101
|
Milenković D, Avdović EH, Dimić D, Bajin Z, Ristić B, Vuković N, Trifunović SR, Marković ZS. Reactivity of the coumarine derivative towards cartilage proteins: combined NBO, QTAIM, and molecular docking study. MONATSHEFTE FUR CHEMIE 2017. [DOI: 10.1007/s00706-017-2051-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
102
|
Mirzaei SA, Gholamian Dehkordi N, Ghamghami M, Amiri AH, Dalir Abdolahinia E, Elahian F. ABC-transporter blockage mediated by xanthotoxin and bergapten is the major pathway for chemosensitization of multidrug-resistant cancer cells. Toxicol Appl Pharmacol 2017; 337:22-29. [PMID: 29079042 DOI: 10.1016/j.taap.2017.10.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 10/17/2017] [Accepted: 10/23/2017] [Indexed: 01/28/2023]
Abstract
Furanocoumarins derived from herbal and citrus extracts can act as antibacterial, antioxidant, immunomodulator, apoptotic, and selective anticancer agents, prompting a biological investigation to determine and predict their clinical therapeutic significance. Here, the cell cytotoxic effects of bergapten and xanthotoxin were analyzed alone and in combination with standard chemotherapeutics on three multidrug resistant cells and their nonresistant parental counterparts. The furanocoumarins modulatory effects on MDR1, BCRP, and MRP pump expression and function were investigated. Although quantitative real time PCR demonstrated that the MDR transcript level changes in a time dependent manner, flow cytometric analyses using fluorescent-labeled antibodies have indicated that bergapten and xanthotoxin had no significant effect on the protein levels. FACS analyses indicated that these prominent anticancer agents significantly blocked MDR1, BCRP, and MRP transporter function. Maximum furanocoumarin-mediated pump activity blockage in the MDR-resistant cells was quantified as 87% of normal and consequently, chemotherapeutic accumulation increased up to 2.7-fold and cytotoxicity tension increased 104-fold. MDR1 efflux kinetics also revealed that the maximum velocity and the pump affinity to daunorubicin were uncompetitively decreased. We conclude that bergapten and xanthotoxin are cytotoxic agents capable of preventing daunorubicin, mitoxantrone, and cisplatin binding to ABC-transporters and subsequently inhibiting their efflux out of cells and they may be a potential combination therapy for malignant cancers.
Collapse
Affiliation(s)
- Seyed Abbas Mirzaei
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Mahsa Ghamghami
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Iran
| | - Amir Hossein Amiri
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Elaheh Dalir Abdolahinia
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Iran
| | - Fatemeh Elahian
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
103
|
Kaushik C, Luxmi R. Synthesis and Antimicrobial Activity of 2-(4-(Hydroxyalkyl)-1H
-1,2,3-triazol-1-yl)-N
-substituted propanamides. J Heterocycl Chem 2017. [DOI: 10.1002/jhet.2988] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- C.P. Kaushik
- Department of Chemistry; Guru Jambheshwar University of Science & Technology; Hisar Haryana 125001 India
| | - Raj Luxmi
- Department of Chemistry; Guru Jambheshwar University of Science & Technology; Hisar Haryana 125001 India
| |
Collapse
|
104
|
Synthesis and DFT Calculations of Novel Vanillin-Chalcones and Their 3-Aryl-5-(4-(2-(dimethylamino)-ethoxy)-3-methoxyphenyl)-4,5-dihydro-1H-pyrazole-1-carbaldehyde Derivatives as Antifungal Agents. Molecules 2017; 22:molecules22091476. [PMID: 29240047 PMCID: PMC6151623 DOI: 10.3390/molecules22091476] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 08/31/2017] [Accepted: 08/31/2017] [Indexed: 01/10/2023] Open
Abstract
Novel (E)-1-(aryl)-3-(4-(2-(dimethylamino)ethoxy)-3-methoxyphenyl) prop-2-en-1-ones 4 were synthesized by a Claisen-Schmidt reaction of 4-(2-(dimethylamino)ethoxy)-3-methoxy-benzaldehyde (2) with several acetophenone derivatives 3. Subsequently, cyclocondensation reactions of chalcones 4 with hydrazine hydrate afforded the new racemic 3-aryl-5-(4-(2-(dimethylamino)ethoxy)-3-methoxyphenyl)-4,5-dihydro-1H-pyrazole-1-carbaldehydes 5 when the reaction was carried out in formic acid. The antifungal activity of both series of compounds against eight fungal species was determined. In general, chalcone derivatives 4 showed better activities than pyrazolines 5 against all tested fungi. None of the compounds 4a–g and 5a–g showed activity against the three Aspergillus spp. In contrast, most of the compounds 4 showed moderate to high activities against three dermatophytes (MICs 31.25–62.5 µg/mL), being 4a followed by 4c the most active structures. Interestingly, 4a and 4c possess fungicidal rather than fungistatic activities, with MFC values between 31.25 and 62.5 μg/mL. The comparison of the percentages of inhibition of C. neoformans by the most active compounds 4, allowed us to know the role played by the different substituents of the chalcones’ A-ring. Also the most anti-cryptococcal compounds 4a–c and 4g, were tested in a second panel of five clinical C. neoformans strains in order to have an overview of their inhibition capacity not only of standardized but also of clinical C. neoformans strains. DFT calculations showed that the electrophilicity is the main electronic property to explain the differences in antifungal activities for the synthesized chalcones and pyrazolines compounds. Furthermore, a quantitative reactivity analysis showed that electron-withdrawing substituted chalcones presented the higher electrophilic character and hence, the greater antifungal activities among compounds of series 4.
Collapse
|
105
|
Singh H, Singh JV, Gupta MK, Saxena AK, Sharma S, Nepali K, Bedi PMS. Triazole tethered isatin-coumarin based molecular hybrids as novel antitubulin agents: Design, synthesis, biological investigation and docking studies. Bioorg Med Chem Lett 2017; 27:3974-3979. [DOI: 10.1016/j.bmcl.2017.07.069] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/15/2017] [Accepted: 07/27/2017] [Indexed: 12/17/2022]
|
106
|
Gabr MT, El-Gohary NS, El-Bendary ER, El-Kerdawy MM, Ni N. Microwave-assisted synthesis and antitumor evaluation of a new series of thiazolylcoumarin derivatives. EXCLI JOURNAL 2017; 16:1114-1131. [PMID: 29285008 PMCID: PMC5735336 DOI: 10.17179/excli2017-208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 07/31/2017] [Indexed: 12/22/2022]
Abstract
A new series of thiazolylcoumarin derivatives was synthesized. The designed strategy embraced a molecular hybridization approach which involves the combination of the thiazole and coumarin pharmacophores together. The new hybrid compounds were tested for in vitro antitumor efficacy over cervical (Hela) and kidney fibroblast (COS-7) cancer cells. Compounds 5f, 5h, 5m and 5r displayed promising efficacy toward Hela cell line. In addition, 5h and 5r were found to be the most active candidates toward COS-7 cell line. The four active analogs, 5f, 5h, 5m and 5r were screened for in vivo antitumor activity over EAC cells in mice, as well as in vitro cytotoxicity toward W138 normal cells. Results illustrated that 5r has the highest in vivo activity, and that the four analogs are less cytotoxic than 5-FU toward W138 normal cells. In this study, 3D pharmacophore analysis was performed to investigate the matching pharmacophoric features of the synthesized compounds with trichostatin A. In silico studies showed that the investigated compounds meet the optimal needs for good oral absorption with no expected toxicity hazards.
Collapse
Affiliation(s)
- Moustafa T Gabr
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.,Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, USA
| | - Nadia S El-Gohary
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Eman R El-Bendary
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed M El-Kerdawy
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Nanting Ni
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, USA
| |
Collapse
|
107
|
|
108
|
Kamath PR, Sunil D, Joseph MM, Abdul Salam AA, T.T. S. Indole-coumarin-thiadiazole hybrids: An appraisal of their MCF-7 cell growth inhibition, apoptotic, antimetastatic and computational Bcl-2 binding potential. Eur J Med Chem 2017; 136:442-451. [DOI: 10.1016/j.ejmech.2017.05.032] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 01/24/2023]
|
109
|
Recent developments of coumarin-containing derivatives and their anti-tubercular activity. Eur J Med Chem 2017; 136:122-130. [DOI: 10.1016/j.ejmech.2017.05.004] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 04/09/2017] [Accepted: 05/01/2017] [Indexed: 11/23/2022]
|
110
|
Chaudhry F, Choudhry S, Huma R, Ashraf M, al-Rashida M, Munir R, Sohail R, Jahan B, Munawar MA, Khan MA. Hetarylcoumarins: Synthesis and biological evaluation as potent α -glucosidase inhibitors. Bioorg Chem 2017; 73:1-9. [DOI: 10.1016/j.bioorg.2017.05.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/06/2017] [Accepted: 05/08/2017] [Indexed: 12/29/2022]
|
111
|
Zhuang C, Zhang W, Sheng C, Zhang W, Xing C, Miao Z. Chalcone: A Privileged Structure in Medicinal Chemistry. Chem Rev 2017; 117:7762-7810. [PMID: 28488435 PMCID: PMC6131713 DOI: 10.1021/acs.chemrev.7b00020] [Citation(s) in RCA: 856] [Impact Index Per Article: 107.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Privileged structures have been widely used as an effective template in medicinal chemistry for drug discovery. Chalcone is a common simple scaffold found in many naturally occurring compounds. Many chalcone derivatives have also been prepared due to their convenient synthesis. These natural products and synthetic compounds have shown numerous interesting biological activities with clinical potentials against various diseases. This review aims to highlight the recent evidence of chalcone as a privileged scaffold in medicinal chemistry. Multiple aspects of chalcone will be summarized herein, including the isolation of novel chalcone derivatives, the development of new synthetic methodologies, the evaluation of their biological properties, and the exploration of the mechanisms of action as well as target identification. This review is expected to be a comprehensive, authoritative, and critical review of the chalcone template to the chemistry community.
Collapse
Affiliation(s)
- Chunlin Zhuang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Wen Zhang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Chunquan Sheng
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Wannian Zhang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
| | - Chengguo Xing
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, 1345 Center Drive,
Gainesville, Florida 32610, United States
| | - Zhenyuan Miao
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| |
Collapse
|
112
|
Synthesis of novel coumarin substituted amide derivatives and their antibacterial activities. CHEMICAL PAPERS 2017. [DOI: 10.1007/s11696-017-0149-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
113
|
Abbot V, Sharma P, Dhiman S, Noolvi MN, Patel HM, Bhardwaj V. Small hybrid heteroaromatics: resourceful biological tools in cancer research. RSC Adv 2017. [DOI: 10.1039/c6ra24662a] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nowadays, hybrid drugs containing two or more covalently linked known potential pharmacophores are designed to simultaneously modulate multiple targets of multifactorial diseases to overcome the side effects associated with a single drug.
Collapse
Affiliation(s)
- Vikrant Abbot
- Department of Biotechnology
- Bioinformatics and Pharmacy
- Jaypee University of Information Technology
- Solan
- India
| | - Poonam Sharma
- Department of Biotechnology
- Bioinformatics and Pharmacy
- Jaypee University of Information Technology
- Solan
- India
| | - Saurabh Dhiman
- Department of Biotechnology
- Bioinformatics and Pharmacy
- Jaypee University of Information Technology
- Solan
- India
| | | | - Harun M. Patel
- Department of Pharmaceutical Chemistry
- R.C. Patel Institute of Pharmaceutical Education and Research
- Dhule
- India
| | - Varun Bhardwaj
- Department of Biotechnology
- Bioinformatics and Pharmacy
- Jaypee University of Information Technology
- Solan
- India
| |
Collapse
|
114
|
Synthesis and biological evaluation of chalcone derivatives containing aminoguanidine or acylhydrazone moieties. Bioorg Med Chem Lett 2016; 26:5920-5925. [DOI: 10.1016/j.bmcl.2016.11.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/28/2016] [Accepted: 11/01/2016] [Indexed: 11/18/2022]
|
115
|
Experimental and Theoretical Studies of the Spectroscopic Properties of Chalcone Derivatives. J Fluoresc 2016; 27:537-549. [DOI: 10.1007/s10895-016-1981-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/03/2016] [Indexed: 10/20/2022]
|
116
|
Green synthesis and anticancer potential of chalcone linked-1,2,3-triazoles. Eur J Med Chem 2016; 126:944-953. [PMID: 28011424 DOI: 10.1016/j.ejmech.2016.11.030] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/08/2016] [Accepted: 11/13/2016] [Indexed: 12/11/2022]
Abstract
A series of chalcone linked-1,2,3-triazoles was synthesized via cellulose supported copper nanoparticle catalyzed click reaction in water. The structures of all the compounds were analyzed by IR, NMR and Mass spectral techniques. All the synthesized products were subjected to 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cytotoxicity assay against a panel of four human cancer cell lines (MCF-7, MIA-Pa-Ca-2, A549, HepG2) to check their anticancer potential. Compound 6h was found to be most active against all the tested cancer cell lines with IC50 values in the range of 4-11 μM and showed better or comparable activity to the reference drug against all the tested cell lines. Cell cycle analysis revealed that compound 6h induces apoptosis and G2/S arrest in MIA-Pa-Ca-2 cells. Compound 6h triggers mitochondrial potential loss in pancreatic cancer MIA-Pa-Ca-2 cells. Further, Compound 6h also triggers caspase-3 and PARP-1 cleavage, which increases in dose dependent manner.
Collapse
|
117
|
Teci M, Tilley M, McGuire MA, Organ MG. Handling Hazards Using Continuous Flow Chemistry: Synthesis of N1-Aryl-[1,2,3]-triazoles from Anilines via Telescoped Three-Step Diazotization, Azidodediazotization, and [3 + 2] Dipolar Cycloaddition Processes. Org Process Res Dev 2016. [DOI: 10.1021/acs.oprd.6b00292] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Matthieu Teci
- Department
of Chemistry, York University, 4700 Keele Street, Toronto, Ontario M3J1P3, Canada
| | - Michael Tilley
- Department
of Chemistry, York University, 4700 Keele Street, Toronto, Ontario M3J1P3, Canada
| | - Michael A. McGuire
- GlaxoSmithKline
Pharmaceuticals Inc., 709 Swedeland
Road, P.O. Box 1539, UMW 2810, King of Prussia, Pennsylvania 19406, United States
| | - Michael G. Organ
- Department
of Chemistry, York University, 4700 Keele Street, Toronto, Ontario M3J1P3, Canada
- Centre
for Catalysis Research and Innovation (CCRI) and Department of Chemistry, University of Ottawa, Ottawa, Ontario K1N6N5, Canada
| |
Collapse
|
118
|
Combinatorial Synthesis of Structurally Diverse Triazole-Bridged Flavonoid Dimers and Trimers. Molecules 2016; 21:molecules21091230. [PMID: 27649131 PMCID: PMC6273872 DOI: 10.3390/molecules21091230] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 08/26/2016] [Accepted: 09/08/2016] [Indexed: 12/16/2022] Open
Abstract
Flavonoids are a large family of compounds associated with a broad range of biologically useful properties. In recent years, synthetic compounds that contain two flavonoid units linked together have attracted attention in drug discovery and development projects. Numerous flavonoid dimer systems, incorporating a range of monomers attached via different linkers, have been reported to exhibit interesting bioactivities. From a medicinal chemistry perspective, the 1,2,3-triazole ring system has been identified as a particularly attractive linker moiety in dimeric derivatives (owing to several favourable attributes including proven biological relevance and metabolic stability) and triazole-bridged flavonoid dimers possessing anticancer and antimalarial activities have recently been reported. However, there are relatively few examples of libraries of triazole-bridged flavonoid dimers and the diversity of flavonoid subunits present within these is typically limited. Thus, this compound type arguably remains underexplored within drug discovery. Herein, we report a modular strategy for the synthesis of novel and biologically interesting triazole-bridged flavonoid heterodimers and also very rare heterotrimers from readily available starting materials. Application of this strategy has enabled step-efficient and systematic access to a library of structurally diverse compounds of this sort, with a variety of monomer units belonging to six different structural subclasses of flavonoid successfully incorporated.
Collapse
|
119
|
Kamath PR, Sunil D, Ajees AA, Pai KSR, Biswas S. N'-((2-(6-bromo-2-oxo-2H-chromen-3-yl)-1H-indol-3-yl)methylene)benzohydrazide as a probable Bcl-2/Bcl-xL inhibitor with apoptotic and anti-metastatic potential. Eur J Med Chem 2016; 120:134-147. [PMID: 27187865 DOI: 10.1016/j.ejmech.2016.05.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 04/26/2016] [Accepted: 05/05/2016] [Indexed: 01/09/2023]
Abstract
A wide number of marketed drugs and drug candidates in cancer clinical development contain halogen substituents. The aim of the present study was to synthesize a series of halogen incorporated indole-coumarin hybrid schiff bases - N'-((2-(2-oxo-2H-chromen-3-yl)-1H-indol-3-yl)methylene)benzohydrazides and to investigate their apoptotic and anti-migratory potential in human breast adenocarcinoma cells as well as to examine their Bcl-2 and Bcl-xL protein binding ability via in silico docking. Hybrid 5g with a bromine atom in position-7 of coumarin ring displayed significant dose dependent cytotoxic activity with high selectivity to MCF-7 cells in MTT assay. Cell cycle progression analysis of 5g treated cells using flow cytometer exhibited a cell cycle arrest in the S phase and accumulation of cells in the subG1 phase. The apoptotic mode of cell death induced by 5g was further confirmed by Annexin-V staining assay. The wound healing assay revealed a profound impairment in the migration of MCF-7 cells presumably due to down-regulation of Bcl-2 and Bcl-xL proteins induced by 5g as observed in immunoblotting analysis. SAR studies of these hybrid molecules based on cell viability and docking were also probed. The most active pharmacophore 5g was found to bind favourably to Bcl-2 and Bcl-xL in docking simulation analysis suggesting it to be a probable small molecule Bcl-2/Bcl-xL inhibitor and a potential lead for breast cancer chemotherapy with apoptotic and anti-metastatic properties.
Collapse
Affiliation(s)
- Pooja R Kamath
- Department of Chemistry, Manipal Institute of Technology, Manipal University, India
| | - Dhanya Sunil
- Department of Chemistry, Manipal Institute of Technology, Manipal University, India.
| | - A Abdul Ajees
- Department of Atomic and Molecular Physics, Manipal Institute of Technology, Manipal University, India
| | - K S R Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, India
| | - Shubankar Biswas
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, India
| |
Collapse
|
120
|
Synthesis, in vitro anticancer and antibacterial activities and in silico studies of new 4-substituted 1,2,3-triazole-coumarin hybrids. Eur J Med Chem 2016; 124:794-808. [PMID: 27639370 DOI: 10.1016/j.ejmech.2016.08.062] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/25/2016] [Accepted: 08/26/2016] [Indexed: 01/19/2023]
Abstract
The 4-substituted 1,2,3-triazole core in designed coumarin hybrids (4-35) with diverse physicochemical properties was introduced by eco-friendly copper(I)-catalyzed Huisgen 1,3-dipolar cycloaddition under microwave irradiation. Coumarin-1,2,3-triazole-benzofused heterocycle hybrids emerged as the class of compounds exhibiting the highest antiproliferative activity. The strong relationship between lipophilicity and antiproliferative activities was observed indicating that lipophilic 1,2,3-triazole-coumarin hybrids containing phenylethyl (13), 3,5-difluorophenyl (14), 5-iodoindole (30) and benzimidazole (33 and 35) subunits showed the most potent cytostatic effects. The 7-methylcoumarin-1,2,3-triazole-2-methylbenzimidazole hybrid 33 can be highlighted as a lead that exerted the highest cytotoxicity against hepatocellular carcinoma HepG2 cells with IC50 value of 0.9 μM and high selectivity (SI = 50). This compound induced cell death, mainly due to early apoptosis. Strong antiproliferative effect of 33 could be associated with its inhibition of 5-lipoxygenase (5-LO) activity and perturbation of sphingolipid signaling by interfering with intracellular acid ceramidase (ASAH) activity. Outlined considerable effect of lipophilicity on antiproliferative activity was not observed for antibacterial activity. The compounds with p-pentylphenyl (17), 2-chloro-4-fluorobenzenesulfonamide (23) and dithiocarbamate (27) moiety were endowed with high selectivity against Enterococcus species. Moreover, these compounds were found to be superior in inhibiting the growth of clinically isolated vancomycin-resistant Enterococcus faecium, while the reference antibiotics exhibited the lack of activity. Our findings indicate that coumarin-1,2,3-triazole could be used as the scaffold for structural optimization to develop more potent and selective anticancer agents and encourage further development of novel structurally related analogs of 33 as more effective 5-LO inhibitors.
Collapse
|
121
|
Efficient synthesis of new antiproliferative steroidal hybrids using the molecular hybridization approach. Eur J Med Chem 2016; 117:241-55. [DOI: 10.1016/j.ejmech.2016.04.024] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/14/2016] [Accepted: 04/08/2016] [Indexed: 11/20/2022]
|
122
|
Dofe VS, Sarkate AP, Lokwani DK, Kathwate SH, Gill CH. Synthesis, antimicrobial evaluation, and molecular docking studies of novel chromone based 1,2,3-triazoles. RESEARCH ON CHEMICAL INTERMEDIATES 2016. [DOI: 10.1007/s11164-016-2602-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
123
|
Ashok D, Ravi S, Lakshmi BV, Ganesh A, Adam S. Microwave assisted synthesis of (E)-1-(2-((1-benzyl-1H-1,2,3-triazol-4-yl)methoxy)phenyl)-3-(9-ethyl-9H-carbazol-3-yl)prop-2-en-1-ones and their antimicrobial activity. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2016. [DOI: 10.1134/s1068162016030043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
124
|
Mirzaei H, Emami S. Recent advances of cytotoxic chalconoids targeting tubulin polymerization: Synthesis and biological activity. Eur J Med Chem 2016; 121:610-639. [PMID: 27318983 DOI: 10.1016/j.ejmech.2016.05.067] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 05/28/2016] [Accepted: 05/30/2016] [Indexed: 02/07/2023]
Abstract
Since microtubules have an important role in mitosis and other vital cellular functions, tubulin-targeting chemotherapy has been received growing attention in anticancer drug design and development. It was found that a number of naturally occurring compounds including distinct chalcones exert their effect by inhibition of tubulin polymerization. After the identification of tubulin polymerization as potential target for chalcone-type compounds, extensive researches have been made to design and synthesis of new anti-tubulin chalconoids. Although diverse chalcones have found to be potent anticancer agents but in the present review, we focused on the recently reported tubulin polymerization inhibitors from chalcone origin and related synthetic compounds, and their detailed synthetic methods and biological activities.
Collapse
Affiliation(s)
- Hassan Mirzaei
- Student Research Committee, Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeed Emami
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
125
|
Chen MH, Tang BC, Zhang X, Shu H. Synthesis and Antibacterial Activity Evaluation of Novel (E)-4-(4-((arylidene)amino)phenoxy)coumarin Derivatives. J Heterocycl Chem 2016. [DOI: 10.1002/jhet.2691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Mei-Hang Chen
- Department of Material and Chemistry Engineering; Tongren University; Bijiang District, Tongren Guizhou 554300 China
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Guizhou University; Huaxi District, Guiyang 550025 China
| | - Bang-Cheng Tang
- Department of Material and Chemistry Engineering; Tongren University; Bijiang District, Tongren Guizhou 554300 China
| | - Xun Zhang
- Department of Material and Chemistry Engineering; Tongren University; Bijiang District, Tongren Guizhou 554300 China
| | - Hua Shu
- Department of Material and Chemistry Engineering; Tongren University; Bijiang District, Tongren Guizhou 554300 China
| |
Collapse
|
126
|
Recent developments of C-4 substituted coumarin derivatives as anticancer agents. Eur J Med Chem 2016; 119:141-68. [PMID: 27155469 DOI: 10.1016/j.ejmech.2016.03.087] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/28/2016] [Accepted: 03/31/2016] [Indexed: 01/01/2023]
Abstract
Cancer is a prominent cause of death in global. Currently, the numbers of drugs that are in clinical practice are having a high prevalence of side effect and multidrug resistance. Researchers have made an attempt to expand a suitable anticancer drug that has no MDR and side effect. Coumarin scaffold became an attractive subject due to their broad spectrum of pharmacological activities. Coumarin derivatives extensively explored for anticancer activities as it possesses minimum side effect along with multi-drug reversal activity. Coumarin derivatives can act by various mechanisms on different tumor cell lines depending on substitution pattern of the core structure of coumarin. Substitution on coumarin nucleus leads to the search for more potent compounds. In this review, we have made an effort to give a synthetic strategy for the preparation of C-4 substituted coumarin derivatives as anticancer agents based on their mechanism of action and also discuss the SAR of the most active compound.
Collapse
|
127
|
Singh H, Kumar M, Nepali K, Gupta MK, Saxena AK, Sharma S, Bedi PMS. Triazole tethered C5-curcuminoid-coumarin based molecular hybrids as novel antitubulin agents: Design, synthesis, biological investigation and docking studies. Eur J Med Chem 2016; 116:102-115. [PMID: 27060762 DOI: 10.1016/j.ejmech.2016.03.050] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/17/2016] [Accepted: 03/18/2016] [Indexed: 11/15/2022]
Abstract
Keeping in view the confines allied with presently accessible antitumor agents and success of C5-curcuminoid based bifunctional hybrids as novel antitubulin agnets, molecular hybrids of C5-curcuminoid and coumarin tethered by triazole ring have been synthesized and investigated for in-vitro cytotoxicity against THP-1, COLO-205, HCT-116 and PC-3 human tumor cell lines. The results revealed that the compounds A-2 to A-9, B-2, B-3, B-7 showed significant cytotoxic potential against THP-1, COLO-205 and HCT-116 cell lines, while the PC-3 cell line among these was found to be almost resistant. Structure activity relationship revealed that the nature of Ring X and the length of carbon-bridge (n) connecting triazole ring with coumarin moiety considerably influence the activity. Methoxy substituted phenyl ring as Ring X and two carbon-bridges were found to be the ideal structural features. The most potent compounds (A-2, A-3 and A-7) were further tested for tubulin polymerization inhibition. Compound A-2 was found to significantly inhibit the tubulin polymerization (IC50 = 0.82 μM in THP-1 tumor cells). The significant cytotoxicity and tubulin polymerization inhibition by A-2 was further rationalized by docking studies where it was docked at the curcumin binding site of tubulin.
Collapse
Affiliation(s)
- Harbinder Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Mandeep Kumar
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Kunal Nepali
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Manish K Gupta
- Lloyd Institute of Management and Technology, Greater Noida, UP, India
| | - Ajit K Saxena
- Indian Institute of Integrative Medicine, Jammu, India
| | - Sahil Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India.
| | - Preet Mohinder S Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| |
Collapse
|
128
|
Synthesis, biological evaluation and molecular docking of novel coumarin incorporated triazoles as antitubercular, antioxidant and antimicrobial agents. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1519-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
129
|
Chalcone Scaffold in Anticancer Armamentarium: A Molecular Insight. J Toxicol 2016; 2016:7651047. [PMID: 26880913 PMCID: PMC4735904 DOI: 10.1155/2016/7651047] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/07/2015] [Accepted: 12/15/2015] [Indexed: 12/26/2022] Open
Abstract
Cancer is an inevitable matter of concern in the medicinal chemistry era. Chalcone is the well exploited scaffold in the anticancer domain. The molecular mechanism of chalcone at cellular level was explored in past decades. This mini review provides the most recent updates on anticancer potential of chalcones.
Collapse
|
130
|
Bhat M, G. K. N, Kayarmar R, S. K. P, R MS. Design, synthesis and characterization of new 1,2,3-triazolyl pyrazole derivatives as potential antimicrobial agents via a Vilsmeier–Haack reaction approach. RSC Adv 2016. [DOI: 10.1039/c6ra06093e] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new series of 1,2,3-triazolyl pyrazole derivatives were synthesisedviaa Vilsmeier–Haack reaction approach and screened for theirin vitroanti-bacterial, anti-fungal and anti-oxidant activities.
Collapse
Affiliation(s)
- Manjunatha Bhat
- Department of Studies in Chemistry
- Mangalore University
- Mangalagangothri-574199
- India
- SeQuent Scientific Limited
| | - Nagaraja G. K.
- Department of Studies in Chemistry
- Mangalore University
- Mangalagangothri-574199
- India
| | - Reshma Kayarmar
- Department of Studies in Chemistry
- Mangalore University
- Mangalagangothri-574199
- India
- SeQuent Scientific Limited
| | - Peethamber S. K.
- Department of Bio-Chemistry
- Kuvempu University
- Shankaraghatta
- India
| | | |
Collapse
|
131
|
Wei H, Ruan J, Zhang X. Coumarin–chalcone hybrids: promising agents with diverse pharmacological properties. RSC Adv 2016. [DOI: 10.1039/c5ra26294a] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Coumarin–chalcone hybrid is an interesting template for medicinal chemists to develop therapeutic agents with diverse pharmacological activity.
Collapse
Affiliation(s)
- Han Wei
- Department of Pharmacy
- The First Affiliated Hospital of Zhengzhou University
- Zhengzhou 450052
- China
| | - Jinlan Ruan
- Tongji School of Pharmacy
- Huazhong University of Science and Technology
- Wuhan 430030
- China
| | - Xiaojian Zhang
- Department of Pharmacy
- The First Affiliated Hospital of Zhengzhou University
- Zhengzhou 450052
- China
| |
Collapse
|
132
|
Bhat M, G. K. N, P. D, N. H, Pai K. SR, Biswas S, S. K. P. Design, synthesis, characterization of some new 1,2,3-triazolyl chalcone derivatives as potential anti-microbial, anti-oxidant and anti-cancer agents via a Claisen–Schmidt reaction approach. RSC Adv 2016; 6:99794-99808. [DOI: 10.1039/c6ra22705h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/14/2024] Open
Abstract
A new series of 1,2,3-triazolyl chalcone derivatives (5a–k) and (6a–e) were synthesized and evaluated for their anti-microbial, anti-oxidant and anti-cancer activities.
Collapse
Affiliation(s)
- Manjunatha Bhat
- Department of Studies in Chemistry
- Mangalore University
- Mangalagangothri – 574199
- India
- SeQuent Scientific Limited
| | - Nagaraja G. K.
- Department of Studies in Chemistry
- Mangalore University
- Mangalagangothri – 574199
- India
| | - Divyaraj P.
- Department of Studies in Chemistry
- Mangalore University
- Mangalagangothri – 574199
- India
- SeQuent Scientific Limited
| | | | | | - Subhankar Biswas
- Department of Pharmacology
- Manipal College of Pharmaceutical Sciences
- Manipal
- India
| | - Peethamber S. K.
- Department of Biochemistry
- Jnanasahyadri
- Kuvempu University
- Shankarghatta
- India
| |
Collapse
|
133
|
Kamath PR, Sunil D, Ajees AA, Pai KSR, Das S. Some new indole-coumarin hybrids; Synthesis, anticancer and Bcl-2 docking studies. Bioorg Chem 2015; 63:101-109. [PMID: 26469742 DOI: 10.1016/j.bioorg.2015.10.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 10/01/2015] [Accepted: 10/05/2015] [Indexed: 11/28/2022]
Abstract
Hybrid molecules have attracted attention for their improved biological activity, selectivity and lesser side effects profile, distinct from their individual components. In the quest for novel anticancer drug entities, three series of indole-coumarin hybrids - 3-(1-benzyl-1H-indol-2-yl)-2H-chromen-2-ones, 2-(2-oxo-2H-chromen-3-yl)-1H-indole-3-carbaldehydes and 2-(2-oxo-2H-chromen-3-yl)-1H-indole-3-carboxylic acids were synthesized. All the synthesized compounds were characterized by spectral techniques like IR, (1)H NMR, (13)C NMR, mass spectrometry and elemental analysis. In silico docking studies of synthesized molecules with apoptosis related gene Bcl-2 that is recognized to play an important role in tumerogenesis were carried out. Dose-dependent cytotoxic effect of the compounds in human breast adenocarcinoma (MCF-7) and normal cell lines were assessed using MTT assay and compared with that of the standard marketed drug, Vincristine. Compound 4c had a highly lipophilic bromine substituent capable of forming halogen bond and was identified as a potent molecule both in docking as well as cytotoxicity studies. Flow cytometric cell cycle analysis of 4c exhibited apoptotic mode of cell death due to cell cycle arrest in G2/M phase. Structure activity relationship of these hybrid molecules was also studied to determine the effect of steric and electronic properties of the substituents on cell viability.
Collapse
Affiliation(s)
- Pooja R Kamath
- Department of Chemistry, Manipal Institute of Technology, Manipal University, 576 104, India
| | - Dhanya Sunil
- Department of Chemistry, Manipal Institute of Technology, Manipal University, 576 104, India.
| | - A Abdul Ajees
- Department of Atomic and Molecular Physics, Manipal Institute of Technology, Manipal University, 576 104, India
| | - K S R Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, 576 104, India
| | - Shubhankar Das
- Department of Radiation Biology & Toxicology, School of Life Sciences, Manipal University, 576 104, India
| |
Collapse
|
134
|
Galayev O, Garazd Y, Garazd M, Lesyk R. Synthesis and anticancer activity of 6-heteroarylcoumarins. Eur J Med Chem 2015; 105:171-81. [PMID: 26491980 DOI: 10.1016/j.ejmech.2015.10.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/07/2015] [Accepted: 10/08/2015] [Indexed: 12/01/2022]
Abstract
A series of novel 7-hydroxy-8-methyl-coumarins with indole, pyrimidine, pyrazole, pyran, tetrazolo[1,5-a]pyrimidine, pyrimido[1,2-a]benzimidazol, 2-oxo-1,2-dihydropyridine and dihydropyrazolo[3,4-b]pyridine moieties at C6 position of heterocyclic core have been synthesized. Anticancer activity screening on NCI60 cell lines allowed identification of 6-(6-fluoro-1H-indol-2-yl)-7-hydroxy-4,8-dimethyl-2H-chromen-2-one (23) with the highest level of antimitotic activity with mean GI50/TGI values of 3.28/13.24 μM and certain sensitivity profile towards the Non-Small Cell Lung Cancer cell line НОР-92 (GI50/TGI/LC50 values 0.95/4.17/29.9 μM).
Collapse
Affiliation(s)
| | - Yana Garazd
- Eximed, Kharkivske shose 50, Kyiv, 02160, Ukraine
| | | | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv, 79010, Ukraine.
| |
Collapse
|
135
|
Liang X, Han X. Fragmentation pathways of synthetic and naturally occurring coumarin derivatives by ion trap and quadrupole time-of-flight mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2015; 29:1596-1602. [PMID: 28339152 DOI: 10.1002/rcm.7245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 06/01/2015] [Accepted: 06/08/2015] [Indexed: 06/06/2023]
Abstract
RATIONALE Synthetic and natural coumarin derivatives possess a wide range of biological activities. Fragmentation pathway studies are important in identifying both naturally occurring coumarins and synthetic coumarins with novel structures and properties. METHODS The fragmentation pathways of eleven coumarin derivatives are investigated by electrospray ionization (ESI) ion-trap mass spectrometry (ESI-ITMSn ) and ESI quadrupole time-of-flight mass spectrometry (QTOFMS) in positive mode. Compounds 1-9 in this study were newly synthesized in our laboratory. Compounds 10 and 11 were isolated from the root of Zanthoxylum armatum. RESULTS The major fragmentation pathways for 11 coumarin derivatives are greatly affected by the heterocyclic ring structures and the side-chain substituents. Typical losses of small neutral molecules, such as CH3 CH2 OH, CH2 =CH2 , CO, and H2 O, are observed for compounds 1-5. Compounds 6-9 share similar fragmentation pathways through losses of CO, aromatic rings, and the coumarin skeleton. The main product ions at m/z 205, 219, and 220 observed for compounds 10 and 11 are produced by the loss of C5 H12 O2 , C4 H10 O2 , and the C4 H9 O2 radical, respectively. CONCLUSIONS The fragmentation pathways of 11 coumarin derivatives are elucidated based on ITMSn and QTOFMS spectral data. Differences in the structures of the heterocyclic rings and side-chain substituents strongly affect the fragmentation pathways of the coumarins. The present results will facilitate further research into the fragmentation pathways and structural characterization of these classes of compounds with diverse structures. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Xianrui Liang
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiaomei Han
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
136
|
Emami S, Dadashpour S. Current developments of coumarin-based anti-cancer agents in medicinal chemistry. Eur J Med Chem 2015; 102:611-30. [DOI: 10.1016/j.ejmech.2015.08.033] [Citation(s) in RCA: 316] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/12/2015] [Accepted: 08/15/2015] [Indexed: 11/17/2022]
|
137
|
Chen W, Ge X, Xu F, Zhang Y, Liu Z, Pan J, Song J, Dai Y, Zhou J, Feng J, Liang G. Design, synthesis and biological evaluation of paralleled Aza resveratrol–chalcone compounds as potential anti-inflammatory agents for the treatment of acute lung injury. Bioorg Med Chem Lett 2015; 25:2998-3004. [DOI: 10.1016/j.bmcl.2015.05.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 05/08/2015] [Accepted: 05/12/2015] [Indexed: 11/28/2022]
|
138
|
Demkowicz S, Kozak W, Daśko M, Masłyk M, Gielniewski B, Rachon J. Synthesis of bicoumarin thiophosphate derivatives as steroid sulfatase inhibitors. Eur J Med Chem 2015; 101:358-66. [DOI: 10.1016/j.ejmech.2015.06.051] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 06/26/2015] [Accepted: 06/26/2015] [Indexed: 01/04/2023]
|
139
|
Discovery and structure activity relationships of 2-pyrazolines derived from chalcones from a pest management perspective. Med Chem Res 2015. [DOI: 10.1007/s00044-015-1415-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
140
|
Chalcone scaffolds as anti-infective agents: structural and molecular target perspectives. Eur J Med Chem 2015; 101:496-524. [PMID: 26188621 DOI: 10.1016/j.ejmech.2015.06.052] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/27/2015] [Accepted: 06/28/2015] [Indexed: 12/11/2022]
Abstract
In recent years, widespread outbreak of numerous infectious diseases across the globe has created havoc among the population. Particularly, the inhabitants of tropical and sub-tropical regions are mainly affected by these pathogens. Several natural and (semi) synthetic chalcones deserve the credit of being potential anti-infective candidates that inhibit various parasitic, malarial, bacterial, viral, and fungal targets like cruzain-1/2, trypanopain-Tb, trans-sialidase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), fumarate reductase, falcipain-1/2, β-hematin, topoisomerase-II, plasmepsin-II, lactate dehydrogenase, protein kinases (Pfmrk and PfPK5), and sorbitol-induced hemolysis, DEN-1 NS3, H1N1, HIV (Integrase/Protease), protein tyrosine phosphatase A/B (Ptp-A/B), FtsZ, FAS-II, lactate/isocitrate dehydrogenase, NorA efflux pump, DNA gyrase, fatty acid synthase, chitin synthase, and β-(1,3)-glucan synthase. In this review, a comprehensive study (from Jan. 1982 to May 2015) of the structural features of anti-infective chalcones, their mechanism of actions (MOAs) and structure activity relationships (SARs) have been highlighted. With the knowledge of molecular targets, structural insights and SARs, this review may be helpful for (medicinal) chemists to design more potent, safe, selective and cost effective anti-infective agents.
Collapse
|
141
|
Synthesis of 1H-1,2,3-triazole linked aryl(arylamidomethyl) - dihydrofurocoumarin hybrids and analysis of their cytotoxicity. Eur J Med Chem 2015; 100:119-28. [PMID: 26079088 DOI: 10.1016/j.ejmech.2015.05.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/30/2015] [Accepted: 05/11/2015] [Indexed: 01/02/2023]
Abstract
A series of 2-(4-R-triazolyl)substituted 3-oxo-2,3-dihydrofurocoumarins have been synthesized by a regioselective cycloaddition of 2-azidooreoselone 1 or 2-azido-9-[(4-methylpiperazin-1-yl)methyl]oreoselone 2 with various alkynes in the presence of Cu(II)/ascorbate in water/methylene chloride reaction medium. The structure of 2-azidooreoselone was established by X-ray structure analysis. The cytotoxicity of 2-substituted dihydrofurocoumarins was determined against three cancer cell lines (CEM-13, MT-4, U-937) using the conventional MTT assays. Among the tested molecules, most of the analogs displayed better cytotoxic activity then the parent natural furocoumarin peucedanin 3. The activity and selectivity to the cell line increased even further in the series of 2-(4-{2,3-dihydrobenzo[b][1,4]dioxine}triazolyl)-3-oxo-2,3-dihydrofurocoumarins and 2-(4-aryltriazolyl)-3-oxo-2,3-dihydrofurocoumarins having the (4-methylpiperazin-1-ylmethyl) substituent in the 9-th position. The most active compound 20 contain the 4-hydroxy-3-methoxybenzamidomethyl substituent in the 4-th position at the triazole ring of 2-(triazol-1-yl)dihydrofurocoumarins. The obtained 2-triazolyl substituted dihydrofurocoumarins were studied as inhibitors of phosphodiesterase (PDE-4B) using docking experiments. As a result of virtual screening 3 compounds are selected based on minimum binding energy. The interactions of the most active compound and amino acid residues in the binding site were studied.
Collapse
|
142
|
Regioselective chemical and rapid enzymatic synthesis of a novel redox – Antiproliferative molecular hybrid. Eur J Med Chem 2015; 96:47-57. [DOI: 10.1016/j.ejmech.2015.03.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 02/17/2015] [Accepted: 03/27/2015] [Indexed: 01/08/2023]
|
143
|
|