101
|
Heng YJ, Pennell CE, Chua HN, Perkins JE, Lye SJ. Whole blood gene expression profile associated with spontaneous preterm birth in women with threatened preterm labor. PLoS One 2014; 9:e96901. [PMID: 24828675 PMCID: PMC4020779 DOI: 10.1371/journal.pone.0096901] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 04/13/2014] [Indexed: 12/21/2022] Open
Abstract
Threatened preterm labor (TPTL) is defined as persistent premature uterine contractions between 20 and 37 weeks of gestation and is the most common condition that requires hospitalization during pregnancy. Most of these TPTL women continue their pregnancies to term while only an estimated 5% will deliver a premature baby within ten days. The aim of this work was to study differential whole blood gene expression associated with spontaneous preterm birth (sPTB) within 48 hours of hospital admission. Peripheral blood was collected at point of hospital admission from 154 women with TPTL before any medical treatment. Microarrays were utilized to investigate differential whole blood gene expression between TPTL women who did (n = 48) or did not have a sPTB (n = 106) within 48 hours of admission. Total leukocyte and neutrophil counts were significantly higher (35% and 41% respectively) in women who had sPTB than women who did not deliver within 48 hours (p<0.001). Fetal fibronectin (fFN) test was performed on 62 women. There was no difference in the urine, vaginal and placental microbiology and histopathology reports between the two groups of women. There were 469 significant differentially expressed genes (FDR<0.05); 28 differentially expressed genes were chosen for microarray validation using qRT-PCR and 20 out of 28 genes were successfully validated (p<0.05). An optimal random forest classifier model to predict sPTB was achieved using the top nine differentially expressed genes coupled with peripheral clinical blood data (sensitivity 70.8%, specificity 75.5%). These differentially expressed genes may further elucidate the underlying mechanisms of sPTB and pave the way for future systems biology studies to predict sPTB.
Collapse
Affiliation(s)
- Yujing Jan Heng
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Craig Edward Pennell
- School of Women's and Infants' Health, University of Western Australia, Crawley, WA, Australia
| | - Hon Nian Chua
- Institute for Infocomm Research, Agency for Science, Technology and Research, Singapore, Singapore
| | | | - Stephen James Lye
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| |
Collapse
|
102
|
Mukherjee A, Mueller GM, Kinlough CL, Sheng N, Wang Z, Mustafa SA, Kashlan OB, Kleyman TR, Hughey RP. Cysteine palmitoylation of the γ subunit has a dominant role in modulating activity of the epithelial sodium channel. J Biol Chem 2014; 289:14351-9. [PMID: 24692558 DOI: 10.1074/jbc.m113.526020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The epithelial sodium channel (ENaC) is composed of three homologous subunits (α, β, and γ) with cytoplasmic N and C termini. Our previous work revealed that two cytoplasmic Cys residues in the β subunit, βCys-43 and βCys-557, are Cys-palmitoylated. ENaCs with mutant βC43A/C557A exhibit normal surface expression but enhanced Na(+) self-inhibition and reduced channel open probability. Although the α subunit is not palmitoylated, we now show that the two cytoplasmic Cys residues in the γ subunit are palmitoylated. ENaCs with mutant γC33A, γC41A, or γC33A/C41A exhibit reduced activity compared with wild type channels but normal surface expression and normal levels of α and γ subunit-activating cleavage. These mutant channels have significantly enhanced Na(+) self-inhibition and reduced open probability compared with wild type ENaCs. Channel activity was enhanced by co-expression with the palmitoyltransferase DHHC2 that also co-immunoprecipitates with ENaCs. Secondary structure prediction of the N terminus of the γ subunit places γCys-33 within an α-helix and γCys-44 on a coil before the first transmembrane domain within a short tract that includes a well conserved His-Gly motif, where mutations have been associated with altered channel gating. Our current and previous results suggest that palmitoylation of the β and γ subunits of ENaCs enhances interactions of their respective cytoplasmic domains with the plasma membrane and stabilizes the open state of the channel. Comparison of activities of channels lacking palmitoylation sites in individual or multiple subunits revealed that γ subunit palmitoylation has a dominant role over β subunit palmitoylation in modulating ENaC gating.
Collapse
Affiliation(s)
| | | | - Carol L Kinlough
- From the Renal-Electrolyte Division, Department of Medicine, and
| | - Nan Sheng
- From the Renal-Electrolyte Division, Department of Medicine, and
| | - Zhijian Wang
- From the Renal-Electrolyte Division, Department of Medicine, and
| | - S Atif Mustafa
- From the Renal-Electrolyte Division, Department of Medicine, and
| | - Ossama B Kashlan
- From the Renal-Electrolyte Division, Department of Medicine, and
| | - Thomas R Kleyman
- From the Renal-Electrolyte Division, Department of Medicine, and Department of Cell Biology,
| | - Rebecca P Hughey
- From the Renal-Electrolyte Division, Department of Medicine, and Department of Cell Biology, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
103
|
Fröhlich M, Dejanovic B, Kashkar H, Schwarz G, Nussberger S. S-palmitoylation represents a novel mechanism regulating the mitochondrial targeting of BAX and initiation of apoptosis. Cell Death Dis 2014; 5:e1057. [PMID: 24525733 PMCID: PMC3944235 DOI: 10.1038/cddis.2014.17] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 12/23/2013] [Accepted: 01/02/2014] [Indexed: 12/19/2022]
Abstract
The intrinsic pathway of apoptotic cell death is mainly mediated by the BCL-2-associated X (BAX) protein through permeabilization of the mitochondrial outer membrane (MOM) and the concomitant release of cytochrome c into the cytosol. In healthy, non-apoptotic cells, BAX is predominantly localized in the cytosol and exhibits a dynamic shuttle cycle between the cytosol and the mitochondria. Thus, the initial association with mitochondria represents a critical regulatory step enabling BAX to insert into MOMs, promoting the release of cytochrome c and ultimately resulting in apoptosis. However, the molecular mode of how BAX associates with MOMs and whether a cellular regulatory mechanism governs this process is poorly understood. Here we show that in both primary tissues and cultured cells, the association with MOMs and the proapoptotic action of BAX is controlled by its S-palmitoylation at Cys-126. A lack of BAX palmitoylation reduced BAX mitochondrial translocation, BAX oligomerization, caspase activity and apoptosis. Furthermore, ectopic expression of specific palmitoyl transferases in cultured healthy cells increases BAX S-palmitoylation and accelerates apoptosis, whereas malignant tumor cells show reduced BAX S-palmitoylation consistent with their reduced BAX-mediated proapoptotic activity. Our findings suggest that S-palmitoylation of BAX at Cys126 is a key regulatory process of BAX-mediated apoptosis.
Collapse
Affiliation(s)
- M Fröhlich
- Institute of Biochemistry, Department of Chemistry and Center for Molecular Medicine, Cologne University, Zülpicher Strasse 47, Cologne 50674, Germany
| | - B Dejanovic
- Institute of Biochemistry, Department of Chemistry and Center for Molecular Medicine, Cologne University, Zülpicher Strasse 47, Cologne 50674, Germany
| | - H Kashkar
- Institute for Medical Microbiology, Immunology and Hygiene and Center for Molecular Medicine, Cologne University, Goldenfels Strasse 19-21, Cologne 50935, Germany
| | - G Schwarz
- Institute of Biochemistry, Department of Chemistry and Center for Molecular Medicine, Cologne University, Zülpicher Strasse 47, Cologne 50674, Germany
| | - S Nussberger
- 1] Institute of Biochemistry, Department of Chemistry and Center for Molecular Medicine, Cologne University, Zülpicher Strasse 47, Cologne 50674, Germany [2] Biophysics Department, Institute of Biology, University of Stuttgart, Pfaffenwaldring 57, Stuttgart 70550, Germany
| |
Collapse
|
104
|
Palmitoylated transmembrane adaptor proteins in leukocyte signaling. Cell Signal 2014; 26:895-902. [PMID: 24440308 DOI: 10.1016/j.cellsig.2014.01.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/07/2014] [Accepted: 01/09/2014] [Indexed: 12/14/2022]
Abstract
Transmembrane adaptor proteins (TRAPs) are structurally related proteins that have no enzymatic function, but enable inducible recruitment of effector molecules to the plasma membrane, usually in a phosphorylation dependent manner. Numerous surface receptors employ TRAPs for either propagation or negative regulation of the signal transduction. Several TRAPs (LAT, NTAL, PAG, LIME, PRR7, SCIMP, LST1/A, and putatively GAPT) are known to be palmitoylated that could facilitate their localization in lipid rafts or tetraspanin enriched microdomains. This review summarizes expression patterns, binding partners, signaling pathways, and biological functions of particular palmitoylated TRAPs with an emphasis on the three most recently discovered members, PRR7, SCIMP, and LST1/A. Moreover, we discuss in silico methodology used for discovery of new family members, nature of their binding partners, and microdomain localization.
Collapse
|
105
|
Zinc co-ordination by the DHHC cysteine-rich domain of the palmitoyltransferase Swf1. Biochem J 2013; 454:427-35. [PMID: 23790227 DOI: 10.1042/bj20121693] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
S-acylation, commonly known as palmitoylation, is a widespread post-translational modification of proteins that consists of the thioesterification of one or more cysteine residues with fatty acids. This modification is catalysed by a family of PATs (palmitoyltransferases), characterized by the presence of a 50-residue long DHHC-CRD (Asp-His-His-Cys cysteine-rich domain). To gain knowledge on the structure-function relationships of these proteins, we carried out a random-mutagenesis assay designed to uncover essential amino acids in Swf1, the yeast PAT responsible for the palmitoylation of SNARE (soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptor) proteins. We identified 21 novel loss-of-function mutations, which are mostly localized within the DHHC-CRD. Modelling of the tertiary structure of the Swf1 DHHC domain suggests that it could fold as a zinc-finger domain, co-ordinating two zinc atoms in a CCHC arrangement. All residues predicted to be involved in the co-ordination of zinc were found to be essential for Swf1 function in the screen. Moreover, these mutations result in unstable proteins, in agreement with a structural role for these zinc fingers. The conservation of amino acids predicted to form each zinc-binding pocket suggests a shared function, as the selective pressure to maintain them is lost upon mutation of one of them. A Swf1 orthologue that lacks one of the zinc-binding pockets is able to complement a yeast swf1∆ strain, possibly because a similar fold can be stabilized by hydrogen bonds instead of zinc co-ordination. Finally, we show directly that recombinant Swf1 DHHC-CRD is able to bind zinc. Sequence analyses of DHHC domains allowed us to present models of the zinc-binding properties for all PATs.
Collapse
|
106
|
Kordyukova LV, Serebryakova MV. Mass spectrometric approaches to study enveloped viruses: new possibilities for structural biology and prophylactic medicine. BIOCHEMISTRY (MOSCOW) 2013; 77:830-42. [PMID: 22860905 PMCID: PMC7087845 DOI: 10.1134/s0006297912080044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
This review considers principles of the use of mass spectrometry for the study of biological macromolecules. Some examples of protein identification, virion proteomics, testing vaccine preparations, and strain surveillance are represented. Possibilities of structural characterization of viral proteins and their posttranslational modifications are shown. The authors’ studies by MALDI-MS on S-acylation of glycoproteins from various families of enveloped viruses and on oligomerization of the influenza virus hemagglutinin transmembrane domains are summarized.
Collapse
Affiliation(s)
- L V Kordyukova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia.
| | | |
Collapse
|
107
|
DHHC17 palmitoylates ClipR-59 and modulates ClipR-59 association with the plasma membrane. Mol Cell Biol 2013; 33:4255-65. [PMID: 24001771 DOI: 10.1128/mcb.00527-13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
ClipR-59 interacts with Akt and regulates Akt compartmentalization and Glut4 membrane trafficking in a plasma membrane association-dependent manner. The association of ClipR-59 with plasma membrane is mediated by ClipR-59 palmitoylation at Cys534 and Cys535. To understand the regulation of ClipR-59 palmitoylation, we have examined all known mammalian DHHC palmitoyltransferases with respect to their ability to promote ClipR-59 palmitoylation. We found that, among 23 mammalian DHHC palmitoyltransferases, DHHC17 is the major ClipR-59 palmitoyltransferase, as evidenced by the fact that DHHC17 interacted with ClipR-59 and palmitoylated ClipR-59 at Cys534 and Cys535. By palmitoylating ClipR-59, DHHC17 directly regulates ClipR-59 plasma membrane association, as ectopic expression of DHHC17 increased whereas silencing of DHHC17 reduced the levels of ClipR-59 associated with plasma membrane. We have also examined the role of DHHC17 in Akt signaling and found that silencing of DHHC17 in 3T3-L1 adipocytes decreased the levels of Akt as well as ClipR-59 on the plasma membrane and impaired insulin-dependent Glut4 membrane translocation. We suggest that DHHC17 is a ClipR-59 palmitoyltransferase that modulates ClipR-59 plasma membrane binding, thereby regulating Akt signaling and Glut4 membrane translocation in adipocytes.
Collapse
|
108
|
Fukuda N, Doi M, Honda S. Yeast one-hybrid gγ recruitment system for identification of protein lipidation motifs. PLoS One 2013; 8:e70100. [PMID: 23922919 PMCID: PMC3724820 DOI: 10.1371/journal.pone.0070100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 06/14/2013] [Indexed: 12/11/2022] Open
Abstract
Fatty acids and isoprenoids can be covalently attached to a variety of proteins. These lipid modifications regulate protein structure, localization and function. Here, we describe a yeast one-hybrid approach based on the Gγ recruitment system that is useful for identifying sequence motifs those influence lipid modification to recruit proteins to the plasma membrane. Our approach facilitates the isolation of yeast cells expressing lipid-modified proteins via a simple and easy growth selection assay utilizing G-protein signaling that induces diploid formation. In the current study, we selected the N-terminal sequence of Gα subunits as a model case to investigate dual lipid modification, i.e., myristoylation and palmitoylation, a modification that is widely conserved from yeast to higher eukaryotes. Our results suggest that both lipid modifications are required for restoration of G-protein signaling. Although we could not differentiate between myristoylation and palmitoylation, N-terminal position 7 and 8 play some critical role. Moreover, we tested the preference for specific amino-acid residues at position 7 and 8 using library-based screening. This new approach will be useful to explore protein-lipid associations and to determine the corresponding sequence motifs.
Collapse
Affiliation(s)
- Nobuo Fukuda
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi, Tsukuba, Ibaraki, Japan
| | - Motomichi Doi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi, Tsukuba, Ibaraki, Japan
| | - Shinya Honda
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi, Tsukuba, Ibaraki, Japan
| |
Collapse
|
109
|
Tanisawa K, Mikami E, Fuku N, Honda Y, Honda S, Ohsawa I, Ito M, Endo S, Ihara K, Ohno K, Kishimoto Y, Ishigami A, Maruyama N, Sawabe M, Iseki H, Okazaki Y, Hasegawa-Ishii S, Takei S, Shimada A, Hosokawa M, Mori M, Higuchi K, Takeda T, Higuchi M, Tanaka M. Exome sequencing of senescence-accelerated mice (SAM) reveals deleterious mutations in degenerative disease-causing genes. BMC Genomics 2013; 14:248. [PMID: 23586671 PMCID: PMC3637625 DOI: 10.1186/1471-2164-14-248] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 03/19/2013] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Senescence-accelerated mice (SAM) are a series of mouse strains originally derived from unexpected crosses between AKR/J and unknown mice, from which phenotypically distinct senescence-prone (SAMP) and -resistant (SAMR) inbred strains were subsequently established. Although SAMP strains have been widely used for aging research focusing on their short life spans and various age-related phenotypes, such as immune dysfunction, osteoporosis, and brain atrophy, the responsible gene mutations have not yet been fully elucidated. RESULTS To identify mutations specific to SAMP strains, we performed whole exome sequencing of 6 SAMP and 3 SAMR strains. This analysis revealed 32,019 to 38,925 single-nucleotide variants in the coding region of each SAM strain. We detected Ogg1 p.R304W and Mbd4 p.D129N deleterious mutations in all 6 of the SAMP strains but not in the SAMR or AKR/J strains. Moreover, we extracted 31 SAMP-specific novel deleterious mutations. In all SAMP strains except SAMP8, we detected a p.R473W missense mutation in the Ldb3 gene, which has been associated with myofibrillar myopathy. In 3 SAMP strains (SAMP3, SAMP10, and SAMP11), we identified a p.R167C missense mutation in the Prx gene, in which mutations causing hereditary motor and sensory neuropathy (Dejerine-Sottas syndrome) have been identified. In SAMP6 we detected a p.S540fs frame-shift mutation in the Il4ra gene, a mutation potentially causative of ulcerative colitis and osteoporosis. CONCLUSIONS Our data indicate that different combinations of mutations in disease-causing genes may be responsible for the various phenotypes of SAMP strains.
Collapse
Affiliation(s)
- Kumpei Tanisawa
- Department of Genomics for Longevity and Health, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Tokyo, Itabashi, 173-0015, Japan
- Graduate School of Sport Sciences, Waseda University, Tokorozawa, 359-1192, Japan
| | - Eri Mikami
- Department of Genomics for Longevity and Health, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Tokyo, Itabashi, 173-0015, Japan
- Graduate School of Sport Sciences, Waseda University, Tokorozawa, 359-1192, Japan
- Japan Society for the Promotion of Science, Tokyo, 102-8472, Japan
| | - Noriyuki Fuku
- Department of Genomics for Longevity and Health, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Tokyo, Itabashi, 173-0015, Japan
| | - Yoko Honda
- Department of Genomics for Longevity and Health, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Tokyo, Itabashi, 173-0015, Japan
| | - Shuji Honda
- Department of Genomics for Longevity and Health, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Tokyo, Itabashi, 173-0015, Japan
| | - Ikuro Ohsawa
- Department of Biological Process of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan
| | - Masafumi Ito
- Department of Molecular Gerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan
| | - Shogo Endo
- Aging Regulation Research Team, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan
| | - Kunio Ihara
- Center for Gene Research, Nagoya University, Nagoya, 464-8602, Japan
| | - Kinji Ohno
- Department of Neurogenetics and Bioinformatics, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Yuki Kishimoto
- Department of Aging Regulation, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan
| | - Akihito Ishigami
- Department of Aging Regulation, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan
| | - Naoki Maruyama
- Department of Aging Regulation, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan
| | - Motoji Sawabe
- Department of Pathology and Bioresource Center for Geriatric Research, Tokyo Metropolitan Institute of Gerontology, Tokyo, 1730015, Japan
| | - Hiroyoshi Iseki
- Research Center for Genomic Medicine, Saitama Medical University, Hidaka, 350-1241, Japan
| | - Yasushi Okazaki
- Research Center for Genomic Medicine, Saitama Medical University, Hidaka, 350-1241, Japan
| | - Sanae Hasegawa-Ishii
- Department of Pathology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, 480-0392, Japan
| | - Shiro Takei
- Department of Pathology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, 480-0392, Japan
| | - Atsuyoshi Shimada
- Department of Pathology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, 480-0392, Japan
| | - Masanori Hosokawa
- Department of Pathology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, 480-0392, Japan
| | - Masayuki Mori
- Department of Aging Biology, Institute on Aging and Adaptation, Shinshu University Graduate School of Medicine, Matsumoto, 390-8621, Japan
| | - Keiichi Higuchi
- Department of Aging Biology, Institute on Aging and Adaptation, Shinshu University Graduate School of Medicine, Matsumoto, 390-8621, Japan
| | - Toshio Takeda
- The Council for SAM Research, Kyoto, 604-8856, Japan
| | - Mitsuru Higuchi
- Faculty of Sport Sciences, Waseda University, Tokorozawa, 359-1192, Japan
| | - Masashi Tanaka
- Department of Genomics for Longevity and Health, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Tokyo, Itabashi, 173-0015, Japan
| |
Collapse
|
110
|
Biernatowska A, Podkalicka J, Majkowski M, Hryniewicz-Jankowska A, Augoff K, Kozak K, Korzeniewski J, Sikorski AF. The role of MPP1/p55 and its palmitoylation in resting state raft organization in HEL cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1876-84. [PMID: 23507198 DOI: 10.1016/j.bbamcr.2013.03.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 01/31/2013] [Accepted: 03/04/2013] [Indexed: 12/24/2022]
Abstract
Here we show the crucial role of MPP1 in lateral membrane ordering/organization in HEL cells (derived from erythroid precursors). Biochemical analyses showed that inhibition of MPP1 palmitoylation or silencing of the MPP1 gene led to a dramatic decrease in the DRM fraction. This was accompanied by a reduction of membrane order as shown by fluorescence-lifetime imaging microscopy (FLIM) analyses. Furthermore, MPP1 knockdown significantly affects the activation of MAP-kinase signaling via raft-dependent RTK (receptor tyrosine kinase) receptors, indicating the importance of MPP1 for lateral membrane organization. In conclusion, palmitoylation of MPP1 appears to be at least one of the mechanisms controlling lateral organization of the erythroid cell membrane. Thus, this study, together with our recent results on erythrocytes, reported elsewhere (Łach et al., J. Biol. Chem., 2012, 287, 18974-18984), points to a new role for MPP1 and presents a novel linkage between membrane raft organization and protein palmitoylation.
Collapse
|
111
|
Ciana A, Achilli C, Hannoush RN, Risso A, Balduini C, Minetti G. Freely turning over palmitate in erythrocyte membrane proteins is not responsible for the anchoring of lipid rafts to the spectrin skeleton: A study with bio-orthogonal chemical probes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:924-31. [DOI: 10.1016/j.bbamem.2012.11.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 10/31/2012] [Accepted: 11/23/2012] [Indexed: 10/27/2022]
|
112
|
Emerging roles for protein S-palmitoylation in immunity from chemical proteomics. Curr Opin Chem Biol 2013; 17:27-33. [PMID: 23332315 DOI: 10.1016/j.cbpa.2012.11.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 10/30/2012] [Accepted: 11/01/2012] [Indexed: 02/08/2023]
Abstract
The activation of innate and adaptive immune signaling pathways and effector functions often occur at cellular membranes and are regulated by complex mechanisms. Here we review the growing number of proteins which are known to be regulated by S-palmitoylation in immune cells emerging from recent advances in chemical proteomics. These chemical proteomic studies have highlighted the roles of this dynamic lipid modification in regulating the specificity and strength of immune responses in different lymphocyte populations.
Collapse
|
113
|
Jones ML, Tay CL, Rayner JC. Getting stuck in: protein palmitoylation in Plasmodium. Trends Parasitol 2012; 28:496-503. [DOI: 10.1016/j.pt.2012.08.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 08/28/2012] [Accepted: 08/28/2012] [Indexed: 11/26/2022]
|
114
|
Sharma C, Rabinovitz I, Hemler ME. Palmitoylation by DHHC3 is critical for the function, expression, and stability of integrin α6β4. Cell Mol Life Sci 2012; 69:2233-44. [PMID: 22314500 DOI: 10.1007/s00018-012-0924-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 01/05/2012] [Accepted: 01/19/2012] [Indexed: 12/14/2022]
Abstract
The laminin-binding integrin α6β4 plays key roles in both normal epithelial and endothelial cells and during tumor cell progression, metastasis, and angiogenesis. Previous cysteine mutagenesis studies have suggested that palmitoylation of α6β4 protein supports a few integrin-dependent functions and molecular associations. Here we took another approach and obtained strikingly different results. We used overexpression and RNAi knockdown in multiple cell types to identify protein acyl transferase DHHC3 as the enzyme responsible for integrin β4 and α6 palmitoylation. Ablation of DHHC3 markedly diminished integrin-dependent cellular cable formation on Matrigel, integrin signaling through Src, and β4 phosphorylation on key diagnostic amino acids (S1356 and 1424). However, unexpectedly, and in sharp contrast to prior α6β4 mutagenesis results, knockdown of DHHC3 accelerated the degradation of α6β4, likely due to an increase in endosomal exposure to cathepsin D. When proteolytic degradation was inhibited (by Pepstatin A), rescued α6β4 accumulated intracellularly, but was unable to reach the cell surface. DHHC3 ablation effects were strongly selective for α6β4. Cell-surface levels of ~10 other proteins (including α3β1) were not diminished, and the appearance of hundreds of other palmitoylated proteins was not altered. Results obtained here demonstrate a new substrate for the DHHC3 enzyme and provide novel opportunities for modulating α6β4 expression, distribution, and function.
Collapse
Affiliation(s)
- Chandan Sharma
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | | |
Collapse
|
115
|
Wright DB, Tripathi S, Sikarwar A, Santosh KT, Perez-Zoghbi J, Ojo OO, Irechukwu N, Ward JPT, Schaafsma D. Regulation of GPCR-mediated smooth muscle contraction: implications for asthma and pulmonary hypertension. Pulm Pharmacol Ther 2012; 26:121-31. [PMID: 22750270 DOI: 10.1016/j.pupt.2012.06.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 06/15/2012] [Accepted: 06/18/2012] [Indexed: 11/28/2022]
Abstract
Contractile G-protein-coupled receptors (GPCRs) have emerged as key regulators of smooth muscle contraction, both under healthy and diseased conditions. This brief review will discuss some key topics and novel insights regarding GPCR-mediated airway and vascular smooth muscle contraction as discussed at the 7th International Young Investigators' Symposium on Smooth Muscle (2011, Winnipeg, Manitoba, Canada) and will in particular focus on processes driving Ca(2+)-mobilization and -sensitization.
Collapse
Affiliation(s)
- D B Wright
- Department of Asthma, Allergy, and Lung Biology, King's College, London, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Łach A, Grzybek M, Heger E, Korycka J, Wolny M, Kubiak J, Kolondra A, Bogusławska DM, Augoff K, Majkowski M, Podkalicka J, Kaczor J, Stefanko A, Kuliczkowski K, Sikorski AF. Palmitoylation of MPP1 (membrane-palmitoylated protein 1)/p55 is crucial for lateral membrane organization in erythroid cells. J Biol Chem 2012; 287:18974-84. [PMID: 22496366 DOI: 10.1074/jbc.m111.332981] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
S-Acylation of proteins is a ubiquitous post-translational modification and a common signal for membrane association. The major palmitoylated protein in erythrocytes is MPP1, a member of the MAGUK family and an important component of the ternary complex that attaches the spectrin-based skeleton to the plasma membrane. Here we show that DHHC17 is the only acyltransferase present in red blood cells (RBC). Moreover, we give evidence that protein palmitoylation is essential for membrane organization and is crucial for proper RBC morphology, and that the effect is specific for MPP1. Our observations are based on the clinical cases of two related patients whose RBC had no palmitoylation activity, caused by a lack of DHHC17 in the membrane, which resulted in a strong decrease of the amount of detergent-resistant membrane (DRM) material. We confirmed that this loss of detergent-resistant membrane was due to the lack of palmitoylation by treatment of healthy RBC with 2-bromopalmitic acid (2-BrP, common palmitoylation inhibitor). Concomitantly, fluorescence lifetime imaging microscopy (FLIM) analyses of an order-sensing dye revealed a reduction of membrane order after chemical inhibition of palmitoylation in erythrocytes. These data point to a pathophysiological relationship between the loss of MPP1-directed palmitoylation activity and perturbed lateral membrane organization.
Collapse
Affiliation(s)
- Agnieszka Łach
- Laboratory of Cytobiochemistry, Biotechnology Faculty, University of Wrocław, Przybyszewskiego 63/77, 51-148 Wrocław, Poland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|