101
|
Self-micellizing solid dispersions enhance the properties and therapeutic potential of fenofibrate: Advantages, profiles and mechanisms. Int J Pharm 2017; 528:563-577. [DOI: 10.1016/j.ijpharm.2017.06.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/29/2017] [Accepted: 06/06/2017] [Indexed: 12/23/2022]
|
102
|
Local Application of Statins Significantly Reduced Hypertrophic Scarring in a Rabbit Ear Model. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2017; 5:e1294. [PMID: 28740761 PMCID: PMC5505822 DOI: 10.1097/gox.0000000000001294] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 02/15/2017] [Indexed: 11/25/2022]
Abstract
BACKGROUND We previously showed that intradermal injection of statins is a successful treatment for hypertrophic scarring. Topical application has many advantages over intradermal injection. In this study, we demonstrate the efficacy of topical statin treatment in reducing scar in our validated rabbit ear scar model. METHODS Twenty New Zealand White rabbits were divided into 2 study groups, with 6 rabbits receiving 10 μm pravastatin intradermally at postoperative days 15, 18, and 21, and 14 rabbits receiving 0.4%, 2%, and 10% simvastatin topical application at postoperative days 14-25. Four or 6 full-thickness circular dermal punches 7 mm in diameter were made on the ventral surface of the ear down to but not including the perichondrium. Specimens were collected at 28 days to evaluate the effects of statins on hypertrophic scarring. RESULTS Treatment with pravastatin intradermal administration significantly reduced scarring in terms of scar elevation index. Topical treatment with both medium- and high-dose simvastatin also significantly reduced scarring. High-dose simvastatin topical treatment showed a major effect in scar reduction but induced side effects of scaling, erythema, and epidermal hyperplasia, which were improved with coapplication of cholesterol. There is a dose response in scar reduction with low-, medium- and high-dose simvastatin topical treatment. High-dose simvastatin treatment significantly reduced the messenger ribonucleic acid (mRNA) expression of connective tissue growth factor, consistent with our previously published work on intradermally injected statins. More directly, high-dose simvastatin treatment also significantly reduced the mRNA expression of collagen 1A1. CONCLUSIONS Topical simvastatin significantly reduces scar formation. The mechanism of efficacy for statin treatment through interference with connective tissue growth factor mRNA expression was confirmed.
Collapse
|
103
|
Use of acidifier and solubilizer in tadalafil solid dispersion to enhance the in vitro dissolution and oral bioavailability in rats. Int J Pharm 2017; 526:77-87. [DOI: 10.1016/j.ijpharm.2017.04.056] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/05/2017] [Accepted: 04/22/2017] [Indexed: 11/23/2022]
|
104
|
Gamal W, Fahmy RH, Mohamed MI. Development of novel amisulpride-loaded solid self-nanoemulsifying tablets: preparation and pharmacokinetic evaluation in rabbits. Drug Dev Ind Pharm 2017; 43:1539-1547. [PMID: 28447882 DOI: 10.1080/03639045.2017.1322608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
OBJECTIVE The current investigation is focused on the formulation and in vivo evaluation of optimized solid self-nanoemulsifying drug delivery systems (S-SNEDDS) of amisulpride (AMS) for improving its oral dissolution and bioavailability. METHODS Liquid SNEDDS (L-SNEDDS) composed of Capryol™ 90 (oil), Cremophor® RH40 (surfactant), and Transcutol® HP (co-surfactant) were transformed to solid systems via physical adsorption onto magnesium aluminometasilicate (Neusilin US2). Micromeretic studies and solid-state characterization of formulated S-SNEDDS were carried out, followed by tableting, tablet evaluation, and pharmacokinetic studies in rabbits. RESULTS Micromeretic properties and solid-state characterization proved satisfactory flow properties with AMS present in a completely amorphous state. Formulated self-nanoemulsifying tablets revealed significant improvement in AMS dissolution compared with either directly compressed or commercial AMS tablets. In vivo pharmacokinetic study in rabbits emphasized significant improvements in tmax, AUC(0-12), and AUC(0-∞) at p < .05 with 1.26-folds improvement in relative bioavailability from the optimized self-nanoemulsifying tablets compared with the commercial product. CONCLUSIONS S-SNEDDS can be a very useful approach for providing patient acceptable dosage forms with improved oral dissolution and biovailability.
Collapse
Affiliation(s)
- Wael Gamal
- a Department of Pharmaceutics, Faculty of Pharmacy , Ahram Canadian University , 6th of October City , Cairo , Egypt
| | - Rania H Fahmy
- a Department of Pharmaceutics, Faculty of Pharmacy , Ahram Canadian University , 6th of October City , Cairo , Egypt.,b Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , Cairo University , Cairo , Egypt
| | - Magdy I Mohamed
- b Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , Cairo University , Cairo , Egypt
| |
Collapse
|
105
|
Motawea A, Borg T, Tarshoby M, Abd El-Gawad AEGH. Nanoemulsifying drug delivery system to improve the bioavailability of piroxicam. Pharm Dev Technol 2016; 22:445-456. [PMID: 27583581 DOI: 10.1080/10837450.2016.1231810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE The aim of this study is to develop and characterize self-nanoemulsifying drug delivery system (SNEDDS) of piroxicam in liquid and solid forms to improve its dissolution, absorption and therapeutic efficacy. MATERIALS AND METHODS The generation of liquid SNEDDS (L-SNEDDS) was composed of soybean or coconut oil/Tween 80/Transcutol HP (12/80/8%w/w) and it was selected as the optimized formulation based on the solubility study and pseudo-ternary phase diagram. Optimized L-SNEDDS and liquid supersaturatable SNEDDS (L-sSNEDDS) preparations were then adsorbed onto adsorbents and formulated as directly compressed tablets. RESULTS AND DISCUSSION The improved drug dissolution rate in the solid supersaturatable preparation (S-sSNEDDS) may be due to the formation of a nanoemulsion and the presence of drug in an amorphous state with hydrogen bond interaction between the drug and SNEDDS components. In vivo pharmacokinetic studies on eight healthy human volunteers showed a significant improvement in the oral bioavailability of piroxicam from S-sSNEDDS (F12) compared with both the pure drug (PP) and its commercial product (Feldene®) (commercial dosage form (CD)). The relative bioavailability of S-sSNEDDS (F12) relative to PP or CD was about 151.01 and 98.96%, respectively. CONCLUSION The obtained results ratify that S-sSNEDDS is a promising drug delivery system to enhance the oral bioavailability of piroxicam.
Collapse
Affiliation(s)
- Amira Motawea
- a Department of Pharmaceutics, Faculty of Pharmacy , Mansoura University , Mansoura , Egypt
| | - Thanaa Borg
- a Department of Pharmaceutics, Faculty of Pharmacy , Mansoura University , Mansoura , Egypt
| | - Manal Tarshoby
- b Department of Internal Medicine, Faculty of Medicine , Mansoura University , Mansoura , Egypt
| | | |
Collapse
|
106
|
Abo Enin HA, Abdel-Bar HM. Solid super saturated self-nanoemulsifying drug delivery system (sat-SNEDDS) as a promising alternative to conventional SNEDDS for improvement rosuvastatin calcium oral bioavailability. Expert Opin Drug Deliv 2016; 13:1513-1521. [DOI: 10.1080/17425247.2016.1224845] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Hadel A. Abo Enin
- Pharmaceutics Department, National Organization of Drug Control and Research (NODCAR), Giza, Egypt
| | - Hend Mohamed Abdel-Bar
- Pharmaceutics Department, National Organization of Drug Control and Research (NODCAR), Giza, Egypt
| |
Collapse
|
107
|
Chatterjee B, Hamed Almurisi S, Ahmed Mahdi Dukhan A, Mandal UK, Sengupta P. Controversies with self-emulsifying drug delivery system from pharmacokinetic point of view. Drug Deliv 2016; 23:3639-3652. [DOI: 10.1080/10717544.2016.1214990] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
| | | | | | - Uttam Kumar Mandal
- Pharmaceutical Technology, Kulliyyah of Pharmacy, IIUM, Kuantan, Malaysia
| | - Pinaki Sengupta
- Pharmaceutical Technology, Kulliyyah of Pharmacy, IIUM, Kuantan, Malaysia
| |
Collapse
|
108
|
Challenges in oral drug delivery of antiretrovirals and the innovative strategies to overcome them. Adv Drug Deliv Rev 2016; 103:105-120. [PMID: 26772138 DOI: 10.1016/j.addr.2015.12.022] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 12/20/2015] [Accepted: 12/28/2015] [Indexed: 01/30/2023]
Abstract
Development of novel drug delivery systems (DDS) represents a promising opportunity to overcome the various bottlenecks associated with the chronic antiretroviral (ARV) therapy of the human immunodeficiency virus (HIV) infection. Oral drug delivery is the most convenient and simplest route of drug administration that involves the swallowing of a pharmaceutical compound with the intention of releasing it into the gastrointestinal tract. In oral delivery, drugs can be formulated in such a way that they are protected from digestive enzymes, acids, etc. and released in different regions of the small intestine and/or the colon. Not surprisingly, with the exception of the subcutaneous enfuvirtide, all the marketed ARVs are administered orally. However, conventional (marketed) and innovative (under investigation) oral delivery systems must overcome numerous challenges, including the acidic gastric environment, and the poor aqueous solubility and physicochemical instability of many of the approved ARVs. In addition, the mucus barrier can prevent penetration and subsequent absorption of the released drug, a phenomenon that leads to lower oral bioavailability and therapeutic concentration in plasma. Moreover, the frequent administration of the cocktail (ARVs are administered at least once a day) favors treatment interruption. To improve the oral performance of ARVs, the design and development of more efficient oral drug delivery systems are called for. The present review highlights various innovative research strategies adopted to overcome the limitations of the present treatment regimens and to enhance the efficacy of the oral ARV therapy in HIV.
Collapse
|
109
|
Evaluation of preclinical formulations for a poorly water-soluble compound. Int J Pharm 2016; 511:630-637. [PMID: 27462026 DOI: 10.1016/j.ijpharm.2016.07.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/07/2016] [Accepted: 07/18/2016] [Indexed: 01/17/2023]
Abstract
One central aim of the present work was to find a robust oral formulation approach for Compound A, both to achieve reliable pharmacodynamic read outs but also for long time safety assessment studies. The compound has low aqueous solubility (0.4μM at 37°C), is highly lipophilic and has high Caco-2 permeability, i.e. a typical BCS II compound. A nanocrystal formulation, some oil approaches and a fat diet approach were evaluated in vivo in rats. The two latter strategies resulted in significantly higher in vivo exposures after oral administration compared to the nanocrystal approach. For simplicity, and due to the project development program, a food pellet formulation was selected. In addition, tentative data from a subcutaneous study in mice using nanocrystals of the compound are presented, showing extended profiles on the cost of Cmax. Exposure data in monkeys after administration of nanocrystals both intravenously and per oral are presented. When switched from nanocrystals to an oil formulation, the observed oral exposure behavior was similar as observed in rats.
Collapse
|
110
|
Eedara BB, Bandari S. Lipid-based dispersions of exemestane for improved dissolution rate and intestinal permeability: in vitro and ex vivo characterization. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:917-927. [PMID: 27267814 DOI: 10.1080/21691401.2016.1193023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Current study aimed to develop lipid dispersions of poorly water soluble exemestane by employing lipid carriers such as Gelucire 44/14 and TPGS with porous calcium silicate (PCS) as an adsorbent carrier and formulate into a solid dosage form. The lipid dispersions at 1:5 ratio showed the highest solubility and dissolution compared to pure exemestane. Further, the ex vivo intestinal permeation studies showed improved apparent permeability (Papp, cm/s) of exemestane from the lipid dispersions (GLD1:5 1.3 × 10-2 cm/s; TLD1:5 1.8 × 10-2 cm/s) compared to pure exemestane (0.7 × 10-2 cm/s). The optimized lipid dispersions (GLD1:5 and TLD1:5) were evaluated for scalability to develop into capsules.
Collapse
Affiliation(s)
- Basanth Babu Eedara
- a Department of Pharmaceutics , St. Peter's Institute of Pharmaceutical Sciences , Vidyanagar, Warangal , Telangana , India
| | - Suresh Bandari
- a Department of Pharmaceutics , St. Peter's Institute of Pharmaceutical Sciences , Vidyanagar, Warangal , Telangana , India
| |
Collapse
|
111
|
Aboalnaja KO, Yaghmoor S, Kumosani TA, McClements DJ. Utilization of nanoemulsions to enhance bioactivity of pharmaceuticals, supplements, and nutraceuticals: Nanoemulsion delivery systems and nanoemulsion excipient systems. Expert Opin Drug Deliv 2016; 13:1327-36. [PMID: 26984045 DOI: 10.1517/17425247.2016.1162154] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The efficacy of many hydrophobic bioactives (pharmaceuticals, supplements, and nutraceuticals) is limited due to their relatively low or highly variable bioavailability. Nanoemulsions consisting of small lipid droplets (r < 100 nm) dispersed in water can be designed to improve bioavailability. AREAS COVERED The major factors limiting the oral bioavailability of hydrophobic bioactive agents are highlighted: bioaccessibility, absorption and transformation. Two nanoemulsion-based approaches to control these processes and improve bioavailability are discussed: nanoemulsion delivery systems (NDS) and nanoemulsion excipient systems (NES). In NDS, hydrophobic bioactives are dissolved within the lipid phase of oil-in-water nanoemulsions. In NES, the bioactives are present within a conventional drug, supplement, or food, which is consumed with an oil-in-water nanoemulsion. Examples of NDS and NES utilization to improve bioactive bioavailability are given. EXPERT OPINION Considerable progress has been made in nanoemulsion design, fabrication, and testing. This knowledge facilitates the design of new formulations to improve the bioavailability of pharmaceuticals, supplements, and nutraceuticals. NDS and NES must be carefully designed based on the major factors limiting the bioavailability of specific bioactives. Research is still required to ensure these systems are commercially viable, and to demonstrate their safety and efficacy using animal and human feeding studies.
Collapse
Affiliation(s)
- Khaled Omer Aboalnaja
- a Department of Biochemistry, Faculty of Science, Bioactive Natural Products Research Group , King Abdulaziz University , Jeddah , Saudi Arabia
| | - Soonham Yaghmoor
- b Department of Biochemistry, Faculty of Science, Production of Bioproducts for Industrial Applications Research Group , King Abdulaziz University , Jeddah , Saudi Arabia
| | - Taha Abdullah Kumosani
- a Department of Biochemistry, Faculty of Science, Bioactive Natural Products Research Group , King Abdulaziz University , Jeddah , Saudi Arabia.,b Department of Biochemistry, Faculty of Science, Production of Bioproducts for Industrial Applications Research Group , King Abdulaziz University , Jeddah , Saudi Arabia
| | - David Julian McClements
- b Department of Biochemistry, Faculty of Science, Production of Bioproducts for Industrial Applications Research Group , King Abdulaziz University , Jeddah , Saudi Arabia.,c Department of Food Science , University of Massachusetts , Amherst , MA , USA
| |
Collapse
|
112
|
Patel G, Shelat P, Lalwani A. Statistical modeling, optimization and characterization of solid self-nanoemulsifying drug delivery system of lopinavir using design of experiment. Drug Deliv 2016; 23:3027-3042. [PMID: 26882014 DOI: 10.3109/10717544.2016.1141260] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE Lopinavir (LPV), an antiretroviral protease inhibitor shows poor bioavailability because of poor aqueous solubility and extensive hepatic first-pass metabolism. The aim of the present work was to investigate the potential of the solid self-nanoemulsifying drug delivery system (S-SNEDDS) in improving dissolution rate and oral bioavailability of LPV. MATERIALS AND METHODS Liquid SNEDDS (L-SNEDDS) of LPV were prepared using Capmul MCM C8, Cremophor RH 40 and propylene glycol and their amounts were optimized by Scheffe's mixture design. L-SNEDDS formulations were evaluated for different physicochemical and in vitro drug release parameters. S-SNEDDS were prepared by adsorbing L-SNEDDS on Neusilin US2 and characterized for solid-state properties. In vivo bioavailability of S-SNEDDS, marketed Lopinavir + Ritonavir (LPV/RTV) formulation and pure LPV was studied in Wistar rats. Stability study of S-SNEDDS was performed as per ICH guidelines. RESULTS AND DISCUSSION Optimized L-SNEDDS obtained by Scheffe design had drug loading 160 ± 1.15 mg, globule size 32.9 ± 1.45 nm and drug release >95% within 15 min. Solid state studies suggested the transformation of the crystalline drug to amorphous drug. The size and zeta potential of globules obtained on dilution S-SNEDDS remained similar to L-SNEEDS. In vivo bioavailability study revealed that S-SNEDDS has 2.97 and 1.54-folds higher bioavailability than pure LPV and LPV/RTV formulation, respectively. The optimized S-SNEDDS was found to be stable and had a shelf life of 2.85 years. CONCLUSION The significant increase in drug dissolution and bioavailability by prepared SNEDDS suggest that the developed S-SNEDDS is a useful solid platform for improving oral bioavailability of poorly soluble LPV.
Collapse
Affiliation(s)
- Grishma Patel
- a Department of Pharmaceutics , K. B. Institute of Pharmaceutical Education and Research , Gandhinagar , Gujarat , India
| | - Pragna Shelat
- a Department of Pharmaceutics , K. B. Institute of Pharmaceutical Education and Research , Gandhinagar , Gujarat , India
| | - Anita Lalwani
- a Department of Pharmaceutics , K. B. Institute of Pharmaceutical Education and Research , Gandhinagar , Gujarat , India
| |
Collapse
|
113
|
Preparation and characterization of docetaxel self-nanoemulsifying powders (SNEPs): A strategy for improved oral delivery. KOREAN J CHEM ENG 2016. [DOI: 10.1007/s11814-015-0205-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
114
|
Umeyor C, Attama A, Uronnachi E, Kenechukwu F, Nwakile C, Nzekwe I, Okoye E, Esimone C. Formulation design and in vitro physicochemical characterization of surface modified self-nanoemulsifying formulations (SNEFs) of gentamicin. Int J Pharm 2015; 497:161-98. [PMID: 26657350 DOI: 10.1016/j.ijpharm.2015.10.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 10/07/2015] [Accepted: 10/09/2015] [Indexed: 02/04/2023]
Abstract
Self-nanoemulsifying formulations (SNEFs) structured with PEG 4000 as PEGylated SNEFs, were formulated after solubility studies using rational blends of soybean oil, a combination of Kolliphor(®) EL and Kolliphor(®) P188 as surfactants, and Transcutol(®) HP as co-surfactant, and evaluated for oral delivery of gentamicin. Incorporation of gentamicin and PEG 4000 reduced the initial area of nanoemulsion of the ternary phase diagrams produced by water titration method using oil, surfactant mixture and co-surfactant. Emulsion droplets were in the nanometer scale ranging from 80-210 nm. FT-IR study revealed that gentamicin structure remained intact in all formulations, and SEM micrographs showed spherical globules. Zeta potentials of SNEFs were in the range of -25.4 to -42.5 mV, and showed a stable system with minor flips in electrostatic charges. There was high in vitro diffusion-dependent permeation of gentamicin from the SNEFs. Results obtained in this work showed that oral delivery of gentamicin was improved by formulation as surface modified SNEFs.
Collapse
Affiliation(s)
- Chukwuebuka Umeyor
- Nanomedicines and Drug Delivery Research Group, Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka 422001, Anambra, Nigeria.
| | - Anthony Attama
- Drug Delivery and Nanomedicines Research Group, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka 410001, Enugu State, Nigeria.
| | - Emmanuel Uronnachi
- Nanomedicines and Drug Delivery Research Group, Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka 422001, Anambra, Nigeria
| | - Franklin Kenechukwu
- Drug Delivery and Nanomedicines Research Group, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka 410001, Enugu State, Nigeria
| | - Calistus Nwakile
- Nanomedicines and Drug Delivery Research Group, Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka 422001, Anambra, Nigeria
| | - Ifeanyi Nzekwe
- Nanomedicines and Drug Delivery Research Group, Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka 422001, Anambra, Nigeria
| | - Eric Okoye
- Nanomedicines and Drug Delivery Research Group, Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka 422001, Anambra, Nigeria
| | - Charles Esimone
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka 422001, Anambra, Nigeria
| |
Collapse
|