of a mother and a newly formed daughter centriole. Both centrioles are regarded as equivalent in their ability to form new centrioles and their symmetric duplication is crucial for cell division homeostasis. Multiciliated cells do not use the archetypal duplication program and instead form more than a hundred centrioles that are required for the growth of motile cilia and the efficient propelling of physiological fluids. The majority of these new centrioles are thought to appear de novo, that is, independently from the centrosome, around electron-dense structures called deuterosomes. Their origin remains unknown. Using live imaging combined with correlative super-resolution light and electron microscopy, we show that all new centrioles derive from the pre-existing progenitor cell centrosome through multiple rounds of procentriole seeding. Moreover, we establish that only the daughter centrosomal centriole contributes to deuterosome formation, and thus to over ninety per cent of the final centriole population. This unexpected centriolar asymmetry grants new perspectives when studying cilia-related diseases and pathological centriole amplification observed in cycling cells and associated with microcephaly and cancer.
Collapse
|
107
|
Abstract
Cilia are microtubule-based projections that serve a wide variety of essential functions in animal cells. Defects in cilia structure or function have recently been found to underlie diverse human diseases. While many eukaryotic cells possess only one or two cilia, some cells, including those of many unicellular organisms, exhibit many cilia. In vertebrates, multiciliated cells are a specialized population of post-mitotic cells decorated with dozens of motile cilia that beat in a polarized and synchronized fashion to drive directed fluid flow across an epithelium. Dysfunction of human multiciliated cells is associated with diseases of the brain, airway and reproductive tracts. Despite their importance, multiciliated cells are relatively poorly studied and we are only beginning to understand the mechanisms underlying their development and function. Here, we review the general phylogeny and physiology of multiciliation and detail our current understanding of the developmental and cellular events underlying the specification, differentiation and function of multiciliated cells in vertebrates.
Collapse
Affiliation(s)
- Eric R Brooks
- Department of Molecular Biosciences and the Institute for Cell and Molecular Biology, the University of Texas at Austin, Patterson Labs, 2401 Speedway, Austin, TX 78712, USA.
| | - John B Wallingford
- Department of Molecular Biosciences and the Institute for Cell and Molecular Biology, the University of Texas at Austin, Patterson Labs, 2401 Speedway, Austin, TX 78712, USA; The Howard Hughes Medical Institute.
| |
Collapse
|
108
|
Abstract
The triad is a skeletal muscle substructure responsible for the regulation of excitation-contraction coupling. It is formed by the close apposition of the T-tubule and the terminal sarcoplasmic reticulum. A rapidly growing list of skeletal myopathies, here referred to as triadopathies, are caused by gene mutations in components of the triad. These disorders, at their root, are caused by defects in excitation contraction coupling and intracellular calcium homeostasis. Secondary abnormalities in triad structure and/or function are also reported in several muscle diseases, most notably certain muscular dystrophies. This review highlights the current understanding of both primary and secondary triadopathies, and identifies important concepts yet to be fully addressed in the field. The emphasis of the review is both on the pathogenesis of triadopathies and their potential treatment.
Collapse
Affiliation(s)
- James J Dowling
- Division of Neurology and Genetics and Genome Biology Program, Hospital for Sick Children, Toronto, ON, Canada,
| | | | | |
Collapse
|
109
|
Werner ME, Mitchell JW, Putzbach W, Bacon E, Kim SK, Mitchell BJ. Radial intercalation is regulated by the Par complex and the microtubule-stabilizing protein CLAMP/Spef1. J Cell Biol 2014; 206:367-76. [PMID: 25070955 PMCID: PMC4121976 DOI: 10.1083/jcb.201312045] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 06/25/2014] [Indexed: 01/28/2023] Open
Abstract
The directed movement of cells is critical for numerous developmental and disease processes. A developmentally reiterated form of migration is radial intercalation; the process by which cells move in a direction orthogonal to the plane of the tissue from an inner layer to an outer layer. We use the radial intercalation of cells into the skin of Xenopus laevis embryos as a model to study directed cell migration within an epithelial tissue. We identify a novel function for both the microtubule-binding protein CLAMP and members of the microtubule-regulating Par complex during intercalation. Specifically, we show that Par3 and aPKC promote the apical positioning of centrioles, whereas CLAMP stabilizes microtubules along the axis of migration. We propose a model in which the Par complex defines the orientation of apical migration during intercalation and in which subcellular localization of CLAMP promotes the establishment of an axis of microtubule stability required for the active migration of cells into the outer epithelium.
Collapse
Affiliation(s)
- Michael E Werner
- Department of Cell and Molecular Biology and Driskill Graduate Program in Life Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611
| | - Jennifer W Mitchell
- Department of Cell and Molecular Biology and Driskill Graduate Program in Life Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611
| | - William Putzbach
- Department of Cell and Molecular Biology and Driskill Graduate Program in Life Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611
| | - Elizabeth Bacon
- Department of Cell and Molecular Biology and Driskill Graduate Program in Life Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611
| | - Sun K Kim
- Department of Cell and Molecular Biology and Driskill Graduate Program in Life Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611
| | - Brian J Mitchell
- Department of Cell and Molecular Biology and Driskill Graduate Program in Life Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611
| |
Collapse
|
110
|
Balestra F, Gönczy P. Multiciliogenesis: Multicilin Directs Transcriptional Activation of Centriole Formation. Curr Biol 2014; 24:R746-9. [DOI: 10.1016/j.cub.2014.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
111
|
miR-34/449 miRNAs are required for motile ciliogenesis by repressing cp110. Nature 2014; 510:115-20. [PMID: 24899310 PMCID: PMC4119886 DOI: 10.1038/nature13413] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 04/29/2014] [Indexed: 01/03/2023]
Abstract
The mir-34/449 family consists of six homologous miRNAs at three genomic loci. Redundancy of miR-34/449 miRNAs and their dominant expression in multiciliated epithelia suggest a functional significance in ciliogenesis. Here we report that mice deficient for all miR-34/449 miRNAs exhibited postnatal mortality, infertility and strong respiratory dysfunction caused by defective mucociliary clearance. In both mouse and Xenopus, miR-34/449-deficient multiciliated cells (MCCs) exhibited a significant decrease in cilia length and number, due to defective basal body maturation and apical docking. The effect of miR-34/449 on ciliogenesis was mediated, at least in part, by post-transcriptional repression of Cp110, a centriolar protein suppressing cilia assembly. Consistent with this, cp110 knockdown in miR-34/449-deficient MCCs restored ciliogenesis by rescuing basal body maturation and docking. Altogether, our findings elucidate conserved cellular and molecular mechanisms through which miR-34/449 regulate motile ciliogenesis.
Collapse
|
112
|
Abstract
Centrioles and basal bodies (CBBs) are microtubule-rich cylindrical structures that nucleate and organize centrosomes and cilia, respectively. Despite their apparent ninefold rotational symmetry, the nine sets of triplet microtubules in CBBs possess asymmetries in their morphology and in the structures that associate with them. These asymmetries define the position of nascent CBB assembly, the orientation of ciliary beating, the orientation of spindle poles and the maintenance of cellular geometry. For some of these functions, the orientation of CBBs is first established during new CBB biogenesis when the daughter structure is positioned adjacent to the mother. The mother CBB organizes the surrounding environment that nascent CBBs are born into, thereby providing a nest for the new CBB to develop. Protists, including ciliates and algae, highlight the importance of this environment with the formation of asymmetrically placed scaffolds onto which new basal bodies assemble and are positioned. Recent studies illuminate the positioning of nascent centrioles relative to a modular pericentriolar material (PCM) environment and suggest that, like ciliates, centrosomes organize an immediate environment surrounding centrioles for their biogenesis and positioning. In this Commentary, I will explore the positioning of nascent CBB assembly as the first event in building cellular asymmetries and describe how the environment surrounding both basal bodies and centrioles may define asymmetric assembly.
Collapse
Affiliation(s)
- Chad G Pearson
- University of Colorado, Anschutz Medical Campus, Department of Cell and Developmental Biology, 12801 E. 17th Avenue, Room 12104, Aurora, CO 80045, USA
| |
Collapse
|
113
|
Wallmeier J, Al-Mutairi DA, Chen CT, Loges NT, Pennekamp P, Menchen T, Ma L, Shamseldin HE, Olbrich H, Dougherty GW, Werner C, Alsabah BH, Köhler G, Jaspers M, Boon M, Griese M, Schmitt-Grohé S, Zimmermann T, Koerner-Rettberg C, Horak E, Kintner C, Alkuraya FS, Omran H. Mutations in CCNO result in congenital mucociliary clearance disorder with reduced generation of multiple motile cilia. Nat Genet 2014; 46:646-51. [PMID: 24747639 DOI: 10.1038/ng.2961] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 03/27/2014] [Indexed: 12/17/2022]
Abstract
Using a whole-exome sequencing strategy, we identified recessive CCNO (encoding cyclin O) mutations in 16 individuals suffering from chronic destructive lung disease due to insufficient airway clearance. Respiratory epithelial cells showed a marked reduction in the number of multiple motile cilia (MMC) covering the cell surface. The few residual cilia that correctly expressed axonemal motor proteins were motile and did not exhibit obvious beating defects. Careful subcellular analyses as well as in vitro ciliogenesis experiments in CCNO-mutant cells showed defective mother centriole generation and placement. Morpholino-based knockdown of the Xenopus ortholog of CCNO also resulted in reduced MMC and centriole numbers in embryonic epidermal cells. CCNO is expressed in the apical cytoplasm of multiciliated cells and acts downstream of multicilin, which governs the generation of multiciliated cells. To our knowledge, CCNO is the first reported gene linking an inherited human disease to reduced MMC generation due to a defect in centriole amplification and migration.
Collapse
Affiliation(s)
- Julia Wallmeier
- 1] Department of Pediatrics, University Hospital Muenster, Muenster, Germany. [2]
| | - Dalal A Al-Mutairi
- 1] Department of Pathology, Faculty of Medicine, Health Sciences Center, Kuwait University, Safat, Kuwait. [2]
| | - Chun-Ting Chen
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, San Diego, California, USA
| | - Niki Tomas Loges
- Department of Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Petra Pennekamp
- Department of Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Tabea Menchen
- Department of Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Lina Ma
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, San Diego, California, USA
| | - Hanan E Shamseldin
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Heike Olbrich
- Department of Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Gerard W Dougherty
- Department of Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Claudius Werner
- Department of Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Basel H Alsabah
- Zain Hospital for Ear, Nose and Throat, Shuwaikh, Kuwait City, Kuwait
| | - Gabriele Köhler
- Department of Pathology, University Hospital Muenster, Muenster, Germany
| | - Martine Jaspers
- Department of Otorhinolaryngology, University Hospital Leuven, Leuven, Belgium
| | - Mieke Boon
- Department of Pediatrics, Pediatric Pulmonology, University Hospital of Leuven, Leuven, Belgium
| | - Matthias Griese
- Department of Pediatric Pulmonology, Hauner Children's Hospital, Ludwig Maximilians University, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Sabina Schmitt-Grohé
- Department of Pediatrics, Pediatric Pulmonology, University Hospital Bonn, Bonn, Germany
| | - Theodor Zimmermann
- Department of Pediatrics, Pediatric Pulmonology, University Hospital, Erlangen, Germany
| | - Cordula Koerner-Rettberg
- Department of Pediatrics and Adolescent Medicine, St. Josef Hospital, Ruhr-Universität Bochum, Bochum, Germany
| | - Elisabeth Horak
- Department of Pediatrics and Adolescents, Division of Cardiology and Pulmonology, Innsbruck Medical University, Innsbruck, Austria
| | - Chris Kintner
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, San Diego, California, USA
| | - Fowzan S Alkuraya
- 1] Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia. [2] Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Heymut Omran
- Department of Pediatrics, University Hospital Muenster, Muenster, Germany
| |
Collapse
|
114
|
Choksi SP, Lauter G, Swoboda P, Roy S. Switching on cilia: transcriptional networks regulating ciliogenesis. Development 2014; 141:1427-41. [DOI: 10.1242/dev.074666] [Citation(s) in RCA: 205] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cilia play many essential roles in fluid transport and cellular locomotion, and as sensory hubs for a variety of signal transduction pathways. Despite having a conserved basic morphology, cilia vary extensively in their shapes and sizes, ultrastructural details, numbers per cell, motility patterns and sensory capabilities. Emerging evidence indicates that this diversity, which is intimately linked to the different functions that cilia perform, is in large part programmed at the transcriptional level. Here, we review our understanding of the transcriptional control of ciliary biogenesis, highlighting the activities of FOXJ1 and the RFX family of transcriptional regulators. In addition, we examine how a number of signaling pathways, and lineage and cell fate determinants can induce and modulate ciliogenic programs to bring about the differentiation of distinct cilia types.
Collapse
Affiliation(s)
- Semil P. Choksi
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, 138673 Singapore
| | - Gilbert Lauter
- Karolinska Institute, Department of Biosciences and Nutrition, S-141 83 Huddinge, Sweden
| | - Peter Swoboda
- Karolinska Institute, Department of Biosciences and Nutrition, S-141 83 Huddinge, Sweden
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, 138673 Singapore
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543 Singapore
| |
Collapse
|
115
|
Abstract
Centrioles duplicate only once per cell cycle in proliferating cells, whereas in multiciliated cells, hundreds of centrioles form almost simultaneously. The molecular control mechanisms that govern centriole amplification in multiciliated cells are largely unknown. Two studies highlight Deup1 and CCDC78 as key players in this process.
Collapse
Affiliation(s)
- Tang K Tang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| |
Collapse
|
116
|
Bontems F, Fish RJ, Borlat I, Lembo F, Chocu S, Chalmel F, Borg JP, Pineau C, Neerman-Arbez M, Bairoch A, Lane L. C2orf62 and TTC17 are involved in actin organization and ciliogenesis in zebrafish and human. PLoS One 2014; 9:e86476. [PMID: 24475127 PMCID: PMC3903541 DOI: 10.1371/journal.pone.0086476] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 12/09/2013] [Indexed: 11/18/2022] Open
Abstract
Vertebrate genomes contain around 20,000 protein-encoding genes, of which a large fraction is still not associated with specific functions. A major task in future genomics will thus be to assign physiological roles to all open reading frames revealed by genome sequencing. Here we show that C2orf62, a highly conserved protein with little homology to characterized proteins, is strongly expressed in testis in zebrafish and mammals, and in various types of ciliated cells during zebrafish development. By yeast two hybrid and GST pull-down, C2orf62 was shown to interact with TTC17, another uncharacterized protein. Depletion of either C2orf62 or TTC17 in human ciliated cells interferes with actin polymerization and reduces the number of primary cilia without changing their length. Zebrafish embryos injected with morpholinos against C2orf62 or TTC17, or with mRNA coding for the C2orf62 C-terminal part containing a RII dimerization/docking (R2D2) - like domain show morphological defects consistent with imperfect ciliogenesis. We provide here the first evidence for a C2orf62-TTC17 axis that would regulate actin polymerization and ciliogenesis.
Collapse
Affiliation(s)
- Franck Bontems
- Department of Human Protein Sciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Richard J. Fish
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Irene Borlat
- Department of Human Protein Sciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Frédérique Lembo
- CRCM - Inserm U1068, Marseille, France
- Institut Paoli-Calmettes, Marseille, France
- CNRS UMR7258, Marseille, France
- Aix-Marseille University, Marseille, France
| | | | | | - Jean-Paul Borg
- CRCM - Inserm U1068, Marseille, France
- Institut Paoli-Calmettes, Marseille, France
- CNRS UMR7258, Marseille, France
- Aix-Marseille University, Marseille, France
| | | | - Marguerite Neerman-Arbez
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Amos Bairoch
- Department of Human Protein Sciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- SIB-Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Lydie Lane
- Department of Human Protein Sciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- SIB-Swiss Institute of Bioinformatics, Geneva, Switzerland
| |
Collapse
|