101
|
Gougeon L, da Costa G, Guyon F, Richard T. 1H NMR metabolomics applied to Bordeaux red wines. Food Chem 2019; 301:125257. [PMID: 31357002 DOI: 10.1016/j.foodchem.2019.125257] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 07/24/2019] [Accepted: 07/24/2019] [Indexed: 01/03/2023]
Abstract
The q-NMR metabolomics has already demonstrated its potential for classifying wines of different geographical origins, grape varieties, or vintages. This study focuses on the characterisation of Bordeaux red wines, seeking to discriminate them from others produced in the major French wine regions. A sampling of 224 commercial French wines was analysed by 1H NMR and forty compounds were quantified. Non-supervised and supervised statistical analyses revealed a singular imprint of Bordeaux wines in comparison with other French wines, with classification rates ranging from 71% to 100%. Within the Bordeaux vineyards, red wines from the different Bordeaux subdivisions were analysed from different vintages. Our results indicate that q-NMR metabolomics enables the differentiation of Médoc and Libournais vineyard highlighting the most discriminant constituents. In addition, the effects of wine evolution during bottle aging and vintage on Bordeaux red wines were pointed out and discussed.
Collapse
Affiliation(s)
- Louis Gougeon
- Univ. Bordeaux, ISVV, EA 4577, USC 1366 INRA, Unité de Recherche Œnologie, 210 chemin de Leysotte, F-33882 Villenave d'Ornon, France
| | - Gregory da Costa
- Univ. Bordeaux, ISVV, EA 4577, USC 1366 INRA, Unité de Recherche Œnologie, 210 chemin de Leysotte, F-33882 Villenave d'Ornon, France
| | - François Guyon
- Service Commun des Laboratoires, 3 avenue du Dr. Albert Schweitzer, 33600 Pessac, France
| | - Tristan Richard
- Univ. Bordeaux, ISVV, EA 4577, USC 1366 INRA, Unité de Recherche Œnologie, 210 chemin de Leysotte, F-33882 Villenave d'Ornon, France.
| |
Collapse
|
102
|
Mao Y, Lei R, Ryan J, Arrutia Rodriguez F, Rastall B, Chatzifragkou A, Winkworth-Smith C, Harding SE, Ibbett R, Binner E. Understanding the influence of processing conditions on the extraction of rhamnogalacturonan-I "hairy" pectin from sugar beet pulp. FOOD CHEMISTRY-X 2019; 2:100026. [PMID: 31423484 PMCID: PMC6690420 DOI: 10.1016/j.fochx.2019.100026] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/24/2019] [Accepted: 04/29/2019] [Indexed: 11/30/2022]
Abstract
Conventional and microwave-assisted extraction of “hairy” pectin from sugar beet. Determined effect of heating method, temperature, time & pH on yield & composition. No difference between microwave and conventional extraction under conditions tested. Strong alkaline is favoured in rhamnogalacturonan-I “hairy” pectin extraction. Hydrothermal water extraction can be an alternative to strong alkaline extraction.
Sugar beet pectin is rich in rhamnogalacturonan-I (RG-I) region, which is a potential source of prebiotics. RG-I pectin cannot be extracted the same way as commercial homogalacturan-rich pectin using hot acid. Therefore, this study has explored several alternative methods, including microwave-assisted extraction (MAE) and conventional-solvent extraction (CSE) at atmospheric pressure using different solvents, and microwave-assisted hydrothermal extraction (MAHE) under pressure using water. No conclusive differences in microwave and conventional heating were found with heating rate controlled. The optimum treatment times of both MAE and CSE at 90 °C atmospheric pressure and regardless of the solvents used were 120 min; however, MAHE at 130 °C under pressure can dramatically reduce the time to 10 min. Alcohol-insoluble solids (AIS) extracted using pH13 solvent by MAE had both the highest RG-I yield at 25.3% and purity at 260.2 mg/g AIS, followed by AIS extracts using water by MAHE with 7.5% and 166.7 mg/g AIS respectively.
Collapse
Affiliation(s)
- Yujie Mao
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, University Park, NG7 2RD, UK
| | - Rui Lei
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, University Park, NG7 2RD, UK
| | - John Ryan
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, University Park, NG7 2RD, UK
| | - Fatima Arrutia Rodriguez
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, University Park, NG7 2RD, UK
| | - Bob Rastall
- Department of Food and Nutritional Sciences, University of Reading, PO Box 226, 13 Whiteknights, Reading RG6 6AP, UK
| | - Afroditi Chatzifragkou
- Department of Food and Nutritional Sciences, University of Reading, PO Box 226, 13 Whiteknights, Reading RG6 6AP, UK
| | - Charles Winkworth-Smith
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, University Park, NG7 2RD, UK
| | - Stephen E Harding
- National Centre for Macromolecular Hydrodynamics, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Roger Ibbett
- School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Eleanor Binner
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, University Park, NG7 2RD, UK
| |
Collapse
|
103
|
Kirsch R, Kunert G, Vogel H, Pauchet Y. Pectin Digestion in Herbivorous Beetles: Impact of Pseudoenzymes Exceeds That of Their Active Counterparts. Front Physiol 2019; 10:685. [PMID: 31191365 PMCID: PMC6549527 DOI: 10.3389/fphys.2019.00685] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 05/16/2019] [Indexed: 12/11/2022] Open
Abstract
Many protein families harbor pseudoenzymes that have lost the catalytic function of their enzymatically active counterparts. Assigning alternative function and importance to these proteins is challenging. Because the evolution toward pseudoenzymes is driven by gene duplication, they often accumulate in multigene families. Plant cell wall-degrading enzymes (PCWDEs) are prominent examples of expanded gene families. The pectolytic glycoside hydrolase family 28 (GH28) allows herbivorous insects to break down the PCW polysaccharide pectin. GH28 in the Phytophaga clade of beetles contains many active enzymes but also many inactive counterparts. Using functional characterization, gene silencing, global transcriptome analyses, and recordings of life history traits, we found that not only catalytically active but also inactive GH28 proteins are part of the same pectin-digesting pathway. The robustness and plasticity of this pathway and thus its importance for the beetle is supported by extremely high steady-state expression levels and counter-regulatory mechanisms. Unexpectedly, the impact of pseudoenzymes on the pectin-digesting pathway in Phytophaga beetles exceeds even the influence of their active counterparts, such as a lowered efficiency of food-to-energy conversion and a prolongation of the developmental period.
Collapse
Affiliation(s)
- Roy Kirsch
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Grit Kunert
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Yannick Pauchet
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
104
|
Faustino M, Veiga M, Sousa P, Costa EM, Silva S, Pintado M. Agro-Food Byproducts as a New Source of Natural Food Additives. Molecules 2019; 24:E1056. [PMID: 30889812 PMCID: PMC6471601 DOI: 10.3390/molecules24061056] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 02/07/2023] Open
Abstract
Nowadays, the agro-food industry generates high amounts of byproducts that may possess added value compounds with high functionality and/or bioactivity. Additionally, consumers' demand for healthier foodstuffs has increased over the last years, and thus the food industry has strived to answer this challenge. Byproducts are generally secondary products derived from primary agro-food production processes and represent an interesting and cheaper source of potentially functional ingredients, such as peptides, carotenoids, and phenolic compounds, thus promoting a circular economy concept. The existing body of work has shown that byproducts and their extracts may be successfully incorporated into foodstuffs, for instance, phenolic compounds from eggplant can be potentially used as a mulfitunctional food additive with antimicrobial, antioxidant, and food colorant properties. As such, the aim of this review is to provide insights into byproducts and their potential as new sources of foodstuffs additives.
Collapse
Affiliation(s)
- Margarida Faustino
- CBQF⁻Centro de Biotecnologia e Química Fina⁻Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Arquiteto Lobão Vital 172, 4200-374 Porto, Portugal.
| | - Mariana Veiga
- CBQF⁻Centro de Biotecnologia e Química Fina⁻Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Arquiteto Lobão Vital 172, 4200-374 Porto, Portugal.
| | - Pedro Sousa
- CBQF⁻Centro de Biotecnologia e Química Fina⁻Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Arquiteto Lobão Vital 172, 4200-374 Porto, Portugal.
| | - Eduardo M Costa
- CBQF⁻Centro de Biotecnologia e Química Fina⁻Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Arquiteto Lobão Vital 172, 4200-374 Porto, Portugal.
| | - Sara Silva
- CBQF⁻Centro de Biotecnologia e Química Fina⁻Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Arquiteto Lobão Vital 172, 4200-374 Porto, Portugal.
| | - Manuela Pintado
- CBQF⁻Centro de Biotecnologia e Química Fina⁻Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Arquiteto Lobão Vital 172, 4200-374 Porto, Portugal.
| |
Collapse
|
105
|
Schmitz K, Protzko R, Zhang L, Benz JP. Spotlight on fungal pectin utilization-from phytopathogenicity to molecular recognition and industrial applications. Appl Microbiol Biotechnol 2019; 103:2507-2524. [PMID: 30694345 DOI: 10.1007/s00253-019-09622-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/03/2019] [Accepted: 01/04/2019] [Indexed: 11/29/2022]
Abstract
Pectin is a complex polysaccharide with D-galacturonic acid as its main component that predominantly accumulates in the middle lamella of the plant cell wall. Integrity and depolymerization of pectic structures have long been identified as relevant factors in fungal phytosymbiosis and phytopathogenicity in the context of tissue penetration and carbon source supply. While the pectic content of a plant cell wall can vary significantly, pectin was reported to account for up to 20-25% of the total dry weight in soft and non-woody tissues with non- or mildly lignified secondary cell walls, such as found in citrus peel, sugar beet pulp, and apple pomace. Due to their potential applications in various industrial sectors, pectic sugars from these and similar agricultural waste streams have been recognized as valuable targets for a diverse set of biotechnological fermentations.Recent advances in uncovering the molecular regulation mechanisms for pectinase expression in saprophytic fungi have led to a better understanding of fungal pectin sensing and utilization that could help to improve industrial, pectin-based fermentations. Related research in phytopathogenic fungi has furthermore added to our knowledge regarding the relevance of pectinases in plant cell wall penetration during onset of disease and is therefore highly relevant for agricultural sciences and the agricultural industry. This review therefore aims at summarizing (i) the role of pectinases in phytopathogenicity, (ii) the global regulation patterns for pectinase expression in saprophytic filamentous fungi as a highly specialized class of pectin degraders, and (iii) the current industrial applications in pectic sugar fermentations and transformations.
Collapse
Affiliation(s)
- Kevin Schmitz
- Holzforschung München, TUM School of Life Sciences Weihenstephan, Technische Universität München, Freising, Germany
| | - Ryan Protzko
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Lisha Zhang
- Department of Plant Biochemistry, Centre for Plant Molecular Biology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - J Philipp Benz
- Holzforschung München, TUM School of Life Sciences Weihenstephan, Technische Universität München, Freising, Germany.
| |
Collapse
|
106
|
LOCATELLI GABRIELO, FINKLER LEANDRO, FINKLER CHRISTINEL. Orange and Passion Fruit Wastes Characterization, Substrate Hydrolysis and Cell Growth of Cupriavidus necator, as Proposal to Converting of Residues in High Value Added Product. ACTA ACUST UNITED AC 2019; 91:e20180058. [DOI: 10.1590/0001-3765201920180058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 06/18/2018] [Indexed: 01/19/2023]
Affiliation(s)
- GABRIEL O. LOCATELLI
- Universidade Federal de Pernambuco/UFPE, Brazil; Centro Universitário Brasileiro/UNIBRA, Brazil
| | | | | |
Collapse
|
107
|
Morales-Martínez Y, López-Cuellar MDR, Chavarría-Hernández N, Rodríguez-Hernández AI. Rheological behaviour of acetylated pectins from cactus pear fruits ( Opuntia albicarpa and O. matudae ). Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
108
|
Atanasova L, Dubey M, Grujić M, Gudmundsson M, Lorenz C, Sandgren M, Kubicek CP, Jensen DF, Karlsson M. Evolution and functional characterization of pectate lyase PEL12, a member of a highly expanded Clonostachys rosea polysaccharide lyase 1 family. BMC Microbiol 2018; 18:178. [PMID: 30404596 PMCID: PMC6223089 DOI: 10.1186/s12866-018-1310-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 10/10/2018] [Indexed: 11/29/2022] Open
Abstract
Background Pectin is one of the major and most complex plant cell wall components that needs to be overcome by microorganisms as part of their strategies for plant invasion or nutrition. Microbial pectinolytic enzymes therefore play a significant role for plant-associated microorganisms and for the decomposition and recycling of plant organic matter. Recently, comparative studies revealed significant gene copy number expansion of the polysaccharide lyase 1 (PL1) pectin/pectate lyase gene family in the Clonostachys rosea genome, while only low numbers were found in Trichoderma species. Both of these fungal genera are widely known for their ability to parasitize and kill other fungi (mycoparasitism) and certain species are thus used for biocontrol of plant pathogenic fungi. Results In order to understand the role of the high number of pectin degrading enzymes in Clonostachys, we studied diversity and evolution of the PL1 gene family in C. rosea compared with other Sordariomycetes with varying nutritional life styles. Out of 17 members of C. rosea PL1, we could only detect two to be secreted at acidic pH. One of them, the pectate lyase pel12 gene was found to be strongly induced by pectin and, to a lower degree, by polygalacturonic acid. Heterologous expression of the PEL12 in a PL1-free background of T. reesei revealed direct enzymatic involvement of this protein in utilization of pectin at pH 5 without a requirement for Ca2+. The mutants showed increased utilization of pectin compounds, but did not increase biocontrol ability in detached leaf assay against the plant pathogen Botrytis cinerea compared to the wild type. Conclusions In this study, we aimed to gain insight into diversity and evolution of the PL1 gene family in C. rosea and other Sordariomycete species in relation to their nutritional modes. We show that C. rosea PL1 expansion does not correlate with its mycoparasitic nutritional mode and resembles those of strong plant pathogenic fungi. We further investigated regulation, specificity and function of the C. rosea PEL12 and show that this enzyme is directly involved in degradation of pectin and pectin-related compounds, but not in C. rosea biocontrol. Electronic supplementary material The online version of this article (10.1186/s12866-018-1310-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lea Atanasova
- Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, P.O. Box 7026, SE-75007, Uppsala, Sweden. .,Research division of Biochemical Technology, Institute of Chemical, Environmental and Biological Engineering, Vienna University of Technology, Gumpendorferstrasse 1a, 1060, Vienna, Austria. .,Institute of Food Technology, University of Natural Resources and Life Sciences, Muthgasse 11, 1190, Vienna, Austria.
| | - Mukesh Dubey
- Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, P.O. Box 7026, SE-75007, Uppsala, Sweden
| | - Marica Grujić
- Research division of Biochemical Technology, Institute of Chemical, Environmental and Biological Engineering, Vienna University of Technology, Gumpendorferstrasse 1a, 1060, Vienna, Austria
| | - Mikael Gudmundsson
- Molecular Sciences, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-75007, Uppsala, Sweden
| | - Cindy Lorenz
- Institute of Food Technology, University of Natural Resources and Life Sciences, Muthgasse 11, 1190, Vienna, Austria
| | - Mats Sandgren
- Molecular Sciences, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-75007, Uppsala, Sweden
| | - Christian P Kubicek
- Research division of Biochemical Technology, Institute of Chemical, Environmental and Biological Engineering, Vienna University of Technology, Gumpendorferstrasse 1a, 1060, Vienna, Austria.,, Present address: Steinschötelgasse 7, 1100, Vienna, Austria
| | - Dan Funck Jensen
- Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, P.O. Box 7026, SE-75007, Uppsala, Sweden
| | - Magnus Karlsson
- Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, P.O. Box 7026, SE-75007, Uppsala, Sweden
| |
Collapse
|
109
|
Dranca F, Oroian M. Extraction, purification and characterization of pectin from alternative sources with potential technological applications. Food Res Int 2018; 113:327-350. [DOI: 10.1016/j.foodres.2018.06.065] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 06/25/2018] [Accepted: 06/28/2018] [Indexed: 12/31/2022]
|
110
|
Baldassarre S, Babbar N, Van Roy S, Dejonghe W, Maesen M, Sforza S, Elst K. Continuous production of pectic oligosaccharides from onion skins with an enzyme membrane reactor. Food Chem 2018; 267:101-110. [DOI: 10.1016/j.foodchem.2017.10.055] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 07/15/2017] [Accepted: 10/09/2017] [Indexed: 11/27/2022]
|
111
|
Rao U, Posmanik R, Hatch LE, Tester JW, Walker SL, Barsanti KC, Jassby D. Coupling hydrothermal liquefaction and membrane distillation to treat anaerobic digestate from food and dairy farm waste. BIORESOURCE TECHNOLOGY 2018; 267:408-415. [PMID: 30032054 DOI: 10.1016/j.biortech.2018.07.064] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/11/2018] [Accepted: 07/12/2018] [Indexed: 06/08/2023]
Abstract
Increased demand for water, energy and food requires new ways to produce fertilizers, fuels and reusable water. Recovery of resources from wastes could lead to an additional source of energy and nutrients, and also reduce the waste to be disposed. In this work, we used hydrothermal liquefaction to produce a biocrude oil product, followed by membrane distillation of the aqueous effluents to concentrate a nutrient-rich stream that can be used as fertilizer. The motivation for this work is that residual heat from the hydrothermal liquefaction process could be utilized to drive the membrane distillation process, which would improve the efficiency and reduce the cost of the distillation process. The membrane distillation system was demonstrated to be able to recover 75% of the water. The membrane distillation retentate had very high ammonium and phosphate concentrations, making it suitable as a fertilizer. Membrane permeate contained high concentrations of volatile organics.
Collapse
Affiliation(s)
- Unnati Rao
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, United States
| | - Roy Posmanik
- Agricultural Research Organization (ARO), Volcani Center, Israel
| | - Lindsay E Hatch
- Department of Chemical and Environmental Engineering and College of Engineering - Center for Environmental Research and Technology, University of California, Riverside, CA, United States
| | - Jefferson W Tester
- School of Chemical and Biochemical Engineering, Cornell University, Ithaca, NY, United States
| | - Sharon L Walker
- Department of Chemical and Environmental Engineering and College of Engineering - Center for Environmental Research and Technology, University of California, Riverside, CA, United States
| | - Kelley C Barsanti
- Department of Chemical and Environmental Engineering and College of Engineering - Center for Environmental Research and Technology, University of California, Riverside, CA, United States
| | - David Jassby
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, United States
| |
Collapse
|
112
|
Zhang W, Xie F, Liu X, Luo J, Wu J, Wang Z. Pectin from Black Tomato Pomace: Characterization, Interaction with Gallotannin, and Emulsifying Stability Properties. STARCH-STARKE 2018. [DOI: 10.1002/star.201800172] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Wei Zhang
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University; NO. 800, Dongchuan Road Shanghai 200240 China
| | - Fan Xie
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University; NO. 800, Dongchuan Road Shanghai 200240 China
| | - Xiaohui Liu
- College of Longrun Pu-erh Tea, Yunnan Agriculturual University; Kunming 650201 Yunnan China
| | - Jing Luo
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University; NO. 800, Dongchuan Road Shanghai 200240 China
| | - Jinhong Wu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University; NO. 800, Dongchuan Road Shanghai 200240 China
| | - Zhengwu Wang
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University; NO. 800, Dongchuan Road Shanghai 200240 China
| |
Collapse
|
113
|
Chaiwarit T, Ruksiriwanich W, Jantanasakulwong K, Jantrawut P. Use of Orange Oil Loaded Pectin Films as Antibacterial Material for Food Packaging. Polymers (Basel) 2018; 10:E1144. [PMID: 30961069 PMCID: PMC6403689 DOI: 10.3390/polym10101144] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/11/2018] [Accepted: 10/11/2018] [Indexed: 11/29/2022] Open
Abstract
This study aims to develop orange oil loaded in thin mango peel pectin films and evaluate their antibacterial activity against Staphylococcus aureus. The mango peel pectin was obtained from the extraction of ripe Nam Dokmai mango peel by the microwave-assisted method. The thin films were formulated using commercial low methoxy pectin (P) and mango pectin (M) at a ratio of 1:2 with and without glycerol as a plasticizer. Orange oil was loaded into the films at 3% w/w. The orange oil film containing P and M at ratio of 1:2 with 40% w/w of glycerol (P₁M₂GO) showed the highest percent elongation (12.93 ± 0.89%) and the lowest Young's modulus values (35.24 ± 3.43 MPa). For limonene loading content, it was found that the amount of limonene after the film drying step was directly related to the final physical structure of the film. Among the various tested films, P₁M₂GO film had the lowest limonene loading content (59.25 ± 2.09%), which may be because of the presence of numerous micropores in the P₁M₂GO film's matrix. The inhibitory effect against the growth of S. aureus was compared in normalized value of clear zone diameter using the normalization value of limonene content in each film. The P₁M₂GO film showed the highest inhibitory effect against S. aureus with the normalized clear zone of 11.75 mm but no statistically significant difference. This study indicated that the orange oil loaded in mango peel pectin film can be a valuable candidate as antibacterial material for food packaging.
Collapse
Affiliation(s)
- Tanpong Chaiwarit
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Warintorn Ruksiriwanich
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Kittisak Jantanasakulwong
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand.
| | - Pensak Jantrawut
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
114
|
Iriondo-DeHond M, Miguel E, Del Castillo MD. Food Byproducts as Sustainable Ingredients for Innovative and Healthy Dairy Foods. Nutrients 2018; 10:E1358. [PMID: 30249001 PMCID: PMC6213882 DOI: 10.3390/nu10101358] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/18/2018] [Accepted: 09/21/2018] [Indexed: 12/30/2022] Open
Abstract
The valorization of food wastes and byproducts has become a major subject of research to improve the sustainability of the food chain. This narrative review provides an overview of the current trends in the use of food byproducts in the development of dairy foods. We revised the latest data on food loss generation, the group of byproducts most used as ingredients in dairy product development, and their function within the food matrix. We also address the challenges associated with the sensory properties of the new products including ingredients obtained from byproducts, and consumers' attitudes towards these sustainable novel dairy foods. Overall, 50 studies supported the tremendous potential of the application of food byproducts (mainly those from plant-origin) in dairy foods as ingredients. There are promising results for their utilization as food additives for technological purposes, and as sources of bioactive compounds to enhance the health-promoting properties of dairy products. However, food technologists, nutritionists and sensory scientists should work together to face the challenge of improving the palatability and consumer acceptance of these novel and sustainable dairy foods.
Collapse
Affiliation(s)
- Maite Iriondo-DeHond
- Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario (IMIDRA), N-II km 38,200, 28800 Alcalá de Henares, Spain.
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), C/ Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Eugenio Miguel
- Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario (IMIDRA), N-II km 38,200, 28800 Alcalá de Henares, Spain.
| | - María Dolores Del Castillo
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), C/ Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| |
Collapse
|
115
|
Servinsky MD, Renberg RL, Perisin MA, Gerlach ES, Liu S, Sund CJ. Arabinose-Induced Catabolite Repression as a Mechanism for Pentose Hierarchy Control in Clostridium acetobutylicum ATCC 824. mSystems 2018; 3:e00064-18. [PMID: 30374459 PMCID: PMC6199471 DOI: 10.1128/msystems.00064-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/13/2018] [Indexed: 12/27/2022] Open
Abstract
Bacterial fermentation of carbohydrates from sustainable lignocellulosic biomass into commodity chemicals by the anaerobic bacterium Clostridium acetobutylicum is a promising alternative source to fossil fuel-derived chemicals. Recently, it was demonstrated that xylose is not appreciably fermented in the presence of arabinose, revealing a hierarchy of pentose utilization in this organism (L. Aristilde, I. A. Lewis, J. O. Park, and J. D. Rabinowitz, Appl Environ Microbiol 81:1452-1462, 2015, https://doi.org/10.1128/AEM.03199-14). The goal of the current study is to characterize the transcriptional regulation that occurs and perhaps drives this pentose hierarchy. Carbohydrate consumption rates showed that arabinose, like glucose, actively represses xylose utilization in cultures fermenting xylose. Further, arabinose addition to xylose cultures led to increased acetate-to-butyrate ratios, which indicated a transition of pentose catabolism from the pentose phosphate pathway to the phosphoketolase pathway. Transcriptome sequencing (RNA-Seq) confirmed that arabinose addition to cells actively growing on xylose resulted in increased phosphoketolase (CA_C1343) mRNA levels, providing additional evidence that arabinose induces this metabolic switch. A significant overlap in differentially regulated genes after addition of arabinose or glucose suggested a common regulation mechanism. A putative open reading frame (ORF) encoding a potential catabolite repression phosphocarrier histidine protein (Crh) was identified that likely participates in the observed transcriptional regulation. These results substantiate the claim that arabinose is utilized preferentially over xylose in C. acetobutylicum and suggest that arabinose can activate carbon catabolite repression via Crh. Furthermore, they provide valuable insights into potential mechanisms for altering pentose utilization to modulate fermentation products for chemical production. IMPORTANCE Clostridium acetobutylicum can ferment a wide variety of carbohydrates to the commodity chemicals acetone, butanol, and ethanol. Recent advances in genetic engineering have expanded the chemical production repertoire of C. acetobutylicum using synthetic biology. Due to its natural properties and genetic engineering potential, this organism is a promising candidate for converting biomass-derived feedstocks containing carbohydrate mixtures to commodity chemicals via natural or engineered pathways. Understanding how this organism regulates its metabolism during growth on carbohydrate mixtures is imperative to enable control of synthetic gene circuits in order to optimize chemical production. The work presented here unveils a novel mechanism via transcriptional regulation by a predicted Crh that controls the hierarchy of carbohydrate utilization and is essential for guiding robust genetic engineering strategies for chemical production.
Collapse
Affiliation(s)
| | | | | | | | - Sanchao Liu
- U.S. Army Research Laboratory, RDRL-SEE-B, Adelphi, Maryland, USA
| | | |
Collapse
|
116
|
Continuous production of pectic oligosaccharides from sugar beet pulp in a cross flow continuous enzyme membrane reactor. Bioprocess Biosyst Eng 2018; 41:1717-1729. [DOI: 10.1007/s00449-018-1995-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 07/29/2018] [Indexed: 11/25/2022]
|
117
|
Grassino AN, Barba FJ, Brnčić M, Lorenzo JM, Lucini L, Brnčić SR. Analytical tools used for the identification and quantification of pectin extracted from plant food matrices, wastes and by-products: A review. Food Chem 2018; 266:47-55. [PMID: 30381214 DOI: 10.1016/j.foodchem.2018.05.105] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/09/2018] [Accepted: 05/23/2018] [Indexed: 11/18/2022]
Abstract
Pectin is the methylated ester of polygalacturonic acid and has a wide range of applications. It can be used in food and animal feed as well as in pharmaceutical and cosmetic products. Pectin is traditionally used as a gelling agent in fruit-based products, as a stabilizer in some fruit juices and milk drinks and fruit filling for bakery and confectionary products, but their potential applications differ according to their chemical composition. Therefore, at this stage of development, it is of a great importance to find fast, reliable methods to not only identify and quantify pectin, but also to determine its chemical structure and composition when it is extracted from plant matrices, wastes and by-products. The present review will focus on the analytical tools used to identify and quantify the amount of pectin obtained from plant matrices, wastes and by-products as well as determining its chemical and structural composition.
Collapse
Affiliation(s)
| | - Francisco J Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain.
| | - Mladen Brnčić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Croatia.
| | - Jose M Lorenzo
- Centro Tecnológico de la Carne de Galicia, c/Galicia, 4, San Ciprián de Viñas, Ourense, Spain
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | | |
Collapse
|
118
|
Effects of high hydrostatic pressure and high pressure homogenization processing on characteristics of potato peel waste pectin. Carbohydr Polym 2018; 196:474-482. [PMID: 29891321 DOI: 10.1016/j.carbpol.2018.05.061] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/08/2018] [Accepted: 05/18/2018] [Indexed: 12/26/2022]
Abstract
To better understand the effects of high pressure processing on potato peel waste pectins, the structural characteristics, physicochemical properties, and morphological features of the pectin treated with high hydrostatic pressure (HHP) and high pressure homogenization (HPH) at 200 MPa for 5 min were studied. The potato peel waste pectins subjected to high pressure treatments exhibited increased galacturonic acid contents as well as decreased esterification degree, (Gal + Ara)/Rha ratio, and molecular weight. Furthermore, the potato peel waste pectins treated with high pressure had an increased viscosity and improved emulsifying properties. The morphological features, determined by atomic force microscopy, shown the degradation of side chains of the pectin induced by high pressure treatments. The results suggest that high pressure processing is an efficient technique to modify pectin from potato peel waste to a thickener or stabilizer agent, but high pressure homogenization shows a better effect.
Collapse
|
119
|
Zheng J, Liu M, Zhang M, Kan J, Zhang F. Effects of Pectin on the Pasting, Rheological, and Textural Properties of Lotus Root Starch. STARCH-STARKE 2018. [DOI: 10.1002/star.201700347] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Jiong Zheng
- College of Food Science; Southwest University; Chongqing 400715 China
- Chongqing Engineering Research Center of Regional Food; Chongqing 400715 China
| | - Min Liu
- College of Food Science; Southwest University; Chongqing 400715 China
| | - Meixia Zhang
- School of Forestry and Life Science; Chongqing University of Arts and Sciences; Chongqing 402160 China
| | - Jianquan Kan
- College of Food Science; Southwest University; Chongqing 400715 China
- Chongqing Engineering Research Center of Regional Food; Chongqing 400715 China
| | - Fusheng Zhang
- College of Food Science; Southwest University; Chongqing 400715 China
- Chongqing Engineering Research Center of Regional Food; Chongqing 400715 China
| |
Collapse
|
120
|
Prandi B, Baldassarre S, Babbar N, Bancalari E, Vandezande P, Hermans D, Bruggeman G, Gatti M, Elst K, Sforza S. Pectin oligosaccharides from sugar beet pulp: molecular characterization and potential prebiotic activity. Food Funct 2018; 9:1557-1569. [DOI: 10.1039/c7fo01182b] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pectin oligosaccharides (POS) obtained from sugar beet pulp with suitable technologies showed promising prebiotic activity.
Collapse
Affiliation(s)
- Barbara Prandi
- Department of Food and Drug
- University of Parma
- Parma
- Italy
| | | | - Neha Babbar
- Department of Food and Drug
- University of Parma
- Parma
- Italy
- Flemish Institute for Technological Research
| | | | | | | | | | - Monica Gatti
- Department of Food and Drug
- University of Parma
- Parma
- Italy
| | - Kathy Elst
- Flemish Institute for Technological Research
- Mol
- Belgium
| | - Stefano Sforza
- Department of Food and Drug
- University of Parma
- Parma
- Italy
| |
Collapse
|
121
|
Xu L, Geelen D. Developing Biostimulants From Agro-Food and Industrial By-Products. FRONTIERS IN PLANT SCIENCE 2018; 9:1567. [PMID: 30425724 PMCID: PMC6218572 DOI: 10.3389/fpls.2018.01567] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/08/2018] [Indexed: 05/18/2023]
Abstract
In modern agriculture, seeking eco-friendly ways to promote plant growth and enhance crop productivity is of priority. Biostimulants are a group of substances from natural origin that contribute to boosting plant yield and nutrient uptake, while reducing the dependency on chemical fertilizers. Developing biostimulants from by-products paves the path to waste recycling and reduction, generating benefits for growers, food industry, registration and distribution companies, as well as consumers. The criteria to select designated by-products for valorizing as biostimulant are: absence of pesticide residue, low cost of collection and storage, sufficient supply and synergy with other valorization paths. Over the years, projects on national and international levels such as NOSHAN, SUNNIVA, and Bio2Bio have been initiated (i) to explore valorization of by-products for food and agriculture industries; (ii) to investigate mode of action of biostimulants from organic waste streams. Several classes of waste-derived biostimulants or raw organic material with biostimulant components were shown to be effective in agriculture and horticulture, including vermicompost, composted urban waste, sewage sludge, protein hydrolysate, and chitin/chitosan derivatives. As the global market for biostimulants continues to rise, it is expected that more research and development will expand the list of biostimulants from by-products. Global nutrient imbalance also requires biostimulant to be developed for targeted market. Here, we review examples of biostimulants derived from agricultural by-products and discuss why agricultural biomass is a particularly valuable source for the development of new agrochemical products.
Collapse
|
122
|
Benocci T, Aguilar-Pontes MV, Kun RS, Seiboth B, de Vries RP, Daly P. ARA1 regulates not only l-arabinose but also d-galactose catabolism in Trichoderma reesei. FEBS Lett 2017; 592:60-70. [PMID: 29215697 DOI: 10.1002/1873-3468.12932] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/18/2017] [Accepted: 11/29/2017] [Indexed: 11/11/2022]
Abstract
Trichoderma reesei is used to produce saccharifying enzyme cocktails for biofuels. There is limited understanding of the transcription factors (TFs) that regulate genes involved in release and catabolism of l-arabinose and d-galactose, as the main TF XYR1 is only partially involved. Here, the T. reesei ortholog of ARA1 from Pyricularia oryzae that regulates l-arabinose releasing and catabolic genes was deleted and characterized by growth profiling and transcriptomics along with a xyr1 mutant and xyr1/ara1 double mutant. Our results show that in addition to the l-arabinose-related role, T. reesei ARA1 is essential for expression of d-galactose releasing and catabolic genes, while XYR1 is not involved in this process.
Collapse
Affiliation(s)
- Tiziano Benocci
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, The Netherlands
| | - Maria Victoria Aguilar-Pontes
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, The Netherlands
| | - Roland Sándor Kun
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, The Netherlands
| | - Bernhard Seiboth
- Research Area Biochemical Technology, Institute of Chemical, Environmental and Biological Engineering, TU Wien, Vienna, Austria
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, The Netherlands
| | - Paul Daly
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, The Netherlands
| |
Collapse
|
123
|
Babbar N, Dejonghe W, Sforza S, Elst K. Enzymatic pectic oligosaccharides (POS) production from sugar beet pulp using response surface methodology. Journal of Food Science and Technology 2017; 54:3707-3715. [PMID: 29051666 DOI: 10.1007/s13197-017-2835-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/15/2017] [Accepted: 08/23/2017] [Indexed: 11/26/2022]
Abstract
Pectic oligosaccharides (POS) have been indicated as novel candidate prebiotics. Traditionally, POS are produced from pectin-rich by-products using a two-step process involving extraction of the pectin, followed by its hydrolysis into POS. A one-step approach, in which the POS is directly produced from the raw material, might provide a more efficient alternative. Thus, the main aim of this paper was to investigate a one-step enzymatic hydrolysis approach to directly produce POS from sugar beet pulp (SBP). The POS yield was investigated as a function of the process parameters, as well as raw material characteristics. A statistically-based response surface methodology, using a central composite design was applied, to investigate the individual as well as the combined influences of the diverse parameters. The model was confirmed by a validation experiment, carried out at 135 g/l substrate concentration, 0.75 FPU/g SBP enzyme concentration, 0.8 mm particle size and 3 h hydrolysis time. Under these conditions, a POS-rich hydrolysate was obtained, containing rhamnose, arabinose, galactose, xylose and galacturonic acid, at 0.9, 15.2, 5.1, 1.4, and 13.2 g/l, respectively, enzymes were added each at 20 FPU/g dry matter (DM).
Collapse
Affiliation(s)
- Neha Babbar
- Unit Separation and Conversion Technology, VITO - Flemish Institute for Technological Research, Boeretang 200, 2400 Mol, Belgium
- Department of Food Science, University of Parma, Parco Area delle Scienze 59 a, University Campus, 43124 Parma, Italy
| | - Winnie Dejonghe
- Unit Separation and Conversion Technology, VITO - Flemish Institute for Technological Research, Boeretang 200, 2400 Mol, Belgium
| | - Stefano Sforza
- Department of Food Science, University of Parma, Parco Area delle Scienze 59 a, University Campus, 43124 Parma, Italy
| | - Kathy Elst
- Unit Separation and Conversion Technology, VITO - Flemish Institute for Technological Research, Boeretang 200, 2400 Mol, Belgium
| |
Collapse
|
124
|
Apple pectin-derived oligosaccharides produce carbon dioxide radical anion in Fenton reaction and prevent growth of Escherichia coli and Staphylococcus aureus. Food Res Int 2017; 100:132-136. [PMID: 28888433 DOI: 10.1016/j.foodres.2017.08.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/04/2017] [Accepted: 08/18/2017] [Indexed: 11/22/2022]
Abstract
Pectin is the main soluble fiber in apples or citruses. It may be fermented by gut microbiota to metabolites showing local intestinal and systemic effects. A wide range of beneficial effects of dietary pectin includes impacts on the redox milieu and microbiota profile. We prepared pectin-derived oligosaccharides (apple (APDO) and citrus) and polygalacturonic acid-derived oligosaccharides, using alkaline hydrolysis by hydrogen peroxide, and analyzed them by Fourier Transform Infrared spectrometry. Furthermore, we analyzed the effects of pectin-derived oligosaccharides on hydroxyl radical (HO)-generating Fenton reaction using electron paramagnetic resonance spin-trapping spectroscopy, and the effects on the growth of Escherichia coli and Staphylococcus aureus in the presence of dietary-relevant HO-generating system (iron+ascorbate). The oligosaccharides react with HO radical to produce carbon dioxide radical anion (CO2-). A comparative analysis showed that APDO has the most prominent bacteriostatic effect. This might be at least partially related to the higher capacity of APDO to produce CO2-, which specifically targets proteins and appears to have a longer lifetime and larger diffusion radius in biological systems compared to HO.
Collapse
|
125
|
Govindaraj D, Rajan M, Hatamleh AA, Munusamy MA. From waste to high-value product: Jackfruit peel derived pectin/apatite bionanocomposites for bone healing applications. Int J Biol Macromol 2017; 106:293-301. [PMID: 28782611 DOI: 10.1016/j.ijbiomac.2017.08.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 02/08/2023]
Abstract
Public requirements encouraged by the current asset framework drive industry to expand its general effectiveness by enhancing existing procedures or finding new uses for waste. Thus, the aim of this study was the isolation, fabrication, and characterization of pectin derived from jackfruit (Artocarpus heterophyllus) peels and the generation of hybrid of pectin (P)/apatite (HA) (P/HA) bionanocomposites. In this process, the natural pectin polymer derived from the peel of jackfruits was used in different concentrations for the fabrication of HA bionanocomposites. Characterization of the isolated pectin and bionanocomposites samples was performed with 1H NMR and 13C NMR, FTIR, XRD, SEM-EDX, and HR-TEM. Cytocompatibility, ALP, fibroblast stem cells, anti-inflammatory and cell adhesion testing of the fabricated bionanocomposites was showed good biocompatibility. Our results signify that the fabricated bionanocomposites might be applicable as bone graft materials.
Collapse
Affiliation(s)
- Dharman Govindaraj
- Biomaterials in Medicinal Chemistry Laboratory, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, 625021, India
| | - Mariappan Rajan
- Biomaterials in Medicinal Chemistry Laboratory, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, 625021, India.
| | - Ashraf A Hatamleh
- Department of Botany and Microbiology, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Murugan A Munusamy
- Department of Botany and Microbiology, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
126
|
Characterization and physicochemical properties of pectins extracted from agroindustrial by-products. Journal of Food Science and Technology 2017; 54:3111-3117. [PMID: 28974796 DOI: 10.1007/s13197-017-2747-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/01/2017] [Accepted: 06/14/2017] [Indexed: 10/19/2022]
Abstract
The composition and fine structure of pectins found in plant cell walls are heterogeneous, with striking differences, depending on their source, and this eventually determines their functional and technological properties. The aim of this study was to extract and determine the chemical composition and physicochemical properties of pectins from different sources: passion fruit peel, orange pomace, and soy hull. Pectin extraction was performed with heated hydrochloric acid solution, followed by precipitation with 96% ethanol. Extraction yield, chemical composition, molar mass, physicochemical properties (fat absorption capacity, cation exchange capacity, water holding capacity, and antioxidant activity) of pectin were measured. Pectin extraction efficiency was higher for passion fruit peel and orange pomace (15.71 and 17.96%, respectively). Soy hull had low pectin extraction (5.66%). Galacturonic acid content was 23.21% for passion fruit peel pectin and 16.01% for orange pomace pectin. Water holding capacity, fat absorption capacity, and cation-binding capacity present in pectin extracted from passion fruit peel were higher, suggesting this poorly investigated product could be used as thickening and emulsifying agents in food preparations. Phenolic compounds with antioxidant capacity provide pectins with additional properties and expand their industrial use.
Collapse
|
127
|
Pectin at the oil-water interface: Relationship of molecular composition and structure to functionality. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2016.07.026] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
128
|
Mortensen A, Aguilar F, Crebelli R, Di Domenico A, Dusemund B, Frutos MJ, Galtier P, Gott D, Gundert-Remy U, Lambré C, Leblanc JC, Lindtner O, Moldeus P, Mosesso P, Oskarsson A, Parent-Massin D, Stankovic I, Waalkens-Berendsen I, Wright M, Younes M, Tobback P, Ioannidou S, Tasiopoulou S, Woutersen RA. Re-evaluation of pectin (E 440i) and amidated pectin (E 440ii) as food additives. EFSA J 2017; 15:e04866. [PMID: 32625540 PMCID: PMC7010145 DOI: 10.2903/j.efsa.2017.4866] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Following a request from the European Commission, the EFSA Panel on Food Additives and Nutrient sources added to Food (ANS) was asked to deliver a scientific opinion on the re-evaluation of pectin (E 440i) and amidated pectin (E 440ii) as food additives. An acceptable daily intake (ADI) 'not specified' was allocated by the Scientific Committee for Food (SCF) for E 440i and E 440ii. Pectin and amidated pectin would not be absorbed intact, but extensively fermented by intestinal microbiota in animals and humans; products formed from pectins in the gastrointestinal tract are similar to manufactured pectin-derived acidic oligosaccharides (pAOS). There is no indication of genotoxicity for pectin and amidated pectin, although the available data were limited. No adverse effects were reported in a chronic toxicity study in rats at levels up to 5,000 mg pectin/kg bw per day, the highest dose tested. No treatment-related effects were observed in a dietary one-generation reproductive toxicity study with pAOS in rats at up to 6,200 mg/kg body weight (bw) per day, the highest dose tested. The Panel did not consider E 440i and E 440ii as having allergenic potential. A dose of 36 g/day (equivalent to 515 mg/kg bw per day) for 6 weeks in humans was without adverse effects. Exposure to pectins from their use as food additives ranged up to 442 mg/kg bw per day for toddlers at the 95th percentile (brand-loyal scenario). The Panel concluded that there is no safety concern for the use of pectin (E 440i) and amidated pectin (E 440ii) as food additives for the general population and that there is no need for a numerical ADI.
Collapse
|
129
|
Extraction of pectin from the peels of pomelo by high-speed shearing homogenization and its characteristics. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2016.12.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
130
|
Antunes S, Freitas F, Sevrin C, Grandfils C, Reis MAM. Production of FucoPol by Enterobacter A47 using waste tomato paste by-product as sole carbon source. BIORESOURCE TECHNOLOGY 2017; 227:66-73. [PMID: 28013138 DOI: 10.1016/j.biortech.2016.12.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/02/2016] [Accepted: 12/03/2016] [Indexed: 06/06/2023]
Abstract
Out-of-specification tomato paste, a by-product from the tomato processing industry, was used as the sole substrate for cultivation of the bacterium Enterobacter A47 and production of FucoPol, a value-added fucose-rich extracellular polysaccharide. Among the different tested fed-batch strategies, pH-stat, DO-stat and continuous substrate feeding, the highest production (8.77gL-1) and overall volumetric productivity (2.92gL-1d-1) were obtained with continuous substrate feeding at a constant flow rate of 11gh-1. The polymer produced had the typical FucoPol composition (37mol% fucose, 27mol% galactose, 23mol% glucose and 12mol% glucuronic acid, with an acyl groups content of 13wt%). The average molecular weight was 4.4×106Da and the polydispersity index was 1.2. This study demonstrated that out-of-specification tomato paste is a suitable low-cost substrate for the production of FucoPol, thus providing a route for the valorization of this by-product into a high-value microbial product.
Collapse
Affiliation(s)
- Sílvia Antunes
- UCIBIO-REQUIMTE, Chemistry Department, FCT/Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Filomena Freitas
- UCIBIO-REQUIMTE, Chemistry Department, FCT/Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Chantal Sevrin
- Interfacultary Research Centre of Biomaterials (CEIB), University of Liège, B-4000 Liège, Belgium
| | - Christian Grandfils
- Interfacultary Research Centre of Biomaterials (CEIB), University of Liège, B-4000 Liège, Belgium
| | - Maria A M Reis
- UCIBIO-REQUIMTE, Chemistry Department, FCT/Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| |
Collapse
|
131
|
Chetouani A, Elkolli M, Bounekhel M, Benachour D. Chitosan/oxidized pectin/PVA blend film: mechanical and biological properties. Polym Bull (Berl) 2017. [DOI: 10.1007/s00289-017-1953-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
132
|
Barth D, Wiebe MG. Enhancing fungal production of galactaric acid. Appl Microbiol Biotechnol 2017; 101:4033-4040. [DOI: 10.1007/s00253-017-8159-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 01/21/2017] [Accepted: 01/25/2017] [Indexed: 01/18/2023]
|
133
|
Mridusmita C, David W, David E, Sharon P, Heather S, Yasmina S. Bioactive rich extracts from Terminalia ferdinandiana by enzyme-assisted extraction: A simple food safe extraction method. ACTA ACUST UNITED AC 2017. [DOI: 10.5897/jmpr2016.6285] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
134
|
Abid M, Cheikhrouhou S, Renard CM, Bureau S, Cuvelier G, Attia H, Ayadi M. Characterization of pectins extracted from pomegranate peel and their gelling properties. Food Chem 2017; 215:318-25. [DOI: 10.1016/j.foodchem.2016.07.181] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/28/2016] [Accepted: 07/29/2016] [Indexed: 02/01/2023]
|
135
|
B.S. Albuquerque P, C.B.B. Coelho L, A. Teixeira J, G. Carneiro-da-Cunha M. Approaches in biotechnological applications of natural polymers. AIMS MOLECULAR SCIENCE 2016. [DOI: 10.3934/molsci.2016.3.386] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|