101
|
Li D, Mastaglia FL, Fletcher S, Wilton SD. Precision Medicine through Antisense Oligonucleotide-Mediated Exon Skipping. Trends Pharmacol Sci 2018; 39:982-994. [PMID: 30282590 DOI: 10.1016/j.tips.2018.09.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/30/2018] [Accepted: 09/04/2018] [Indexed: 12/11/2022]
Abstract
Clinical implementation of two recently approved antisense RNA therapeutics - Exondys51® to treat Duchenne muscular dystrophy (Duchenne MD) and Spinraza® as a treatment for spinal muscular atrophy (SMA) - highlights the therapeutic potential of antisense oligonucleotides (ASOs). As shown in the Duchenne and Becker cases, the identification and specific removal of 'dispensable' exons by exon-skipping ASOs could potentially bypass lethal mutations in other genes and bring clinical benefits to affected individuals carrying amenable mutations. In this review, we discuss the potential of therapeutic alternative splicing, with a particular focus on targeted exon skipping using Duchenne MD as an example, and speculate on new applications for other inherited rare diseases where redundant or dispensable exons may be amenable to exon-skipping ASO intervention as precision medicine.
Collapse
Affiliation(s)
- Dunhui Li
- Centre for Comparative Genomics, Murdoch University, Perth 6050, Australia; Perron Institute for Neurological and Translational Science, University of Western Australia, Perth 6000, Australia
| | - Frank L Mastaglia
- Perron Institute for Neurological and Translational Science, University of Western Australia, Perth 6000, Australia
| | - Sue Fletcher
- Centre for Comparative Genomics, Murdoch University, Perth 6050, Australia; Perron Institute for Neurological and Translational Science, University of Western Australia, Perth 6000, Australia
| | - Steve D Wilton
- Centre for Comparative Genomics, Murdoch University, Perth 6050, Australia; Perron Institute for Neurological and Translational Science, University of Western Australia, Perth 6000, Australia.
| |
Collapse
|
102
|
Zhang R, Wang J, Wang Q, Han Y, Liu X, Bottillo I, Lang Y, Shao L. Identification of a novel TSC2 c.3610G > A, p.G1204R mutation contribute to aberrant splicing in a patient with classical tuberous sclerosis complex: a case report. BMC MEDICAL GENETICS 2018; 19:173. [PMID: 30236073 PMCID: PMC6149227 DOI: 10.1186/s12881-018-0686-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 09/12/2018] [Indexed: 01/27/2023]
Abstract
Background Tuberous sclerosis complex (TSC) is an autosomal dominant disorder characterized by hamartomas in any organ systems. Mutations in the TSC1 or TSC2 gene lead to the dysfunction of hamartin or tuberin proteins, which cause tuberous sclerosis complex. Case presentation We describe the clinical characteristics of patients from a Chinese family with tuberous sclerosis complex and analyze the functional consequences of their causal genetic mutations. A novel heterozygous mutation (c.3610G > A) at the last nucleotide of exon 29 in TSC2 was identified. On the protein level, this variant was presumed to be a missense mutation (p.Gly1204Arg). However, the splicing assay revealed that this mutation also leads to the whole TSC2 exon 29 skipping, besides the wild-type transcript. The mutated transcript results in an in-frame deletion of 71 amino acids (p.Gly1133_Thr1203del) and its ratio with the normal splice product is of about 44:56. Conclusions The novel c.3610G > A TSC2 mutation was identified in association with tuberous sclerosis complex. And it was proven to code both for a missense-carrying transcript (56%), and for an isoform lacking exon 29 (44%). Electronic supplementary material The online version of this article (10.1186/s12881-018-0686-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ruixiao Zhang
- Department of Nephrology, the Affiliated Qingdao Municipal Hospital of Qingdao University, No.5 Donghai Middle Road, Qingdao, 266071, People's Republic of China.,Central Laboratory, the Affiliated Hospital of Qingdao University, Qingdao, 266003, People's Republic of China
| | - Jianhong Wang
- Organ Transplantation Center, the Affiliated Hospital of Qingdao University, Qingdao, 266003, People's Republic of China
| | - Qing Wang
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, 266003, People's Republic of China
| | - Yue Han
- Department of Nephrology, the Affiliated Qingdao Municipal Hospital of Qingdao University, No.5 Donghai Middle Road, Qingdao, 266071, People's Republic of China.,Central Laboratory, the Affiliated Hospital of Qingdao University, Qingdao, 266003, People's Republic of China
| | - Xuejun Liu
- Department of Radiology, the Affiliated Hospital of Qingdao University, Qingdao, 266003, People's Republic of China
| | - Irene Bottillo
- Division of Medical Genetics, Department of Molecular Medicine, Sapienza University, San Camillo-Forlanini Hospital, 00185, Rome, Italy
| | - Yanhua Lang
- Department of Nephrology, the Affiliated Qingdao Municipal Hospital of Qingdao University, No.5 Donghai Middle Road, Qingdao, 266071, People's Republic of China
| | - Leping Shao
- Department of Nephrology, the Affiliated Qingdao Municipal Hospital of Qingdao University, No.5 Donghai Middle Road, Qingdao, 266071, People's Republic of China. .,Central Laboratory, the Affiliated Hospital of Qingdao University, Qingdao, 266003, People's Republic of China.
| |
Collapse
|
103
|
Abstract
Alternative splicing is an important mechanism used by the cell to generate greater transcriptomic and proteomic diversity from the genome. In the heart, alternative splicing is increasingly being recognised as an important layer of post-transcriptional gene regulation. Driven by rapidly evolving technologies in next-generation sequencing, alternative splicing has emerged as a crucial process governing complex biological processes during cardiac development and disease. The recent identification of several cardiac splice factors, such as RNA-binding motif protein 20 and 24, not only provided important insight into the mechanisms underlying alternative splicing but also revealed how these splicing factors impact functional properties of the heart. Here, we review our current knowledge of alternative splicing in the heart, with a particular focus on the factors controlling cardiac alternative splicing and their role in cardiomyopathies and subsequent heart failure.
Collapse
|
104
|
A novel LRAT mutation affecting splicing in a family with early onset retinitis pigmentosa. Hum Genomics 2018; 12:35. [PMID: 29973277 PMCID: PMC6033202 DOI: 10.1186/s40246-018-0165-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 06/18/2018] [Indexed: 01/07/2023] Open
Abstract
Background and purpose Retinitis pigmentosa is an important cause of severe visual dysfunction. This study reports a novel splicing mutation in the lecithin retinol acyltransferase (LRAT) gene associated with early onset retinitis pigmentosa and characterizes the effects of this mutation on mRNA splicing and structure. Methods Genome-wide linkage analysis followed by dideoxy sequencing of the linked candidate gene LRAT was performed in a consanguineous Pakistani family with autosomal recessive retinitis pigmentosa. In silico prediction and minigene assays were used to investigate the effects of the presumptive splicing mutation. Results ARRP in this family was linked to chromosome 4q31.21-q32.1 with a maximum LOD score of 5.40. A novel homozygous intronic mutation (NM_004744.4: c.541-15T>G) was detected in LRAT. In silico tools predicted that the AG-creating mutation would activate an intronic cryptic acceptor site, but cloning fragments of wild-type and mutant sequences of LRAT into Exontrap Cloning Vector pET01 and Expression Cloning Vector pCMV-(DYKD4K)-C showed that the primary effect of the sequence change was to weaken the nearby authentic acceptor site and cause exon skipping, with only a small fraction of transcripts utilizing the acceptor site producing the reference transcript. Conclusions The c.541-15T>G mutation in LRAT results in aberrant splicing and is therefore predicted to be causal for the early onset retinitis pigmentosa in this family. In addition, this work suggests that minigenes adapted to the specific gene and exon may need to be designed for variants in the first and last exon and intron to mimic the authentic splicing mechanism in vivo. Electronic supplementary material The online version of this article (10.1186/s40246-018-0165-3) contains supplementary material, which is available to authorized users.
Collapse
|
105
|
Fraile-Bethencourt E, Valenzuela-Palomo A, Díez-Gómez B, Acedo A, Velasco EA. Identification of Eight Spliceogenic Variants in BRCA2 Exon 16 by Minigene Assays. Front Genet 2018; 9:188. [PMID: 29881398 PMCID: PMC5977032 DOI: 10.3389/fgene.2018.00188] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/08/2018] [Indexed: 11/17/2022] Open
Abstract
Genetic testing of BRCA1 and BRCA2 identifies a large number of variants of uncertain clinical significance whose functional and clinical interpretations pose a challenge for genetic counseling. Interestingly, a relevant fraction of DNA variants can disrupt the splicing process in cancer susceptibility genes. We have tested more than 200 variants throughout 19 BRCA2 exons mostly by minigene assays, 54% of which displayed aberrant splicing, thus confirming the utility of this assay to check genetic variants in the absence of patient RNA. Our goal was to investigate BRCA2 exon 16 with a view to characterizing spliceogenic variants recorded at the mutational databases. Seventy-two different BIC and UMD variants were analyzed with NNSplice and Human Splicing Finder, 12 of which were selected because they were predicted to disrupt essential splice motifs: canonical splice sites (ss; eight variants) and exonic/intronic splicing enhancers (four variants). These 12 candidate variants were introduced into the BRCA2 minigene with seven exons (14–20) by site-directed mutagenesis and then transfected into MCF-7 cells. Seven variants (six intronic and one missense) induced complete abnormal splicing patterns: c.7618-2A>T, c.7618-2A>G, c.7618-1G>C, c.7618-1G>A, c.7805G>C, c.7805+1G>A, and c.7805+3A>C, as well as a partial anomalous outcome by c.7802A>G. They generated at least 10 different transcripts: Δ16p44 (alternative 3’ss 44-nt downstream; acceptor variants), Δ16 (exon 16-skipping; donor variants), Δ16p55 (alternative 3’ss 55-nt downstream), Δ16q4 (alternative 5’ss 4-nt upstream), Δ16q100 (alternative 5’ss 4-nt upstream), ▾16q20 (alternative 5’ss 20-nt downstream), as well as minor (Δ16p93 and Δ16,17p69) and uncharacterized transcripts of 893 and 954 nucleotides. Isoforms Δ16p44, Δ16, Δ16p55, Δ16q4, Δ16q100, and ▾16q20 introduced premature termination codons which presumably inactivate BRCA2. According to the guidelines the American College of Medical Genetics and Genomics these eight variants could be classified as pathogenic or likely pathogenic whereas the Evidence-based Network for the Interpretation of Germline Mutant Alleles rules suggested seven class 4 and one class 3 variants. In conclusion, our study highlights the relevance of splicing functional assays by hybrid minigenes for the clinical classification of genetic variations. Hence, we provide new data about spliceogenic variants of BRCA2 exon 16 that are directly correlated with breast cancer susceptibility.
Collapse
Affiliation(s)
- Eugenia Fraile-Bethencourt
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, Valladolid, Spain
| | - Alberto Valenzuela-Palomo
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, Valladolid, Spain
| | - Beatriz Díez-Gómez
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, Valladolid, Spain
| | - Alberto Acedo
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, Valladolid, Spain.,Biome Makers Inc., San Francisco, CA, United States
| | - Eladio A Velasco
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, Valladolid, Spain
| |
Collapse
|
106
|
Zhang C, Dower K, Zhang B, Martinez RV, Lin LL, Zhao S. Computational identification and validation of alternative splicing in ZSF1 rat RNA-seq data, a preclinical model for type 2 diabetic nephropathy. Sci Rep 2018; 8:7624. [PMID: 29769602 PMCID: PMC5955895 DOI: 10.1038/s41598-018-26035-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/26/2018] [Indexed: 12/11/2022] Open
Abstract
Obese ZSF1 rats exhibit spontaneous time-dependent diabetic nephropathy and are considered to be a highly relevant animal model of progressive human diabetic kidney disease. We previously identified gene expression changes between disease and control animals across six time points from 12 to 41 weeks. In this study, the same data were analysed at the isoform and exon levels to reveal additional disease mechanisms that may be governed by alternative splicing. Our analyses identified alternative splicing patterns in genes that may be implicated in disease pathogenesis (such as Shc1, Serpinc1, Epb4.1l5, and Il-33), which would have been overlooked in standard gene-level analysis. The alternatively spliced genes were enriched in pathways related to cell adhesion, cell–cell interactions/junctions, and cytoskeleton signalling, whereas the differentially expressed genes were enriched in pathways related to immune response, G protein-coupled receptor, and cAMP signalling. Our findings indicate that additional mechanistic insights can be gained from exon- and isoform-level data analyses over standard gene-level analysis. Considering alternative splicing is poorly conserved between rodents and humans, it is noted that this work is not translational, but the point holds true that additional insights can be gained from alternative splicing analysis of RNA-seq data.
Collapse
Affiliation(s)
- Chi Zhang
- Precision Medicine, Early Clinical Development, Pfizer Worldwide Research and Development, Cambridge, MA, 02139, USA
| | - Ken Dower
- Inflammation & Immunology Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, 02139, USA
| | - Baohong Zhang
- Precision Medicine, Early Clinical Development, Pfizer Worldwide Research and Development, Cambridge, MA, 02139, USA
| | - Robert V Martinez
- Inflammation & Immunology Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, 02139, USA
| | - Lih-Ling Lin
- Inflammation & Immunology Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, 02139, USA
| | - Shanrong Zhao
- Precision Medicine, Early Clinical Development, Pfizer Worldwide Research and Development, Cambridge, MA, 02139, USA.
| |
Collapse
|
107
|
Shimo T, Tachibana K, Obika S. Construction of a tri-chromatic reporter cell line for the rapid and simple screening of splice-switching oligonucleotides targeting DMD exon 51 using high content screening. PLoS One 2018; 13:e0197373. [PMID: 29768479 PMCID: PMC5955590 DOI: 10.1371/journal.pone.0197373] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 05/01/2018] [Indexed: 01/13/2023] Open
Abstract
Splice-switching oligonucleotides (SSOs) that can modulate RNA splicing are used for the treatment of many genetic disorders. To enhance the efficacy of modulating splicing, it is important to optimize SSOs with regard to target sites, GC content, melting temperature (Tm value), chemistries, and lengths. Thus, in vitro assay systems that allow for the rapid and simple screening of SSOs are essential for optimizing SSO design. In this study, we established a novel tri-chromatic reporter cell line for SSO screening. This reporter cell line is designed to express three different fluorescent proteins (blue, green, and red) and was employed for high content screening (HCS, also known as high content analysis; HCA) for the evaluation of SSO-induced exon skipping by analyzing the expression levels of fluorescent proteins. The blue fluorescent protein is stably expressed throughout the cell and is useful for data normalization using cell numbers. Furthermore, both the green and red fluorescent proteins were used for monitoring the splicing patterns of target genes. Indeed, we demonstrated that this novel reporter cell line involving HCS leads to a more rapid and simple approach for the evaluation of exon skipping than widely used methods, such as RT-PCR, western blotting, and quantitative RT-PCR. Additionally, a brief screening of Locked nucleic acids (LNA)-based SSOs targeting exon 51 in DMD was performed using the reporter cell line. The LNA-based SSO cocktail shows high exon 51 skipping in a dose-dependent manner. Furthermore, the LNA-based SSO cocktails display high exon 51 skipping activities on endogenous DMD mRNA in human rhabdomyosarcoma cells.
Collapse
Affiliation(s)
- Takenori Shimo
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Keisuke Tachibana
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
108
|
An intronic mutation in Chd7 creates a cryptic splice site, causing aberrant splicing in a mouse model of CHARGE syndrome. Sci Rep 2018; 8:5482. [PMID: 29615807 PMCID: PMC5882948 DOI: 10.1038/s41598-018-23856-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 03/21/2018] [Indexed: 11/09/2022] Open
Abstract
Alternate splicing is a critical regulator of gene expression in eukaryotes, however genetic mutations can cause erroneous splicing and disease. Most recorded splicing disorders are caused by mutations of splice donor/acceptor sites, however intronic mutations can affect splicing. Clinical exome analyses largely ignore intronic sequence, limiting the detection of mutations to within coding regions. We describe ‘Trooper’, a novel mouse model of CHARGE syndrome harbouring a pathogenic point mutation in Chd7. The mutation is 18 nucleotides upstream of exon 10 and creates a cryptic acceptor site, causing exon skipping and partial intron retention. This mutation, though detectable in exome sequence, was initially dismissed by computational filtering due to its intronic location. The Trooper strain exhibited many of the previously described CHARGE-like anomalies of CHD7 deficient mouse lines; including hearing impairment, vestibular hypoplasia and growth retardation. However, more common features such as facial asymmetry and circling were rarely observed. Recognition of these characteristic features prompted manual reexamination of Chd7 sequence and subsequent validation of the intronic mutation, highlighting the importance of phenotyping alongside exome analyses. The Trooper mouse serves as a valuable model of atypical CHARGE syndrome and reveals a molecular mechanism that may underpin milder clinical presentation of the syndrome.
Collapse
|
109
|
Pousada G, Lago‐Docampo M, Prado S, Varela‐Calviño R, Mantiñán B, Valverde D. Functional assessment of the BMPR2 gene in lymphoblastoid cell lines from Graves' disease patients. J Cell Mol Med 2018; 22:1538-1547. [PMID: 29266775 PMCID: PMC5824380 DOI: 10.1111/jcmm.13425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/16/2017] [Indexed: 12/28/2022] Open
Abstract
In this study, we analysed the possible influence of the c.419-43delT BMPR2 variant in patients with Graves' disease (GD), in a molecular basis, focusing our efforts on possible alterations in the mRNA processing and synthesis. The molecular assessment of this variant in patients with GD would shed light on the association between the BMPR2 gene and the disease. The variant was detected in 18%, 55% and 10% of patients with pulmonary arterial hypertension, GD and in general population, respectively. Patients with GD fold change showed increased BMPR2 expression when matched against the controls, with a mean of 4.21 ± 1.73 (P = 0.001); BMPR2 was overexpressed in the analysed cell cycle stages. Fold change analysis of variant carriers and non-carriers showed slight overexpression and differences between phases, but none of them were statistically significant. BMPR2 expression was confirmed in the lymphoblastoid cell lines (LCLs) with a molecular weight of 115 kD, and no differences between variant carriers and non-carriers were detected. To conclude, the BMPR2 variant c.419-19delT appears in high frequency in patients with GD, and independently of its presence, BMPR2 is overexpressed in the LCLs from the GD patients tested. This increase could be paired with the described decreased expression of transforming growth factor-β1 in thyroid tissue from patients with GD.
Collapse
Affiliation(s)
- Guillermo Pousada
- Department of Biochemistry, Genetics and ImmunologyFaculty of BiologyUniversity of VigoVigoPontevedraSpain
- Instituto de Investigación Biomédica de Ourense‐Pontevedra‐VigoPontevedraSpain
| | - Mauro Lago‐Docampo
- Department of Biochemistry, Genetics and ImmunologyFaculty of BiologyUniversity of VigoVigoPontevedraSpain
| | - Sonia Prado
- Department of Biochemistry, Genetics and ImmunologyFaculty of BiologyUniversity of VigoVigoPontevedraSpain
- Instituto de Investigación Biomédica de Ourense‐Pontevedra‐VigoPontevedraSpain
| | - Rubén Varela‐Calviño
- Department of Biochemistry and Molecular BiologyUniversity of Santiago de CompostelaA CoruñaSpain
| | - Beatriz Mantiñán
- Endocrine, Diabetes, Nutrition and Metabolism DepartmentComplexo Hospitalario Universitario de VigoPontevedraSpain
| | - Diana Valverde
- Department of Biochemistry, Genetics and ImmunologyFaculty of BiologyUniversity of VigoVigoPontevedraSpain
- Instituto de Investigación Biomédica de Ourense‐Pontevedra‐VigoPontevedraSpain
| |
Collapse
|
110
|
Jutzi D, Akinyi MV, Mechtersheimer J, Frilander MJ, Ruepp MD. The emerging role of minor intron splicing in neurological disorders. Cell Stress 2018; 2:40-54. [PMID: 31225466 PMCID: PMC6558932 DOI: 10.15698/cst2018.03.126] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pre-mRNA splicing is an essential step in eukaryotic gene expression. Mutations in cis-acting sequence elements within pre-mRNA molecules or trans-acting factors involved in pre-mRNA processing have both been linked to splicing dysfunction that give rise to a large number of human diseases. These mutations typically affect the major splicing pathway, which excises more than 99% of all introns in humans. However, approximately 700-800 human introns feature divergent intron consensus sequences at their 5' and 3' ends and are recognized by a separate pre-mRNA processing machinery denoted as the minor spliceosome. This spliceosome has been studied less than its major counterpart, but has received increasing attention during the last few years as a novel pathomechanistic player on the stage in neurodevelopmental and neurodegenerative diseases. Here, we review the current knowledge on minor spliceosome function and discuss its potential pathomechanistic role and impact in neurodegeneration.
Collapse
Affiliation(s)
- Daniel Jutzi
- Department of Chemistry and Biochemistry, University of Bern, CH-3012 Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, CH-3012 Bern, Switzerland
| | - Maureen V Akinyi
- Institute of Biotechnology, University of Helsinki, FI-00014, Finland
| | - Jonas Mechtersheimer
- Department of Chemistry and Biochemistry, University of Bern, CH-3012 Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, CH-3012 Bern, Switzerland
| | - Mikko J Frilander
- Institute of Biotechnology, University of Helsinki, FI-00014, Finland
| | - Marc-David Ruepp
- Department of Chemistry and Biochemistry, University of Bern, CH-3012 Bern, Switzerland.,United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 9NU London, UK
| |
Collapse
|
111
|
Shao L, Cui L, Lu J, Lang Y, Bottillo I, Zhao X. A novel mutation in exon 9 of Cullin 3 gene contributes to aberrant splicing in pseudohypoaldosteronism type II. FEBS Open Bio 2018; 8:461-469. [PMID: 29511623 PMCID: PMC5832971 DOI: 10.1002/2211-5463.12389] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/26/2017] [Accepted: 01/12/2018] [Indexed: 01/30/2023] Open
Abstract
Pseudohypoaldosteronism type II (PHAII) is a rare renal tubular disease that is inherited in an autosomal dominant manner. Mutations in four genes (WNK1,WNK4,CUL3, and KLHL3) have been identified to be responsible for this disease. Cullin 3 (CUL3) and KLHL3 are subunits of Cullin–RING E3 ubiquitin ligase complexes, and the serine–threonine kinases WNK1 and WNK4 are substrates of this ubiquitin ligase. For CUL3, all mutations associated with PHAII exclusively lead to exon 9 skipping. In this study, we identified a Chinese PHAII kindred caused by a novel synonymous mutation (c.1221A > G p.Glu407Glu) in CUL3, and explored its effects on exon 9 abnormal splicing through an in vitro splicing assay and study of the patients’ RNA. We obtained evidence that this synonymous mutation leads to complete exon 9 skipping, and in silico bioinformatics analysis demonstrated that the CUL3 c.1221A > G mutation might decrease the ratio of exonic splicing enhancers and silencers. This is the first report of PHAII in Chinese patients with a novel CUL3 mutation. Our findings add a novel pathogenic splicing variant to the CUL3 mutational spectrum and provide reference for further research on mechanisms of splicing modulation and development of potential therapeutic reagents for PHAII.
Collapse
Affiliation(s)
- Leping Shao
- Department of Nephrology The Affiliated Hospital of Qingdao University Qingdao China
| | - Li Cui
- Department of Nephrology The Affiliated Hospital of Qingdao University Qingdao China
| | - Jingru Lu
- Department of Nephrology The Affiliated Hospital of Qingdao University Qingdao China
| | - Yanhua Lang
- Department of Nephrology The Affiliated Hospital of Qingdao University Qingdao China
| | - Irene Bottillo
- Division of Medical Genetics Department of Molecular Medicine Sapienza University San Camillo-Forlanini Hospital Rome Italy
| | - Xiangzhong Zhao
- Central Laboratory The Affiliated Hospital of Qingdao University Qingdao China
| |
Collapse
|
112
|
Villate O, Ibarluzea N, Fraile-Bethencourt E, Valenzuela A, Velasco EA, Grozeva D, Raymond FL, Botella MP, Tejada MI. Functional Analyses of a Novel Splice Variant in the CHD7 Gene, Found by Next Generation Sequencing, Confirm Its Pathogenicity in a Spanish Patient and Diagnose Him with CHARGE Syndrome. Front Genet 2018; 9:7. [PMID: 29434620 PMCID: PMC5790995 DOI: 10.3389/fgene.2018.00007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/08/2018] [Indexed: 01/30/2023] Open
Abstract
Mutations in CHD7 have been shown to be a major cause of CHARGE syndrome, which presents many symptoms and features common to other syndromes making its diagnosis difficult. Next generation sequencing (NGS) of a panel of intellectual disability related genes was performed in an adult patient without molecular diagnosis. A splice donor variant in CHD7 (c.5665 + 1G > T) was identified. To study its potential pathogenicity, exons and flanking intronic sequences were amplified from patient DNA and cloned into the pSAD® splicing vector. HeLa cells were transfected with this construct and a wild-type minigene and functional analysis were performed. The construct with the c.5665 + 1G > T variant produced an aberrant transcript with an insert of 63 nucleotides of intron 28 creating a premature termination codon (TAG) 25 nucleotides downstream. This would lead to the insertion of 8 new amino acids and therefore a truncated 1896 amino acid protein. As a result of this, the patient was diagnosed with CHARGE syndrome. Functional analyses underline their usefulness for studying the pathogenicity of variants found by NGS and therefore its application to accurately diagnose patients.
Collapse
Affiliation(s)
- Olatz Villate
- Biocruces Health Research Institute, Barakaldo, Spain.,Molecular Genetics Laboratory, Genetics Service, Cruces University Hospital, Barakaldo, Spain
| | | | - Eugenia Fraile-Bethencourt
- Splicing and Cancer Laboratory, Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, Valladolid, Spain
| | - Alberto Valenzuela
- Splicing and Cancer Laboratory, Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, Valladolid, Spain
| | - Eladio A Velasco
- Splicing and Cancer Laboratory, Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, Valladolid, Spain
| | - Detelina Grozeva
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - F L Raymond
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - María P Botella
- Department of Pediatrics, Araba University Hospital, Vitoria, Spain
| | - María-Isabel Tejada
- Biocruces Health Research Institute, Barakaldo, Spain.,Molecular Genetics Laboratory, Genetics Service, Cruces University Hospital, Barakaldo, Spain.,Clinical Group, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
| |
Collapse
|
113
|
Dutil J, Godoy L, Rivera-Lugo R, Arroyo N, Albino E, Negrón L, Monteiro AN, Matta JL, Echenique M. No Evidence for the Pathogenicity of the BRCA2 c.6937 + 594T>G Deep Intronic Variant: A Case-Control Analysis. Genet Test Mol Biomarkers 2018; 22:85-89. [PMID: 29356578 DOI: 10.1089/gtmb.2017.0187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The role of deep intronic variants in hereditary cancer susceptibility has been largely understudied. Previously, the BRCA2 c.6937 + 594T>G variant has been shown to preferentially promote the inclusion of a 95 nucleotide cryptic exon and to introduce a premature termination codon. Our objective was to further assess the pathogenicity of the BRCA2 c.6937 + 594T>G deep intronic variant. PATIENTS AND METHODS We examined the association between BRCA2 c.6937 + 594T>G and breast cancer (BC) risk in 464 BC cases and 497 noncancer controls from Puerto Rico. RESULTS The overall frequency of the G allele was 2.1% in this population. There was no association between the TG/GG genotypes and BC risk in the uncorrected model and after correcting for confounders. There was only one carrier of the GG genotype. This individual did not have personal or family history of cancer and did not meet the National Comprehensive Cancer Network criteria for hereditary cancer genetic testing. CONCLUSIONS Although previous work has demonstrated that the BRCA2 c.6937 + 594T>G variant affects splicing, this association study does not support a pathogenic role for the BRCA2 c.6937 + 594T>G intronic variant in breast and ovarian cancer syndrome susceptibility. Furthermore, it emphasizes the need to take into account multiple diverse populations in association studies for the assessment of variant pathogenicity.
Collapse
Affiliation(s)
- Julie Dutil
- 1 Cancer Biology Division, Ponce Research Institute, Ponce Health Sciences University , Ponce, Puerto Rico
| | - Lenin Godoy
- 1 Cancer Biology Division, Ponce Research Institute, Ponce Health Sciences University , Ponce, Puerto Rico
| | - Rafael Rivera-Lugo
- 2 Department of Biology, University of Puerto Rico in Ponce , Ponce, Puerto Rico
| | - Nelly Arroyo
- 1 Cancer Biology Division, Ponce Research Institute, Ponce Health Sciences University , Ponce, Puerto Rico
| | - Elinette Albino
- 1 Cancer Biology Division, Ponce Research Institute, Ponce Health Sciences University , Ponce, Puerto Rico
| | - Luis Negrón
- 3 Hematology-Oncology Program, VA Caribbean Healthcare System , San Juan, Puerto Rico
| | - Alvaro N Monteiro
- 4 Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute , Tampa, Florida
| | - Jaime L Matta
- 1 Cancer Biology Division, Ponce Research Institute, Ponce Health Sciences University , Ponce, Puerto Rico
| | | |
Collapse
|
114
|
Abstract
Since its discovery in 1977, much has been known about RNA splicing and how it plays a central role in human development, function, and, notably, disease. Defects in RNA splicing account for at least 10% of all genetic disorders, with the number expected to increase as more information is uncovered on the contribution of noncoding genomic regions to disease. Splice modulation through the use of antisense oligonucleotides (AOs) has emerged as a promising avenue for the treatment of these disorders. In fact, two splice-switching AOs have recently obtained approval from the US Food and Drug Administration: eteplirsen (Exondys 51) for Duchenne muscular dystrophy, and nusinersen (Spinraza) for spinal muscular atrophy. These work by exon skipping and exon inclusion, respectively. In this chapter, we discuss the early development of AO-based splice modulation therapy-its invention, first applications, and its evolution into the approach we are now familiar with. We give a more extensive history of exon skipping in particular, as it is the splice modulation approach given the most focus in this book.
Collapse
Affiliation(s)
- Kenji Rowel Q Lim
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
- The Friends of Garrett Cumming Research and Muscular Dystrophy Canada HM Toupin Neurological Science Research Chair, Edmonton, AB, Canada.
| |
Collapse
|
115
|
Jyotsana N, Heuser M. Exploiting differential RNA splicing patterns: a potential new group of therapeutic targets in cancer. Expert Opin Ther Targets 2017; 22:107-121. [PMID: 29235382 DOI: 10.1080/14728222.2018.1417390] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Mutations in genes associated with splicing have been found in hematologic malignancies, but also in solid cancers. Aberrant cancer specific RNA splicing either results from mutations or misexpression of the spliceosome genes directly, or from mutations in splice sites of oncogenes or tumor suppressors. Areas covered: In this review, we present molecular targets of aberrant splicing in various malignancies, information on existing and emerging therapeutics against such targets, and strategies for future drug development. Expert opinion: Alternative splicing is an important mechanism that controls gene expression, and hence pharmacologic and genetic control of aberrant alternative RNA splicing has been proposed as a potential therapy in cancer. To identify and validate aberrant RNA splicing patterns as therapeutic targets we need to (1) characterize the most common genetic aberrations of the spliceosome and of splice sites, (2) understand the dysregulated downstream pathways and (3) exploit in-vivo disease models of aberrant splicing. Antisense oligonucleotides show promising activity, but will benefit from improved delivery tools. Inhibitors of mutated splicing factors require improved specificity, as alternative and aberrant splicing are often intertwined like two sides of the same coin. In summary, targeting aberrant splicing is an early but emerging field in cancer treatment.
Collapse
Affiliation(s)
- Nidhi Jyotsana
- a Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation , Hannover Medical School , Hannover , Germany
| | - Michael Heuser
- a Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation , Hannover Medical School , Hannover , Germany
| |
Collapse
|
116
|
Minor spliceosome and disease. Semin Cell Dev Biol 2017; 79:103-112. [PMID: 28965864 DOI: 10.1016/j.semcdb.2017.09.036] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/21/2017] [Accepted: 09/27/2017] [Indexed: 01/09/2023]
Abstract
The U12-dependent (minor) spliceosome excises a rare group of introns that are characterized by a highly conserved 5' splice site and branch point sequence. Several new congenital or somatic diseases have recently been associated with mutations in components of the minor spliceosome. A common theme in these diseases is the detection of elevated levels of transcripts containing U12-type introns, of which a subset is associated with other splicing defects. Here we review the present understanding of minor spliceosome diseases, particularly those associated with the specific components of the minor spliceosome. We also present a model for interpreting the molecular-level consequences of the different diseases.
Collapse
|
117
|
Reble E, Dineen A, Barr CL. The contribution of alternative splicing to genetic risk for psychiatric disorders. GENES BRAIN AND BEHAVIOR 2017; 17:e12430. [PMID: 29052934 DOI: 10.1111/gbb.12430] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 09/25/2017] [Accepted: 10/12/2017] [Indexed: 12/12/2022]
Abstract
A genetic contribution to psychiatric disorders has clearly been established and genome-wide association studies now provide the location of risk genes and genetic variants associated with risk. However, the mechanism by which these genes and variants contribute to psychiatric disorders is mostly undetermined. This is in part because non-synonymous protein coding changes cannot explain the majority of variants associated with complex genetic traits. Based on this, it is predicted that these variants are causing gene expression changes, including changes to alternative splicing. Genetic changes influencing alternative splicing have been identified as risk factors in Mendelian disorders; however, currently there is a paucity of research on the role of alternative splicing in complex traits. This stems partly from the difficulty of predicting the role of genetic variation in splicing. Alterations to canonical splice site sequences, nucleotides adjacent to splice junctions, and exonic and intronic splicing regulatory sequences can influence splice site choice. Recent studies have identified global changes in alternatively spliced transcripts in brain tissues, some of which correlate with altered levels of splicing trans factors. Disease-associated variants have also been found to affect cis-acting splicing regulatory sequences and alter the ratio of alternatively spliced transcripts. These findings are reviewed here, as well as the current datasets and resources available to study alternative splicing in psychiatric disorders. Identifying and understanding risk variants that cause alternative splicing is critical to understanding the mechanisms of risk as well as to pave the way for new therapeutic options.
Collapse
Affiliation(s)
- E Reble
- Genetics and Development Division, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - A Dineen
- Genetics and Development Division, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - C L Barr
- Genetics and Development Division, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
118
|
de Calais FL, Smith LD, Raponi M, Maciel-Guerra AT, Guerra-Junior G, de Mello MP, Baralle D. A study of splicing mutations in disorders of sex development. Sci Rep 2017; 7:16202. [PMID: 29176693 PMCID: PMC5701223 DOI: 10.1038/s41598-017-16296-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 11/10/2017] [Indexed: 11/09/2022] Open
Abstract
The presence of splicing sequence variants in genes responsible for sex development in humans may compromise correct biosynthesis of proteins involved in the normal development of gonads and external genitalia. In a cohort of Brazilian patients, we identified mutations in HSD17B3 and SRD5A2 which are both required for human sexual differentiation. A number of these mutations occurred within regions potentially critical for splicing regulation. Minigenes were used to validate the functional effect of mutations in both genes. We evaluated the c.277 + 2 T > G mutation in HSD17B3, and the c.544 G > A, c.548-44 T > G and c.278delG mutations in SRD5A2. We demonstrated that these mutations altered the splicing pattern of these genes. In a genomic era these results illustrate, and remind us, that sequence variants within exon-intron boundaries, which are primarily identified for diagnostic purposes and have unknown pathogenicity, need to be assessed with regards to their impact not only on protein expression, but also on mRNA splicing.
Collapse
Affiliation(s)
- Flavia Leme de Calais
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
| | - Lindsay D Smith
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Michela Raponi
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Andréa Trevas Maciel-Guerra
- Departamento de Genética, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, Brazil
| | - Gil Guerra-Junior
- Departamento de Pediatria, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, Brazil
| | | | - Diana Baralle
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK.
- Wessex Clinical Genetics Service, Southampton University Hospitals NHS Trust, Southampton, UK.
| |
Collapse
|
119
|
Saha A, Kim Y, Gewirtz ADH, Jo B, Gao C, McDowell IC, Engelhardt BE, Battle A. Co-expression networks reveal the tissue-specific regulation of transcription and splicing. Genome Res 2017; 27:1843-1858. [PMID: 29021288 PMCID: PMC5668942 DOI: 10.1101/gr.216721.116] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 08/22/2017] [Indexed: 11/24/2022]
Abstract
Gene co-expression networks capture biologically important patterns in gene expression data, enabling functional analyses of genes, discovery of biomarkers, and interpretation of genetic variants. Most network analyses to date have been limited to assessing correlation between total gene expression levels in a single tissue or small sets of tissues. Here, we built networks that additionally capture the regulation of relative isoform abundance and splicing, along with tissue-specific connections unique to each of a diverse set of tissues. We used the Genotype-Tissue Expression (GTEx) project v6 RNA sequencing data across 50 tissues and 449 individuals. First, we developed a framework called Transcriptome-Wide Networks (TWNs) for combining total expression and relative isoform levels into a single sparse network, capturing the interplay between the regulation of splicing and transcription. We built TWNs for 16 tissues and found that hubs in these networks were strongly enriched for splicing and RNA binding genes, demonstrating their utility in unraveling regulation of splicing in the human transcriptome. Next, we used a Bayesian biclustering model that identifies network edges unique to a single tissue to reconstruct Tissue-Specific Networks (TSNs) for 26 distinct tissues and 10 groups of related tissues. Finally, we found genetic variants associated with pairs of adjacent nodes in our networks, supporting the estimated network structures and identifying 20 genetic variants with distant regulatory impact on transcription and splicing. Our networks provide an improved understanding of the complex relationships of the human transcriptome across tissues.
Collapse
|
120
|
Alternative Splicing in Genetic Diseases: Improved Diagnosis and Novel Treatment Options. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 335:85-141. [PMID: 29305015 DOI: 10.1016/bs.ircmb.2017.07.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Alternative splicing is an important mechanism to regulate gene expression and to expand the repertoire of gene products in order to accommodate an increase in complexity of multicellular organisms. It needs to be precisely regulated, which is achieved via RNA structure, splicing factors, transcriptional regulation, and chromatin. Changes in any of these factors can lead to disease. These may include the core spliceosome, splicing enhancer/repressor sequences and their interacting proteins, the speed of transcription by RNA polymerase II, and histone modifications. While the basic principle of splicing is well understood, it is still very difficult to predict splicing outcome, due to the multiple levels of regulation. Current molecular diagnostics mainly uses Sanger sequencing of exons, or next-generation sequencing of gene panels or the whole exome. Functional analysis of potential splicing variants is scarce, and intronic variants are often not considered. This likely results in underestimation of the percentage of splicing variants. Understanding how sequence variants may affect splicing is not only crucial for confirmation of diagnosis and for genetic counseling, but also for the development of novel treatment options. These include small molecules, transsplicing, antisense oligonucleotides, and gene therapy. Here we review the current state of molecular mechanisms of splicing regulation and how deregulation can lead to human disease, diagnostics to detect splicing variants, and novel treatment options based on splicing correction.
Collapse
|
121
|
Evrony GD, Cordero DR, Shen J, Partlow JN, Yu TW, Rodin RE, Hill RS, Coulter ME, Lam ATN, Jayaraman D, Gerrelli D, Diaz DG, Santos C, Morrison V, Galli A, Tschulena U, Wiemann S, Martel MJ, Spooner B, Ryu SC, Elhosary PC, Richardson JM, Tierney D, Robinson CA, Chibbar R, Diudea D, Folkerth R, Wiebe S, Barkovich AJ, Mochida GH, Irvine J, Lemire EG, Blakley P, Walsh CA. Integrated genome and transcriptome sequencing identifies a noncoding mutation in the genome replication factor DONSON as the cause of microcephaly-micromelia syndrome. Genome Res 2017. [PMID: 28630177 PMCID: PMC5538549 DOI: 10.1101/gr.219899.116] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
While next-generation sequencing has accelerated the discovery of human disease genes, progress has been largely limited to the “low hanging fruit” of mutations with obvious exonic coding or canonical splice site impact. In contrast, the lack of high-throughput, unbiased approaches for functional assessment of most noncoding variants has bottlenecked gene discovery. We report the integration of transcriptome sequencing (RNA-seq), which surveys all mRNAs to reveal functional impacts of variants at the transcription level, into the gene discovery framework for a unique human disease, microcephaly-micromelia syndrome (MMS). MMS is an autosomal recessive condition described thus far in only a single First Nations population and causes intrauterine growth restriction, severe microcephaly, craniofacial anomalies, skeletal dysplasia, and neonatal lethality. Linkage analysis of affected families, including a very large pedigree, identified a single locus on Chromosome 21 linked to the disease (LOD > 9). Comprehensive genome sequencing did not reveal any pathogenic coding or canonical splicing mutations within the linkage region but identified several nonconserved noncoding variants. RNA-seq analysis detected aberrant splicing in DONSON due to one of these noncoding variants, showing a causative role for DONSON disruption in MMS. We show that DONSON is expressed in progenitor cells of embryonic human brain and other proliferating tissues, is co-expressed with components of the DNA replication machinery, and that Donson is essential for early embryonic development in mice as well, suggesting an essential conserved role for DONSON in the cell cycle. Our results demonstrate the utility of integrating transcriptomics into the study of human genetic disease when DNA sequencing alone is not sufficient to reveal the underlying pathogenic mutation.
Collapse
Affiliation(s)
- Gilad D Evrony
- Division of Genetics and Genomics, Manton Center for Orphan Disease, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Departments of Neurology and Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Dwight R Cordero
- Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Jun Shen
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.,Laboratory of Molecular Medicine, Partners Personalized Medicine, Cambridge, Massachusetts 02139, USA
| | - Jennifer N Partlow
- Division of Genetics and Genomics, Manton Center for Orphan Disease, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Departments of Neurology and Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Timothy W Yu
- Division of Genetics and Genomics, Manton Center for Orphan Disease, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Departments of Neurology and Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Rachel E Rodin
- Division of Genetics and Genomics, Manton Center for Orphan Disease, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Departments of Neurology and Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - R Sean Hill
- Division of Genetics and Genomics, Manton Center for Orphan Disease, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Departments of Neurology and Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Michael E Coulter
- Division of Genetics and Genomics, Manton Center for Orphan Disease, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Departments of Neurology and Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Anh-Thu N Lam
- Division of Genetics and Genomics, Manton Center for Orphan Disease, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Departments of Neurology and Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Divya Jayaraman
- Division of Genetics and Genomics, Manton Center for Orphan Disease, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Departments of Neurology and Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Dianne Gerrelli
- Institute of Child Health, University College London, London WC1N 1EH, United Kingdom
| | - Diana G Diaz
- Institute of Child Health, University College London, London WC1N 1EH, United Kingdom
| | - Chloe Santos
- Institute of Child Health, University College London, London WC1N 1EH, United Kingdom
| | - Victoria Morrison
- Institute of Child Health, University College London, London WC1N 1EH, United Kingdom
| | - Antonella Galli
- Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom
| | - Ulrich Tschulena
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Stefan Wiemann
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - M Jocelyne Martel
- Department of Obstetrics and Gynecology, University of Saskatchewan College of Medicine, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Betty Spooner
- Northern Medical Services, University of Saskatchewan College of Medicine, Saskatoon, Saskatchewan S7K 0L4, Canada
| | - Steven C Ryu
- Division of Genetics and Genomics, Manton Center for Orphan Disease, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Departments of Neurology and Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Princess C Elhosary
- Division of Genetics and Genomics, Manton Center for Orphan Disease, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Departments of Neurology and Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Jillian M Richardson
- Division of Genetics and Genomics, Manton Center for Orphan Disease, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Departments of Neurology and Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Danielle Tierney
- Division of Genetics and Genomics, Manton Center for Orphan Disease, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Departments of Neurology and Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Christopher A Robinson
- Department of Pathology, Royal University Hospital, University of Saskatchewan, Saskatoon, Saskatchewan S7N 0W8, Canada
| | - Rajni Chibbar
- Department of Pathology, Royal University Hospital, University of Saskatchewan, Saskatoon, Saskatchewan S7N 0W8, Canada
| | - Dana Diudea
- Department of Pathology, Royal University Hospital, University of Saskatchewan, Saskatoon, Saskatchewan S7N 0W8, Canada
| | - Rebecca Folkerth
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Sheldon Wiebe
- Department of Medical Imaging, Royal University Hospital, University of Saskatchewan, Saskatoon, Saskatchewan S7N 0W8, Canada
| | - A James Barkovich
- Department of Radiology, University of California San Francisco, San Francisco, California 94143, USA
| | - Ganeshwaran H Mochida
- Division of Genetics and Genomics, Manton Center for Orphan Disease, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Departments of Neurology and Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.,Pediatric Neurology Unit, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - James Irvine
- Northern Medical Services, University of Saskatchewan College of Medicine, Saskatoon, Saskatchewan S7K 0L4, Canada.,Population Health Unit, Mamawetan Churchill River and Keewatin-Yatthé Health Regions, and Athabasca Health Authority, La Ronge, Saskatchewan S0J 1L0, Canada
| | - Edmond G Lemire
- Department of Pediatrics, Royal University Hospital, University of Saskatchewan, Saskatoon, Saskatchewan S7N 0W8, Canada
| | - Patricia Blakley
- Department of Pediatrics, Royal University Hospital, University of Saskatchewan, Saskatoon, Saskatchewan S7N 0W8, Canada
| | - Christopher A Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Departments of Neurology and Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
122
|
Kernohan KD, Frésard L, Zappala Z, Hartley T, Smith KS, Wagner J, Xu H, McBride A, Bourque PR, Care4Rare Canada Consortium, Bennett SAL, Dyment DA, Boycott KM, Montgomery SB, Chardon JW. Whole-transcriptome sequencing in blood provides a diagnosis of spinal muscular atrophy with progressive myoclonic epilepsy. Hum Mutat 2017; 38:611-614. [PMID: 28251733 PMCID: PMC5889109 DOI: 10.1002/humu.23211] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/19/2017] [Accepted: 02/21/2017] [Indexed: 12/22/2022]
Abstract
At least 15% of the disease-causing mutations affect mRNA splicing. Many splicing mutations are missed in a clinical setting due to limitations of in silico prediction algorithms or their location in noncoding regions. Whole-transcriptome sequencing is a promising new tool to identify these mutations; however, it will be a challenge to obtain disease-relevant tissue for RNA. Here, we describe an individual with a sporadic atypical spinal muscular atrophy, in whom clinical DNA sequencing reported one pathogenic ASAH1 mutation (c.458A>G;p.Tyr153Cys). Transcriptome sequencing on patient leukocytes identified a highly significant and atypical ASAH1 isoform not explained by c.458A>G(p<10-16 ). Subsequent Sanger-sequencing identified the splice mutation responsible for the isoform (c.504A>C;p.Lys168Asn) and provided a molecular diagnosis of autosomal-recessive spinal muscular atrophy with progressive myoclonic epilepsy. Our findings demonstrate the utility of RNA sequencing from blood to identify splice-impacting disease mutations for nonhematological conditions, providing a diagnosis for these otherwise unsolved patients.
Collapse
Affiliation(s)
- Kristin D. Kernohan
- Department of Genetics, Children’s Hospital of Eastern Ontario, Ottawa, Ontario, Canada
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Laure Frésard
- Department of Pathology, Stanford University, Stanford, California
| | - Zachary Zappala
- Department of Pathology, Stanford University, Stanford, California
- Department of Genetics, Stanford University, Stanford, California
| | - Taila Hartley
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Kevin S. Smith
- Department of Pathology, Stanford University, Stanford, California
| | - Justin Wagner
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Hongbin Xu
- Department of BMI, University of Ottawa, Ottawa, Ontario, Canada
| | - Arran McBride
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | - David A. Dyment
- Department of Genetics, Children’s Hospital of Eastern Ontario, Ottawa, Ontario, Canada
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Kym M. Boycott
- Department of Genetics, Children’s Hospital of Eastern Ontario, Ottawa, Ontario, Canada
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Stephen B. Montgomery
- Department of Pathology, Stanford University, Stanford, California
- Department of Genetics, Stanford University, Stanford, California
| | - Jodi Warman Chardon
- Department of Genetics, Children’s Hospital of Eastern Ontario, Ottawa, Ontario, Canada
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
- Division of Neurology, The Ottawa Hospital, Ottawa, Ontario, Canada
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Centre for Neuromuscular Disease (CNMD), University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
123
|
Deep intronic mutations and human disease. Hum Genet 2017; 136:1093-1111. [DOI: 10.1007/s00439-017-1809-4] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 05/05/2017] [Indexed: 12/22/2022]
|
124
|
Ipe TS, Lim J, Reyes MA, Ero M, Leveque C, Lewis B, Kain J. An extremely rare splice site mutation in the gene encoding complement factor I in a patient with atypical hemolytic uremic syndrome. J Clin Apher 2017; 32:584-588. [PMID: 28455885 DOI: 10.1002/jca.21549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/03/2017] [Accepted: 04/04/2017] [Indexed: 11/11/2022]
Abstract
BACKGROUND Atypical hemolytic uremic syndrome (aHUS) is a rare disease characterized by thrombocytopenia, microangiopathic hemolytic anemia, and acute kidney failure. The disease is difficult to diagnose due to its similarity with other hematologic disorders, such as thrombotic thrombocytopenic purpura (TTP). However, genetic mutations are found in 50-70% of patients with aHUS and can be useful in its diagnosis. STUDY DESIGN AND METHODS A 40-year-old male presented to our hospital with acute kidney injury, evidenced by high creatinine levels (8.3 mg/dL) and kidney biopsy results. The patient was preliminarily diagnosed with TTP and therapeutic plasma exchange (TPE) was initiated. After four treatments, TPE was discontinued due to lack of ADAMTS13 activity and inhibitor assay results that were not consistent with TTP, improved hematologic laboratory results, and aHUS genetic testing results. RESULTS Next-generation sequencing showed a rare mutation at a splice site in the gene encoding complement factor I (CFI). Implication of this mutation in aHUS has not been previously described. Treatment with eculizumab reduced creatinine levels below 4.0 mg/dL, and the patient remained on maintenance dosage of eculizumab (1200 mg/14 days) to prevent aHUS recurrence. CONCLUSION An extremely rare, heterozygous mutation in the gene encoding CFI likely affecting splicing was associated for the first time with aHUS. Sequencing was critical for rapid diagnosis and subsequent timely treatment with eculizumab, which resulted in improved renal function.
Collapse
Affiliation(s)
- Tina S Ipe
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Jooeun Lim
- Machaon Diagnostics, Oakland, California
| | - Meredith Anne Reyes
- Department of Pathology and Laboratory Medicine, Baylor College of Medicine, Houston, Texas
| | - Mike Ero
- Machaon Diagnostics, Oakland, California
| | - Christopher Leveque
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | | | - Jamey Kain
- Machaon Diagnostics, Oakland, California
| |
Collapse
|
125
|
Savisaar R, Hurst LD. Estimating the prevalence of functional exonic splice regulatory information. Hum Genet 2017; 136:1059-1078. [PMID: 28405812 PMCID: PMC5602102 DOI: 10.1007/s00439-017-1798-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/04/2017] [Indexed: 12/14/2022]
Abstract
In addition to coding information, human exons contain sequences necessary for correct splicing. These elements are known to be under purifying selection and their disruption can cause disease. However, the density of functional exonic splicing information remains profoundly uncertain. Several groups have experimentally investigated how mutations at different exonic positions affect splicing. They have found splice information to be distributed widely in exons, with one estimate putting the proportion of splicing-relevant nucleotides at >90%. These results suggest that splicing could place a major pressure on exon evolution. However, analyses of sequence conservation have concluded that the need to preserve splice regulatory signals only slightly constrains exon evolution, with a resulting decrease in the average human rate of synonymous evolution of only 1–4%. Why do these two lines of research come to such different conclusions? Among other reasons, we suggest that the methods are measuring different things: one assays the density of sites that affect splicing, the other the density of sites whose effects on splicing are visible to selection. In addition, the experimental methods typically consider short exons, thereby enriching for nucleotides close to the splice junction, such sites being enriched for splice-control elements. By contrast, in part owing to correction for nucleotide composition biases and to the assumption that constraint only operates on exon ends, the conservation-based methods can be overly conservative.
Collapse
Affiliation(s)
- Rosina Savisaar
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK.
| | - Laurence D Hurst
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK
| |
Collapse
|
126
|
Functional classification of DNA variants by hybrid minigenes: Identification of 30 spliceogenic variants of BRCA2 exons 17 and 18. PLoS Genet 2017; 13:e1006691. [PMID: 28339459 PMCID: PMC5384790 DOI: 10.1371/journal.pgen.1006691] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 04/07/2017] [Accepted: 03/14/2017] [Indexed: 11/30/2022] Open
Abstract
Mutation screening of the breast cancer genes BRCA1 and BRCA2 identifies a large fraction of variants of uncertain clinical significance (VUS) whose functional and clinical interpretations pose a challenge for genomic medicine. Likewise, an increasing amount of evidence indicates that genetic variants can have deleterious effects on pre-mRNA splicing. Our goal was to investigate the impact on splicing of a set of reported variants of BRCA2 exons 17 and 18 to assess their role in hereditary breast cancer and to identify critical regulatory elements that may constitute hotspots for spliceogenic variants. A splicing reporter minigene with BRCA2 exons 14 to-20 (MGBR2_ex14-20) was constructed in the pSAD vector. Fifty-two candidate variants were selected with splicing prediction programs, introduced in MGBR2_ex14-20 by site-directed mutagenesis and assayed in triplicate in MCF-7 cells. Wild type MGBR2_ex14-20 produced a stable transcript of the expected size (1,806 nucleotides) and structure (V1-[BRCA2_exons_14–20]–V2). Functional mapping by microdeletions revealed essential sequences for exon recognition on the 3’ end of exon 17 (c.7944-7973) and the 5’ end of exon 18 (c.7979-7988, c.7999-8013). Thirty out of the 52 selected variants induced anomalous splicing in minigene assays with >16 different aberrant transcripts, where exon skipping was the most common event. A wide range of splicing motifs were affected including the canonical splice sites (15 variants), novel alternative sites (3 variants), the polypyrimidine tract (3 variants) and enhancers/silencers (9 variants). According to the guidelines of the American College of Medical Genetics and Genomics (ACMG), 20 variants could be classified as pathogenic (c.7806-2A>G, c.7806-1G>A, c.7806-1G>T, c.7806-1_7806-2dup, c.7976+1G>A, c.7977-3_7978del, c.7977-2A>T, c.7977-1G>T, c.7977-1G>C, c.8009C>A, c.8331+1G>T and c.8331+2T>C) or likely pathogenic (c.7806-9T>G, c.7976G>C, c.7976G>A, c.7977-7C>G, c.7985C>G, c.8023A>G, c.8035G>T and c.8331G>A), accounting for 30.8% of all pathogenic/likely pathogenic variants of exons 17–18 at the BRCA Share database. The remaining 8 variants (c.7975A>G, c.7977-6T>G, c.7988A>T, c.7992T>A, c.8007A>G, c.8009C>T, c.8009C>G, and c.8072C>T) induced partial splicing anomalies with important ratios of the full-length transcript (≥70%), so that they remained classified as VUS. Aberrant splicing is therefore especially prevalent in BRCA2 exons 17 and 18 due to the presence of active ESEs involved in exon recognition. Splicing functional assays with minigenes are a valuable strategy for the initial characterization of the splicing outcomes and the subsequent clinical interpretation of variants of any disease-gene, although these results should be checked, whenever possible, against patient RNA. A significant proportion of disease-causing mutations of inherited disorders impair splicing. Massive sequencing projects of genetic diseases generate thousands of sequence variations that require functional and clinical interpretations. We have shown that splicing reporter minigenes of the breast cancer genes BRCA1 and BRCA2 are useful tools to functionally test DNA variants. In this work, we have constructed a 7-exon BRCA2 minigene (exons 14 to 20) where we mapped critical splicing regulatory sequences and tested 52 selected variants of exons 17 and 18 detected in breast cancer patients. We finely located three DNA segments on both exons that presumably contain splicing enhancer sequences. We observed that a total of 30 variants of any type disrupted the splicing patterns and, given the severity of their outcomes, we classified 20 of them as pathogenic or likely pathogenic. We also showed that a wide range of splicing elements were affected including canonical and novel 5’ and 3’ splice sites, the polypyrimidine tract and enhancer and silencer sequences. We concluded that splicing aberrations are frequent in Hereditary Breast and Ovarian Cancer and that minigenes are valuable tools to functionally classify DNA variants of any human disease gene under the splicing viewpoint.
Collapse
|
127
|
Cherkaoui Jaouad I, Lyahyai J, Guaoua S, El Alloussi M, Zrhidri A, Doubaj Y, Boulanouar A, Sefiani A. Novel splice site mutation in CNNM4 gene in a family with Jalili syndrome. Eur J Med Genet 2017; 60:239-244. [PMID: 28246031 DOI: 10.1016/j.ejmg.2017.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/24/2017] [Accepted: 02/24/2017] [Indexed: 12/15/2022]
Abstract
Jalili syndrome is a rare autosomal recessive genetic disease characterized by the association of amelogenesis imperfecta and cone-rod retinal dystrophy. This syndrome is caused by mutations in the CNNM4 gene. Different types of CNNM4 mutations have been reported; missense, nonsense, large deletions, single base insertion, and duplication. We used Sanger sequencing to analyze a large consanguineous family with three siblings affected with Jalili syndrome, suspected clinically after dental and ophthalmological examination. These patients are carrying a novel homozygous mutation in the splice site acceptor of intron 3 (c.1682-1G > C) in the CNNM4 gene. We compare the findings of the present family to those from literature, in order to further delineate Jalili syndrome.
Collapse
Affiliation(s)
- Imane Cherkaoui Jaouad
- Centre de Génomique Humaine, Faculté de Médecine et de Pharmacie, Université Mohammed V, Rabat, Morocco; Département de Génétique Médicale, Institut National d'Hygiène, Rabat, Morocco.
| | - Jaber Lyahyai
- Centre de Génomique Humaine, Faculté de Médecine et de Pharmacie, Université Mohammed V, Rabat, Morocco
| | - Soukaina Guaoua
- Centre de Génomique Humaine, Faculté de Médecine et de Pharmacie, Université Mohammed V, Rabat, Morocco
| | - Mustapha El Alloussi
- Service d'odontologie Pédiatrique, Faculté de Médecine Dentaire, Université Mohammed V, Rabat, Morocco
| | - Abdelali Zrhidri
- Centre de Génomique Humaine, Faculté de Médecine et de Pharmacie, Université Mohammed V, Rabat, Morocco
| | - Yassamine Doubaj
- Centre de Génomique Humaine, Faculté de Médecine et de Pharmacie, Université Mohammed V, Rabat, Morocco; Département de Génétique Médicale, Institut National d'Hygiène, Rabat, Morocco
| | | | - Abdelaziz Sefiani
- Centre de Génomique Humaine, Faculté de Médecine et de Pharmacie, Université Mohammed V, Rabat, Morocco; Département de Génétique Médicale, Institut National d'Hygiène, Rabat, Morocco
| |
Collapse
|
128
|
Martin G, Selcuklu SD, Schouest K, Nembaware V, McKeown PC, Seoighe C, Spillane C. Allele-specific splicing effects on DKKL1 and ZNF419 transcripts in HeLa cells. Gene 2017; 598:107-112. [PMID: 27826023 DOI: 10.1016/j.gene.2016.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 10/16/2016] [Accepted: 11/03/2016] [Indexed: 10/20/2022]
Abstract
Allele-specific splicing is the production of different RNA isoforms from different alleles of a gene. Altered splicing patterns such as exon skipping can have a dramatic effect on the final protein product yet have traditionally proven difficult to predict. We investigated the splicing effects of a set of nine single nucleotide polymorphisms (SNPs) which are predicted to have a direct impact on mRNA splicing, each in a different gene. Predictions were based on SNP location relative to splice junctions and intronic/exonic splicing elements, combined with an analysis of splice isoform expression data from public sources. Of the nine genes tested, six SNPs led to direct impacts on mRNA splicing as determined by the splicing reporter minigene assay and RT-PCR in human HeLa cells, of which four were allele-specific effects. These included previously unreported alternative splicing patterns in the genes ZNF419 and DKKL1. Notably, the SNP in ZNF419, a transcription factor, leads to the deletion of a DNA-binding domain from the protein and is associated with an expression QTL, while the SNP in DKKL1 leads to shortened transcripts predicted to produce a truncated protein. We conclude that the impact of SNP mutations on mRNA splicing, and its biological relevance, can be predicted by integrating SNP position with available data on relative isoform abundance in human cell lines.
Collapse
Affiliation(s)
- Grace Martin
- Genetics & Biotechnology Lab, School of Natural Sciences, College of Science, National University of Ireland, Galway, Ireland
| | - S Duygu Selcuklu
- Genetics & Biotechnology Lab, School of Natural Sciences, College of Science, National University of Ireland, Galway, Ireland
| | - Katherine Schouest
- Genetics & Biotechnology Lab, School of Natural Sciences, College of Science, National University of Ireland, Galway, Ireland
| | - Victoria Nembaware
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Private Bag, Rondebosch, 7700 Cape Town, South Africa
| | - Peter C McKeown
- Genetics & Biotechnology Lab, School of Natural Sciences, College of Science, National University of Ireland, Galway, Ireland
| | - Cathal Seoighe
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland
| | - Charles Spillane
- Genetics & Biotechnology Lab, School of Natural Sciences, College of Science, National University of Ireland, Galway, Ireland.
| |
Collapse
|
129
|
|
130
|
Abstract
The ErbB receptor family, also known as the EGF receptor family or type I receptor family, includes the epidermal growth factor (EGF) receptor (EGFR) or ErbB1/Her1, ErbB2/Her2, ErbB3/Her3, and ErbB4/Her4. Among all RTKs, EGFR was the first RTK identified and the first one linked to cancer. Thus, EGFR has also been the most intensively studied among all RTKs. ErbB receptors are activated after homodimerization or heterodimerization. The ErbB family is unique among the various groups of receptor tyrosine kinases (RTKs) in that ErbB3 has impaired kinase activity, while ErbB2 does not have a direct ligand. Therefore, heterodimerization is an important mechanism that allows the activation of all ErbB receptors in response to ligand stimulation. The activated ErbB receptors bind to many signaling proteins and stimulate the activation of many signaling pathways. The specificity and potency of intracellular signaling pathways are determined by positive and negative regulators, the specific composition of activating ligand(s), receptor dimer components, and the diverse range of proteins that associate with the tyrosine phosphorylated C-terminal domain of the ErbB receptors. ErbB receptors are overexpressed or mutated in many cancers, especially in breast cancer, ovarian cancer, and non-small cell lung cancer. The overexpression and overactivation of ErbB receptors are correlated with poor prognosis, drug resistance, cancer metastasis, and lower survival rate. ErbB receptors, especially EGFR and ErbB2 have been the primary choices as targets for developing cancer therapies.
Collapse
Affiliation(s)
- Zhixiang Wang
- Signal Transduction Research Group, Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, 835 MSB, 114 St NW, Edmonton, AB, Canada, T6G 2H7.
| |
Collapse
|
131
|
Webster NJG. Alternative RNA Splicing in the Pathogenesis of Liver Disease. Front Endocrinol (Lausanne) 2017; 8:133. [PMID: 28680417 PMCID: PMC5478874 DOI: 10.3389/fendo.2017.00133] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/30/2017] [Indexed: 12/27/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is becoming increasingly prevalent due to the worldwide obesity epidemic and currently affects one-third of adults or about one billion people worldwide. NAFLD is predicted to affect over 50% of the world's population by the end of the next decade. It is the most common form of liver disease and is associated with increased risk for progression to a more severe form non-alcoholic steatohepatitis, as well as insulin resistance, type 2 diabetes mellitus, cirrhosis, and eventually hepatocellular carcinoma. This review article will focus on the role of alternative splicing in normal liver physiology and dysregulation in liver disease.
Collapse
Affiliation(s)
- Nicholas J. G. Webster
- Medical Research Service, VA San Diego Healthcare System, San Diego, CA, United States
- Department of Medicine, School of Medicine, Moores Cancer Center, University of California San Diego, La Jolla, CA, United States
- *Correspondence: Nicholas J. G. Webster,
| |
Collapse
|
132
|
Chen L, Jin P, Qin ZS. DIVAN: accurate identification of non-coding disease-specific risk variants using multi-omics profiles. Genome Biol 2016; 17:252. [PMID: 27923386 PMCID: PMC5139035 DOI: 10.1186/s13059-016-1112-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 11/18/2016] [Indexed: 12/22/2022] Open
Abstract
Understanding the link between non-coding sequence variants, identified in genome-wide association studies, and the pathophysiology of complex diseases remains challenging due to a lack of annotations in non-coding regions. To overcome this, we developed DIVAN, a novel feature selection and ensemble learning framework, which identifies disease-specific risk variants by leveraging a comprehensive collection of genome-wide epigenomic profiles across cell types and factors, along with other static genomic features. DIVAN accurately and robustly recognizes non-coding disease-specific risk variants under multiple testing scenarios; among all the features, histone marks, especially those marks associated with repressed chromatin, are often more informative than others.
Collapse
Affiliation(s)
- Li Chen
- Department of Mathematics and Computer Science, Emory University, Atlanta, GA, 30322, USA
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Zhaohui S Qin
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA. .,Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
133
|
Philbert M, Maillard C, Cavallin M, Goldenberg A, Masson C, Boddaert N, El Morjani A, Steffann J, Chelly J, Gerard X, Bahi-Buisson N. A novel recurrent LIS1 splice site mutation in classic lissencephaly. Am J Med Genet A 2016; 173:561-564. [PMID: 27891766 DOI: 10.1002/ajmg.a.38041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/23/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Marion Philbert
- Imagine Institute and UMR1163, Paris Descartes-Sorbonne Paris Cité University, Paris, France.,INSERM UMR-1163, Embryology and Genetics of Congenital Malformations, Paris, France
| | - Camille Maillard
- Imagine Institute and UMR1163, Paris Descartes-Sorbonne Paris Cité University, Paris, France.,INSERM UMR-1163, Embryology and Genetics of Congenital Malformations, Paris, France
| | - Mara Cavallin
- Imagine Institute and UMR1163, Paris Descartes-Sorbonne Paris Cité University, Paris, France.,INSERM UMR-1163, Embryology and Genetics of Congenital Malformations, Paris, France
| | - Alice Goldenberg
- Service de Génétique, CHU de Rouen et Inserm U1079, Centre Normand de Génomique Médicale et Médecine Personnalisée, Université de Rouen, Rouen, France
| | - Cecile Masson
- Plateforme Bioinformatique, Imagine Institute, Paris Descartes-Sorbonne Paris Cité University, Paris, France
| | - Nathalie Boddaert
- Department of Pediatric Radiology, Hôpital Necker Enfants Malades, AP-HP, University René Descartes, PRES Sorbonne Paris Cité, Paris, France.,INSERM U1000 and UMR 1163, Brain Imaging Laboratory "Image at Imagine" Institut Imagine, Paris, France
| | - Adrienne El Morjani
- Imagine Institute and UMR1163, Paris Descartes-Sorbonne Paris Cité University, Paris, France.,Genetic Department, Hôpital Necker-Enfants Malades, Paris, France
| | - Julie Steffann
- Imagine Institute and UMR1163, Paris Descartes-Sorbonne Paris Cité University, Paris, France.,Genetic Department, Hôpital Necker-Enfants Malades, Paris, France
| | - Jamel Chelly
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, Illkirch, France.,Université de Strasbourg, Strasbourg, France.,Service de Diagnostic Génétique, Hôpital Civil de Strasbourg, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Xavier Gerard
- Imagine Institute and UMR1163, Paris Descartes-Sorbonne Paris Cité University, Paris, France.,INSERM UMR-1163, Laboratory of Genetics in Ophthalmology, Paris, France
| | - Nadia Bahi-Buisson
- Imagine Institute and UMR1163, Paris Descartes-Sorbonne Paris Cité University, Paris, France.,INSERM UMR-1163, Embryology and Genetics of Congenital Malformations, Paris, France.,Pediatric Neurology, Necker Enfants Malades University Hospital, AP-HP, University René Descartes, PRES Sorbonne Paris Cité, Paris, France
| |
Collapse
|
134
|
Detailed molecular characterization of a novel IDS exonic mutation associated with multiple pseudoexon activation. J Mol Med (Berl) 2016; 95:299-309. [PMID: 27837218 DOI: 10.1007/s00109-016-1484-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/12/2016] [Accepted: 11/01/2016] [Indexed: 12/21/2022]
Abstract
Mutations affecting splicing underlie the development of many human genetic diseases, but rather rarely through mechanisms of pseudoexon activation. Here, we describe a novel c.1092T>A mutation in the iduronate-2-sulfatase (IDS) gene detected in a patient with significantly decreased IDS activity and a clinical diagnosis of mild mucopolysaccharidosis II form. The mutation created an exonic de novo acceptor splice site and resulted in a complex splicing pattern with multiple pseudoexon activation in the patient's fibroblasts. Using an extensive series of minigene splicing experiments, we showed that the competition itself between the de novo and authentic splice site led to the bypass of the authentic one. This event then resulted in activation of several cryptic acceptor and donor sites in the upstream intron. As this was an unexpected and previously unreported mechanism of aberrant pseudoexon inclusion, we systematically analysed and disproved that the patient's mutation induced any relevant change in surrounding splicing regulatory elements. Interestingly, all pseudoexons included in the mature transcripts overlapped with the IDS alternative terminal exon 7b suggesting that this sequence represents a key element in the IDS pre-mRNA architecture. These findings extend the spectrum of mechanisms enabling pseudoexon activation and underscore the complexity of mutation-induced splicing aberrations. KEY MESSAGE Novel exonic IDS gene mutation leads to a complex splicing pattern. Mutation activates multiple pseudoexons through a previously unreported mechanism. Multiple cryptic splice site (ss) activation results from a bypass of authentic ss. Authentic ss bypass is due to a competition between de novo and authentic ss.
Collapse
|
135
|
Functional Studies and In Silico Analyses to Evaluate Non-Coding Variants in Inherited Cardiomyopathies. Int J Mol Sci 2016; 17:ijms17111883. [PMID: 27834932 PMCID: PMC5133883 DOI: 10.3390/ijms17111883] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/19/2016] [Accepted: 10/27/2016] [Indexed: 12/18/2022] Open
Abstract
Point mutations are the most common cause of inherited diseases. Bioinformatics tools can help to predict the pathogenicity of mutations found during genetic screening, but they may work less well in determining the effect of point mutations in non-coding regions. In silico analysis of intronic variants can reveal their impact on the splicing process, but the consequence of a given substitution is generally not predictable. The aim of this study was to functionally test five intronic variants (MYBPC3-c.506-2A>C, MYBPC3-c.906-7G>T, MYBPC3-c.2308+3G>C, SCN5A-c.393-5C>A, and ACTC1-c.617-7T>C) found in five patients affected by inherited cardiomyopathies in the attempt to verify their pathogenic role. Analysis of the MYBPC3-c.506-2A>C mutation in mRNA from the peripheral blood of one of the patients affected by hypertrophic cardiac myopathy revealed the loss of the canonical splice site and the use of an alternative splicing site, which caused the loss of the first seven nucleotides of exon 5 (MYBPC3-G169AfsX14). In the other four patients, we generated minigene constructs and transfected them in HEK-293 cells. This minigene approach showed that MYBPC3-c.2308+3G>C and SCN5A-c.393-5C>A altered pre-mRNA processing, thus resulting in the skipping of one exon. No alterations were found in either MYBPC3-c.906-7G>T or ACTC1-c.617-7T>C. In conclusion, functional in vitro analysis of the effects of potential splicing mutations can confirm or otherwise the putative pathogenicity of non-coding mutations, and thus help to guide the patient's clinical management and improve genetic counseling in affected families.
Collapse
|
136
|
Rodríguez-Balada M, Roig B, Martorell L, Melé M, Salvat M, Vilella E, Borràs J, Gumà J. In silico, in vitro and case-control analyses as an effective combination for analyzing BRCA1 and BRCA2 unclassified variants in a population-based sample. Cancer Genet 2016; 209:487-492. [PMID: 27886673 DOI: 10.1016/j.cancergen.2016.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/12/2016] [Accepted: 09/08/2016] [Indexed: 01/19/2023]
Abstract
Ascertaining the clinical consequences of BRCA1 and BRCA2 variants of uncertain significance (VUS) is currently indispensable for providing effective genetic counseling and preventive actions for families with hereditary breast and ovarian cancer (HBOC). To this end, we conducted a combination of in silico prediction and cDNA splicing analyses of 13 BRCA1 and 10 BRCA2 VUS identified in our cohort as well as a case-control analysis in a population-based sample of 10 recurrent VUS. We observed consistent results between the in silico predictions and sequencing analyses for all analyzed VUS. An abnormal cDNA pattern was observed for variants c.212+1G>A and c.5278-1G>A in BRCA1 and c.516+2T>A and c.8168A>G in BRCA2 according to in silico splicing prediction. A case-control study of VUS confirmed the polymorphisms of the c.67+62A>G, c.7008-62A>G and c.8851G>A BRCA2 variants previously published. c.4068G>A in the BRCA2 gene can also be considered a polymorphism due to its occurrence at a frequency greater than 1% in our population. Our study shows that employing population-based analysis and a combination of several in silico methods yields highly accurate information, resulting in a reliable tool for selecting variants for cDNA sequencing analysis in routine cancer genetic counseling units.
Collapse
Affiliation(s)
- Marta Rodríguez-Balada
- Cancer Genetic Counseling Unit (Oncology Research Group), Institut d'Oncologia de la Catalunya Sud (IOCS), Hospital Universitari Sant Joan de Reus, IISPV, Universitat Rovira i Virgili, Av. Del Dr. Josep Laporte, Reus, Spain
| | - Bàrbara Roig
- Cancer Genetic Counseling Unit (Oncology Research Group), Institut d'Oncologia de la Catalunya Sud (IOCS), Hospital Universitari Sant Joan de Reus, IISPV, Universitat Rovira i Virgili, Av. Del Dr. Josep Laporte, Reus, Spain
| | - Lourdes Martorell
- Hospital Universitari Institut Pere Mata, IISPV, Universitat Rovira i Virgili, CIBERSAM, C/Sant Llorenç, Reus, Spain
| | - Mireia Melé
- Cancer Genetic Counseling Unit (Oncology Research Group), Institut d'Oncologia de la Catalunya Sud (IOCS), Hospital Universitari Sant Joan de Reus, IISPV, Universitat Rovira i Virgili, Av. Del Dr. Josep Laporte, Reus, Spain
| | - Mònica Salvat
- Cancer Genetic Counseling Unit (Oncology Research Group), Institut d'Oncologia de la Catalunya Sud (IOCS), Hospital Universitari Sant Joan de Reus, IISPV, Universitat Rovira i Virgili, Av. Del Dr. Josep Laporte, Reus, Spain
| | - Elisabet Vilella
- Hospital Universitari Institut Pere Mata, IISPV, Universitat Rovira i Virgili, CIBERSAM, C/Sant Llorenç, Reus, Spain
| | - Joan Borràs
- Cancer Genetic Counseling Unit (Oncology Research Group), Institut d'Oncologia de la Catalunya Sud (IOCS), Hospital Universitari Sant Joan de Reus, IISPV, Universitat Rovira i Virgili, Av. Del Dr. Josep Laporte, Reus, Spain
| | - Josep Gumà
- Cancer Genetic Counseling Unit (Oncology Research Group), Institut d'Oncologia de la Catalunya Sud (IOCS), Hospital Universitari Sant Joan de Reus, IISPV, Universitat Rovira i Virgili, Av. Del Dr. Josep Laporte, Reus, Spain.
| |
Collapse
|
137
|
Abstract
Gene fusions and their encoded products (fusion RNAs and proteins) are viewed as one of the hallmarks of cancer. Traditionally, they were thought to be generated solely by chromosomal rearrangements. However, recent discoveries of trans-splicing and cis-splicing events between neighboring genes, suggest that there are other mechanisms to generate chimeric fusion RNAs without corresponding changes in DNA. In addition, chimeric RNAs have been detected in normal physiology, complicating the use of fusions in cancer detection and therapy. On the other hand, "intergenically spliced" fusion RNAs represent a new repertoire of biomarkers and therapeutic targets. Here, we review current knowledge on chimeric RNAs and implications for cancer detection and treatment, and discuss outstanding questions for the advancement of the field.
Collapse
Affiliation(s)
- Yuemeng Jia
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Zhongqiu Xie
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Hui Li
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA 22908
| |
Collapse
|
138
|
Charnwichai P, Yeetong P, Suphapeetiporn K, Supornsilchai V, Sahakitrungruang T, Shotelersuk V. Splicing analysis of CYP11B1 mutation in a family affected with 11β-hydroxylase deficiency: case report. BMC Endocr Disord 2016; 16:37. [PMID: 27316665 PMCID: PMC4912772 DOI: 10.1186/s12902-016-0118-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 06/06/2016] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Congenital adrenal hyperplasia (CAH) due to steroid 11β-hydroxylase deficiency (11β-OHD) is a rare form of CAH associated with low renin hypertension, hypokalemia, hyperandrogenemia and ambiguous genitalia in affected females. Herein we describe the clinical, hormonal and molecular characteristics of two Uzbekistan siblings with 11β-OHD and analyze the effects of a splicing mutation. CASE PRESENTATION A 46,XX girl presented with genital ambiguity and low renin hypertension; her 46,XY brother presented with precocious puberty. Hormonal studies suggested 11β-OHD. Mutation analysis was performed by PCR followed by Sanger sequencing of the entire coding regions and their flanking introns of the CYP11B1 gene. Mutation analysis showed that both patients were compound heterozygous for IVS7 + 1G > A, and c.421C > T. Although the identified mutations have been previously described, this is, to our knowledge, the first report of these mutations in compound heterozygotes. A minigene assay was used to determine the effects of the splicing mutation. The constructs containing either the wild-type or the splice-site mutant CYP11B1 genomic DNA of exons-introns 6-9 were transfected into COS-7 cells; subsequently, RNA splicing was assessed by reversed transcribed-PCR of CYP11B1 complementary DNA. The minigene assay revealed that the IVS7 + 1G > A mutation resulted in two shorter incorrectly spliced products; one skipping the exon 7 and the other skipping the exons 7-8. The c.421C > T mutation leads to the introduction of a premature stop codon at residue 141 (p.R141X). These mutations are expected to code non-functional proteins. CONCLUSION Compound heterozygous mutations (IVS7 + 1G > A and p.R141X) in the CYP11B1 gene were found to cause 11β-OHD. The IVS7 + 1G > A mutation causes aberrant splicing of CYP11B1 leading to exon skipping. This finding could facilitate the future novel therapies targeted on splicing modulation to treat human disease.
Collapse
Affiliation(s)
- Pattaranatcha Charnwichai
- Department of Bioscience, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Excellence Center for Medical Genetics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Patra Yeetong
- Excellence Center for Medical Genetics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kanya Suphapeetiporn
- Excellence Center for Medical Genetics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence for Medical Genetics, King Chulalongkorn Memorial Hospital, Bangkok, 10330, Thailand
| | - Vichit Supornsilchai
- Division of Pediatric Endocrinology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Taninee Sahakitrungruang
- Division of Pediatric Endocrinology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Vorasuk Shotelersuk
- Excellence Center for Medical Genetics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence for Medical Genetics, King Chulalongkorn Memorial Hospital, Bangkok, 10330, Thailand
| |
Collapse
|
139
|
Abstract
Recent improvements in experimental and computational techniques that are used to study the transcriptome have enabled an unprecedented view of RNA processing, revealing many previously unknown non-canonical splicing events. This includes cryptic events located far from the currently annotated exons and unconventional splicing mechanisms that have important roles in regulating gene expression. These non-canonical splicing events are a major source of newly emerging transcripts during evolution, especially when they involve sequences derived from transposable elements. They are therefore under precise regulation and quality control, which minimizes their potential to disrupt gene expression. We explain how non-canonical splicing can lead to aberrant transcripts that cause many diseases, and also how it can be exploited for new therapeutic strategies.
Collapse
|
140
|
Panwar B, Menon R, Eksi R, Li HD, Omenn GS, Guan Y. Genome-Wide Functional Annotation of Human Protein-Coding Splice Variants Using Multiple Instance Learning. J Proteome Res 2016; 15:1747-53. [PMID: 27142340 DOI: 10.1021/acs.jproteome.5b00883] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The vast majority of human multiexon genes undergo alternative splicing and produce a variety of splice variant transcripts and proteins, which can perform different functions. These protein-coding splice variants (PCSVs) greatly increase the functional diversity of proteins. Most functional annotation algorithms have been developed at the gene level; the lack of isoform-level gold standards is an important intellectual limitation for currently available machine learning algorithms. The accumulation of a large amount of RNA-seq data in the public domain greatly increases our ability to examine the functional annotation of genes at isoform level. In the present study, we used a multiple instance learning (MIL)-based approach for predicting the function of PCSVs. We used transcript-level expression values and gene-level functional associations from the Gene Ontology database. A support vector machine (SVM)-based 5-fold cross-validation technique was applied. Comparatively, genes with multiple PCSVs performed better than single PCSV genes, and performance also improved when more examples were available to train the models. We demonstrated our predictions using literature evidence of ADAM15, LMNA/C, and DMXL2 genes. All predictions have been implemented in a web resource called "IsoFunc", which is freely available for the global scientific community through http://guanlab.ccmb.med.umich.edu/isofunc .
Collapse
Affiliation(s)
- Bharat Panwar
- Department of Computational Medicine and Bioinformatics, ‡Department of Internal Medicine, §Department of Human Genetics and School of Public Health, and ∥Department of Electrical Engineering and Computer Science, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Rajasree Menon
- Department of Computational Medicine and Bioinformatics, ‡Department of Internal Medicine, §Department of Human Genetics and School of Public Health, and ∥Department of Electrical Engineering and Computer Science, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Ridvan Eksi
- Department of Computational Medicine and Bioinformatics, ‡Department of Internal Medicine, §Department of Human Genetics and School of Public Health, and ∥Department of Electrical Engineering and Computer Science, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Hong-Dong Li
- Department of Computational Medicine and Bioinformatics, ‡Department of Internal Medicine, §Department of Human Genetics and School of Public Health, and ∥Department of Electrical Engineering and Computer Science, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Gilbert S Omenn
- Department of Computational Medicine and Bioinformatics, ‡Department of Internal Medicine, §Department of Human Genetics and School of Public Health, and ∥Department of Electrical Engineering and Computer Science, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Yuanfang Guan
- Department of Computational Medicine and Bioinformatics, ‡Department of Internal Medicine, §Department of Human Genetics and School of Public Health, and ∥Department of Electrical Engineering and Computer Science, University of Michigan , Ann Arbor, Michigan 48109, United States
| |
Collapse
|
141
|
Tan J, Ho JXJ, Zhong Z, Luo S, Chen G, Roca X. Noncanonical registers and base pairs in human 5' splice-site selection. Nucleic Acids Res 2016; 44:3908-21. [PMID: 26969736 PMCID: PMC4856993 DOI: 10.1093/nar/gkw163] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 12/27/2022] Open
Abstract
Accurate recognition of splice sites is essential for pre-messenger RNA splicing. Mammalian 5' splice sites are mainly recognized by canonical base-pairing to the 5' end of U1 small nuclear RNA, yet we described multiple noncanonical base-pairing registers by shifting base-pair positions or allowing one-nucleotide bulges. By systematic mutational and suppressor U1 analyses, we prove three registers involving asymmetric loops and show that two-nucleotide bulges but not longer can form in this context. Importantly, we established that a noncanonical uridine-pseudouridine interaction in the 5' splice site/U1 helix contributes to the recognition of certain 5' splice sites. Thermal melting experiments support the formation of noncanonical registers and uridine-pseudouridine interactions. Overall, we experimentally validated or discarded the majority of predicted noncanonical registers, to derive a list of 5' splice sites using such alternative mechanisms that is much different from the original. This study allows not only the mechanistic understanding of the recognition of a wide diversity of mammalian 5' splice sites, but also the future development of better splice-site scoring methods that reliably predict the effects of disease-causing mutations at these sequences.
Collapse
Affiliation(s)
- Jiazi Tan
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Jia Xin Jessie Ho
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Zhensheng Zhong
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Shufang Luo
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Gang Chen
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Xavier Roca
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| |
Collapse
|
142
|
Transcript Isoform Variation Associated with Cytosine Modification in Human Lymphoblastoid Cell Lines. Genetics 2016; 203:985-95. [PMID: 27029734 DOI: 10.1534/genetics.115.185504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 03/27/2016] [Indexed: 11/18/2022] Open
Abstract
Cytosine modification on DNA is variable among individuals, which could correlate with gene expression variation. The effect of cytosine modification on interindividual transcript isoform variation (TIV), however, remains unclear. In this study, we assessed the extent of cytosine modification-specific TIV in lymphoblastoid cell lines (LCLs) derived from unrelated individuals of European and African descent. Our study detected cytosine modification-specific TIVs for 17% of the analyzed genes at a 5% false discovery rate. Forty-five percent of the TIV-associated cytosine modifications correlated with the overall gene expression levels as well, with the corresponding CpG sites overrepresented in transcript initiation sites, transcription factor binding sites, and distinct histone modification peaks, suggesting that alternative isoform transcription underlies the TIVs. Our analysis also revealed 33% of the TIV-associated cytosine modifications that affected specific exons, with the corresponding CpG sites overrepresented in exon/intron junctions, splicing branching points, and transcript termination sites, implying that the TIVs are attributable to alternative splicing or transcription termination. Genetic and epigenetic regulation of TIV shared target preference but exerted independent effects on 61% of the common exon targets. Cytosine modification-specific TIVs detected from LCLs were differentially enriched in those detected from various tissues in The Cancer Genome Atlas, indicating their developmental dependency. Genes containing cytosine modification-specific TIVs were enriched in pathways of cancers and metabolic disorders. Our study demonstrated a prominent effect of cytosine modification variation on the transcript isoform spectrum over gross transcript abundance and revealed epigenetic contributions to diseases that were mediated through cytosine modification-specific TIV.
Collapse
|
143
|
Abstract
RNA splicing represents a post-transcriptional mechanism to generate multiple functional RNAs or proteins from a single transcript. The evolution of RNA splicing is a prime example of the Darwinian function follows form concept. A mutation that leads to a new mRNA (form) that encodes for a new functional protein (function) is likely to be retained, and this way, the genome has gradually evolved to encode for genes with multiple isoforms, thereby creating an enormously diverse transcriptome. Advances in technologies to characterize RNA populations have led to a better understanding of RNA processing in health and disease. In the heart, alternative splicing is increasingly being recognized as an important layer of post-transcriptional gene regulation. Moreover, the recent identification of several cardiac splice factors, such as RNA-binding motif protein 20 and SF3B1, not only provided important insight into the mechanisms underlying alternative splicing but also revealed how these splicing factors impact functional properties of the heart. Here, we review our current knowledge of alternative splicing in the heart, with a particular focus on the major and minor spliceosome, the factors controlling RNA splicing, and the role of alternative splicing in cardiac development and disease.
Collapse
Affiliation(s)
- Maarten M.G. van den Hoogenhof
- From the Department of Experimental Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Yigal M. Pinto
- From the Department of Experimental Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Esther E. Creemers
- From the Department of Experimental Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
144
|
A high-throughput screening assay for the functional delivery of splice-switching oligonucleotides in human melanoma cells. Methods Mol Biol 2016; 1297:187-96. [PMID: 25896004 DOI: 10.1007/978-1-4939-2562-9_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Since the conception of RNA nanotechnology (Cell, 94:147, 1998), there has been tremendous interest in its application for the functional delivery of RNA into cells. Splice-switching oligonucleotides (SSOs) are an emerging antisense drug class with the ability to therapeutically modify gene expression. A wide variety of chemical modifications have been devised to try to increase the activity and stability of SSOs. Also, as with most nucleic acid therapeutics, delivery into the cell is the major hurdle for in vivo and clinical applications. As a result, various RNA nanoparticles are being constructed for targeted delivery of therapeutics. However, it is difficult to find a practical assay to measure splice-switching activity. Here, we describe a model delivery system that can be used as a convenient, high-throughput assay to quantitatively measure the functional delivery and splicing redirection in a live human melanoma cell line.
Collapse
|
145
|
Amdani SN, Yeste M, Jones C, Coward K. Phospholipase C zeta (PLCζ) and male infertility: Clinical update and topical developments. Adv Biol Regul 2015; 61:58-67. [PMID: 26700242 DOI: 10.1016/j.jbior.2015.11.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 11/26/2015] [Accepted: 11/26/2015] [Indexed: 01/09/2023]
Abstract
The development of a mammalian embryo is initiated by a sequence of molecular events collectively referred to as 'oocyte activation' and regulated by the release of intracellular calcium in the ooplasm. Over the last decade, phospholipase C zeta (PLCζ), a sperm protein introduced into the oocyte upon gamete fusion, has gained almost universal acceptance as the protein factor responsible for initiating oocyte activation. A large body of consistent and reproducible evidence, from both biochemical and clinical settings, confers support for the role of PLCζ in this fundamental biological context, which has significant ramifications for the management of human male infertility. Oocyte activation deficiency (OAD) and total fertilisation failure (TFF) are known causes of infertility and have both been linked to abnormalities in the structure, expression, and localisation pattern of PLCζ in human sperm. Assisted oocyte activators (AOAs) represent the only therapeutic option available for OAD at present, although these agents have been the source of much debate recently, particularly with regard to their potential epigenetic effects upon the embryo. Consequently, there is much interest in the deployment of sensitive PLCζ assays as prognostic/diagnostic tests and human recombinant PLCζ protein as an alternative form of therapy. Although PLCζ deficiency has been directly linked to a cohort of infertile cases, we have yet to identify the specific causal mechanisms involved. While two genetic mutations have been identified which link defective PLCζ protein to an infertile phenotype, both were observed in the same patient, and have yet to be described in other patients. Consequently, some researchers are investigating the possibility that genetic variations in the form of single nucleotide polymorphisms (SNPs) could provide some explanation, especially since >6000 SNPs have been identified in the PLCζ gene. As yet, however, there is no consistent data to suggest that any of these SNPs influence the functional ability of PLCζ. Other laboratories appear to be focussing upon the PLCζ promoter, which is bi-directional and shared with the actin filament capping muscle Z-line alpha 3 gene (CAPZA3), or seeking to identify interacting proteins within the ooplasm. The aim of this review is to provide a synopsis of recent progress in the application of PLCζ in diagnostic and therapeutic medicine, to discuss our current understanding of how the functional ability of PLCζ might be controlled, and thus how PLCζ deficiency might arise, and finally, to consider the potential implications of alternative sperm protein candidates, such as post-acrosomal WW-domain binding protein (PAWP), which has caused much debate and confusion in the field over the last few years.
Collapse
Affiliation(s)
- Siti Nornadhirah Amdani
- Nuffield Department of Obstetrics & Gynaecology, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK; PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Jalan Tunku Link, Gadong, Brunei Darussalam
| | - Marc Yeste
- Nuffield Department of Obstetrics & Gynaecology, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK
| | - Celine Jones
- Nuffield Department of Obstetrics & Gynaecology, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK
| | - Kevin Coward
- Nuffield Department of Obstetrics & Gynaecology, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK.
| |
Collapse
|
146
|
Jung H, Lee D, Lee J, Park D, Kim YJ, Park WY, Hong D, Park PJ, Lee E. Intron retention is a widespread mechanism of tumor-suppressor inactivation. Nat Genet 2015; 47:1242-8. [PMID: 26437032 DOI: 10.1038/ng.3414] [Citation(s) in RCA: 262] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 09/08/2015] [Indexed: 12/14/2022]
Abstract
A substantial fraction of disease-causing mutations are pathogenic through aberrant splicing. Although genome profiling studies have identified somatic single-nucleotide variants (SNVs) in cancer, the extent to which these variants trigger abnormal splicing has not been systematically examined. Here we analyzed RNA sequencing and exome data from 1,812 patients with cancer and identified ∼900 somatic exonic SNVs that disrupt splicing. At least 163 SNVs, including 31 synonymous ones, were shown to cause intron retention or exon skipping in an allele-specific manner, with ∼70% of the SNVs occurring on the last base of exons. Notably, SNVs causing intron retention were enriched in tumor suppressors, and 97% of these SNVs generated a premature termination codon, leading to loss of function through nonsense-mediated decay or truncated protein. We also characterized the genomic features predictive of such splicing defects. Overall, this work demonstrates that intron retention is a common mechanism of tumor-suppressor inactivation.
Collapse
Affiliation(s)
- Hyunchul Jung
- Research Institute, National Cancer Center, Gyeonggi-do, South Korea.,Samsung Genome Institute, Samsung Medical Center, Seoul, South Korea.,Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, California, USA
| | - Donghoon Lee
- Research Institute, National Cancer Center, Gyeonggi-do, South Korea.,Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, USA
| | - Jongkeun Lee
- Research Institute, National Cancer Center, Gyeonggi-do, South Korea.,Cancer Immunology Branch, Division of Cancer Biology, National Cancer Center, Gyeonggi-do, South Korea
| | - Donghyun Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, South Korea.,Samsung Biomedical Research Institute, Samsung Advanced Institute of Technology, Samsung Electronics Company, Ltd., Seoul, South Korea
| | - Yeon Jeong Kim
- Samsung Genome Institute, Samsung Medical Center, Seoul, South Korea.,Samsung Biomedical Research Institute, Samsung Advanced Institute of Technology, Samsung Electronics Company, Ltd., Seoul, South Korea
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, South Korea.,Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Dongwan Hong
- Research Institute, National Cancer Center, Gyeonggi-do, South Korea.,Cancer Immunology Branch, Division of Cancer Biology, National Cancer Center, Gyeonggi-do, South Korea
| | - Peter J Park
- Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
| | - Eunjung Lee
- Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
147
|
Rodrigues C, Santos-Silva A, Costa E, Bronze-da-Rocha E. Performance of In Silico Tools for the Evaluation of UGT1A1 Missense Variants. Hum Mutat 2015; 36:1215-25. [PMID: 26377032 DOI: 10.1002/humu.22903] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 08/31/2015] [Indexed: 01/17/2023]
Abstract
Variations in the gene encoding uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1) are particularly important because they have been associated with hyperbilirubinemia in Gilbert's and Crigler-Najjar syndromes as well as with changes in drug metabolism. Several variants associated with these phenotypes are nonsynonymous single-nucleotide polymorphisms (nsSNPs). Bioinformatics approaches have gained increasing importance in predicting the functional significance of these variants. This study was focused on the predictive ability of bioinformatics approaches to determine the pathogenicity of human UGT1A1 nsSNPs, which were previously characterized at the protein level by in vivo and in vitro studies. Using 16 Web algorithms, we evaluated 48 nsSNPs described in the literature and databases. Eight of these algorithms reached or exceeded 90% sensitivity and six presented a Matthews correlation coefficient above 0.46. The best-performing method was MutPred, followed by Sorting Intolerant from Tolerant (SIFT). The prediction measures varied significantly when predictors such us SIFT, polyphen-2, and Prediction of Pathological Mutations on Proteins were run with their native alignment generated by the tool, or with an input alignment that was strictly built with UGT1A1 orthologs and manually curated. Our results showed that the prediction performance of some methods based on sequence conservation analysis can be negatively affected when nsSNPs are positioned at the hypervariable or constant regions of UGT1A1 ortholog sequences.
Collapse
Affiliation(s)
- Carina Rodrigues
- UCIBIO/REQUIMTE, Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.,Escola Superior de Saúde, Instituto Politécnico de Bragança, Bragança, Portugal
| | - Alice Santos-Silva
- UCIBIO/REQUIMTE, Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Elísio Costa
- UCIBIO/REQUIMTE, Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Elsa Bronze-da-Rocha
- UCIBIO/REQUIMTE, Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
148
|
Acedo A, Hernández-Moro C, Curiel-García Á, Díez-Gómez B, Velasco EA. Functional classification of BRCA2 DNA variants by splicing assays in a large minigene with 9 exons. Hum Mutat 2015; 36:210-21. [PMID: 25382762 PMCID: PMC4371643 DOI: 10.1002/humu.22725] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 10/27/2014] [Indexed: 01/04/2023]
Abstract
Numerous pathogenic DNA variants impair the splicing mechanism in human genetic diseases. Minigenes are optimal approaches to test variants under the splicing viewpoint without the need of patient samples. We aimed to design a robust minigene construct of the breast cancer gene BRCA2 in order to investigate the impact of variants on splicing. BRCA2 exons 19-27 (MGBR2_ex19-27) were cloned in the new vector pSAD. It produced a large transcript of the expected size (2,174 nucleotides) and exon structure (V1-ex19-27-V2). Splicing assays showed that 18 (17 splice-site and 1 silencer variants) out of 40 candidate DNA variants induced aberrant patterns. Twenty-four anomalous transcripts were accurately detected by fluorescent-RT-PCR that were generated by exon-skipping, alternative site usage, and intron-retention events. Fourteen variants induced major anomalies and were predicted to disrupt protein function so they could be classified as pathogenic. Furthermore, minigene mimicked previously reported patient RNA outcomes of seven variants supporting the reproducibility of minigene assays. Therefore, a relevant fraction of variants are involved in breast cancer through splicing alterations. MGBR2_ex19-27 is the largest reported BRCA2 minigene and constitutes a valuable tool for the functional and clinical classification of sequence variations.
Collapse
Affiliation(s)
- Alberto Acedo
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular (CSIC-UVa), Valladolid, Spain
| | | | | | | | | |
Collapse
|
149
|
Splicing Regulation of Pro-Inflammatory Cytokines and Chemokines: At the Interface of the Neuroendocrine and Immune Systems. Biomolecules 2015; 5:2073-100. [PMID: 26371053 PMCID: PMC4598789 DOI: 10.3390/biom5032073] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 08/28/2015] [Indexed: 01/13/2023] Open
Abstract
Alternative splicing plays a key role in posttranscriptional regulation of gene expression, allowing a single gene to encode multiple protein isoforms. As such, alternative splicing amplifies the coding capacity of the genome enormously, generates protein diversity, and alters protein function. More than 90% of human genes undergo alternative splicing, and alternative splicing is especially prevalent in the nervous and immune systems, tissues where cells need to react swiftly and adapt to changes in the environment through carefully regulated mechanisms of cell differentiation, migration, targeting, and activation. Given its prevalence and complexity, this highly regulated mode of gene expression is prone to be affected by disease. In the following review, we look at how alternative splicing of signaling molecules—cytokines and their receptors—changes in different pathological conditions, from chronic inflammation to neurologic disorders, providing means of functional interaction between the immune and neuroendocrine systems. Switches in alternative splicing patterns can be very dynamic and can produce signaling molecules with distinct or antagonistic functions and localization to different subcellular compartments. This newly discovered link expands our understanding of the biology of immune and neuroendocrine cells, and has the potential to open new windows of opportunity for treatment of neurodegenerative disorders.
Collapse
|
150
|
Seok J, Xu W, Davis RW, Xiao W. RASA: Robust Alternative Splicing Analysis for Human Transcriptome Arrays. Sci Rep 2015; 5:11917. [PMID: 26145443 PMCID: PMC4491729 DOI: 10.1038/srep11917] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 06/09/2015] [Indexed: 11/28/2022] Open
Abstract
Human transcriptome arrays (HTA) have recently been developed for high-throughput alternative splicing analysis by measuring signals not only from exons but also from exon-exon junctions. Effective use of these rich signals requires the development of computational methods for better gene and alternative splicing analyses. In this work, we introduce a computational method, Robust Alternative Splicing Analysis (RASA), for the analysis of the new transcriptome arrays by effective integration of the exon and junction signals. To increase robustness, RASA calculates the expression of each gene by selecting exons classified as not alternatively spliced. It then identifies alternatively spliced exons that are supported by both exon and junction signals to reduce the false positives. Finally, it detects additional alternative splicing candidates that are supported by only exon signals because the signals from the corresponding junctions are not well detected. RASA was demonstrated with Affymetrix HTAs and its performance was evaluated with mRNA-Seq and RT-PCR. The validation rate is 52.4%, which is a 60% increase when compared with previous methods that do not use selected exons for gene expression calculation and junction signals for splicing detection. These results suggest that RASA significantly improves alternative splicing analyses on HTA platforms.
Collapse
Affiliation(s)
- Junhee Seok
- School of Electrical Engineering, Korea University, Seoul 136-701, Korea
| | - Weihong Xu
- Stanford Genome Technology Center, Palo Alto, CA 94304, USA
| | - Ronald W Davis
- Stanford Genome Technology Center, Palo Alto, CA 94304, USA
| | - Wenzhong Xiao
- 1] Stanford Genome Technology Center, Palo Alto, CA 94304, USA [2] Massachusetts General Hospital and Shriners Hospital for Children, Boston, MA 02114, USA
| |
Collapse
|