101
|
Jain A, Zoncu R. Organelle transporters and inter-organelle communication as drivers of metabolic regulation and cellular homeostasis. Mol Metab 2022; 60:101481. [PMID: 35342037 PMCID: PMC9043965 DOI: 10.1016/j.molmet.2022.101481] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/14/2022] [Accepted: 03/21/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Spatial compartmentalization of metabolic pathways within membrane-separated organelles is key to the ability of eukaryotic cells to precisely regulate their biochemical functions. Membrane-bound organelles such as mitochondria, endoplasmic reticulum (ER) and lysosomes enable the concentration of metabolic precursors within optimized chemical environments, greatly accelerating the efficiency of both anabolic and catabolic reactions, enabling division of labor and optimal utilization of resources. However, metabolic compartmentalization also poses a challenge to cells because it creates spatial discontinuities that must be bridged for reaction cascades to be connected and completed. To do so, cells employ different methods to coordinate metabolic fluxes occurring in different organelles, such as membrane-localized transporters to facilitate regulated metabolite exchange between mitochondria and lysosomes, non-vesicular transport pathways via physical contact sites connecting the ER with both mitochondria and lysosomes, as well as localized regulatory signaling processes that coordinately regulate the activity of all these organelles. SCOPE OF REVIEW This review covers how cells use membrane transporters, membrane contact sites, and localized signaling pathways to mediate inter-organelle communication and coordinate metabolism. We also describe how disruption of inter-organelle communication is an emerging driver in a multitude of diseases, from cancer to neurodegeneration. MAJOR CONCLUSIONS Effective communication among organelles is essential to cellular health and function. Identifying the major molecular players involved in mediating metabolic coordination between organelles will further our understanding of cellular metabolism in health and lead us to design better therapeutics against dysregulated metabolism in disease.
Collapse
Affiliation(s)
- Aakriti Jain
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Roberto Zoncu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
102
|
Savini M, Folick A, Lee YT, Jin F, Cuevas A, Tillman MC, Duffy JD, Zhao Q, Neve IA, Hu PW, Yu Y, Zhang Q, Ye Y, Mair WB, Wang J, Han L, Ortlund EA, Wang MC. Lysosome lipid signalling from the periphery to neurons regulates longevity. Nat Cell Biol 2022; 24:906-916. [PMID: 35681008 PMCID: PMC9203275 DOI: 10.1038/s41556-022-00926-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 04/25/2022] [Indexed: 12/13/2022]
Abstract
Lysosomes are key cellular organelles that metabolize extra- and intracellular substrates. Alterations in lysosomal metabolism are implicated in ageing-associated metabolic and neurodegenerative diseases. However, how lysosomal metabolism actively coordinates the metabolic and nervous systems to regulate ageing remains unclear. Here we report a fat-to-neuron lipid signalling pathway induced by lysosomal metabolism and its longevity-promoting role in Caenorhabditis elegans. We discovered that induced lysosomal lipolysis in peripheral fat storage tissue upregulates the neuropeptide signalling pathway in the nervous system to promote longevity. This cell-non-autonomous regulation is mediated by a specific polyunsaturated fatty acid, dihomo-γ-linolenic acid, and LBP-3 lipid chaperone protein transported from the fat storage tissue to neurons. LBP-3 binds to dihomo-γ-linolenic acid, and acts through NHR-49 nuclear receptor and NLP-11 neuropeptide in neurons to extend lifespan. These results reveal lysosomes as a signalling hub to coordinate metabolism and ageing, and lysosomal signalling mediated inter-tissue communication in promoting longevity.
Collapse
Affiliation(s)
- Marzia Savini
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA.,Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Andrew Folick
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA.,Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA.,Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Yi-Tang Lee
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Integrative Program of Molecular and Biochemical Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Feng Jin
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA.,Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, USA
| | - André Cuevas
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Matthew C Tillman
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Jonathon D Duffy
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA.,Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Qian Zhao
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Isaiah A Neve
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Pei-Wen Hu
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Yong Yu
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Qinghao Zhang
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Youqiong Ye
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - William B Mair
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jin Wang
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, USA
| | - Leng Han
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX, USA.,Center of Epigenetics and Disease Prevention, Institute of Bioscience and Technology, Texas A&M University, Houston, TX, USA
| | - Eric A Ortlund
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Meng C Wang
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA. .,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA. .,Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
103
|
Zhang T, Liu Q, Gao W, Sehgal SA, Wu H. The multifaceted regulation of mitophagy by endogenous metabolites. Autophagy 2022; 18:1216-1239. [PMID: 34583624 PMCID: PMC9225590 DOI: 10.1080/15548627.2021.1975914] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 12/30/2022] Open
Abstract
Owing to the dominant functions of mitochondria in multiple cellular metabolisms and distinct types of regulated cell death, maintaining a functional mitochondrial network is fundamental for the cellular homeostasis and body fitness in response to physiological adaptations and stressed conditions. The process of mitophagy, in which the dysfunctional or superfluous mitochondria are selectively engulfed by autophagosome and subsequently degraded in lysosome, has been well formulated as one of the major mechanisms for mitochondrial quality control. To date, the PINK1-PRKN-dependent and receptors (including proteins and lipids)-dependent pathways have been characterized to determine the mitophagy in mammalian cells. The mitophagy is highly responsive to the dynamics of endogenous metabolites, including iron-, calcium-, glycolysis-TCA-, NAD+-, amino acids-, fatty acids-, and cAMP-associated metabolites. Herein, we summarize the recent advances toward the molecular details of mitophagy regulation in mammalian cells. We also highlight the key regulations of mammalian mitophagy by endogenous metabolites, shed new light on the bidirectional interplay between mitophagy and cellular metabolisms, with attempting to provide a perspective insight into the nutritional intervention of metabolic disorders with mitophagy deficit.Abbreviations: acetyl-CoA: acetyl-coenzyme A; ACO1: aconitase 1; ADCYs: adenylate cyclases; AMPK: AMP-activated protein kinase; ATM: ATM serine/threonine kinase; BCL2L1: BCL2 like 1; BCL2L13: BCL2 like 13; BNIP3: BCL2 interacting protein 3; BNIP3L: BCL2 interacting protein 3 like; Ca2+: calcium ion; CALCOCO2: calcium binding and coiled-coil domain 2; CANX: calnexin; CO: carbon monoxide; CYCS: cytochrome c, somatic; DFP: deferiprone; DNM1L: dynamin 1 like; ER: endoplasmic reticulum; FKBP8: FKBP prolyl isomerase 8; FOXO3: forkhead box O3; FTMT: ferritin mitochondrial; FUNDC1: FUN14 domain containing 1; GABA: γ-aminobutyric acid; GSH: glutathione; HIF1A: hypoxia inducible factor 1 subunit alpha; IMMT: inner membrane mitochondrial protein; IRP1: iron regulatory protein 1; ISC: iron-sulfur cluster; ITPR2: inositol 1,4,5-trisphosphate type 2 receptor; KMO: kynurenine 3-monooxygenase; LIR: LC3 interacting region; MAM: mitochondria-associated membrane; MAP1LC3: microtubule associated protein 1 light chain 3; MFNs: mitofusins; mitophagy: mitochondrial autophagy; mPTP: mitochondrial permeability transition pore; MTOR: mechanistic target of rapamycin kinase; NAD+: nicotinamide adenine dinucleotide; NAM: nicotinamide; NMN: nicotinamide mononucleotide; NO: nitric oxide; NPA: Niemann-Pick type A; NR: nicotinamide riboside; NR4A1: nuclear receptor subfamily 4 group A member 1; NRF1: nuclear respiratory factor 1; OPA1: OPA1 mitochondrial dynamin like GTPase; OPTN: optineurin; PARL: presenilin associated rhomboid like; PARPs: poly(ADP-ribose) polymerases; PC: phosphatidylcholine; PHB2: prohibitin 2; PINK1: PTEN induced kinase 1; PPARG: peroxisome proliferator activated receptor gamma; PPARGC1A: PPARG coactivator 1 alpha; PRKA: protein kinase AMP-activated; PRKDC: protein kinase, DNA-activated, catalytic subunit; PRKN: parkin RBR E3 ubiquitin protein ligase; RHOT: ras homolog family member T; ROS: reactive oxygen species; SIRTs: sirtuins; STK11: serine/threonine kinase 11; TCA: tricarboxylic acid; TP53: tumor protein p53; ULK1: unc-51 like autophagy activating kinase 1; VDAC1: voltage dependent anion channel 1.
Collapse
Affiliation(s)
- Ting Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Interdisciplinary Sciences Research Institute, Huazhong Agricultural University, Wuhan, China
| | - Qian Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Interdisciplinary Sciences Research Institute, Huazhong Agricultural University, Wuhan, China
| | - Weihua Gao
- Hubei Hongshan Laboratory, Wuhan, China
- Interdisciplinary Sciences Research Institute, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | | | - Hao Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Interdisciplinary Sciences Research Institute, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
104
|
Zhang T, Cui Y, Wu Y, Meng J, Han L, Zhang J, Zhang C, Yang C, Chen L, Bai X, Zhang K, Wu K, Sack MN, Wang L, Zhu L. Mitochondrial GCN5L1 regulates glutaminase acetylation and hepatocellular carcinoma. Clin Transl Med 2022; 12:e852. [PMID: 35538890 PMCID: PMC9091986 DOI: 10.1002/ctm2.852] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Glutaminolysis is a critical metabolic process that promotes cancer cell proliferation, including hepatocellular carcinoma (HCC). Delineating the molecular control of glutaminolysis could identify novel targets to ameliorate this oncogenic metabolic pathway. Here, we evaluated the role of general control of amino acid synthesis 5 like 1 (GCN5L1), a regulator of mitochondrial protein acetylation, in modulating the acetylation and activity of glutaminase to regulate HCC development. METHODS Cell proliferation was determined by MTT, 2D and soft agar clone formation assays and orthotopic tumour assays in nude mice. GLS1/2 acetylation and activities were measured in cells and tumours to analyse the correlation with GCN5L1 expression and mTORC1 activation. RESULTS Hepatic GCN5L1 ablation in mice markedly increased diethylnitrosamine (DEN)-induced HCC, and conversely, the transduction of mitochondrial-restricted GCN5L1 protected wild-type mice against HCC progression in response to DEN and carbon tetrachloride (CCl4 ) exposure. GCN5L1-depleted HepG2 hepatocytes enhanced tumour growth in athymic nude mice. Mechanistically, GCN5L1 depletion promoted cell proliferation through mTORC1 activation. Interestingly, liver-enriched glutaminase 2 (GLS2) appears to play a greater role than ubiquitous and canonical tumour-enriched glutaminase 1 (GLS1) in promoting murine HCC. Concurrently, GCN5L1 promotes acetylation and inactivation of both isoforms and increases enzyme oligomerisation. In human HCC tumours compared to adjacent tissue, there were variable levels of mTORC1 activation, GCN5L1 levels and glutaminase activity. Interestingly, the levels of GCN5L1 inversely correlated with mTORC1 activity and glutaminase activity in these tumours. CONCLUSIONS Our study identified that glutaminase activity, rather than GLS1 or GLS2 expression, is the key factor in HCC development that activates mTORC1 and promotes HCC. In the Kaplan-Meier analysis of liver cancer, we found that HCC patients with high GCN5L1 expression survived longer than those with low GCN5L1 expression. Collectively, GCN5L1 functions as a tumour regulator by modulating glutaminase acetylation and activity in the development of HCC.
Collapse
Affiliation(s)
- Taotao Zhang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yunlong Cui
- Hepatobiliary Surgery Department, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yanjin Wu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jiahui Meng
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Linmeng Han
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jiaqi Zhang
- Department of Physiology and Pathophysiology, Tianjin Key Laboratory of Cell Homeostasis and Major Diseases, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Chunyu Zhang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Chenxi Yang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lu Chen
- Hepatobiliary Surgery Department, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xue Bai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Kai Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Kaiyuan Wu
- Laboratory of Mitochondrial Biology and Metabolism, NHLBI, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael N Sack
- Laboratory of Mitochondrial Biology and Metabolism, NHLBI, National Institutes of Health, Bethesda, Maryland, USA
| | - Lingdi Wang
- Department of Physiology and Pathophysiology, Tianjin Key Laboratory of Cell Homeostasis and Major Diseases, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lu Zhu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
105
|
Hernandez GA, Perera RM. Autophagy in cancer cell remodeling and quality control. Mol Cell 2022; 82:1514-1527. [PMID: 35452618 PMCID: PMC9119670 DOI: 10.1016/j.molcel.2022.03.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/01/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022]
Abstract
As one of the two highly conserved cellular degradation systems, autophagy plays a critical role in regulation of protein, lipid, and organelle quality control and cellular homeostasis. This evolutionarily conserved pathway singles out intracellular substrates for elimination via encapsulation within a double-membrane vesicle and delivery to the lysosome for degradation. Multiple cancers disrupt normal regulation of autophagy and hijack its degradative ability to remodel their proteome, reprogram their metabolism, and adapt to environmental challenges, making the autophagy-lysosome system a prime target for anti-cancer interventions. Here, we discuss the roles of autophagy in tumor progression, including cancer-specific mechanisms of autophagy regulation and the contribution of tumor and host autophagy in metabolic regulation, immune evasion, and malignancy. We further discuss emerging proteomics-based approaches for systematic profiling of autophagosome-lysosome composition and contents. Together, these approaches are uncovering new features and functions of autophagy, leading to more effective strategies for targeting this pathway in cancer.
Collapse
Affiliation(s)
- Grace A Hernandez
- Department of Anatomy, Department of Pathology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Rushika M Perera
- Department of Anatomy, Department of Pathology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
106
|
Chen C, Sidransky E, Chen Y. Lyso-IP: Uncovering Pathogenic Mechanisms of Lysosomal Dysfunction. Biomolecules 2022; 12:biom12050616. [PMID: 35625544 PMCID: PMC9138597 DOI: 10.3390/biom12050616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/14/2022] [Accepted: 04/14/2022] [Indexed: 01/27/2023] Open
Abstract
Lysosomes are ubiquitous membrane-bound organelles found in all eukaryotic cells. Outside of their well-known degradative function, lysosomes are integral in maintaining cellular homeostasis. Growing evidence has shown that lysosomal dysfunction plays an important role not only in the rare group of lysosomal storage diseases but also in a host of others, including common neurodegenerative disorders, such as Alzheimer disease and Parkinson disease. New technological advances have significantly increased our ability to rapidly isolate lysosomes from cells in recent years. The development of the Lyso-IP approach and similar methods now allow for lysosomal purification within ten minutes. Multiple studies using the Lyso-IP approach have revealed novel insights into the pathogenic mechanisms of lysosomal disorders, including Niemann-Pick type C disease, showing the immense potential for this technique. Future applications of rapid lysosomal isolation techniques are likely to greatly enhance our understanding of lysosomal dysfunction in rare and common neurodegeneration causes.
Collapse
Affiliation(s)
- Chase Chen
- Section on Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bld 35A, Room 1E623 35 Convent Drive, MSC 3708, Rockville, MD 20892, USA;
- Aligning Science Across Parkinson’s (ASAP) Collaborative Network, Chevy Chase, MD 20815, USA
| | - Ellen Sidransky
- Section on Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bld 35A, Room 1E623 35 Convent Drive, MSC 3708, Rockville, MD 20892, USA;
- Aligning Science Across Parkinson’s (ASAP) Collaborative Network, Chevy Chase, MD 20815, USA
- Correspondence: (E.S.); (Y.C.); Tel.: +1-301-496-0373 (E.S. & Y.C.)
| | - Yu Chen
- Section on Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bld 35A, Room 1E623 35 Convent Drive, MSC 3708, Rockville, MD 20892, USA;
- Aligning Science Across Parkinson’s (ASAP) Collaborative Network, Chevy Chase, MD 20815, USA
- Correspondence: (E.S.); (Y.C.); Tel.: +1-301-496-0373 (E.S. & Y.C.)
| |
Collapse
|
107
|
Abe A, Maekawa M, Sato T, Sato Y, Kumondai M, Takahashi H, Kikuchi M, Higaki K, Ogura J, Mano N. Metabolic Alteration Analysis of Steroid Hormones in Niemann-Pick Disease Type C Model Cell Using Liquid Chromatography/Tandem Mass Spectrometry. Int J Mol Sci 2022; 23:ijms23084459. [PMID: 35457276 PMCID: PMC9025463 DOI: 10.3390/ijms23084459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/12/2022] [Accepted: 04/17/2022] [Indexed: 02/05/2023] Open
Abstract
Niemann–Pick disease type C (NPC) is an autosomal recessive disease caused by a functional deficiency of cholesterol-transporting proteins in lysosomes, and exhibits various clinical symptoms. Since mitochondrial dysfunction in NPC has recently been reported, cholesterol catabolism to steroid hormones may consequently be impaired. In this study, we developed a comprehensive steroid hormone analysis method using liquid chromatography/tandem mass spectrometry (LC–MS/MS) and applied it to analyze changes in steroid hormone concentrations in NPC model cells. We investigated the analytical conditions for simultaneous LC–MS/MS analysis, which could be readily separated from each other and showed good reproducibility. The NPC phenotype was verified as an NPC model with mitochondrial abnormalities using filipin staining and organelle morphology observations. Steroid hormones in the cell suspension and cell culture medium were also analyzed. Steroid hormone analysis indicated that the levels of six steroid hormones were significantly decreased in the NPC model cell and culture medium compared to those in the wild-type cell and culture medium. These results indicate that some steroid hormones change during NPC pathophysiology and this change is accompanied by mitochondrial abnormalities.
Collapse
Affiliation(s)
- Ai Abe
- Faculty of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; (A.A.); (M.K.); (N.M.)
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; (T.S.); (Y.S.); (M.K.); (H.T.); (J.O.)
| | - Masamitsu Maekawa
- Faculty of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; (A.A.); (M.K.); (N.M.)
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; (T.S.); (Y.S.); (M.K.); (H.T.); (J.O.)
- Correspondence: ; Tel.: +81-22-717-7541
| | - Toshihiro Sato
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; (T.S.); (Y.S.); (M.K.); (H.T.); (J.O.)
| | - Yu Sato
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; (T.S.); (Y.S.); (M.K.); (H.T.); (J.O.)
| | - Masaki Kumondai
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; (T.S.); (Y.S.); (M.K.); (H.T.); (J.O.)
| | - Hayato Takahashi
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; (T.S.); (Y.S.); (M.K.); (H.T.); (J.O.)
| | - Masafumi Kikuchi
- Faculty of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; (A.A.); (M.K.); (N.M.)
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; (T.S.); (Y.S.); (M.K.); (H.T.); (J.O.)
| | - Katsumi Higaki
- Division of Functional Genomics, Research Centre for Bioscience and Technology, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan;
| | - Jiro Ogura
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; (T.S.); (Y.S.); (M.K.); (H.T.); (J.O.)
| | - Nariyasu Mano
- Faculty of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; (A.A.); (M.K.); (N.M.)
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; (T.S.); (Y.S.); (M.K.); (H.T.); (J.O.)
| |
Collapse
|
108
|
Wróbel M, Cendrowski J, Szymańska E, Grębowicz-Maciukiewicz M, Budick-Harmelin N, Macias M, Szybińska A, Mazur M, Kolmus K, Goryca K, Dąbrowska M, Paziewska A, Mikula M, Miączyńska M. ESCRT-I fuels lysosomal degradation to restrict TFEB/TFE3 signaling via the Rag-mTORC1 pathway. Life Sci Alliance 2022; 5:5/7/e202101239. [PMID: 35354596 PMCID: PMC8967991 DOI: 10.26508/lsa.202101239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/13/2022] Open
Abstract
ESCRT-I deficiency impairs lysosome membrane turnover and induces homeostatic responses to lysosomal nutrient starvation including activation of MiT-TFE signaling caused by inhibition of the substrate-specific mTORC1 pathway. Within the endolysosomal pathway in mammalian cells, ESCRT complexes facilitate degradation of proteins residing in endosomal membranes. Here, we show that mammalian ESCRT-I restricts the size of lysosomes and promotes degradation of proteins from lysosomal membranes, including MCOLN1, a Ca2+ channel protein. The altered lysosome morphology upon ESCRT-I depletion coincided with elevated expression of genes annotated to biogenesis of lysosomes due to prolonged activation of TFEB/TFE3 transcription factors. Lack of ESCRT-I also induced transcription of cholesterol biosynthesis genes, in response to inefficient delivery of cholesterol from endolysosomal compartments. Among factors that could possibly activate TFEB/TFE3 signaling upon ESCRT-I deficiency, we excluded lysosomal cholesterol accumulation and Ca2+-mediated dephosphorylation of TFEB/TFE3. However, we discovered that this activation occurs due to the inhibition of Rag GTPase–dependent mTORC1 pathway that specifically reduced phosphorylation of TFEB at S122. Constitutive activation of the Rag GTPase complex in cells lacking ESCRT-I restored S122 phosphorylation and prevented TFEB/TFE3 activation. Our results indicate that ESCRT-I deficiency evokes a homeostatic response to counteract lysosomal nutrient starvation, that is, improper supply of nutrients derived from lysosomal degradation.
Collapse
Affiliation(s)
- Marta Wróbel
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Jarosław Cendrowski
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Ewelina Szymańska
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | | | - Noga Budick-Harmelin
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Matylda Macias
- Microscopy and Cytometry Facility, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Aleksandra Szybińska
- Microscopy and Cytometry Facility, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Michał Mazur
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Krzysztof Kolmus
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Krzysztof Goryca
- Department of Genetics, Maria Skłodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Michalina Dąbrowska
- Department of Genetics, Maria Skłodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Agnieszka Paziewska
- Department of Gastroenterology, Hepatology and Clinical Oncology, Medical Center for Postgraduate Education, Warsaw, Poland
| | - Michał Mikula
- Department of Genetics, Maria Skłodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Marta Miączyńska
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| |
Collapse
|
109
|
Udayar V, Chen Y, Sidransky E, Jagasia R. Lysosomal dysfunction in neurodegeneration: emerging concepts and methods. Trends Neurosci 2022; 45:184-199. [PMID: 35034773 PMCID: PMC8854344 DOI: 10.1016/j.tins.2021.12.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 11/23/2021] [Accepted: 12/12/2021] [Indexed: 02/06/2023]
Abstract
The understanding of lysosomes has come a long way since the initial discovery of their role in degrading cellular waste. The lysosome is now recognized as a highly dynamic organelle positioned at the crossroads of cell signaling, transcription, and metabolism. Underscoring its importance is the observation that, in addition to rare monogenic lysosomal storage disorders, genes regulating lysosomal function are implicated in common sporadic neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). Developing therapies for these disorders is particularly challenging, largely due to gaps in knowledge of the underlying molecular and cellular processes. In this review, we discuss technological advances that have propelled deeper understanding of the lysosome in neurodegeneration, from elucidating the functions of lysosome-related disease risk variants at the level of the organelle, cell, and tissue, to the development of disease-specific biological models that recapitulate disease manifestations. Finally, we identify key questions to be addressed to successfully bridge the gap to the clinic.
Collapse
Affiliation(s)
- Vinod Udayar
- Roche Pharmaceutical Research and Early Development, Neuroscience and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Yu Chen
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ellen Sidransky
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Ravi Jagasia
- Roche Pharmaceutical Research and Early Development, Neuroscience and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland.
| |
Collapse
|
110
|
Basu I, Bar S, Prasad M, Datta R. Adipose deficiency and aberrant autophagy in a Drosophila model of MPS VII is corrected by pharmacological stimulators of mTOR. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166399. [DOI: 10.1016/j.bbadis.2022.166399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 10/18/2022]
|
111
|
Song X, Han L, Lin X, Tian M, Sun F, Feng B. Jian Pi Tiao Gan Yin alleviates obesity phenotypes through mTORC1/SREBP1 signaling in vitro and in vivo. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:291. [PMID: 35433951 PMCID: PMC9011225 DOI: 10.21037/atm-22-685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/07/2022] [Indexed: 11/25/2022]
Abstract
Background Obesity has been considered as a leading cause of multiple metabolic syndromes, such as type 2 diabetes and hypertension cardiovascular diseases. Jian Pi Tiao Gan Yin (JPTGY), a Chinese herb preparation, is used to treat obesity of liver qi stagnation and spleen deficiency. The mechanism of action of JPTGY in obesity remains unclear. This study evaluated the effect of JPTGY on obesity. Methods The mechanism of action of JPTGY on obesity was investigated in high-fat diet (HFD)-induced obese mice and palmitic acid-treated 3T3-L1 cells. Lipid droplet accumulation was detected using oil red O staining. Factors associated with lipid accumulation were detected by western blotting. Results Treatment with JPTGY reduced HFD-induced adiposity and body weight gain. JPTGY increased the levels of brown adipose tissue biomarkers in obese mice and palmitic acid-treated 3T3-L1 cells, including peroxisome proliferator-activated receptor gamma coactivator-1-alpha (PGC-1α) and uncoupling protein-1 (UCP-1). Meanwhile, the protein expression of white adipose tissue biomarkers, such as AGT, primary subtalar arthrodesis (PSTA), and endothelin receptor type A (EDNRA), was decreased in obese mice and palmitic acid-treated 3T3-L1 cells. JPTGY affects browning of 3T3-L1 cells through mechanistic target of rapamycin complex 1 (mTORC1) signaling. JPTGY decreased the expression levels of key adipogenic-specific proteins and lipogenic enzymes, including peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer binding protein α (C/EBPα), sterol regulatory element binding protein (SREBP), and FAS. Treatment with the mTOR activator MHY reversed JPTGY-mediated protein expression. Conclusions We concluded that JPTGY relieved obesity phenotypes through mTORC1/SREBP1 signaling in vitro and in vivo. JPTGY may benefit the attenuation of obesity.
Collapse
Affiliation(s)
- Xiaoming Song
- Department of Geriatrics, the First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Lulu Han
- Neurology Ward 3, the Fifth People's Hospital of Jinan, Jinan, China
| | - Xiaowan Lin
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Minghui Tian
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fenglei Sun
- General Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bo Feng
- Department of Geriatrics, the First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| |
Collapse
|
112
|
Bolton C, Smillie CS, Elmentaite R, Wei G, Argmann C, Aschenbrenner D, James KR, McGovern DP, Macchi M, Cho J, Shouval D, Kammermeier J, Koletzko S, Peters L, Travis SP, Jostins L, Anderson CA, Snapper S, Klein C, Schadt E, Zilbauer M, Xavier R, Teichmann S, Muise AM, Regev A, Uhlig HH. An Integrated Taxonomy for Monogenic Inflammatory Bowel Disease. Gastroenterology 2022; 162:859-876. [PMID: 34780721 PMCID: PMC7616885 DOI: 10.1053/j.gastro.2021.11.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/18/2021] [Accepted: 11/08/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Monogenic forms of inflammatory bowel disease (IBD) illustrate the essential roles of individual genes in pathways and networks safeguarding immune tolerance and gut homeostasis. METHODS To build a taxonomy model, we assessed 165 disorders. Genes were prioritized based on penetrance of IBD and disease phenotypes were integrated with multi-omics datasets. Monogenic IBD genes were classified by (1) overlapping syndromic features, (2) response to hematopoietic stem cell transplantation, (3) bulk RNA-sequencing of 32 tissues, (4) single-cell RNA-sequencing of >50 cell subsets from the intestine of healthy individuals and patients with IBD (pediatric and adult), and (5) proteomes of 43 immune subsets. The model was validated by addition of newly identified monogenic IBD defects. As a proof-of-concept, we explore the intersection between immunometabolism and antimicrobial activity for a group of disorders (G6PC3/SLC37A4). RESULTS Our quantitative integrated taxonomy defines the cellular landscape of monogenic IBD gene expression across 102 genes with high and moderate penetrance (81 in the model set and 21 genes in the validation set). We illustrate distinct cellular networks, highlight expression profiles across understudied cell types (e.g., CD8+ T cells, neutrophils, epithelial subsets, and endothelial cells) and define genotype-phenotype associations (perianal disease and defective antimicrobial activity). We illustrate processes and pathways shared across cellular compartments and phenotypic groups and highlight cellular immunometabolism with mammalian target of rapamycin activation as one of the converging pathways. There is an overlap of genes and enriched cell-specific expression between monogenic and polygenic IBD. CONCLUSION Our taxonomy integrates genetic, clinical and multi-omic data; providing a basis for genomic diagnostics and testable hypotheses for disease functions and treatment responses.
Collapse
Affiliation(s)
- Chrissy Bolton
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
- Medical Sciences, University College London, London, UK
| | | | - Rasa Elmentaite
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Gabrielle Wei
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carmen Argmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Kylie R James
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Dermot P.B McGovern
- F. Widjaja Foundation, Inflammatory Bowel and Immunobiology Research Institute,, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Marina Macchi
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Judy Cho
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dror Shouval
- Pediatric Gastroenterology Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Ramat Gan, Israel, affiliated to Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jochen Kammermeier
- Gastroenterology Department, Evelina London Children’s Hospital, London, UK
| | - Sibylle Koletzko
- Dr. von Hauner Children’s Hospital, Department of Pediatrics, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Lauren Peters
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Simon P.L. Travis
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
- Biomedical Research Center, University of Oxford, Oxford, United Kingdom
| | - Luke Jostins
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | | | - Scott Snapper
- Division of Gastroenterology and Nutrition, Boston Children’s Hospital, Boston, USA
| | - Christoph Klein
- Dr. von Hauner Children’s Hospital, Department of Pediatrics, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Eric Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthias Zilbauer
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Addenbrooke’s Hospital, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Ramnik Xavier
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, United States
| | - Sarah Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Theory of Condensed Matter, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EBI), Wellcome Genome Campus, Hinxton UK
| | - Aleixo M. Muise
- Gastroenterology Division, The Hospital for Sick Children, Toronto, Canada
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
- Department of Pediatrics and Biochemistry, University of Toronto, Hospital for Sick Children, Toronto, ON, Canada
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, United States
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge MA, USA
| | - Holm H. Uhlig
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
- Biomedical Research Center, University of Oxford, Oxford, United Kingdom
- Department of Pediatrics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
113
|
Lu A, Hsieh F, Sharma BR, Vaughn SR, Enrich C, Pfeffer SR. CRISPR screens for lipid regulators reveal a role for ER-bound SNX13 in lysosomal cholesterol export. J Cell Biol 2022; 221:212937. [PMID: 34936700 PMCID: PMC8704955 DOI: 10.1083/jcb.202105060] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 11/02/2021] [Accepted: 11/29/2021] [Indexed: 11/22/2022] Open
Abstract
We report here two genome-wide CRISPR screens performed to identify genes that, when knocked out, alter levels of lysosomal cholesterol or bis(monoacylglycero)phosphate. In addition, these screens were also performed under conditions of NPC1 inhibition to identify modifiers of NPC1 function in lysosomal cholesterol export. The screens confirm tight coregulation of cholesterol and bis(monoacylglycero)phosphate in cells and reveal an unexpected role for the ER-localized SNX13 protein as a negative regulator of lysosomal cholesterol export and contributor to ER–lysosome membrane contact sites. In the absence of NPC1 function, SNX13 knockdown redistributes lysosomal cholesterol and is accompanied by triacylglycerol-rich lipid droplet accumulation and increased lysosomal bis(monoacylglycero)phosphate. These experiments provide unexpected insight into the regulation of lysosomal lipids and modification of these processes by novel gene products.
Collapse
Affiliation(s)
- Albert Lu
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA.,Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Universitat de Barcelona, Barcelona, Spain
| | | | - Bikal R Sharma
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA
| | - Sydney R Vaughn
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA
| | - Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Universitat de Barcelona, Barcelona, Spain
| | - Suzanne R Pfeffer
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
114
|
Liedtke M, Völkner C, Hermann A, Frech MJ. Impact of Organelle Transport Deficits on Mitophagy and Autophagy in Niemann-Pick Disease Type C. Cells 2022; 11:507. [PMID: 35159316 PMCID: PMC8833886 DOI: 10.3390/cells11030507] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 02/06/2023] Open
Abstract
Defective mitochondria are pathophysiological features of a number of neurodegenerative diseases. Here, we investigated mitochondrial dysfunction in the context of the rare lysosomal storage diseases Niemann-Pick disease type C1 and type C2 (NP-C1 and NP-C2). Mutations in either the NPC1 or NPC2 gene lead to cholesterol accumulation in late endosomes and lysosomes, resulting in impaired cholesterol homeostasis. The extent to which this may lead to mitochondrial dysfunction has been poorly studied so far. Therefore, we investigated the morphology, function, and transport of mitochondria, as well as their degradation via mitophagy, in a disease-associated human neural cell model of NP-C. By performing live cell imaging, we observed markedly reduced mitochondrial transport, although morphology and function were not appreciably altered. However, we observed a defective mitophagy induction shown by a reduced capability to elevate parkin expression and engulf mitochondria in autophagosomes after treatment with carbonyl cyanide 3-chlorophenylhydrazone (CCCP). This was accompanied by defects in autophagy induction, exhibited by a hampered p62 expression and progression, shown by increased LC3BII levels and a defective fusion of autophagosomes and lysosomes. The latter might have been additionally influenced by the observed reduced lysosomal transport. Hence, we hypothesized that a reduced recycling of mitochondria contributes to the pathophysiology of NP-C.
Collapse
Affiliation(s)
- Maik Liedtke
- Translational Neurodegeneration Section “Albrecht Kossel“, Department of Neurology, University Medical Center Rostock, 18147 Rostock, Germany; (M.L.); (C.V.); (A.H.)
| | - Christin Völkner
- Translational Neurodegeneration Section “Albrecht Kossel“, Department of Neurology, University Medical Center Rostock, 18147 Rostock, Germany; (M.L.); (C.V.); (A.H.)
| | - Andreas Hermann
- Translational Neurodegeneration Section “Albrecht Kossel“, Department of Neurology, University Medical Center Rostock, 18147 Rostock, Germany; (M.L.); (C.V.); (A.H.)
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, 18147 Rostock, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Rostock/Greifswald, 18147 Rostock, Germany
| | - Moritz J. Frech
- Translational Neurodegeneration Section “Albrecht Kossel“, Department of Neurology, University Medical Center Rostock, 18147 Rostock, Germany; (M.L.); (C.V.); (A.H.)
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, 18147 Rostock, Germany
| |
Collapse
|
115
|
Zoncu R, Perera RM. Built to last: lysosome remodeling and repair in health and disease. Trends Cell Biol 2022; 32:597-610. [DOI: 10.1016/j.tcb.2021.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 12/21/2022]
|
116
|
Defective Cystinosin, Aberrant Autophagy−Endolysosome Pathways, and Storage Disease: Towards Assembling the Puzzle. Cells 2022; 11:cells11030326. [PMID: 35159136 PMCID: PMC8834619 DOI: 10.3390/cells11030326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/03/2022] [Accepted: 01/11/2022] [Indexed: 02/05/2023] Open
Abstract
Epithelial cells that form the kidney proximal tubule (PT) rely on an intertwined ecosystem of vesicular membrane trafficking pathways to ensure the reabsorption of essential nutrients—a key requisite for homeostasis. The endolysosome stands at the crossroads of this sophisticated network, internalizing molecules through endocytosis, sorting receptors and nutrient transporters, maintaining cellular quality control via autophagy, and toggling the balance between PT differentiation and cell proliferation. Dysregulation of such endolysosome-guided trafficking pathways might thus lead to a generalized dysfunction of PT cells, often causing chronic kidney disease and life-threatening complications. In this review, we highlight the biological functions of endolysosome-residing proteins from the perspectives of understanding—and potentially reversing—the pathophysiology of rare inherited diseases affecting the kidney PT. Using cystinosis as a paradigm of endolysosome disease causing PT dysfunction, we discuss how the endolysosome governs the homeostasis of specialized epithelial cells. This review also provides a critical analysis of the molecular mechanisms through which defects in autophagy pathways can contribute to PT dysfunction, and proposes potential interventions for affected tissues. These insights might ultimately accelerate the discovery and development of new therapeutics, not only for cystinosis, but also for other currently intractable endolysosome-related diseases, eventually transforming our ability to regulate homeostasis and health.
Collapse
|
117
|
Jose J, Hoque M, Engel J, Beevi SS, Wahba M, Georgieva MI, Murphy KJ, Hughes WE, Cochran BJ, Lu A, Tebar F, Hoy AJ, Timpson P, Rye KA, Enrich C, Rentero C, Grewal T. Annexin A6 and NPC1 regulate LDL-inducible cell migration and distribution of focal adhesions. Sci Rep 2022; 12:596. [PMID: 35022465 PMCID: PMC8755831 DOI: 10.1038/s41598-021-04584-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/22/2021] [Indexed: 12/22/2022] Open
Abstract
Cholesterol is considered indispensable for cell motility, but how physiological cholesterol pools enable cells to move forward remains to be clarified. The majority of cells obtain cholesterol from the uptake of Low-Density lipoproteins (LDL) and here we demonstrate that LDL stimulates A431 squamous epithelial carcinoma and Chinese hamster ovary (CHO) cell migration and invasion. LDL also potentiated epidermal growth factor (EGF) -stimulated A431 cell migration as well as A431 invasion in 3-dimensional environments, using organotypic assays. Blocking cholesterol export from late endosomes (LE), using Niemann Pick Type C1 (NPC1) mutant cells, pharmacological NPC1 inhibition or overexpression of the annexin A6 (AnxA6) scaffold protein, compromised LDL-inducible migration and invasion. Nevertheless, NPC1 mutant cells established focal adhesions (FA) that contain activated focal adhesion kinase (pY397FAK, pY861FAK), vinculin and paxillin. Compared to controls, NPC1 mutants display increased FA numbers throughout the cell body, but lack LDL-inducible FA formation at cell edges. Strikingly, AnxA6 depletion in NPC1 mutant cells, which restores late endosomal cholesterol export in these cells, increases their cell motility and association of the cholesterol biosensor D4H with active FAK at cell edges, indicating that AnxA6-regulated transport routes contribute to cholesterol delivery to FA structures, thereby improving NPC1 mutant cell migratory behaviour.
Collapse
Affiliation(s)
- Jaimy Jose
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
| | - Monira Hoque
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia.,Save Sight Institute, Sydney Medical School, University of Sydney, Sydney, NSW, 2000, Australia
| | - Johanna Engel
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
| | - Syed S Beevi
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia.,KIMS Foundation and Research Centre, KIMS Hospitals, 1-8-31/1, Minister Road, Secunderabad, Telangana, 500003, India
| | - Mohamed Wahba
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
| | - Mariya Ilieva Georgieva
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
| | - Kendelle J Murphy
- Cancer Research Program, Garvan Institute of Medical Research and Kinghorn Cancer Centre, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2010, Australia
| | - William E Hughes
- Children's Medical Research Institute, University of Sydney, Westmead, NSW, 2145, Australia
| | - Blake J Cochran
- School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Albert Lu
- Departament de Biomedicina, Unitat de Biologia Cellular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036, Barcelona, Spain.,Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Francesc Tebar
- Departament de Biomedicina, Unitat de Biologia Cellular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036, Barcelona, Spain.,Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Andrew J Hoy
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
| | - Paul Timpson
- Cancer Research Program, Garvan Institute of Medical Research and Kinghorn Cancer Centre, St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2010, Australia
| | - Kerry-Anne Rye
- School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cellular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036, Barcelona, Spain.,Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cellular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036, Barcelona, Spain. .,Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain.
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
118
|
Yang L, Zhang Z, Wang D, Jiang Y, Liu Y. Targeting mTOR Signaling in Type 2 Diabetes Mellitus and Diabetes Complications. Curr Drug Targets 2022; 23:692-710. [PMID: 35021971 DOI: 10.2174/1389450123666220111115528] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/21/2021] [Accepted: 12/01/2021] [Indexed: 11/22/2022]
Abstract
The mechanistic target of rapamycin (mTOR) is a pivotal regulator of cell metabolism and growth. In the form of two different multi-protein complexes, mTORC1 and mTORC2, mTOR integrates cellular energy, nutrient and hormonal signals to regulate cellular metabolic homeostasis. In type 2 diabetes mellitus (T2DM) aberrant mTOR signaling underlies its pathological conditions and end-organ complications. Substantial evidence suggests that two mTOR-mediated signaling schemes, mTORC1-p70S6 kinase 1 (S6K1) and mTORC2-protein kinase B (AKT), play a critical role in insulin sensitivity and that their dysfunction contributes to development of T2DM. This review summaries our current understanding of the role of mTOR signaling in T2DM and its associated complications, as well as the potential use of mTOR inhibitors in treatment of T2DM.
Collapse
Affiliation(s)
- Lin Yang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhixin Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Doudou Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yu Jiang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Ying Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| |
Collapse
|
119
|
Cabrera-Reyes F, Parra-Ruiz C, Yuseff MI, Zanlungo S. Alterations in Lysosome Homeostasis in Lipid-Related Disorders: Impact on Metabolic Tissues and Immune Cells. Front Cell Dev Biol 2021; 9:790568. [PMID: 34957117 PMCID: PMC8703004 DOI: 10.3389/fcell.2021.790568] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/22/2021] [Indexed: 12/16/2022] Open
Abstract
Lipid-related disorders, which primarily affect metabolic tissues, including adipose tissue and the liver are associated with alterations in lysosome homeostasis. Obesity is one of the more prevalent diseases, which results in energy imbalance within metabolic tissues and lysosome dysfunction. Less frequent diseases include Niemann-Pick type C (NPC) and Gaucher diseases, both of which are known as Lysosomal Storage Diseases (LSDs), where lysosomal dysfunction within metabolic tissues remains to be fully characterized. Adipocytes and hepatocytes share common pathways involved in the lysosome-autophagic axis, which are regulated by the function of cathepsins and CD36, an immuno-metabolic receptor and display alterations in lipid diseases, and thereby impacting metabolic functions. In addition to intrinsic defects observed in metabolic tissues, cells of the immune system, such as B cells can infiltrate adipose and liver tissues, during metabolic imbalance favoring inflammation. Moreover, B cells rely on lysosomes to promote the processing and presentation of extracellular antigens and thus could also present lysosome dysfunction, consequently affecting such functions. On the other hand, growing evidence suggests that cells accumulating lipids display defective inter-organelle membrane contact sites (MCSs) established by lysosomes and other compartments, which contribute to metabolic dysfunctions at the cellular level. Overall, in this review we will discuss recent findings addressing common mechanisms that are involved in lysosome dysregulation in adipocytes and hepatocytes during obesity, NPC, and Gaucher diseases. We will discuss whether these mechanisms may modulate the function of B cells and how inter-organelle contacts, emerging as relevant cellular mechanisms in the control of lipid homeostasis, have an impact on these diseases.
Collapse
Affiliation(s)
- Fernanda Cabrera-Reyes
- Department of Cellular and Molecular Biology, Faculty of Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia Parra-Ruiz
- Department of Cellular and Molecular Biology, Faculty of Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María Isabel Yuseff
- Department of Cellular and Molecular Biology, Faculty of Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Silvana Zanlungo
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
120
|
Eapen VV, Swarup S, Hoyer MJ, Paulo JA, Harper JW. Quantitative proteomics reveals the selectivity of ubiquitin-binding autophagy receptors in the turnover of damaged lysosomes by lysophagy. eLife 2021; 10:e72328. [PMID: 34585663 PMCID: PMC8523161 DOI: 10.7554/elife.72328] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/25/2021] [Indexed: 12/14/2022] Open
Abstract
Removal of damaged organelles via the process of selective autophagy constitutes a major form of cellular quality control. Damaged organelles are recognized by a dedicated surveillance machinery, leading to the assembly of an autophagosome around the damaged organelle, prior to fusion with the degradative lysosomal compartment. Lysosomes themselves are also prone to damage and are degraded through the process of lysophagy. While early steps involve recognition of ruptured lysosomal membranes by glycan-binding galectins and ubiquitylation of transmembrane lysosomal proteins, many steps in the process, and their interrelationships, remain poorly understood, including the role and identity of cargo receptors required for completion of lysophagy. Here, we employ quantitative organelle capture and proximity biotinylation proteomics of autophagy adaptors, cargo receptors, and galectins in response to acute lysosomal damage, thereby revealing the landscape of lysosome-associated proteome remodeling during lysophagy. Among the proteins dynamically recruited to damaged lysosomes were ubiquitin-binding autophagic cargo receptors. Using newly developed lysophagic flux reporters including Lyso-Keima, we demonstrate that TAX1BP1, together with its associated kinase TBK1, are both necessary and sufficient to promote lysophagic flux in both HeLa cells and induced neurons (iNeurons). While the related receptor Optineurin (OPTN) can drive damage-dependent lysophagy when overexpressed, cells lacking either OPTN or CALCOCO2 still maintain significant lysophagic flux in HeLa cells. Mechanistically, TAX1BP1-driven lysophagy requires its N-terminal SKICH domain, which binds both TBK1 and the autophagy regulatory factor RB1CC1, and requires upstream ubiquitylation events for efficient recruitment and lysophagic flux. These results identify TAX1BP1 as a central component in the lysophagy pathway and provide a proteomic resource for future studies of the lysophagy process.
Collapse
Affiliation(s)
- Vinay V Eapen
- Department of Cell Biology, Harvard Medical School, BostonBostonUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
| | - Sharan Swarup
- Department of Cell Biology, Harvard Medical School, BostonBostonUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
| | - Melissa J Hoyer
- Department of Cell Biology, Harvard Medical School, BostonBostonUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, BostonBostonUnited States
| | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, BostonBostonUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
| |
Collapse
|
121
|
Torres S, Solsona-Vilarrasa E, Nuñez S, Matías N, Insausti-Urkia N, Castro F, Casasempere M, Fabriás G, Casas J, Enrich C, Fernández-Checa JC, Garcia-Ruiz C. Acid ceramidase improves mitochondrial function and oxidative stress in Niemann-Pick type C disease by repressing STARD1 expression and mitochondrial cholesterol accumulation. Redox Biol 2021; 45:102052. [PMID: 34175669 PMCID: PMC8254009 DOI: 10.1016/j.redox.2021.102052] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/21/2021] [Accepted: 06/16/2021] [Indexed: 12/11/2022] Open
Abstract
Niemann-Pick type C (NPC) disease, a lysosomal storage disorder caused by defective NPC1/NPC2 function, results in the accumulation of cholesterol and glycosphingolipids in lysosomes of affected organs, such as liver and brain. Moreover, increase of mitochondrial cholesterol (mchol) content and impaired mitochondrial function and GSH depletion contribute to NPC disease. However, the underlying mechanism of mchol accumulation in NPC disease remains unknown. As STARD1 is crucial in intramitochondrial cholesterol trafficking and acid ceramidase (ACDase) has been shown to regulate STARD1, we explored the functional relationship between ACDase and STARD1 in NPC disease. Liver and brain of Npc1-/- mice presented a significant increase in mchol levels and STARD1 expression. U18666A, an amphiphilic sterol that inhibits lysosomal cholesterol efflux, increased mchol levels in hepatocytes from Stard1f/f mice but not Stard1ΔHep mice. We dissociate the induction of STARD1 expression from endoplasmic reticulum stress, and establish an inverse relationship between ACDase and STARD1 expression and LRH-1 levels. Hepatocytes from Npc1+/+ mice treated with U18666A exhibited increased mchol accumulation, STARD1 upregulation and decreased ACDase expression, effects that were reversed by cholesterol extraction with 2-hydroxypropyl-β-cyclodextrin. Moreover, transfection of fibroblasts from NPC patients with ACDase, decreased STARD1 expression and mchol accumulation, resulting in increased mitochondrial GSH levels, improved mitochondrial functional performance, decreased oxidative stress and protected NPC fibroblasts against oxidative stress-mediated cell death. Our results demonstrate a cholesterol-dependent inverse relationship between ACDase and STARD1 and provide a novel approach to target the accumulation of cholesterol in mitochondria in NPC disease.
Collapse
Affiliation(s)
- Sandra Torres
- Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, IDIBAPS and CIBERehd, Barcelona, Spain
| | - Estel Solsona-Vilarrasa
- Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, IDIBAPS and CIBERehd, Barcelona, Spain
| | - Susana Nuñez
- Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, IDIBAPS and CIBERehd, Barcelona, Spain
| | - Nuria Matías
- Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, IDIBAPS and CIBERehd, Barcelona, Spain
| | - Naroa Insausti-Urkia
- Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, IDIBAPS and CIBERehd, Barcelona, Spain
| | - Fernanda Castro
- Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain
| | - Mireia Casasempere
- Research Unit on BioActive Molecules (RUBAM), Departament de Química Orgànica Biològica, Institut d'Investigacions Químiques i Ambientals de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Gemma Fabriás
- Research Unit on BioActive Molecules (RUBAM), Departament de Química Orgànica Biològica, Institut d'Investigacions Químiques i Ambientals de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Josefina Casas
- Research Unit on BioActive Molecules (RUBAM), Departament de Química Orgànica Biològica, Institut d'Investigacions Químiques i Ambientals de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Carlos Enrich
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036, Barcelona, Spain; Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - José C Fernández-Checa
- Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, IDIBAPS and CIBERehd, Barcelona, Spain; Research Center for ALPD, Keck School of Medicine, Univerisity of Southern California, Los Angeles, CA, USA.
| | - Carmen Garcia-Ruiz
- Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, IDIBAPS and CIBERehd, Barcelona, Spain; Research Center for ALPD, Keck School of Medicine, Univerisity of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
122
|
Fernandes SA, Demetriades C. The Multifaceted Role of Nutrient Sensing and mTORC1 Signaling in Physiology and Aging. FRONTIERS IN AGING 2021; 2:707372. [PMID: 35822019 PMCID: PMC9261424 DOI: 10.3389/fragi.2021.707372] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/12/2021] [Indexed: 01/10/2023]
Abstract
The mechanistic Target of Rapamycin (mTOR) is a growth-related kinase that, in the context of the mTOR complex 1 (mTORC1), touches upon most fundamental cellular processes. Consequently, its activity is a critical determinant for cellular and organismal physiology, while its dysregulation is commonly linked to human aging and age-related disease. Presumably the most important stimulus that regulates mTORC1 activity is nutrient sufficiency, whereby amino acids play a predominant role. In fact, mTORC1 functions as a molecular sensor for amino acids, linking the cellular demand to the nutritional supply. Notably, dietary restriction (DR), a nutritional regimen that has been shown to extend lifespan and improve healthspan in a broad spectrum of organisms, works via limiting nutrient uptake and changes in mTORC1 activity. Furthermore, pharmacological inhibition of mTORC1, using rapamycin or its analogs (rapalogs), can mimic the pro-longevity effects of DR. Conversely, nutritional amino acid overload has been tightly linked to aging and diseases, such as cancer, type 2 diabetes and obesity. Similar effects can also be recapitulated by mutations in upstream mTORC1 regulators, thus establishing a tight connection between mTORC1 signaling and aging. Although the role of growth factor signaling upstream of mTORC1 in aging has been investigated extensively, the involvement of signaling components participating in the nutrient sensing branch is less well understood. In this review, we provide a comprehensive overview of the molecular and cellular mechanisms that signal nutrient availability to mTORC1, and summarize the role that nutrients, nutrient sensors, and other components of the nutrient sensing machinery play in cellular and organismal aging.
Collapse
Affiliation(s)
- Stephanie A. Fernandes
- Max Planck Institute for Biology of Ageing (MPI-AGE), Cologne, Germany
- Cologne Graduate School for Ageing Research (CGA), Cologne, Germany
| | - Constantinos Demetriades
- Max Planck Institute for Biology of Ageing (MPI-AGE), Cologne, Germany
- Cologne Graduate School for Ageing Research (CGA), Cologne, Germany
- University of Cologne, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| |
Collapse
|
123
|
Balboa E, Marín T, Oyarzún JE, Contreras PS, Hardt R, van den Bosch T, Alvarez AR, Rebolledo-Jaramillo B, Klein AD, Winter D, Zanlungo S. Proteomic Analysis of Niemann-Pick Type C Hepatocytes Reveals Potential Therapeutic Targets for Liver Damage. Cells 2021; 10:cells10082159. [PMID: 34440927 PMCID: PMC8392304 DOI: 10.3390/cells10082159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/21/2022] Open
Abstract
Niemann-Pick type C disease (NPCD) is a lysosomal storage disorder caused by mutations in the NPC1 gene. The most affected tissues are the central nervous system and liver, and while significant efforts have been made to understand its neurological component, the pathophysiology of the liver damage remains unclear. In this study, hepatocytes derived from wild type and Npc1-/- mice were analyzed by mass spectrometry (MS)-based proteomics in conjunction with bioinformatic analysis. We identified 3832 proteins: 416 proteins had a p-value smaller than 0.05, of which 37% (n = 155) were considered differentially expressed proteins (DEPs), 149 of them were considered upregulated, and 6 were considered downregulated. We focused the analysis on pathways related to NPC pathogenic mechanisms, finding that the most significant changes in expression levels occur in proteins that function in the pathways of liver damage, lipid metabolism, and inflammation. Moreover, in the group of DEPs, 30% (n = 47) were identified as lysosomal proteins and 7% (n = 10) were identified as mitochondrial proteins. Importantly, we found that lysosomal DEPs, including CTSB/D/Z, LIPA, DPP7 and GLMP, and mitocondrial DEPs, AKR1B10, and VAT1 had been connected with liver fibrosis, damage, and steatosis in previous studies, validiting our dataset. Our study found potential therapeutic targets for the treatment of liver damage in NPCD.
Collapse
Affiliation(s)
- Elisa Balboa
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Tamara Marín
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Juan Esteban Oyarzún
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Pablo S Contreras
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-8018, USA
| | - Robert Hardt
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, 53115 Bonn, Germany
| | - Thea van den Bosch
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, 53115 Bonn, Germany
| | - Alejandra R Alvarez
- Laboratory of Cell Signaling, Department of Cellular and Molecular Biology, Biological Sciences Faculty, CARE UC, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Boris Rebolledo-Jaramillo
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7710162, Chile
| | - Andres D Klein
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7710162, Chile
| | - Dominic Winter
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, 53115 Bonn, Germany
| | - Silvana Zanlungo
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| |
Collapse
|
124
|
Henne WM. How NPC1 Loss Twists the TORCque of Lysosomes. Dev Cell 2021; 56:251-252. [PMID: 33561418 DOI: 10.1016/j.devcel.2021.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Niemann-Pick type C is a neurological disorder caused by mutations in the lysosome cholesterol exporter NPC1. In this issue of Developmental Cell, Davis et al. dissect how NPC1 loss elevates mTORC1 signaling, and demonstrate that suppression of mTORC1 signaling can rescue disease pathology in NPC1-deficient cell models.
Collapse
Affiliation(s)
- W Mike Henne
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
125
|
Bernardo A, De Nuccio C, Visentin S, Martire A, Minghetti L, Popoli P, Ferrante A. Myelin Defects in Niemann-Pick Type C Disease: Mechanisms and Possible Therapeutic Perspectives. Int J Mol Sci 2021; 22:ijms22168858. [PMID: 34445564 PMCID: PMC8396228 DOI: 10.3390/ijms22168858] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 12/25/2022] Open
Abstract
Niemann–Pick type C (NPC) disease is a wide-spectrum clinical condition classified as a neurovisceral disorder affecting mainly the liver and the brain. It is caused by mutations in one of two genes, NPC1 and NPC2, coding for proteins located in the lysosomes. NPC proteins are deputed to transport cholesterol within lysosomes or between late endosome/lysosome systems and other cellular compartments, such as the endoplasmic reticulum and plasma membrane. The first trait of NPC is the accumulation of unesterified cholesterol and other lipids, like sphingosine and glycosphingolipids, in the late endosomal and lysosomal compartments, which causes the blockade of autophagic flux and the impairment of mitochondrial functions. In the brain, the main consequences of NPC are cerebellar neurodegeneration, neuroinflammation, and myelin defects. This review will focus on myelin defects and the pivotal importance of cholesterol for myelination and will offer an overview of the molecular targets and the pharmacological strategies so far proposed, or an object of clinical trials for NPC. Finally, it will summarize recent data on a new and promising pharmacological perspective involving A2A adenosine receptor stimulation in genetic and pharmacological NPC dysmyelination models.
Collapse
Affiliation(s)
- Antonietta Bernardo
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (A.B.); (S.V.); (A.M.); (P.P.)
| | - Chiara De Nuccio
- Research Coordination and Support Service, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (C.D.N.); (L.M.)
| | - Sergio Visentin
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (A.B.); (S.V.); (A.M.); (P.P.)
| | - Alberto Martire
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (A.B.); (S.V.); (A.M.); (P.P.)
| | - Luisa Minghetti
- Research Coordination and Support Service, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (C.D.N.); (L.M.)
| | - Patrizia Popoli
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (A.B.); (S.V.); (A.M.); (P.P.)
| | - Antonella Ferrante
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (A.B.); (S.V.); (A.M.); (P.P.)
- Correspondence: ; Tel.: +39-06-49902050
| |
Collapse
|
126
|
Liu EA, Mori E, Hamasaki F, Lieberman AP. TDP-43 proteinopathy occurs independently of autophagic substrate accumulation and underlies nuclear defects in Niemann-Pick C disease. Neuropathol Appl Neurobiol 2021; 47:1019-1032. [PMID: 34048071 DOI: 10.1111/nan.12738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/21/2021] [Accepted: 05/23/2021] [Indexed: 12/12/2022]
Abstract
AIMS Neuronal cytoplasmic inclusions of TAR-DNA binding protein of 43 kDa (TDP-43) are a pathological hallmark of diverse neurodegenerative disorders, yet the processes that mediate their formation and their functional significance remain incompletely understood. Both dysfunction in autophagy and neuroinflammation have been linked to TDP-43 mislocalisation. Here, we investigate TDP-43 proteinopathy in Niemann-Pick type C disease (NPC), an autosomal recessive lysosomal storage disease (LSD) distinguished by the accumulation of unesterified cholesterol within late endosomes and lysosomes. NPC is characterised by neurodegeneration, neuroinflammation and multifocal disruption of the autophagy pathway. METHODS We utilised immunohistochemistry, confocal microscopy, electron microscopy and biochemical and gene expression studies to characterise TDP-43 pathology and autophagic substrate accumulation in Npc1-deficient mice. RESULTS In the NPC brain, cytoplasmic TDP-43 mislocalisation was independent of autophagic substrate accumulation. These pathologies occurred in distinct neuronal subtypes, as brainstem cholinergic neurons were more susceptible to TDP-43 mislocalisation, whereas glutamatergic neurons exhibited hallmarks of autophagic dysfunction. Furthermore, TDP-43 mislocalisation did not co-localise with markers of stress granules or progress to ubiquitinated aggregates over months in vivo, indicating a stable, early stage in the aggregation process. Neither microgliosis nor neuroinflammation were sufficient to drive TDP-43 proteinopathy in the NPC brain. Notably, cytoplasmic TDP-43 co-localised with the nuclear import factor importin α, and TDP-43 mislocalised neurons demonstrated nuclear membrane abnormalities and disruption of nucleocytoplasmic transport. CONCLUSION Our findings highlight the relationship between LSDs and TDP-43 proteinopathy, define its functional importance in NPC by triggering nuclear dysfunction, and expand the spectrum of TDP-43 pathology in the diseased brain.
Collapse
Affiliation(s)
- Elaine A Liu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.,Cellular and Molecular Biology Graduate Program, University of Michigan Medical School, Ann Arbor, MI, USA.,Medical Scientist Training Program, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Erika Mori
- Yamaguchi University School of Medicine, Ube, Japan
| | | | - Andrew P Lieberman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
127
|
Abstract
Our cells are comprised of billions of proteins, lipids, and other small molecules packed into their respective subcellular organelles, with the daunting task of maintaining cellular homeostasis over a lifetime. However, it is becoming increasingly evident that organelles do not act as autonomous discrete units but rather as interconnected hubs that engage in extensive communication through membrane contacts. In the last few years, our understanding of how these contacts coordinate organelle function has redefined our view of the cell. This review aims to present novel findings on the cellular interorganelle communication network and how its dysfunction may contribute to aging and neurodegeneration. The consequences of disturbed interorganellar communication are intimately linked with age-related pathologies. Given that both aging and neurodegenerative diseases are characterized by the concomitant failure of multiple cellular pathways, coordination of organelle communication and function could represent an emerging regulatory mechanism critical for long-term cellular homeostasis. We anticipate that defining the relationships between interorganelle communication, aging, and neurodegeneration will open new avenues for therapeutics.
Collapse
Affiliation(s)
- Maja Petkovic
- Department of Physiology, University of California at San Francisco, San Francisco, California 94158, USA
| | - Caitlin E O'Brien
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, California 94158, USA
| | - Yuh Nung Jan
- Department of Physiology, University of California at San Francisco, San Francisco, California 94158, USA
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, California 94158, USA
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158, USA
| |
Collapse
|
128
|
Marques ARA, Ramos C, Machado-Oliveira G, Vieira OV. Lysosome (Dys)function in Atherosclerosis-A Big Weight on the Shoulders of a Small Organelle. Front Cell Dev Biol 2021; 9:658995. [PMID: 33855029 PMCID: PMC8039146 DOI: 10.3389/fcell.2021.658995] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/11/2021] [Indexed: 12/15/2022] Open
Abstract
Atherosclerosis is a progressive insidious chronic disease that underlies most of the cardiovascular pathologies, including myocardial infarction and ischemic stroke. The malfunctioning of the lysosomal compartment has a central role in the etiology and pathogenesis of atherosclerosis. Lysosomes are the degradative organelles of mammalian cells and process endogenous and exogenous substrates in a very efficient manner. Dysfunction of these organelles and consequent inefficient degradation of modified low-density lipoproteins (LDL) and apoptotic cells in atherosclerotic lesions have, therefore, numerous deleterious consequences for cellular homeostasis and disease progression. Lysosome dysfunction has been mostly studied in the context of the inherited lysosomal storage disorders (LSDs). However, over the last years it has become increasingly evident that the consequences of this phenomenon are more far-reaching, also influencing the progression of multiple acquired human pathologies, such as neurodegenerative diseases, cancer, and cardiovascular diseases (CVDs). During the formation of atherosclerotic plaques, the lysosomal compartment of the various cells constituting the arterial wall is under severe stress, due to the tremendous amounts of lipoproteins being processed by these cells. The uncontrolled uptake of modified lipoproteins by arterial phagocytic cells, namely macrophages and vascular smooth muscle cells (VSMCs), is the initial step that triggers the pathogenic cascade culminating in the formation of atheroma. These cells become pathogenic "foam cells," which are characterized by dysfunctional lipid-laden lysosomes. Here, we summarize the current knowledge regarding the origin and impact of the malfunctioning of the lysosomal compartment in plaque cells. We further analyze how the field of LSD research may contribute with some insights to the study of CVDs, particularly how therapeutic approaches that target the lysosomes in LSDs could be applied to hamper atherosclerosis progression and associated mortality.
Collapse
Affiliation(s)
- André R A Marques
- iNOVA4Health, Chronic Diseases Research Center (CEDOC), NOVA Medical School (NMS), Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Cristiano Ramos
- iNOVA4Health, Chronic Diseases Research Center (CEDOC), NOVA Medical School (NMS), Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Gisela Machado-Oliveira
- iNOVA4Health, Chronic Diseases Research Center (CEDOC), NOVA Medical School (NMS), Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Otília V Vieira
- iNOVA4Health, Chronic Diseases Research Center (CEDOC), NOVA Medical School (NMS), Universidade NOVA de Lisboa, Lisbon, Portugal
| |
Collapse
|